Fault Detection for Point Machines: A Review, Challenges, and Perspectives

Point machines are the actuators for railway switching and crossing systems that guide trains from one track to another. Hence, the safe and reliable behavior of point machines are pivotal for rail transportation. Recently, scholars and researchers have attempted to deploy various kinds of sensors o...

Full description

Saved in:
Bibliographic Details
Published inActuators Vol. 12; no. 10; p. 391
Main Authors Hu, Xiaoxi, Tang, Tao, Tan, Lei, Zhang, Heng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Point machines are the actuators for railway switching and crossing systems that guide trains from one track to another. Hence, the safe and reliable behavior of point machines are pivotal for rail transportation. Recently, scholars and researchers have attempted to deploy various kinds of sensors on point machines for anomaly detection and/or incipient fault detection using date-driven algorithms. However, challenges arise when deploying condition monitoring and fault detection to trackside point machines in practical applications. This article begins by reviewing studies on fault and anomaly detection in point machines, encompassing employed methods and evaluation metrics. It subsequently conducts an in-depth analysis of point machines and outlines the envisioned intelligent fault detection system. Finally, it presents eight challenges and promising research directions along with a blueprint for intelligent point machine fault detection.
AbstractList Point machines are the actuators for railway switching and crossing systems that guide trains from one track to another. Hence, the safe and reliable behavior of point machines are pivotal for rail transportation. Recently, scholars and researchers have attempted to deploy various kinds of sensors on point machines for anomaly detection and/or incipient fault detection using date-driven algorithms. However, challenges arise when deploying condition monitoring and fault detection to trackside point machines in practical applications. This article begins by reviewing studies on fault and anomaly detection in point machines, encompassing employed methods and evaluation metrics. It subsequently conducts an in-depth analysis of point machines and outlines the envisioned intelligent fault detection system. Finally, it presents eight challenges and promising research directions along with a blueprint for intelligent point machine fault detection.
Audience Academic
Author Hu, Xiaoxi
Tang, Tao
Tan, Lei
Zhang, Heng
Author_xml – sequence: 1
  givenname: Xiaoxi
  orcidid: 0000-0001-5702-1281
  surname: Hu
  fullname: Hu, Xiaoxi
– sequence: 2
  givenname: Tao
  orcidid: 0000-0001-7838-8525
  surname: Tang
  fullname: Tang, Tao
– sequence: 3
  givenname: Lei
  orcidid: 0000-0003-2752-5694
  surname: Tan
  fullname: Tan, Lei
– sequence: 4
  givenname: Heng
  orcidid: 0009-0008-6119-2882
  surname: Zhang
  fullname: Zhang, Heng
BookMark eNptUU1vFDEMHaEiUUpP_IGRONItzudkuK229AMVUSE4j5yMs81qOlmSbBH_niyLUIWwD7bs954tvZfN0RxnaprXDM6F6OEdusI4AxA9e9Ycc-j0AgxXR0_6F81pzhuo0TNhQBw3Hy9xN5X2ggq5EuLc-pjauxjm0n5Cdx9myu_bZfuFHgP9OGtX9zhNNK8pn7U4j-0dpbzdMx8pv2qee5wynf6pJ823yw9fV9eL289XN6vl7cJJEGVhuXFI3I7oUSshJO-sJRAeLHjDmCXOtQDZCdv31CkOdalH7bAD8iDFSXNz0B0jboZtCg-Yfg4Rw_B7ENN6wFSCm2gYRyG9VkpbzaVAtNg7ZZgejWJKAlWtNwetbYrfd5TLsIm7NNf3B24M59JI1VXU-QG1xioaZh9LQldzpIfgqgs-1Pmy61jPwGiohLcHgksx50T-75sMhr1ZwxOzKpr9g3ah4N6NeiZM_-X8AqWHli4
CitedBy_id crossref_primary_10_1109_TITS_2024_3353257
crossref_primary_10_1109_TII_2024_3378800
crossref_primary_10_1016_j_est_2024_113947
crossref_primary_10_1002_cpe_8252
crossref_primary_10_1016_j_jvcir_2025_104414
crossref_primary_10_1038_s41598_024_80854_9
crossref_primary_10_1016_j_ifacol_2024_07_359
crossref_primary_10_1016_j_apacoust_2024_110201
crossref_primary_10_1016_j_engappai_2023_107834
crossref_primary_10_1109_ACCESS_2024_3522948
crossref_primary_10_1007_s11227_024_06111_y
crossref_primary_10_1016_j_ress_2024_110607
crossref_primary_10_3390_act13100410
crossref_primary_10_1007_s12206_024_0922_2
crossref_primary_10_1038_s41598_024_74300_z
crossref_primary_10_3390_electronics13224404
crossref_primary_10_3390_pr12081574
crossref_primary_10_1109_ACCESS_2024_3456818
crossref_primary_10_1109_ACCESS_2024_3372190
crossref_primary_10_1007_s00521_024_10564_w
crossref_primary_10_3390_su16167226
crossref_primary_10_1016_j_measurement_2025_116715
crossref_primary_10_3390_s24144554
crossref_primary_10_3390_app142412047
crossref_primary_10_3390_s24113691
crossref_primary_10_3390_s24227129
crossref_primary_10_1088_1361_6501_ad9514
crossref_primary_10_1016_j_eswa_2024_125805
crossref_primary_10_1088_1361_6501_ad6784
crossref_primary_10_1016_j_engfailanal_2024_108204
crossref_primary_10_3390_en17164016
crossref_primary_10_1186_s44147_025_00584_1
crossref_primary_10_1007_s42417_024_01405_0
crossref_primary_10_3390_pr12091999
crossref_primary_10_1016_j_mtcomm_2023_108009
crossref_primary_10_1109_TIM_2024_3403209
crossref_primary_10_1016_j_aap_2024_107617
crossref_primary_10_1080_15376494_2024_2371099
Cites_doi 10.1088/1742-6596/1345/3/032069
10.1007/s00170-017-1474-8
10.1177/0954409714567487
10.23919/ICCAS47443.2019.8971747
10.1155/2017/2856030
10.1109/TMECH.2021.3053173
10.1109/ITSC45102.2020.9294718
10.1109/ICDM.2018.00088
10.1016/j.inffus.2019.12.012
10.1186/s40537-016-0043-6
10.3390/s20092692
10.1093/tse/tdac065
10.1093/tse/tdac036
10.3390/app9235129
10.1145/3491209
10.1016/j.csndt.2014.03.004
10.1007/978-0-387-84858-7
10.1109/TMECH.2021.3124415
10.1198/10618600152418584
10.1109/TMECH.2021.3065522
10.1109/TITS.2023.3275741
10.1109/DEMPED.2009.5292755
10.23919/cje.2022.00.229
10.3390/s21175739
10.1109/TMECH.2022.3192122
10.1049/cp.2016.1210
10.23919/IConAC.2018.8749098
10.1016/j.cie.2020.106854
10.1186/s40537-019-0197-0
10.1109/TIM.2020.2998863
10.1109/COMST.2021.3090430
10.1016/j.jsv.2008.08.028
10.1093/tse/tdab017
10.1080/00423114.2015.1137956
10.1007/s10479-008-0403-5
10.1016/j.ymssp.2014.04.022
10.5121/ijdkp.2013.3408
10.1142/S0218194020400148
10.23919/IConAC.2019.8895081
10.3390/s16122006
10.1109/TIM.2018.2869193
10.1109/TITS.2021.3135006
10.3390/app9235139
10.1109/MITS.2021.3053036
10.1109/TIM.2020.2991573
10.1007/978-3-319-59050-9_12
10.1109/IJCNN.1992.227046
10.2219/rtriqr.47.182
10.1145/3524496
10.1016/j.neunet.2019.01.012
10.1243/09544097JRRT289
10.1038/s42256-022-00516-1
10.1155/2017/3192967
10.1016/j.inffus.2011.08.001
10.1017/S026988891300043X
10.1002/qre.2446
10.1145/3324926
10.1109/ICMLA.2019.00083
10.1109/ICASSP39728.2021.9414867
10.1061/JTEPBS.0000554
10.1016/j.ress.2009.10.009
10.1201/9781315140919
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SP
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/act12100391
DatabaseName CrossRef
ProQuest Central (Corporate)
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection (ProQuest)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2076-0825
ExternalDocumentID oai_doaj_org_article_dd34f6556b6243aaba9c5816d851540e
A771910860
10_3390_act12100391
GeographicLocations China
Germany
GeographicLocations_xml – name: China
– name: Germany
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ABUWG
ACIWK
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
PMFND
3V.
7SP
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
L7M
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c403t-b28cae2bdafa6533427bbe03f0b0f811be22630473b99e7520e036d6ca70ef043
IEDL.DBID DOA
ISSN 2076-0825
IngestDate Wed Aug 27 01:18:06 EDT 2025
Fri Jul 25 10:43:25 EDT 2025
Tue Jun 10 21:16:22 EDT 2025
Thu Apr 24 22:56:43 EDT 2025
Tue Jul 01 02:08:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-b28cae2bdafa6533427bbe03f0b0f811be22630473b99e7520e036d6ca70ef043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2752-5694
0009-0008-6119-2882
0000-0001-5702-1281
0000-0001-7838-8525
OpenAccessLink https://doaj.org/article/dd34f6556b6243aaba9c5816d851540e
PQID 2882248457
PQPubID 2032444
ParticipantIDs doaj_primary_oai_doaj_org_article_dd34f6556b6243aaba9c5816d851540e
proquest_journals_2882248457
gale_infotracacademiconefile_A771910860
crossref_primary_10_3390_act12100391
crossref_citationtrail_10_3390_act12100391
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Actuators
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Weiss (ref_80) 2016; 3
Parisi (ref_84) 2019; 113
ref_14
ref_58
ref_57
Shanbhag (ref_61) 2021; 26
ref_53
ref_51
Ham (ref_49) 2020; 56
Wang (ref_82) 2019; 10
ref_18
Arrieta (ref_64) 2020; 58
ref_16
ref_15
Guo (ref_46) 2020; 69
Ganganwar (ref_59) 2012; 2
Li (ref_10) 2021; 14
Xue (ref_41) 2019; 1345
Kaur (ref_66) 2022; 55
Atamuradov (ref_54) 2019; 35
Chen (ref_12) 2023; 32
Khaleghi (ref_70) 2013; 14
Khan (ref_29) 2014; 29
ref_25
ref_69
ref_68
ref_22
Hu (ref_60) 2021; 23
Shi (ref_50) 2020; 30
ref_65
Li (ref_62) 2022; 27
Roberts (ref_3) 2010; 224
Kaewunruen (ref_5) 2014; 1
Vileiniskis (ref_32) 2016; 230
Fink (ref_19) 2015; 50
ref_28
ref_27
Liang (ref_63) 2022; 4
ref_26
An (ref_42) 2015; 2
Adachi (ref_17) 2006; 47
Atamuradov (ref_7) 2019; 68
Ji (ref_21) 2020; 33
Duan (ref_71) 2018; 96
ref_72
Kassa (ref_55) 2009; 320
Zhong (ref_30) 2018; 53
ref_36
Huang (ref_20) 2017; 2017
ref_79
ref_33
Li (ref_67) 2023; 55
Shorten (ref_78) 2019; 6
Wang (ref_56) 2017; 2017
Lee (ref_35) 2017; 6
ref_73
Meymand (ref_6) 2016; 54
ref_39
ref_38
ref_37
Pedregal (ref_24) 2009; 166
Ade (ref_83) 2013; 3
Chen (ref_8) 2020; 70
Hu (ref_52) 2022; 4
ref_47
Khan (ref_75) 2021; 23
ref_45
ref_44
ref_43
Li (ref_74) 2020; 149
Li (ref_11) 2022; 44
ref_40
Xu (ref_1) 2021; 3
Pedregal (ref_23) 2010; 95
ref_2
ref_48
Meng (ref_76) 2001; 10
ref_9
Zhang (ref_81) 2022; 27
Wang (ref_31) 2019; 28
Li (ref_86) 2021; 147
Gong (ref_85) 2023; 24
ref_4
Eker (ref_34) 2012; 8
Liu (ref_13) 2022; 5
Chang (ref_77) 2022; 27
References_xml – volume: 1345
  start-page: 032069
  year: 2019
  ident: ref_41
  article-title: Unsupervised anomaly detection system for railway turnout based on GAN
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1345/3/032069
– volume: 96
  start-page: 803
  year: 2018
  ident: ref_71
  article-title: Development and trend of condition monitoring and fault diagnosis of multi-sensors information fusion for rolling bearings: A review
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-017-1474-8
– volume: 230
  start-page: 852
  year: 2016
  ident: ref_32
  article-title: A fault detection method for railway point systems
  publication-title: Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit
  doi: 10.1177/0954409714567487
– volume: 2
  start-page: 1
  year: 2015
  ident: ref_42
  article-title: Variational autoencoder based anomaly detection using reconstruction probability
  publication-title: Spec. Lect. IE
– volume: 55
  start-page: 1
  year: 2023
  ident: ref_67
  article-title: Trustworthy AI: From principles to practices
  publication-title: ACM Comput. Surv.
– volume: 44
  start-page: 46
  year: 2022
  ident: ref_11
  article-title: CACC-RF-based Risk Prediction of Railway Switch Gap Jam Fault
  publication-title: J. China Railw. Soc.
– ident: ref_14
  doi: 10.23919/ICCAS47443.2019.8971747
– volume: 2017
  start-page: 2856030
  year: 2017
  ident: ref_56
  article-title: Optimization of rail profiles to improve vehicle running stability in switch panel of high-speed railway turnouts
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2017/2856030
– volume: 26
  start-page: 3087
  year: 2021
  ident: ref_61
  article-title: Failure Monitoring and Predictive Maintenance of Hydraulic Cylinder—State-of-the-Art Review
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2021.3053173
– ident: ref_44
  doi: 10.1109/ITSC45102.2020.9294718
– ident: ref_40
  doi: 10.1109/ICDM.2018.00088
– ident: ref_16
– ident: ref_65
– volume: 58
  start-page: 82
  year: 2020
  ident: ref_64
  article-title: Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.12.012
– volume: 3
  start-page: 1
  year: 2016
  ident: ref_80
  article-title: A survey of transfer learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-016-0043-6
– ident: ref_25
  doi: 10.3390/s20092692
– volume: 5
  start-page: tdac065
  year: 2022
  ident: ref_13
  article-title: Modified multi-scale symbolic dynamic entropy and fuzzy broad learning-based fast fault diagnosis of railway point machines
  publication-title: Transp. Saf. Environ.
  doi: 10.1093/tse/tdac065
– volume: 4
  start-page: tdac036
  year: 2022
  ident: ref_52
  article-title: Data-driven technology of fault diagnosis in railway point machines: Review and challenges
  publication-title: Transp. Saf. Environ.
  doi: 10.1093/tse/tdac036
– ident: ref_58
– ident: ref_2
  doi: 10.3390/app9235129
– volume: 55
  start-page: 1
  year: 2022
  ident: ref_66
  article-title: Trustworthy artificial intelligence: A review
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/3491209
– volume: 1
  start-page: 19
  year: 2014
  ident: ref_5
  article-title: Monitoring structural deterioration of railway turnout systems via dynamic wheel/rail interaction
  publication-title: Case Stud. Nondestruct. Test. Eval.
  doi: 10.1016/j.csndt.2014.03.004
– ident: ref_36
  doi: 10.1007/978-0-387-84858-7
– volume: 27
  start-page: 2796
  year: 2022
  ident: ref_62
  article-title: Deep Reinforcement Learning-Based Online Domain Adaptation Method for Fault Diagnosis of Rotating Machinery
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2021.3124415
– volume: 10
  start-page: 1
  year: 2001
  ident: ref_76
  article-title: The art of data augmentation
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/10618600152418584
– volume: 27
  start-page: 430
  year: 2022
  ident: ref_81
  article-title: Federated Transfer Learning for Intelligent Fault Diagnostics Using Deep Adversarial Networks With Data Privacy
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2021.3065522
– volume: 24
  start-page: 8919
  year: 2023
  ident: ref_85
  article-title: Edge Intelligence in Intelligent Transportation Systems: A Survey
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2023.3275741
– ident: ref_53
  doi: 10.1109/DEMPED.2009.5292755
– volume: 32
  start-page: 972
  year: 2023
  ident: ref_12
  article-title: Vibration Signal-Based Fault Diagnosis of Railway Point Machines via Double-Scale CNN
  publication-title: Chin. J. Electron.
  doi: 10.23919/cje.2022.00.229
– ident: ref_51
  doi: 10.3390/s21175739
– ident: ref_4
– volume: 27
  start-page: 5948
  year: 2022
  ident: ref_77
  article-title: Meta-Learning With Adaptive Learning Rates for Few-Shot Fault Diagnosis
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2022.3192122
– ident: ref_27
– ident: ref_37
  doi: 10.1049/cp.2016.1210
– ident: ref_43
  doi: 10.23919/IConAC.2018.8749098
– volume: 149
  start-page: 106854
  year: 2020
  ident: ref_74
  article-title: A review of applications in federated learning
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106854
– volume: 6
  start-page: 1
  year: 2019
  ident: ref_78
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 69
  start-page: 8881
  year: 2020
  ident: ref_46
  article-title: An unsupervised fault-detection method for railway turnouts
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.2998863
– volume: 23
  start-page: 1759
  year: 2021
  ident: ref_75
  article-title: Federated Learning for Internet of Things: Recent Advances, Taxonomy, and Open Challenges
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2021.3090430
– volume: 320
  start-page: 893
  year: 2009
  ident: ref_55
  article-title: Dynamic train–turnout interaction in an extended frequency range using a detailed model of track dynamics
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2008.08.028
– volume: 33
  start-page: 1013
  year: 2020
  ident: ref_21
  article-title: An Intelligent Fault Diagnosis Method Based on FastDTW for Railway Turnout
  publication-title: Pattern Recognit. Artif. Intell.
– ident: ref_45
– volume: 3
  start-page: tdab017
  year: 2021
  ident: ref_1
  article-title: Review and prospect of maintenance technology for traction system of high-speed train
  publication-title: Transp. Saf. Environ.
  doi: 10.1093/tse/tdab017
– volume: 8
  start-page: 289
  year: 2012
  ident: ref_34
  article-title: SVM based diagnostics on railway turnouts
  publication-title: Int. J. Perform. Eng.
– ident: ref_72
– volume: 54
  start-page: 386
  year: 2016
  ident: ref_6
  article-title: A survey of wheel–rail contact models for rail vehicles
  publication-title: Veh. Syst. Dyn.
  doi: 10.1080/00423114.2015.1137956
– volume: 166
  start-page: 109
  year: 2009
  ident: ref_24
  article-title: An algorithmic approach for maintenance management based on advanced state space systems and harmonic regressions
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-008-0403-5
– volume: 50
  start-page: 427
  year: 2015
  ident: ref_19
  article-title: Novelty detection by multivariate kernel density estimation and growing neural gas algorithm
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2014.04.022
– ident: ref_28
– volume: 3
  start-page: 119
  year: 2013
  ident: ref_83
  article-title: Methods for incremental learning: A survey
  publication-title: Int. J. Data Min. Knowl. Manag. Process
  doi: 10.5121/ijdkp.2013.3408
– volume: 30
  start-page: 961
  year: 2020
  ident: ref_50
  article-title: The Turnout Abnormality Diagnosis Based on Semi-Supervised Learning Method
  publication-title: Int. J. Softw. Eng. Knowl. Eng.
  doi: 10.1142/S0218194020400148
– ident: ref_38
  doi: 10.23919/IConAC.2019.8895081
– ident: ref_9
  doi: 10.3390/s16122006
– volume: 68
  start-page: 2691
  year: 2019
  ident: ref_7
  article-title: Railway Point Machine Prognostics Based on Feature Fusion and Health State Assessment
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2869193
– volume: 23
  start-page: 14893
  year: 2021
  ident: ref_60
  article-title: Railway Automatic Switch Stationary Contacts Wear Detection Under Few-Shot Occasions
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3135006
– ident: ref_26
  doi: 10.3390/app9235139
– volume: 14
  start-page: 214
  year: 2021
  ident: ref_10
  article-title: A Railway Turnout Closeness Monitoring Method Based on Switch Gap Images
  publication-title: IEEE Intell. Transp. Syst. Mag.
  doi: 10.1109/MITS.2021.3053036
– volume: 70
  start-page: 1
  year: 2020
  ident: ref_8
  article-title: Improved fault diagnosis of railway switch system using energy-based thresholding wavelets (EBTW) and neural networks
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.2991573
– ident: ref_39
  doi: 10.1007/978-3-319-59050-9_12
– ident: ref_48
  doi: 10.1109/IJCNN.1992.227046
– volume: 47
  start-page: 182
  year: 2006
  ident: ref_17
  article-title: Electric switch machine failure detection using data-mining technique
  publication-title: Q. Rep. Rtri
  doi: 10.2219/rtriqr.47.182
– ident: ref_73
– ident: ref_79
– ident: ref_68
  doi: 10.1145/3524496
– volume: 113
  start-page: 54
  year: 2019
  ident: ref_84
  article-title: Continual lifelong learning with neural networks: A review
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.01.012
– volume: 224
  start-page: 35
  year: 2010
  ident: ref_3
  article-title: Railway point mechanisms: Condition monitoring and fault detection
  publication-title: Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit
  doi: 10.1243/09544097JRRT289
– volume: 4
  start-page: 669
  year: 2022
  ident: ref_63
  article-title: Advances, challenges and opportunities in creating data for trustworthy AI
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-022-00516-1
– volume: 2017
  start-page: 3192967
  year: 2017
  ident: ref_20
  article-title: Turnout fault diagnosis through dynamic time warping and signal normalization
  publication-title: J. Adv. Transp.
  doi: 10.1155/2017/3192967
– ident: ref_33
– volume: 14
  start-page: 28
  year: 2013
  ident: ref_70
  article-title: Multisensor data fusion: A review of the state-of-the-art
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2011.08.001
– volume: 29
  start-page: 345
  year: 2014
  ident: ref_29
  article-title: One-class classification: Taxonomy of study and review of techniques
  publication-title: Knowl. Eng. Rev.
  doi: 10.1017/S026988891300043X
– volume: 35
  start-page: 1081
  year: 2019
  ident: ref_54
  article-title: Feature selection and fault-severity classification–based machine health assessment methodology for point machine sliding-chair degradation
  publication-title: Qual. Reliab. Eng. Int.
  doi: 10.1002/qre.2446
– volume: 2
  start-page: 42
  year: 2012
  ident: ref_59
  article-title: An overview of classification algorithms for imbalanced datasets
  publication-title: Int. J. Emerg. Technol. Adv. Eng.
– volume: 10
  start-page: 1
  year: 2019
  ident: ref_82
  article-title: A survey of zero-shot learning: Settings, methods, and applications
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
  doi: 10.1145/3324926
– ident: ref_47
  doi: 10.1109/ICMLA.2019.00083
– ident: ref_69
  doi: 10.1109/ICASSP39728.2021.9414867
– ident: ref_15
– volume: 147
  start-page: 04021041
  year: 2021
  ident: ref_86
  article-title: Fault diagnosis for rolling bearings of a freight train under limited fault data: Few-shot learning method
  publication-title: J. Transp. Eng. Part A Syst.
  doi: 10.1061/JTEPBS.0000554
– volume: 56
  start-page: 19
  year: 2020
  ident: ref_49
  article-title: Review of semi-supervised learning research
  publication-title: Comput. Eng. Appl.
– volume: 95
  start-page: 698
  year: 2010
  ident: ref_23
  article-title: Time series methods applied to failure prediction and detection
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2009.10.009
– ident: ref_18
  doi: 10.1201/9781315140919
– volume: 53
  start-page: 842
  year: 2018
  ident: ref_30
  article-title: SVDD-Based Research on Railway-Turnout Fault Detection and Health Assessment
  publication-title: J. Southwest Jiaotong Univ.
– ident: ref_22
– ident: ref_57
– volume: 6
  start-page: 9
  year: 2017
  ident: ref_35
  article-title: Noise-Robust Anomaly Detection of Railway Point Machine using Modulation Technique
  publication-title: Smart Media J.
– volume: 28
  start-page: 1
  year: 2019
  ident: ref_31
  article-title: Abnormal detection of switch machine operation state based on improved support vector domain description
  publication-title: Railw. Comput. Appl.
SSID ssj0000913803
Score 2.4770904
SecondaryResourceType review_article
Snippet Point machines are the actuators for railway switching and crossing systems that guide trains from one track to another. Hence, the safe and reliable behavior...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 391
SubjectTerms Actuators
Algorithms
Anomalies
anomaly detection
Condition monitoring
Control equipment
Efficiency
Energy consumption
Fault detection
Frogs
Hydraulics
Light rail transportation
point machines
R&D
Railroad accidents & safety
Railroad crossings
Railroads
Research & development
Sensors
Trains
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEB3azaU9lH7SbdOiQ6BQYiLLkiz3UjZplhBIWEoDuQlJlksgeNPY-f-dkbWbFNpefLDmYEua0RvNzBuAPelqJ0qPvkks8dHxUPhOqUIkOIz6VCfK_LNzfXIhTy_VZb5wG3Ja5cYmJkPdrgPdkR8IQ_mORqr6682vgrpGUXQ1t9B4DDtogo2Zwc7h8fnq-_aWhVgvTWqPLNBhL8gfmor0KvT1D1wYiT-LSNL_OJYSe_-_bHQ6eJbP4VlGjGwxLfELeBT7l_D0AY_gKzhdurvrkX2LY0qs6hkiUbZaX_UjO0vJknH4whZsigPss6NNA5Vhn7m-Zav7gsvhNVwsj38cnRS5SUIRJK_GwgsTXBS-dZ3TVFcrau8jrzrueWfK0kcEWBRbq3zTxFoJjoO61cHVPHZcVm9g1q_7-BaYl1q2CvFBpNifNK50KNFVTWxMMK6Zw-fNHNmQGcSpkcW1RU-CJtQ-mNA57G2FbybijL-LHdJkb0WI7Tq9WN_-tFl5bNtWstNKaa-FrJzzrgnKlLpFuIiIM87hEy2VJZ3EDwoulxbgbxG7lV3UNbql6LzxOexuVtNmZR3s_dZ69__h9_CEus1PuXy7MBtv7-IHxCSj_5g33m_IKtz-
  priority: 102
  providerName: ProQuest
Title Fault Detection for Point Machines: A Review, Challenges, and Perspectives
URI https://www.proquest.com/docview/2882248457
https://doaj.org/article/dd34f6556b6243aaba9c5816d851540e
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58XPQgPnF9LDkIglhMm0dTb-tjFUFZRMFbSNIUhKWKW_-_k7SrKyhevPTQziGd6Uy-aWa-ATjgJjdZajE38SleKuoSWwmRZBEOoz_lkTL_9k5eP_KbJ_E0M-or1IS19MCt4k7KkvFKCiGtzDgzxprCCZXKEqECog0foi_ueTPJVIzBRcoUZW1DHsO8_sS4JnBlBUL0b1tQZOr_LR7HTWa4CisdOiSDdlVrMOfrdVie4QzcgJuheR835MI3sYiqJog6yejluW7IbSyM9JNTMiDtP_9jcj4dljI5JqYuyeiruXKyCY_Dy4fz66QbiJA4TlmT2Ew54zNbmsrI0EOb5dZ6yipqaaXS1HoEU-Ecjdmi8LnIKD6UpXQmp76inG3BQv1S-20glkteCsQCPpzzcWVSgxIVK3yhnDJFD46mOtKuYwsPQyvGGrOGoFA9o9AeHHwKv7YkGT-LnQVlf4oEZut4A-2tO3vrv-zdg8NgKh38DxfkTNdGgK8VmKz0IM8xBcVEjfZgb2pN3TnmRGcqlM0qLvKd_1jNLiyF-fNtdd8eLDRv734fUUpj-zCvhld9WDy7vBvd9-Pn-QEMN-Rk
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKe6UMCHIiTUqI7jOEmlCi0ty_axVQ-t1JtrO06FVGVLkwrxp_iNzDjJtkjArZccklGUjMfz8Mx8A7AmTWZEbDE28TFeKu4iW6VpJII7jPspC5D5s0M1PZF7p-npEvwaemGorHLQiUFRl3NHZ-QbIqd6x1ym2afL7xFNjaLs6jBCoxOLff_zB4ZszdbuDq7veyEmX463p1E_VSBykidtZEXujBe2NJVR1IgqMms9TypueZXHsfXokVAyKrFF4bNUcHyoSuVMxn3FZYLvvQf3ZYKWnDrTJ18XZzqEsZmHYcyCZxioY_TVtQQiLd8wriW0LoJk_8MIhlkB_7IIwcxNnsDj3j9l406gnsKSr5_Bo1uohc9hb2KuL1q249tQxlUz9HvZ0fxb3bJZKM30zSYbsy7rsM62h3EtzTozdcmObto7mxdwcifMewnL9bz2K8CsVLJM0RvxlGmUuYkNUlRJ4Yvc5aYYwceBR9r1eOU0NuNCY9xCDNW3GDqCtQXxZQfT8Xeyz8TsBQlha4cb86tz3W9VXZaJrFSaKquETIyxpnBpHqsSnVP0b_0IPtBSadIA-EHO9I0M-FuEpaXHWYZBMIaKfASrw2rqXjU0-kaQX_3_8Tt4MD2eHeiD3cP91_CQ5tx3VYSrsNxeXfs36A219m0QQQZndy3zvwHiMBhj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFUQfxE88rboPFUEautlsko0gcu316Ic9DrHQt3V3sxGh5GqTIv5r_nXObJJrBfWtL3lIhpDMzu7Ob2fmNwCb0uRGxBaxiY_xUnEX2SpNIxHcYZxPeaDMP55n-yfy8DQ9XYNfQy0MpVUOa2JYqMulozPybaEo31FJBPBVnxaxmM4-nH-PqIMURVqHdhqdiRz5nz8QvjXvD6Y41q-FmO193t2P-g4DkZM8aSMrlDNe2NJUJqOiVJFb63lSccsrFcfWo3dCganEFoXPU8HxYVZmzuTcV1wm-N5bsJ4TKhrB-s7efPFpdcJDjJsqtGYWPEfYjlisKxBMkoJvG9cSdxcRtP-xJYbOAf_aH8KmN7sP93pvlU0683oAa75-CHevcRg-gsOZuTxr2dS3IamrZugFs8XyW92y45Co6Zt3bMK6GMQW2x2atzRbzNQlW1wVezaP4eRG1PcERvWy9k-BWZnJMkXfxFPcUSoTG5SoksIXyilTjOHtoCPtevZyaqJxphHFkEL1NYWOYXMlfN6RdvxdbIeUvRIhpu1wY3nxVfcTV5dlIqssTTObCZkYY03hUhVnJbqq6O36MbyhodK0HuAHOdOXNeBvEbOWnuQ5QmIEjnwMG8No6n6haPSVWT_7_-NXcBvtXX88mB89hzvU9L5LKdyAUXtx6V-ga9Tal70NMvhy02b_G7yAHfU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Detection+for+Point+Machines%3A+A+Review%2C+Challenges%2C+and+Perspectives&rft.jtitle=Actuators&rft.au=Xiaoxi+Hu&rft.au=Tao+Tang&rft.au=Lei+Tan&rft.au=Heng+Zhang&rft.date=2023-10-01&rft.pub=MDPI+AG&rft.eissn=2076-0825&rft.volume=12&rft.issue=10&rft.spage=391&rft_id=info:doi/10.3390%2Fact12100391&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dd34f6556b6243aaba9c5816d851540e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-0825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-0825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-0825&client=summon