3D printed microfluidic devices with integrated valves

We report the successful fabrication and testing of 3D printed microfluidic devices with integrated membrane-based valves. Fabrication is performed with a low-cost commercially available stereolithographic 3D printer. Horizontal microfluidic channels with designed rectangular cross sectional dimensi...

Full description

Saved in:
Bibliographic Details
Published inBiomicrofluidics Vol. 9; no. 1; p. 016501
Main Authors Rogers, Chad I., Qaderi, Kamran, Woolley, Adam T., Nordin, Gregory P.
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 01.01.2015
AIP Publishing LLC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report the successful fabrication and testing of 3D printed microfluidic devices with integrated membrane-based valves. Fabrication is performed with a low-cost commercially available stereolithographic 3D printer. Horizontal microfluidic channels with designed rectangular cross sectional dimensions as small as 350 μm wide and 250 μm tall are printed with 100% yield, as are cylindrical vertical microfluidic channels with 350 μm designed (210 μm actual) diameters. Based on our previous work [Rogers et al., Anal. Chem. 83, 6418 (2011)], we use a custom resin formulation tailored for low non-specific protein adsorption. Valves are fabricated with a membrane consisting of a single build layer. The fluid pressure required to open a closed valve is the same as the control pressure holding the valve closed. 3D printed valves are successfully demonstrated for up to 800 actuations.
AbstractList We report the successful fabrication and testing of 3D printed microfluidic devices with integrated membrane-based valves. Fabrication is performed with a low-cost commercially available stereolithographic 3D printer. Horizontal microfluidic channels with designed rectangular cross sectional dimensions as small as 350 μm wide and 250 μm tall are printed with 100% yield, as are cylindrical vertical microfluidic channels with 350 μm designed (210 μm actual) diameters. Based on our previous work [Rogers et al., Anal. Chem. 83, 6418 (2011)], we use a custom resin formulation tailored for low non-specific protein adsorption. Valves are fabricated with a membrane consisting of a single build layer. The fluid pressure required to open a closed valve is the same as the control pressure holding the valve closed. 3D printed valves are successfully demonstrated for up to 800 actuations.We report the successful fabrication and testing of 3D printed microfluidic devices with integrated membrane-based valves. Fabrication is performed with a low-cost commercially available stereolithographic 3D printer. Horizontal microfluidic channels with designed rectangular cross sectional dimensions as small as 350 μm wide and 250 μm tall are printed with 100% yield, as are cylindrical vertical microfluidic channels with 350 μm designed (210 μm actual) diameters. Based on our previous work [Rogers et al., Anal. Chem. 83, 6418 (2011)], we use a custom resin formulation tailored for low non-specific protein adsorption. Valves are fabricated with a membrane consisting of a single build layer. The fluid pressure required to open a closed valve is the same as the control pressure holding the valve closed. 3D printed valves are successfully demonstrated for up to 800 actuations.
We report the successful fabrication and testing of 3D printed microfluidic devices with integrated membrane-based valves. Fabrication is performed with a low-cost commercially available stereolithographic 3D printer. Horizontal microfluidic channels with designed rectangular cross sectional dimensions as small as 350 μm wide and 250 μm tall are printed with 100% yield, as are cylindrical vertical microfluidic channels with 350 μm designed (210 μm actual) diameters. Based on our previous work [Rogers et al., Anal. Chem. 83, 6418 (2011)], we use a custom resin formulation tailored for low non-specific protein adsorption. Valves are fabricated with a membrane consisting of a single build layer. The fluid pressure required to open a closed valve is the same as the control pressure holding the valve closed. 3D printed valves are successfully demonstrated for up to 800 actuations.
We report the successful fabrication and testing of 3D printed microfluidic devices with integrated membrane-based valves. Fabrication is performed with a low-cost commercially available stereolithographic 3D printer. Horizontal microfluidic channels with designed rectangular cross sectional dimensions as small as 350  μ m wide and 250  μ m tall are printed with 100% yield, as are cylindrical vertical microfluidic channels with 350  μ m designed (210  μ m actual) diameters. Based on our previous work [Rogers et al ., Anal. Chem. 83 , 6418 (2011)], we use a custom resin formulation tailored for low non-specific protein adsorption. Valves are fabricated with a membrane consisting of a single build layer. The fluid pressure required to open a closed valve is the same as the control pressure holding the valve closed. 3D printed valves are successfully demonstrated for up to 800 actuations.
Author Woolley, Adam T.
Rogers, Chad I.
Qaderi, Kamran
Nordin, Gregory P.
Author_xml – sequence: 1
  givenname: Chad I.
  surname: Rogers
  fullname: Rogers, Chad I.
– sequence: 2
  givenname: Kamran
  surname: Qaderi
  fullname: Qaderi, Kamran
– sequence: 3
  givenname: Adam T.
  surname: Woolley
  fullname: Woolley, Adam T.
– sequence: 4
  givenname: Gregory P.
  surname: Nordin
  fullname: Nordin, Gregory P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25610517$$D View this record in MEDLINE/PubMed
BookMark eNplkclOwzAQhi1URBc48AIoEhc4pPUaJxckVFapEhc4W45jt66ylDgJ4u1x1BaVcpoZzTe__pkZg0FZlRqASwSnCEZkhqY0gSym8ASMUEJwiHw1OMiHYOzcGkKGOMZnYIhZhPpiBCLyEGxqWzY6Cwqr6srkrc2sCjLdWaVd8GWbVdD3l7XsoU7mnXbn4NTI3OmLXZyAj6fH9_lLuHh7fp3fL0JFIWlCaRihOuZEQ07TSEXGMJMmErEoSZNYcpNhhTmhULMsSbk0KMUIc59mhMmMTMDdVnfTpoXOlC6bWubCOy5k_S0qacXfTmlXYll1guKEYx57gZudQF19tto1orBO6TyXpa5aJ1DEsLcaU-zR6yN0XbV16dcT3hNNKIeIeurq0NGvlf1JPTDbAv6YztXaCGUb2diqN2hzgaDonyaQ2D3NT9weTexF_7M_KeKVLw
CitedBy_id crossref_primary_10_1021_acs_chemrev_1c00480
crossref_primary_10_3390_mi9100536
crossref_primary_10_1039_D0MA00704H
crossref_primary_10_1039_D3RE00694H
crossref_primary_10_1007_s11242_018_1136_9
crossref_primary_10_1007_s40472_016_0085_x
crossref_primary_10_1039_C7LC00468K
crossref_primary_10_1126_sciadv_aay7629
crossref_primary_10_1021_acs_analchem_7b00136
crossref_primary_10_1007_s00216_015_9141_0
crossref_primary_10_1021_acsomega_4c07776
crossref_primary_10_1021_acs_chemmater_4c00369
crossref_primary_10_3390_mi13081197
crossref_primary_10_1126_sciadv_abo1719
crossref_primary_10_1088_1361_6439_ab27d3
crossref_primary_10_1039_C6LC00144K
crossref_primary_10_1039_D3LC00175J
crossref_primary_10_3390_bioengineering11010080
crossref_primary_10_3390_mi9030116
crossref_primary_10_1109_JMEMS_2018_2869327
crossref_primary_10_3390_mi12101247
crossref_primary_10_1021_acsapm_0c01071
crossref_primary_10_1049_mnl_2018_5411
crossref_primary_10_3390_ijms23169004
crossref_primary_10_1016_j_trac_2018_08_007
crossref_primary_10_1016_j_addma_2022_102867
crossref_primary_10_3390_mi10120825
crossref_primary_10_1002_smll_201702831
crossref_primary_10_1007_s42242_020_00112_5
crossref_primary_10_1039_C6LC00153J
crossref_primary_10_1016_j_eml_2020_100824
crossref_primary_10_1039_C8AY02672F
crossref_primary_10_1042_EBC20200131
crossref_primary_10_1002_adma_201706344
crossref_primary_10_1002_admt_201800455
crossref_primary_10_1063_5_0094721
crossref_primary_10_1016_j_ces_2019_07_036
crossref_primary_10_1039_C5LC00685F
crossref_primary_10_1016_j_nbt_2017_09_001
crossref_primary_10_3390_s21103413
crossref_primary_10_1145_3369585
crossref_primary_10_1002_admt_201900275
crossref_primary_10_1016_j_aca_2020_07_034
crossref_primary_10_1088_1361_6439_aa6152
crossref_primary_10_1089_3dp_2023_0169
crossref_primary_10_1556_1846_2017_00013
crossref_primary_10_1039_C8LC00001H
crossref_primary_10_1177_0954406220932203
crossref_primary_10_1063_1_4982963
crossref_primary_10_3390_mi9080394
crossref_primary_10_1073_pnas_2405382121
crossref_primary_10_1088_1361_665X_ac6e53
crossref_primary_10_1186_s12929_017_0384_2
crossref_primary_10_1039_C6LC00284F
crossref_primary_10_1039_C6LC00163G
crossref_primary_10_1002_admt_201800511
crossref_primary_10_1016_j_addma_2018_04_027
crossref_primary_10_1093_bfgp_elz006
crossref_primary_10_7567_JJAP_55_06GN02
crossref_primary_10_1021_acs_macromol_0c02691
crossref_primary_10_1039_C8TB01661E
crossref_primary_10_1002_adhm_201901773
crossref_primary_10_1016_j_aca_2021_338796
crossref_primary_10_1016_j_sna_2019_111802
crossref_primary_10_1063_1_5070068
crossref_primary_10_1016_j_mee_2019_111046
crossref_primary_10_1002_jbm_a_36034
crossref_primary_10_1007_s00542_019_04406_2
crossref_primary_10_1557_s43579_024_00631_7
crossref_primary_10_1039_C5LC01478F
crossref_primary_10_1007_s10404_022_02593_5
crossref_primary_10_1016_j_sna_2017_10_044
crossref_primary_10_1039_C7LC00644F
crossref_primary_10_1016_j_snr_2025_100285
crossref_primary_10_1126_sciadv_abc9846
crossref_primary_10_1039_D3LC00265A
crossref_primary_10_1016_j_jmbbm_2024_106877
crossref_primary_10_3390_mi11090873
crossref_primary_10_1016_j_chroma_2023_463842
crossref_primary_10_1063_1_4964499
crossref_primary_10_1016_j_trac_2017_04_001
crossref_primary_10_3390_mi9040196
crossref_primary_10_1016_j_snb_2024_136961
crossref_primary_10_1007_s00216_021_03494_2
crossref_primary_10_1016_j_chroma_2023_464242
crossref_primary_10_1016_j_heliyon_2024_e37051
crossref_primary_10_1016_j_aca_2022_340587
crossref_primary_10_1021_acs_analchem_6b04546
crossref_primary_10_1038_s41467_021_25788_w
crossref_primary_10_1039_D0LC00178C
crossref_primary_10_3390_mi14081589
crossref_primary_10_1039_C9SM02067E
crossref_primary_10_1039_C7LC00397H
crossref_primary_10_1039_C6AY01671E
crossref_primary_10_1016_j_talo_2021_100036
crossref_primary_10_1002_admt_202100094
crossref_primary_10_1002_admt_201800408
crossref_primary_10_1016_j_aca_2022_340456
crossref_primary_10_3390_bios14060301
crossref_primary_10_1039_C6LC00198J
crossref_primary_10_1016_j_talanta_2020_121867
crossref_primary_10_1088_1758_5090_8_2_022001
crossref_primary_10_3390_app14104293
crossref_primary_10_1002_pssa_201900935
crossref_primary_10_1021_acsabm_0c00055
crossref_primary_10_1016_j_matt_2021_11_021
crossref_primary_10_1039_D1AY01569A
crossref_primary_10_1002_smtd_201700277
crossref_primary_10_3390_mi15111391
crossref_primary_10_1063_1_4927379
crossref_primary_10_1063_5_0003302
crossref_primary_10_3390_bioengineering6010005
crossref_primary_10_1007_s00170_024_14149_8
crossref_primary_10_1142_S2251237316400165
crossref_primary_10_1039_C7LC01113J
crossref_primary_10_1177_25165984241237357
crossref_primary_10_1002_adbi_202000024
crossref_primary_10_1039_D3LC00094J
crossref_primary_10_1146_annurev_bioeng_092618_020341
crossref_primary_10_1088_1758_5090_8_2_025019
crossref_primary_10_1039_C6RA13582J
crossref_primary_10_1039_C5LC01389E
crossref_primary_10_1002_elan_201600043
crossref_primary_10_3389_fphys_2018_01417
crossref_primary_10_1063_1_4948507
crossref_primary_10_1002_pat_4281
crossref_primary_10_1080_00032719_2016_1166370
crossref_primary_10_1146_annurev_anchem_091619_102649
crossref_primary_10_3390_ph14060538
crossref_primary_10_1007_s00170_023_11769_4
crossref_primary_10_1039_D2LC01177H
crossref_primary_10_1039_C6LC00565A
crossref_primary_10_1088_1758_5090_ab6034
crossref_primary_10_1088_0960_1317_25_12_124002
crossref_primary_10_1016_j_bios_2020_112165
crossref_primary_10_1021_acs_analchem_7b04329
crossref_primary_10_1088_1758_5090_aa8858
crossref_primary_10_3390_jmmp3010026
crossref_primary_10_1007_s00216_017_0398_3
crossref_primary_10_1088_1758_5090_ab2798
crossref_primary_10_1089_3dp_2017_0028
crossref_primary_10_1002_admt_201900427
crossref_primary_10_1007_s10404_016_1715_4
crossref_primary_10_1371_journal_pone_0160624
crossref_primary_10_1021_acs_analchem_6b04344
crossref_primary_10_1016_j_trac_2022_116864
crossref_primary_10_1088_2631_8695_ab5e9f
crossref_primary_10_1038_s41467_022_28579_z
crossref_primary_10_1039_C5RA23855B
crossref_primary_10_1039_C9PY00211A
crossref_primary_10_3390_molecules26092817
crossref_primary_10_1063_1_5065899
crossref_primary_10_1002_adma_201800364
crossref_primary_10_1038_s41378_023_00607_y
crossref_primary_10_1063_1_4958909
crossref_primary_10_1126_sciadv_abe5257
crossref_primary_10_1039_C7LC00694B
crossref_primary_10_1063_5_0020531
crossref_primary_10_1039_C6LC00712K
crossref_primary_10_1039_C8LC00826D
crossref_primary_10_1115_1_4064628
crossref_primary_10_3390_mi10110754
crossref_primary_10_1038_srep15609
crossref_primary_10_1007_s10544_019_0444_3
crossref_primary_10_1088_1361_6439_abd9a9
crossref_primary_10_3390_s24061797
crossref_primary_10_1021_acssensors_8b01085
crossref_primary_10_1021_acs_analchem_4c05363
crossref_primary_10_3390_mi14071286
crossref_primary_10_1016_j_cej_2024_152687
crossref_primary_10_1088_1361_6439_aa7a72
crossref_primary_10_1007_s10544_024_00697_z
crossref_primary_10_1016_j_cej_2019_123413
crossref_primary_10_1016_j_chroma_2021_462763
crossref_primary_10_1039_C6AY01512C
crossref_primary_10_1049_mnl_2016_0530
crossref_primary_10_1515_revac_2020_0111
crossref_primary_10_1038_micronano_2016_63
crossref_primary_10_1063_1_4939031
crossref_primary_10_3390_mi11070648
crossref_primary_10_1016_j_bios_2017_07_024
crossref_primary_10_1016_j_trac_2016_09_008
crossref_primary_10_1021_acssensors_5b00156
crossref_primary_10_1021_acs_analchem_7b00443
crossref_primary_10_1016_j_microc_2024_111165
crossref_primary_10_1116_1_5003203
crossref_primary_10_1016_j_aca_2017_12_039
crossref_primary_10_3390_mi14122213
crossref_primary_10_1039_D3LC00529A
crossref_primary_10_3390_technologies11060179
crossref_primary_10_1039_C5AY01969A
crossref_primary_10_1016_j_snb_2018_06_054
crossref_primary_10_3390_s19081917
crossref_primary_10_1088_0957_4484_27_28_284002
crossref_primary_10_1016_j_mee_2017_12_010
crossref_primary_10_3390_pr12061066
crossref_primary_10_1007_s10404_015_1688_8
crossref_primary_10_3390_bios14050225
crossref_primary_10_1039_C9RE00492K
crossref_primary_10_1088_1361_6439_abec1c
crossref_primary_10_3390_mi7070108
crossref_primary_10_1007_s00216_023_04862_w
crossref_primary_10_3390_en13112800
crossref_primary_10_1016_j_jconhyd_2017_08_001
crossref_primary_10_1039_D4AY01701C
crossref_primary_10_1063_5_0156704
crossref_primary_10_1039_C5LC01374G
crossref_primary_10_1039_D3LC00356F
crossref_primary_10_1016_j_chroma_2020_461820
crossref_primary_10_1038_s41598_018_22756_1
crossref_primary_10_1002_adfm_202315419
crossref_primary_10_1021_acsami_1c05547
crossref_primary_10_1063_1_5003477
Cites_doi 10.1002/elps.200600118
10.1039/b908985c
10.1063/1.4769050
10.1021/ac201539h
10.1016/j.bios.2008.06.010
10.1021/ac301392g
10.1073/pnas.0507681102
10.1039/b509251e
10.1586/14737159.2014.888313
10.1073/pnas.1001515107
10.1021/nn901404h
10.1073/pnas.1414764111
10.1039/c1lc20025a
10.1007/s00216-012-5755-7
10.1039/c3lc50481f
10.1016/j.sna.2004.12.011
10.1038/nrd3799
10.1002/elps.200305584
10.1039/c3sc51253c
10.1109/JSEN.2012.2225613
10.1038/nm.2408
10.1007/s00604-014-1384-5
10.1016/j.bios.2007.03.029
10.1039/c3lc41394b
10.1016/j.bios.2011.10.056
10.1021/ac303767m
10.1038/nchem.1313
10.1021/ac980656z
10.1021/ac201598b
10.1021/ac403397r
10.1039/c2lc40630f
10.1021/ac800843v
10.1021/ac4041857
10.1021/cr300337x
10.1016/j.nbt.2008.08.005
10.1063/1.3259624
10.1007/s10404-012-0968-9
10.1039/c3lc51360b
10.1021/ac4009594
10.1039/c2lc40761b
10.1016/j.snb.2013.10.008
10.1016/j.bios.2011.05.005
10.1007/s10544-009-9350-4
10.1002/hed.20680
10.1158/0008-5472.CAN-10-1229
ContentType Journal Article
Copyright 2015 AIP Publishing LLC.
Copyright © 2015 AIP Publishing LLC 2015 AIP Publishing LLC
Copyright_xml – notice: 2015 AIP Publishing LLC.
– notice: Copyright © 2015 AIP Publishing LLC 2015 AIP Publishing LLC
DBID AAYXX
CITATION
NPM
8FD
H8D
L7M
7X8
5PM
DOI 10.1063/1.4905840
DatabaseName CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Technology Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1932-1058
ExternalDocumentID PMC4297278
25610517
10_1063_1_4905840
Genre Journal Article
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB006124
– fundername: ; ;
  grantid: R01 EB006124
GroupedDBID 1UP
2-P
23N
2WC
4.4
53G
5GY
5VS
6J9
AAAAW
AABDS
AAGWI
AAKDD
AAPUP
AAYIH
AAYXX
ABFTF
ABJGX
ABJNI
ACBRY
ACGFO
ACGFS
ACZLF
ADBBV
ADCTM
ADMLS
AEGXH
AEJMO
AENEX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AQWKA
ATXIE
AWQPM
BAWUL
BPZLN
CITATION
CS3
DU5
E3Z
EBS
EJD
F5P
FDOHQ
FFFMQ
GX1
HYE
M71
OK1
OVT
P2P
RIP
RNS
RPM
RQS
TR2
C1A
NPM
8FD
H8D
L7M
7X8
5PM
ID FETCH-LOGICAL-c403t-af534e873e074b6c6ff5fb9a1569b98a7fd2c27340e5d9b7af1b21279b7d35ad3
ISSN 1932-1058
IngestDate Thu Aug 21 18:31:03 EDT 2025
Fri Jul 11 00:09:11 EDT 2025
Sun Jun 29 12:33:44 EDT 2025
Mon Jul 21 06:02:09 EDT 2025
Thu Apr 24 23:02:54 EDT 2025
Tue Jul 01 03:53:12 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 1932-1058/2015/9(1)/016501/9/$30.00
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c403t-af534e873e074b6c6ff5fb9a1569b98a7fd2c27340e5d9b7af1b21279b7d35ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Authors to whom correspondence should be addressed. Electronic addresses: nordin@byu.edu, Telephone: 801-422-1863 and atw@byu.edu, Telephone: 801-422-1701.
OpenAccessLink https://aip.scitation.org/doi/pdf/10.1063/1.4905840
PMID 25610517
PQID 2124947014
PQPubID 2050670
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4297278
proquest_miscellaneous_1652403842
proquest_journals_2124947014
pubmed_primary_25610517
crossref_citationtrail_10_1063_1_4905840
crossref_primary_10_1063_1_4905840
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle Biomicrofluidics
PublicationTitleAlternate Biomicrofluidics
PublicationYear 2015
Publisher American Institute of Physics
AIP Publishing LLC
Publisher_xml – name: American Institute of Physics
– name: AIP Publishing LLC
References (2023080309010419000_c9) 2010; 107
(2023080309010419000_c24) 2014; 86
(2023080309010419000_c38) 2011; 83
(2023080309010419000_c45) 2013; 85
(2023080309010419000_c4) 2012; 11
(2023080309010419000_c17) 2008; 80
(2023080309010419000_c44) 2013; 13
(2023080309010419000_c6) 2012; 12
(2023080309010419000_c28) 2014; 111
(2023080309010419000_c30) 2014; 86
(2023080309010419000_c35) 2012; 13
(2023080309010419000_c33) 2011; 83
(2023080309010419000_c12) 2012; 84
(2023080309010419000_c15) 2011; 71
(2023080309010419000_c36) 2013; 85
(2023080309010419000_c5) 2011; 17
(2023080309010419000_c37) 2013; 13
(2023080309010419000_c46) 2010; 135
(2023080309010419000_c13) 2008; 30
(2023080309010419000_c11) 2010; 4
(2023080309010419000_c19) 2003; 24
(2023080309010419000_c14) 2007; 23
(2023080309010419000_c2) 2006; 103
(2023080309010419000_c31) 2005; 121
(2023080309010419000_c26) 2013; 4
(2023080309010419000_c3) 2009; 11
(2023080309010419000_c41) 2014
(2023080309010419000_c42) 2012; 31
(2023080309010419000_c40) 2012; 402
(2023080309010419000_c7) 2009; 24
(2023080309010419000_c16) 2008; 25
(2023080309010419000_c29) 2014; 14
(2023080309010419000_c22) 2005; 5
(2023080309010419000_c18) 2010; 4
(2023080309010419000_c34) 2014; 191
(2023080309010419000_c21) 1998; 70
(2023080309010419000_c10) 2011; 26
(2023080309010419000_c32) 2012; 83
(2023080309010419000_c39) 2013; 13
(2023080309010419000_c1) 2013; 113
2023080309010419000_c20
(2023080309010419000_c43) 2011; 11
(2023080309010419000_c23) 2006; 27
(2023080309010419000_c8) 2014; 14
(2023080309010419000_c25) 2012; 12
(2023080309010419000_c27) 2012; 4
19806459 - Biomed Microdevices. 2009 Dec;11(6):1309-15
23675832 - Anal Chem. 2013 Aug 20;85(16):7682-8
25246553 - Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15013-8
21728310 - Anal Chem. 2011 Aug 15;83(16):6418-25
22859057 - Lab Chip. 2012 Sep 21;12(18):3249-66
18593194 - Anal Chem. 2008 Aug 1;80(15):6045-50
20697575 - Biomicrofluidics. 2010 Mar 15;4(2):null
23846477 - Lab Chip. 2013 Sep 21;13(18):3668-74
24512498 - Anal Chem. 2014 Mar 18;86(6):3124-30
16477028 - Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2480-7
16960835 - Electrophoresis. 2006 Oct;27(19):3788-96
14613181 - Electrophoresis. 2003 Nov;24(21):3563-76
22138465 - Biosens Bioelectron. 2012 Jan 15;31(1):388-92
24432804 - Anal Chem. 2014 Apr 1;86(7):3240-53
21632234 - Biosens Bioelectron. 2011 Jul 15;26(11):4477-83
21098088 - Cancer Res. 2011 Jan 15;71(2):550-60
24524681 - Expert Rev Mol Diagn. 2014 Mar;14(2):225-44
23529280 - Lab Chip. 2013 May 21;13(10):1911-8
24510161 - Lab Chip. 2014 Apr 7;14(7):1294-301
16175253 - Lab Chip. 2005 Oct;5(10):1005-7
24357897 - Sens Actuators B Chem. 2014 Feb 1;191:null
21644679 - Anal Chem. 1998 Dec 1;70(23):4974-84
17902150 - Head Neck. 2008 Jan;30(1):111-21
17532619 - Biosens Bioelectron. 2007 Sep 30;23(2):191-200
22850786 - Nat Rev Drug Discov. 2012 Aug;11(8):620-32
20024187 - Analyst. 2010 Jan;135(1):96-103
18786664 - N Biotechnol. 2008 Oct-Dec;25(2-3):142-9
20041634 - ACS Nano. 2010 Jan 26;4(1):488-94
18656344 - Biosens Bioelectron. 2009 Jan 1;24(5):1109-15
22875258 - Lab Chip. 2012 Sep 21;12(18):3267-71
22286080 - Anal Bioanal Chem. 2012 Mar;402(9):2797-803
23410114 - Chem Rev. 2013 Apr 10;113(4):2550-83
21804541 - Nat Med. 2011 Jul 31;17(8):1015-9
22697359 - Anal Chem. 2012 Jul 17;84(14):6249-55
20679245 - Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14524-9
21806019 - Anal Chem. 2011 Sep 15;83(18):7166-72
22522253 - Nat Chem. 2012 Apr 15;4(5):349-54
23687961 - Anal Chem. 2013 Jun 18;85(12):5622-6
21547316 - Lab Chip. 2011 Jun 21;11(12):2088-96
23278017 - Rev Sci Instrum. 2012 Dec;83(12):125001
References_xml – volume: 27
  start-page: 3788
  year: 2006
  ident: 2023080309010419000_c23
  publication-title: Electrophoresis
  doi: 10.1002/elps.200600118
– volume: 135
  start-page: 96
  year: 2010
  ident: 2023080309010419000_c46
  publication-title: Analyst
  doi: 10.1039/b908985c
– volume: 83
  start-page: 125001
  year: 2012
  ident: 2023080309010419000_c32
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4769050
– volume: 83
  start-page: 6418
  year: 2011
  ident: 2023080309010419000_c33
  publication-title: Anal. Chem.
  doi: 10.1021/ac201539h
– volume: 24
  start-page: 1109
  year: 2009
  ident: 2023080309010419000_c7
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2008.06.010
– volume: 84
  start-page: 6249
  year: 2012
  ident: 2023080309010419000_c12
  publication-title: Anal. Chem.
  doi: 10.1021/ac301392g
– volume: 103
  start-page: 2480
  year: 2006
  ident: 2023080309010419000_c2
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0507681102
– volume: 5
  start-page: 1005
  year: 2005
  ident: 2023080309010419000_c22
  publication-title: Lab Chip
  doi: 10.1039/b509251e
– volume: 14
  start-page: 225
  year: 2014
  ident: 2023080309010419000_c8
  publication-title: Expert Rev. Mol. Diagn.
  doi: 10.1586/14737159.2014.888313
– volume: 107
  start-page: 14524
  year: 2010
  ident: 2023080309010419000_c9
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1001515107
– volume: 4
  start-page: 488
  year: 2010
  ident: 2023080309010419000_c11
  publication-title: ACS Nano
  doi: 10.1021/nn901404h
– volume: 111
  start-page: 15013
  year: 2014
  ident: 2023080309010419000_c28
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1414764111
– volume: 11
  start-page: 2088
  year: 2011
  ident: 2023080309010419000_c43
  publication-title: Lab Chip
  doi: 10.1039/c1lc20025a
– volume: 402
  start-page: 2797
  year: 2012
  ident: 2023080309010419000_c40
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-012-5755-7
– volume: 13
  start-page: 3668
  year: 2013
  ident: 2023080309010419000_c37
  publication-title: Lab Chip
  doi: 10.1039/c3lc50481f
– volume: 121
  start-page: 113
  year: 2005
  ident: 2023080309010419000_c31
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2004.12.011
– volume: 11
  start-page: 620
  year: 2012
  ident: 2023080309010419000_c4
  publication-title: Nat. Rev. Drug Discovery
  doi: 10.1038/nrd3799
– volume: 24
  start-page: 3563
  year: 2003
  ident: 2023080309010419000_c19
  publication-title: Electrophoresis
  doi: 10.1002/elps.200305584
– volume: 4
  start-page: 3099
  year: 2013
  ident: 2023080309010419000_c26
  publication-title: Chem. Sci.
  doi: 10.1039/c3sc51253c
– volume: 13
  start-page: 959
  year: 2013
  ident: 2023080309010419000_c44
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2012.2225613
– volume: 17
  start-page: 1015
  year: 2011
  ident: 2023080309010419000_c5
  publication-title: Nat. Med.
  doi: 10.1038/nm.2408
– start-page: 1
  year: 2014
  ident: 2023080309010419000_c41
  article-title: Microfluidic system for enzymeless electrochemical determination of inulin using catalytically active metal nanowires
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-014-1384-5
– volume: 23
  start-page: 191
  year: 2007
  ident: 2023080309010419000_c14
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2007.03.029
– volume: 13
  start-page: 1911
  year: 2013
  ident: 2023080309010419000_c39
  publication-title: Lab Chip
  doi: 10.1039/c3lc41394b
– ident: 2023080309010419000_c20
– volume: 31
  start-page: 388
  year: 2012
  ident: 2023080309010419000_c42
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2011.10.056
– volume: 85
  start-page: 7682
  year: 2013
  ident: 2023080309010419000_c36
  publication-title: Anal. Chem.
  doi: 10.1021/ac303767m
– volume: 4
  start-page: 349
  year: 2012
  ident: 2023080309010419000_c27
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1313
– volume: 70
  start-page: 4974
  year: 1998
  ident: 2023080309010419000_c21
  publication-title: Anal. Chem.
  doi: 10.1021/ac980656z
– volume: 83
  start-page: 7166
  year: 2011
  ident: 2023080309010419000_c38
  publication-title: Anal. Chem.
  doi: 10.1021/ac201598b
– volume: 86
  start-page: 3240
  year: 2014
  ident: 2023080309010419000_c24
  publication-title: Anal. Chem.
  doi: 10.1021/ac403397r
– volume: 12
  start-page: 3249
  year: 2012
  ident: 2023080309010419000_c6
  publication-title: Lab Chip
  doi: 10.1039/c2lc40630f
– volume: 80
  start-page: 6045
  year: 2008
  ident: 2023080309010419000_c17
  publication-title: Anal. Chem.
  doi: 10.1021/ac800843v
– volume: 86
  start-page: 3124
  year: 2014
  ident: 2023080309010419000_c30
  publication-title: Anal. Chem.
  doi: 10.1021/ac4041857
– volume: 113
  start-page: 2550
  year: 2013
  ident: 2023080309010419000_c1
  publication-title: Chem. Rev.
  doi: 10.1021/cr300337x
– volume: 25
  start-page: 142
  year: 2008
  ident: 2023080309010419000_c16
  publication-title: New Biotechnol.
  doi: 10.1016/j.nbt.2008.08.005
– volume: 4
  start-page: 026502
  year: 2010
  ident: 2023080309010419000_c18
  publication-title: Biomicrofluidics
  doi: 10.1063/1.3259624
– volume: 13
  start-page: 383
  year: 2012
  ident: 2023080309010419000_c35
  publication-title: Microfluid. Nanofluid.
  doi: 10.1007/s10404-012-0968-9
– volume: 14
  start-page: 1294
  year: 2014
  ident: 2023080309010419000_c29
  publication-title: Lab Chip
  doi: 10.1039/c3lc51360b
– volume: 85
  start-page: 5622
  year: 2013
  ident: 2023080309010419000_c45
  publication-title: Anal. Chem.
  doi: 10.1021/ac4009594
– volume: 12
  start-page: 3267
  year: 2012
  ident: 2023080309010419000_c25
  publication-title: Lab Chip
  doi: 10.1039/c2lc40761b
– volume: 191
  start-page: 438
  year: 2014
  ident: 2023080309010419000_c34
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2013.10.008
– volume: 26
  start-page: 4477
  year: 2011
  ident: 2023080309010419000_c10
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2011.05.005
– volume: 11
  start-page: 1309
  year: 2009
  ident: 2023080309010419000_c3
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-009-9350-4
– volume: 30
  start-page: 111
  year: 2008
  ident: 2023080309010419000_c13
  publication-title: Head Neck
  doi: 10.1002/hed.20680
– volume: 71
  start-page: 550
  year: 2011
  ident: 2023080309010419000_c15
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-1229
– reference: 23529280 - Lab Chip. 2013 May 21;13(10):1911-8
– reference: 19806459 - Biomed Microdevices. 2009 Dec;11(6):1309-15
– reference: 21632234 - Biosens Bioelectron. 2011 Jul 15;26(11):4477-83
– reference: 22859057 - Lab Chip. 2012 Sep 21;12(18):3249-66
– reference: 22138465 - Biosens Bioelectron. 2012 Jan 15;31(1):388-92
– reference: 23675832 - Anal Chem. 2013 Aug 20;85(16):7682-8
– reference: 14613181 - Electrophoresis. 2003 Nov;24(21):3563-76
– reference: 18786664 - N Biotechnol. 2008 Oct-Dec;25(2-3):142-9
– reference: 21547316 - Lab Chip. 2011 Jun 21;11(12):2088-96
– reference: 24510161 - Lab Chip. 2014 Apr 7;14(7):1294-301
– reference: 20041634 - ACS Nano. 2010 Jan 26;4(1):488-94
– reference: 22875258 - Lab Chip. 2012 Sep 21;12(18):3267-71
– reference: 18593194 - Anal Chem. 2008 Aug 1;80(15):6045-50
– reference: 25246553 - Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15013-8
– reference: 21644679 - Anal Chem. 1998 Dec 1;70(23):4974-84
– reference: 22522253 - Nat Chem. 2012 Apr 15;4(5):349-54
– reference: 22286080 - Anal Bioanal Chem. 2012 Mar;402(9):2797-803
– reference: 21806019 - Anal Chem. 2011 Sep 15;83(18):7166-72
– reference: 22697359 - Anal Chem. 2012 Jul 17;84(14):6249-55
– reference: 20679245 - Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14524-9
– reference: 17532619 - Biosens Bioelectron. 2007 Sep 30;23(2):191-200
– reference: 24512498 - Anal Chem. 2014 Mar 18;86(6):3124-30
– reference: 20024187 - Analyst. 2010 Jan;135(1):96-103
– reference: 24357897 - Sens Actuators B Chem. 2014 Feb 1;191:null
– reference: 24432804 - Anal Chem. 2014 Apr 1;86(7):3240-53
– reference: 17902150 - Head Neck. 2008 Jan;30(1):111-21
– reference: 23410114 - Chem Rev. 2013 Apr 10;113(4):2550-83
– reference: 21804541 - Nat Med. 2011 Jul 31;17(8):1015-9
– reference: 21098088 - Cancer Res. 2011 Jan 15;71(2):550-60
– reference: 23278017 - Rev Sci Instrum. 2012 Dec;83(12):125001
– reference: 16175253 - Lab Chip. 2005 Oct;5(10):1005-7
– reference: 21728310 - Anal Chem. 2011 Aug 15;83(16):6418-25
– reference: 16477028 - Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2480-7
– reference: 24524681 - Expert Rev Mol Diagn. 2014 Mar;14(2):225-44
– reference: 16960835 - Electrophoresis. 2006 Oct;27(19):3788-96
– reference: 18656344 - Biosens Bioelectron. 2009 Jan 1;24(5):1109-15
– reference: 23846477 - Lab Chip. 2013 Sep 21;13(18):3668-74
– reference: 22850786 - Nat Rev Drug Discov. 2012 Aug;11(8):620-32
– reference: 20697575 - Biomicrofluidics. 2010 Mar 15;4(2):null
– reference: 23687961 - Anal Chem. 2013 Jun 18;85(12):5622-6
SSID ssj0051722
Score 2.4781568
Snippet We report the successful fabrication and testing of 3D printed microfluidic devices with integrated membrane-based valves. Fabrication is performed with a...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 016501
SubjectTerms Channels
Fabrication and Laboratory Methods
Fluid pressure
Protein adsorption
Proteins
Three dimensional printing
Valves
Title 3D printed microfluidic devices with integrated valves
URI https://www.ncbi.nlm.nih.gov/pubmed/25610517
https://www.proquest.com/docview/2124947014
https://www.proquest.com/docview/1652403842
https://pubmed.ncbi.nlm.nih.gov/PMC4297278
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXOCAeBMoKCAOSKuUxI7zOFZ9UEFZhLQr9mY5sd1G6iao3eXAr2cmdpLNtkLAJYoS5yF_tvXNeOYbQt4pymkheRgA3jKIS5kGUkc6SBnMSlkqxSXu6H6ZJifz-NOCL4bCiW12yarYK3_dmFfyP6jCNcAVs2T_Adn-pXABzgFfOALCcPwrjNnhBP1ySBqXGFhnLtaVqkrMhML5b52svSCEmsC3f7qYwW4ft2o2nxwC35szVzzt4FyqwbX6DQOfq8lnubwchtX3Br0PLVr7Si6HuOspWLZWo8ClwrhsMudliPiWl6HfPhqFMLRBqu7XtF0_gQ7Cym7V2LsFNt8eR9eWbeBJ6EHYi3N41Mo3jaWxp1_F8fz0VMyOFrPb5A4FmwDLVXxc9PE8HJgY7aSjEvahf9mYcFyzIraDYTfYxewBue_MAn_fYvyQ3NL1I3JvQyzyMUnYoe_Q9jcx8x3aPqLtD2j7Fu0nZH58NDs4CVzVi6CMQ7YKpOEs1lnKNLC7IikTY7gpcgmGdl7kmUyNoiWKEoWaq7xIpYkKlOmHU8W4VOwp2ambWj8nfmpSymD-hVxKtDsLCfwV-C4LqQkZyzzyvusaUTpJeKxMciHa0ISEiUi4XvTI277pD6uDclOj3a5_hZsmV4JiefM4BVPcI2_627CI4c6UrHWzvhJRwlEXMoupR55ZOPqvUGT4gK5H0hFQfQMUSB_fqavzVigduBbQ8-zFn3_rJbk7jPhdsrO6XOtXwDRXxet2hP0GdJmDPg
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+printed+microfluidic+devices+with+integrated+valves&rft.jtitle=Biomicrofluidics&rft.au=Rogers%2C+Chad+I&rft.au=Qaderi+Kamran&rft.au=Woolley%2C+Adam+T&rft.au=Nordin%2C+Gregory+P&rft.date=2015-01-01&rft.pub=American+Institute+of+Physics&rft.eissn=1932-1058&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1063%2F1.4905840&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-1058&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-1058&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-1058&client=summon