Fault Detection for Point Machines: A Review, Challenges, and Perspectives
Point machines are the actuators for railway switching and crossing systems that guide trains from one track to another. Hence, the safe and reliable behavior of point machines are pivotal for rail transportation. Recently, scholars and researchers have attempted to deploy various kinds of sensors o...
Saved in:
Published in | Actuators Vol. 12; no. 10; p. 391 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Point machines are the actuators for railway switching and crossing systems that guide trains from one track to another. Hence, the safe and reliable behavior of point machines are pivotal for rail transportation. Recently, scholars and researchers have attempted to deploy various kinds of sensors on point machines for anomaly detection and/or incipient fault detection using date-driven algorithms. However, challenges arise when deploying condition monitoring and fault detection to trackside point machines in practical applications. This article begins by reviewing studies on fault and anomaly detection in point machines, encompassing employed methods and evaluation metrics. It subsequently conducts an in-depth analysis of point machines and outlines the envisioned intelligent fault detection system. Finally, it presents eight challenges and promising research directions along with a blueprint for intelligent point machine fault detection. |
---|---|
AbstractList | Point machines are the actuators for railway switching and crossing systems that guide trains from one track to another. Hence, the safe and reliable behavior of point machines are pivotal for rail transportation. Recently, scholars and researchers have attempted to deploy various kinds of sensors on point machines for anomaly detection and/or incipient fault detection using date-driven algorithms. However, challenges arise when deploying condition monitoring and fault detection to trackside point machines in practical applications. This article begins by reviewing studies on fault and anomaly detection in point machines, encompassing employed methods and evaluation metrics. It subsequently conducts an in-depth analysis of point machines and outlines the envisioned intelligent fault detection system. Finally, it presents eight challenges and promising research directions along with a blueprint for intelligent point machine fault detection. |
Audience | Academic |
Author | Hu, Xiaoxi Tang, Tao Tan, Lei Zhang, Heng |
Author_xml | – sequence: 1 givenname: Xiaoxi orcidid: 0000-0001-5702-1281 surname: Hu fullname: Hu, Xiaoxi – sequence: 2 givenname: Tao orcidid: 0000-0001-7838-8525 surname: Tang fullname: Tang, Tao – sequence: 3 givenname: Lei orcidid: 0000-0003-2752-5694 surname: Tan fullname: Tan, Lei – sequence: 4 givenname: Heng orcidid: 0009-0008-6119-2882 surname: Zhang fullname: Zhang, Heng |
BookMark | eNptUU1vFDEMHaEiUUpP_IGRONItzudkuK229AMVUSE4j5yMs81qOlmSbBH_niyLUIWwD7bs954tvZfN0RxnaprXDM6F6OEdusI4AxA9e9Ycc-j0AgxXR0_6F81pzhuo0TNhQBw3Hy9xN5X2ggq5EuLc-pjauxjm0n5Cdx9myu_bZfuFHgP9OGtX9zhNNK8pn7U4j-0dpbzdMx8pv2qee5wynf6pJ823yw9fV9eL289XN6vl7cJJEGVhuXFI3I7oUSshJO-sJRAeLHjDmCXOtQDZCdv31CkOdalH7bAD8iDFSXNz0B0jboZtCg-Yfg4Rw_B7ENN6wFSCm2gYRyG9VkpbzaVAtNg7ZZgejWJKAlWtNwetbYrfd5TLsIm7NNf3B24M59JI1VXU-QG1xioaZh9LQldzpIfgqgs-1Pmy61jPwGiohLcHgksx50T-75sMhr1ZwxOzKpr9g3ah4N6NeiZM_-X8AqWHli4 |
CitedBy_id | crossref_primary_10_1109_TITS_2024_3353257 crossref_primary_10_1109_TII_2024_3378800 crossref_primary_10_1016_j_est_2024_113947 crossref_primary_10_1002_cpe_8252 crossref_primary_10_1016_j_jvcir_2025_104414 crossref_primary_10_1038_s41598_024_80854_9 crossref_primary_10_1016_j_ifacol_2024_07_359 crossref_primary_10_1016_j_apacoust_2024_110201 crossref_primary_10_1016_j_engappai_2023_107834 crossref_primary_10_1109_ACCESS_2024_3522948 crossref_primary_10_1007_s11227_024_06111_y crossref_primary_10_1016_j_ress_2024_110607 crossref_primary_10_3390_act13100410 crossref_primary_10_1007_s12206_024_0922_2 crossref_primary_10_1038_s41598_024_74300_z crossref_primary_10_3390_electronics13224404 crossref_primary_10_3390_pr12081574 crossref_primary_10_1109_ACCESS_2024_3456818 crossref_primary_10_1109_ACCESS_2024_3372190 crossref_primary_10_1007_s00521_024_10564_w crossref_primary_10_3390_su16167226 crossref_primary_10_1016_j_measurement_2025_116715 crossref_primary_10_3390_s24144554 crossref_primary_10_3390_app142412047 crossref_primary_10_3390_s24113691 crossref_primary_10_3390_s24227129 crossref_primary_10_1088_1361_6501_ad9514 crossref_primary_10_1016_j_eswa_2024_125805 crossref_primary_10_1088_1361_6501_ad6784 crossref_primary_10_1016_j_engfailanal_2024_108204 crossref_primary_10_3390_en17164016 crossref_primary_10_1186_s44147_025_00584_1 crossref_primary_10_1007_s42417_024_01405_0 crossref_primary_10_3390_pr12091999 crossref_primary_10_1016_j_mtcomm_2023_108009 crossref_primary_10_1109_TIM_2024_3403209 crossref_primary_10_1016_j_aap_2024_107617 crossref_primary_10_1080_15376494_2024_2371099 |
Cites_doi | 10.1088/1742-6596/1345/3/032069 10.1007/s00170-017-1474-8 10.1177/0954409714567487 10.23919/ICCAS47443.2019.8971747 10.1155/2017/2856030 10.1109/TMECH.2021.3053173 10.1109/ITSC45102.2020.9294718 10.1109/ICDM.2018.00088 10.1016/j.inffus.2019.12.012 10.1186/s40537-016-0043-6 10.3390/s20092692 10.1093/tse/tdac065 10.1093/tse/tdac036 10.3390/app9235129 10.1145/3491209 10.1016/j.csndt.2014.03.004 10.1007/978-0-387-84858-7 10.1109/TMECH.2021.3124415 10.1198/10618600152418584 10.1109/TMECH.2021.3065522 10.1109/TITS.2023.3275741 10.1109/DEMPED.2009.5292755 10.23919/cje.2022.00.229 10.3390/s21175739 10.1109/TMECH.2022.3192122 10.1049/cp.2016.1210 10.23919/IConAC.2018.8749098 10.1016/j.cie.2020.106854 10.1186/s40537-019-0197-0 10.1109/TIM.2020.2998863 10.1109/COMST.2021.3090430 10.1016/j.jsv.2008.08.028 10.1093/tse/tdab017 10.1080/00423114.2015.1137956 10.1007/s10479-008-0403-5 10.1016/j.ymssp.2014.04.022 10.5121/ijdkp.2013.3408 10.1142/S0218194020400148 10.23919/IConAC.2019.8895081 10.3390/s16122006 10.1109/TIM.2018.2869193 10.1109/TITS.2021.3135006 10.3390/app9235139 10.1109/MITS.2021.3053036 10.1109/TIM.2020.2991573 10.1007/978-3-319-59050-9_12 10.1109/IJCNN.1992.227046 10.2219/rtriqr.47.182 10.1145/3524496 10.1016/j.neunet.2019.01.012 10.1243/09544097JRRT289 10.1038/s42256-022-00516-1 10.1155/2017/3192967 10.1016/j.inffus.2011.08.001 10.1017/S026988891300043X 10.1002/qre.2446 10.1145/3324926 10.1109/ICMLA.2019.00083 10.1109/ICASSP39728.2021.9414867 10.1061/JTEPBS.0000554 10.1016/j.ress.2009.10.009 10.1201/9781315140919 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SP 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- L6V L7M M0N M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/act12100391 |
DatabaseName | CrossRef ProQuest Central (Corporate) Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection (ProQuest) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2076-0825 |
ExternalDocumentID | oai_doaj_org_article_dd34f6556b6243aaba9c5816d851540e A771910860 10_3390_act12100391 |
GeographicLocations | China Germany |
GeographicLocations_xml | – name: China – name: Germany |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ABUWG ACIWK ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS PMFND 3V. 7SP 7TB 7XB 8AL 8FD 8FK FR3 JQ2 L7M M0N PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c403t-b28cae2bdafa6533427bbe03f0b0f811be22630473b99e7520e036d6ca70ef043 |
IEDL.DBID | DOA |
ISSN | 2076-0825 |
IngestDate | Wed Aug 27 01:18:06 EDT 2025 Fri Jul 25 10:43:25 EDT 2025 Tue Jun 10 21:16:22 EDT 2025 Thu Apr 24 22:56:43 EDT 2025 Tue Jul 01 02:08:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-b28cae2bdafa6533427bbe03f0b0f811be22630473b99e7520e036d6ca70ef043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2752-5694 0009-0008-6119-2882 0000-0001-5702-1281 0000-0001-7838-8525 |
OpenAccessLink | https://doaj.org/article/dd34f6556b6243aaba9c5816d851540e |
PQID | 2882248457 |
PQPubID | 2032444 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dd34f6556b6243aaba9c5816d851540e proquest_journals_2882248457 gale_infotracacademiconefile_A771910860 crossref_primary_10_3390_act12100391 crossref_citationtrail_10_3390_act12100391 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Actuators |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Weiss (ref_80) 2016; 3 Parisi (ref_84) 2019; 113 ref_14 ref_58 ref_57 Shanbhag (ref_61) 2021; 26 ref_53 ref_51 Ham (ref_49) 2020; 56 Wang (ref_82) 2019; 10 ref_18 Arrieta (ref_64) 2020; 58 ref_16 ref_15 Guo (ref_46) 2020; 69 Ganganwar (ref_59) 2012; 2 Li (ref_10) 2021; 14 Xue (ref_41) 2019; 1345 Kaur (ref_66) 2022; 55 Atamuradov (ref_54) 2019; 35 Chen (ref_12) 2023; 32 Khaleghi (ref_70) 2013; 14 Khan (ref_29) 2014; 29 ref_25 ref_69 ref_68 ref_22 Hu (ref_60) 2021; 23 Shi (ref_50) 2020; 30 ref_65 Li (ref_62) 2022; 27 Roberts (ref_3) 2010; 224 Kaewunruen (ref_5) 2014; 1 Vileiniskis (ref_32) 2016; 230 Fink (ref_19) 2015; 50 ref_28 ref_27 Liang (ref_63) 2022; 4 ref_26 An (ref_42) 2015; 2 Adachi (ref_17) 2006; 47 Atamuradov (ref_7) 2019; 68 Ji (ref_21) 2020; 33 Duan (ref_71) 2018; 96 ref_72 Kassa (ref_55) 2009; 320 Zhong (ref_30) 2018; 53 ref_36 Huang (ref_20) 2017; 2017 ref_79 ref_33 Li (ref_67) 2023; 55 Shorten (ref_78) 2019; 6 Wang (ref_56) 2017; 2017 Lee (ref_35) 2017; 6 ref_73 Meymand (ref_6) 2016; 54 ref_39 ref_38 ref_37 Pedregal (ref_24) 2009; 166 Ade (ref_83) 2013; 3 Chen (ref_8) 2020; 70 Hu (ref_52) 2022; 4 ref_47 Khan (ref_75) 2021; 23 ref_45 ref_44 ref_43 Li (ref_74) 2020; 149 Li (ref_11) 2022; 44 ref_40 Xu (ref_1) 2021; 3 Pedregal (ref_23) 2010; 95 ref_2 ref_48 Meng (ref_76) 2001; 10 ref_9 Zhang (ref_81) 2022; 27 Wang (ref_31) 2019; 28 Li (ref_86) 2021; 147 Gong (ref_85) 2023; 24 ref_4 Eker (ref_34) 2012; 8 Liu (ref_13) 2022; 5 Chang (ref_77) 2022; 27 |
References_xml | – volume: 1345 start-page: 032069 year: 2019 ident: ref_41 article-title: Unsupervised anomaly detection system for railway turnout based on GAN publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1345/3/032069 – volume: 96 start-page: 803 year: 2018 ident: ref_71 article-title: Development and trend of condition monitoring and fault diagnosis of multi-sensors information fusion for rolling bearings: A review publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-017-1474-8 – volume: 230 start-page: 852 year: 2016 ident: ref_32 article-title: A fault detection method for railway point systems publication-title: Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit doi: 10.1177/0954409714567487 – volume: 2 start-page: 1 year: 2015 ident: ref_42 article-title: Variational autoencoder based anomaly detection using reconstruction probability publication-title: Spec. Lect. IE – volume: 55 start-page: 1 year: 2023 ident: ref_67 article-title: Trustworthy AI: From principles to practices publication-title: ACM Comput. Surv. – volume: 44 start-page: 46 year: 2022 ident: ref_11 article-title: CACC-RF-based Risk Prediction of Railway Switch Gap Jam Fault publication-title: J. China Railw. Soc. – ident: ref_14 doi: 10.23919/ICCAS47443.2019.8971747 – volume: 2017 start-page: 2856030 year: 2017 ident: ref_56 article-title: Optimization of rail profiles to improve vehicle running stability in switch panel of high-speed railway turnouts publication-title: Math. Probl. Eng. doi: 10.1155/2017/2856030 – volume: 26 start-page: 3087 year: 2021 ident: ref_61 article-title: Failure Monitoring and Predictive Maintenance of Hydraulic Cylinder—State-of-the-Art Review publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2021.3053173 – ident: ref_44 doi: 10.1109/ITSC45102.2020.9294718 – ident: ref_40 doi: 10.1109/ICDM.2018.00088 – ident: ref_16 – ident: ref_65 – volume: 58 start-page: 82 year: 2020 ident: ref_64 article-title: Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.12.012 – volume: 3 start-page: 1 year: 2016 ident: ref_80 article-title: A survey of transfer learning publication-title: J. Big Data doi: 10.1186/s40537-016-0043-6 – ident: ref_25 doi: 10.3390/s20092692 – volume: 5 start-page: tdac065 year: 2022 ident: ref_13 article-title: Modified multi-scale symbolic dynamic entropy and fuzzy broad learning-based fast fault diagnosis of railway point machines publication-title: Transp. Saf. Environ. doi: 10.1093/tse/tdac065 – volume: 4 start-page: tdac036 year: 2022 ident: ref_52 article-title: Data-driven technology of fault diagnosis in railway point machines: Review and challenges publication-title: Transp. Saf. Environ. doi: 10.1093/tse/tdac036 – ident: ref_58 – ident: ref_2 doi: 10.3390/app9235129 – volume: 55 start-page: 1 year: 2022 ident: ref_66 article-title: Trustworthy artificial intelligence: A review publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/3491209 – volume: 1 start-page: 19 year: 2014 ident: ref_5 article-title: Monitoring structural deterioration of railway turnout systems via dynamic wheel/rail interaction publication-title: Case Stud. Nondestruct. Test. Eval. doi: 10.1016/j.csndt.2014.03.004 – ident: ref_36 doi: 10.1007/978-0-387-84858-7 – volume: 27 start-page: 2796 year: 2022 ident: ref_62 article-title: Deep Reinforcement Learning-Based Online Domain Adaptation Method for Fault Diagnosis of Rotating Machinery publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2021.3124415 – volume: 10 start-page: 1 year: 2001 ident: ref_76 article-title: The art of data augmentation publication-title: J. Comput. Graph. Stat. doi: 10.1198/10618600152418584 – volume: 27 start-page: 430 year: 2022 ident: ref_81 article-title: Federated Transfer Learning for Intelligent Fault Diagnostics Using Deep Adversarial Networks With Data Privacy publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2021.3065522 – volume: 24 start-page: 8919 year: 2023 ident: ref_85 article-title: Edge Intelligence in Intelligent Transportation Systems: A Survey publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2023.3275741 – ident: ref_53 doi: 10.1109/DEMPED.2009.5292755 – volume: 32 start-page: 972 year: 2023 ident: ref_12 article-title: Vibration Signal-Based Fault Diagnosis of Railway Point Machines via Double-Scale CNN publication-title: Chin. J. Electron. doi: 10.23919/cje.2022.00.229 – ident: ref_51 doi: 10.3390/s21175739 – ident: ref_4 – volume: 27 start-page: 5948 year: 2022 ident: ref_77 article-title: Meta-Learning With Adaptive Learning Rates for Few-Shot Fault Diagnosis publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2022.3192122 – ident: ref_27 – ident: ref_37 doi: 10.1049/cp.2016.1210 – ident: ref_43 doi: 10.23919/IConAC.2018.8749098 – volume: 149 start-page: 106854 year: 2020 ident: ref_74 article-title: A review of applications in federated learning publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106854 – volume: 6 start-page: 1 year: 2019 ident: ref_78 article-title: A survey on image data augmentation for deep learning publication-title: J. Big Data doi: 10.1186/s40537-019-0197-0 – volume: 69 start-page: 8881 year: 2020 ident: ref_46 article-title: An unsupervised fault-detection method for railway turnouts publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.2998863 – volume: 23 start-page: 1759 year: 2021 ident: ref_75 article-title: Federated Learning for Internet of Things: Recent Advances, Taxonomy, and Open Challenges publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2021.3090430 – volume: 320 start-page: 893 year: 2009 ident: ref_55 article-title: Dynamic train–turnout interaction in an extended frequency range using a detailed model of track dynamics publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2008.08.028 – volume: 33 start-page: 1013 year: 2020 ident: ref_21 article-title: An Intelligent Fault Diagnosis Method Based on FastDTW for Railway Turnout publication-title: Pattern Recognit. Artif. Intell. – ident: ref_45 – volume: 3 start-page: tdab017 year: 2021 ident: ref_1 article-title: Review and prospect of maintenance technology for traction system of high-speed train publication-title: Transp. Saf. Environ. doi: 10.1093/tse/tdab017 – volume: 8 start-page: 289 year: 2012 ident: ref_34 article-title: SVM based diagnostics on railway turnouts publication-title: Int. J. Perform. Eng. – ident: ref_72 – volume: 54 start-page: 386 year: 2016 ident: ref_6 article-title: A survey of wheel–rail contact models for rail vehicles publication-title: Veh. Syst. Dyn. doi: 10.1080/00423114.2015.1137956 – volume: 166 start-page: 109 year: 2009 ident: ref_24 article-title: An algorithmic approach for maintenance management based on advanced state space systems and harmonic regressions publication-title: Ann. Oper. Res. doi: 10.1007/s10479-008-0403-5 – volume: 50 start-page: 427 year: 2015 ident: ref_19 article-title: Novelty detection by multivariate kernel density estimation and growing neural gas algorithm publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2014.04.022 – ident: ref_28 – volume: 3 start-page: 119 year: 2013 ident: ref_83 article-title: Methods for incremental learning: A survey publication-title: Int. J. Data Min. Knowl. Manag. Process doi: 10.5121/ijdkp.2013.3408 – volume: 30 start-page: 961 year: 2020 ident: ref_50 article-title: The Turnout Abnormality Diagnosis Based on Semi-Supervised Learning Method publication-title: Int. J. Softw. Eng. Knowl. Eng. doi: 10.1142/S0218194020400148 – ident: ref_38 doi: 10.23919/IConAC.2019.8895081 – ident: ref_9 doi: 10.3390/s16122006 – volume: 68 start-page: 2691 year: 2019 ident: ref_7 article-title: Railway Point Machine Prognostics Based on Feature Fusion and Health State Assessment publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2018.2869193 – volume: 23 start-page: 14893 year: 2021 ident: ref_60 article-title: Railway Automatic Switch Stationary Contacts Wear Detection Under Few-Shot Occasions publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3135006 – ident: ref_26 doi: 10.3390/app9235139 – volume: 14 start-page: 214 year: 2021 ident: ref_10 article-title: A Railway Turnout Closeness Monitoring Method Based on Switch Gap Images publication-title: IEEE Intell. Transp. Syst. Mag. doi: 10.1109/MITS.2021.3053036 – volume: 70 start-page: 1 year: 2020 ident: ref_8 article-title: Improved fault diagnosis of railway switch system using energy-based thresholding wavelets (EBTW) and neural networks publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.2991573 – ident: ref_39 doi: 10.1007/978-3-319-59050-9_12 – ident: ref_48 doi: 10.1109/IJCNN.1992.227046 – volume: 47 start-page: 182 year: 2006 ident: ref_17 article-title: Electric switch machine failure detection using data-mining technique publication-title: Q. Rep. Rtri doi: 10.2219/rtriqr.47.182 – ident: ref_73 – ident: ref_79 – ident: ref_68 doi: 10.1145/3524496 – volume: 113 start-page: 54 year: 2019 ident: ref_84 article-title: Continual lifelong learning with neural networks: A review publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.01.012 – volume: 224 start-page: 35 year: 2010 ident: ref_3 article-title: Railway point mechanisms: Condition monitoring and fault detection publication-title: Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit doi: 10.1243/09544097JRRT289 – volume: 4 start-page: 669 year: 2022 ident: ref_63 article-title: Advances, challenges and opportunities in creating data for trustworthy AI publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-022-00516-1 – volume: 2017 start-page: 3192967 year: 2017 ident: ref_20 article-title: Turnout fault diagnosis through dynamic time warping and signal normalization publication-title: J. Adv. Transp. doi: 10.1155/2017/3192967 – ident: ref_33 – volume: 14 start-page: 28 year: 2013 ident: ref_70 article-title: Multisensor data fusion: A review of the state-of-the-art publication-title: Inf. Fusion doi: 10.1016/j.inffus.2011.08.001 – volume: 29 start-page: 345 year: 2014 ident: ref_29 article-title: One-class classification: Taxonomy of study and review of techniques publication-title: Knowl. Eng. Rev. doi: 10.1017/S026988891300043X – volume: 35 start-page: 1081 year: 2019 ident: ref_54 article-title: Feature selection and fault-severity classification–based machine health assessment methodology for point machine sliding-chair degradation publication-title: Qual. Reliab. Eng. Int. doi: 10.1002/qre.2446 – volume: 2 start-page: 42 year: 2012 ident: ref_59 article-title: An overview of classification algorithms for imbalanced datasets publication-title: Int. J. Emerg. Technol. Adv. Eng. – volume: 10 start-page: 1 year: 2019 ident: ref_82 article-title: A survey of zero-shot learning: Settings, methods, and applications publication-title: ACM Trans. Intell. Syst. Technol. (TIST) doi: 10.1145/3324926 – ident: ref_47 doi: 10.1109/ICMLA.2019.00083 – ident: ref_69 doi: 10.1109/ICASSP39728.2021.9414867 – ident: ref_15 – volume: 147 start-page: 04021041 year: 2021 ident: ref_86 article-title: Fault diagnosis for rolling bearings of a freight train under limited fault data: Few-shot learning method publication-title: J. Transp. Eng. Part A Syst. doi: 10.1061/JTEPBS.0000554 – volume: 56 start-page: 19 year: 2020 ident: ref_49 article-title: Review of semi-supervised learning research publication-title: Comput. Eng. Appl. – volume: 95 start-page: 698 year: 2010 ident: ref_23 article-title: Time series methods applied to failure prediction and detection publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2009.10.009 – ident: ref_18 doi: 10.1201/9781315140919 – volume: 53 start-page: 842 year: 2018 ident: ref_30 article-title: SVDD-Based Research on Railway-Turnout Fault Detection and Health Assessment publication-title: J. Southwest Jiaotong Univ. – ident: ref_22 – ident: ref_57 – volume: 6 start-page: 9 year: 2017 ident: ref_35 article-title: Noise-Robust Anomaly Detection of Railway Point Machine using Modulation Technique publication-title: Smart Media J. – volume: 28 start-page: 1 year: 2019 ident: ref_31 article-title: Abnormal detection of switch machine operation state based on improved support vector domain description publication-title: Railw. Comput. Appl. |
SSID | ssj0000913803 |
Score | 2.4770904 |
SecondaryResourceType | review_article |
Snippet | Point machines are the actuators for railway switching and crossing systems that guide trains from one track to another. Hence, the safe and reliable behavior... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 391 |
SubjectTerms | Actuators Algorithms Anomalies anomaly detection Condition monitoring Control equipment Efficiency Energy consumption Fault detection Frogs Hydraulics Light rail transportation point machines R&D Railroad accidents & safety Railroad crossings Railroads Research & development Sensors Trains |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEB3azaU9lH7SbdOiQ6BQYiLLkiz3UjZplhBIWEoDuQlJlksgeNPY-f-dkbWbFNpefLDmYEua0RvNzBuAPelqJ0qPvkks8dHxUPhOqUIkOIz6VCfK_LNzfXIhTy_VZb5wG3Ja5cYmJkPdrgPdkR8IQ_mORqr6682vgrpGUXQ1t9B4DDtogo2Zwc7h8fnq-_aWhVgvTWqPLNBhL8gfmor0KvT1D1wYiT-LSNL_OJYSe_-_bHQ6eJbP4VlGjGwxLfELeBT7l_D0AY_gKzhdurvrkX2LY0qs6hkiUbZaX_UjO0vJknH4whZsigPss6NNA5Vhn7m-Zav7gsvhNVwsj38cnRS5SUIRJK_GwgsTXBS-dZ3TVFcrau8jrzrueWfK0kcEWBRbq3zTxFoJjoO61cHVPHZcVm9g1q_7-BaYl1q2CvFBpNifNK50KNFVTWxMMK6Zw-fNHNmQGcSpkcW1RU-CJtQ-mNA57G2FbybijL-LHdJkb0WI7Tq9WN_-tFl5bNtWstNKaa-FrJzzrgnKlLpFuIiIM87hEy2VJZ3EDwoulxbgbxG7lV3UNbql6LzxOexuVtNmZR3s_dZ69__h9_CEus1PuXy7MBtv7-IHxCSj_5g33m_IKtz- priority: 102 providerName: ProQuest |
Title | Fault Detection for Point Machines: A Review, Challenges, and Perspectives |
URI | https://www.proquest.com/docview/2882248457 https://doaj.org/article/dd34f6556b6243aaba9c5816d851540e |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58XPQgPnF9LDkIglhMm0dTb-tjFUFZRMFbSNIUhKWKW_-_k7SrKyhevPTQziGd6Uy-aWa-ATjgJjdZajE38SleKuoSWwmRZBEOoz_lkTL_9k5eP_KbJ_E0M-or1IS19MCt4k7KkvFKCiGtzDgzxprCCZXKEqECog0foi_ueTPJVIzBRcoUZW1DHsO8_sS4JnBlBUL0b1tQZOr_LR7HTWa4CisdOiSDdlVrMOfrdVie4QzcgJuheR835MI3sYiqJog6yejluW7IbSyM9JNTMiDtP_9jcj4dljI5JqYuyeiruXKyCY_Dy4fz66QbiJA4TlmT2Ew54zNbmsrI0EOb5dZ6yipqaaXS1HoEU-Ecjdmi8LnIKD6UpXQmp76inG3BQv1S-20glkteCsQCPpzzcWVSgxIVK3yhnDJFD46mOtKuYwsPQyvGGrOGoFA9o9AeHHwKv7YkGT-LnQVlf4oEZut4A-2tO3vrv-zdg8NgKh38DxfkTNdGgK8VmKz0IM8xBcVEjfZgb2pN3TnmRGcqlM0qLvKd_1jNLiyF-fNtdd8eLDRv734fUUpj-zCvhld9WDy7vBvd9-Pn-QEMN-Rk |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKe6UMCHIiTUqI7jOEmlCi0ty_axVQ-t1JtrO06FVGVLkwrxp_iNzDjJtkjArZccklGUjMfz8Mx8A7AmTWZEbDE28TFeKu4iW6VpJII7jPspC5D5s0M1PZF7p-npEvwaemGorHLQiUFRl3NHZ-QbIqd6x1ym2afL7xFNjaLs6jBCoxOLff_zB4ZszdbuDq7veyEmX463p1E_VSBykidtZEXujBe2NJVR1IgqMms9TypueZXHsfXokVAyKrFF4bNUcHyoSuVMxn3FZYLvvQf3ZYKWnDrTJ18XZzqEsZmHYcyCZxioY_TVtQQiLd8wriW0LoJk_8MIhlkB_7IIwcxNnsDj3j9l406gnsKSr5_Bo1uohc9hb2KuL1q249tQxlUz9HvZ0fxb3bJZKM30zSYbsy7rsM62h3EtzTozdcmObto7mxdwcifMewnL9bz2K8CsVLJM0RvxlGmUuYkNUlRJ4Yvc5aYYwceBR9r1eOU0NuNCY9xCDNW3GDqCtQXxZQfT8Xeyz8TsBQlha4cb86tz3W9VXZaJrFSaKquETIyxpnBpHqsSnVP0b_0IPtBSadIA-EHO9I0M-FuEpaXHWYZBMIaKfASrw2rqXjU0-kaQX_3_8Tt4MD2eHeiD3cP91_CQ5tx3VYSrsNxeXfs36A219m0QQQZndy3zvwHiMBhj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFUQfxE88rboPFUEautlsko0gcu316Ic9DrHQt3V3sxGh5GqTIv5r_nXObJJrBfWtL3lIhpDMzu7Ob2fmNwCb0uRGxBaxiY_xUnEX2SpNIxHcYZxPeaDMP55n-yfy8DQ9XYNfQy0MpVUOa2JYqMulozPybaEo31FJBPBVnxaxmM4-nH-PqIMURVqHdhqdiRz5nz8QvjXvD6Y41q-FmO193t2P-g4DkZM8aSMrlDNe2NJUJqOiVJFb63lSccsrFcfWo3dCganEFoXPU8HxYVZmzuTcV1wm-N5bsJ4TKhrB-s7efPFpdcJDjJsqtGYWPEfYjlisKxBMkoJvG9cSdxcRtP-xJYbOAf_aH8KmN7sP93pvlU0683oAa75-CHevcRg-gsOZuTxr2dS3IamrZugFs8XyW92y45Co6Zt3bMK6GMQW2x2atzRbzNQlW1wVezaP4eRG1PcERvWy9k-BWZnJMkXfxFPcUSoTG5SoksIXyilTjOHtoCPtevZyaqJxphHFkEL1NYWOYXMlfN6RdvxdbIeUvRIhpu1wY3nxVfcTV5dlIqssTTObCZkYY03hUhVnJbqq6O36MbyhodK0HuAHOdOXNeBvEbOWnuQ5QmIEjnwMG8No6n6haPSVWT_7_-NXcBvtXX88mB89hzvU9L5LKdyAUXtx6V-ga9Tal70NMvhy02b_G7yAHfU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Detection+for+Point+Machines%3A+A+Review%2C+Challenges%2C+and+Perspectives&rft.jtitle=Actuators&rft.au=Xiaoxi+Hu&rft.au=Tao+Tang&rft.au=Lei+Tan&rft.au=Heng+Zhang&rft.date=2023-10-01&rft.pub=MDPI+AG&rft.eissn=2076-0825&rft.volume=12&rft.issue=10&rft.spage=391&rft_id=info:doi/10.3390%2Fact12100391&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dd34f6556b6243aaba9c5816d851540e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-0825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-0825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-0825&client=summon |