3D printed microfluidic devices with integrated valves
We report the successful fabrication and testing of 3D printed microfluidic devices with integrated membrane-based valves. Fabrication is performed with a low-cost commercially available stereolithographic 3D printer. Horizontal microfluidic channels with designed rectangular cross sectional dimensi...
Saved in:
Published in | Biomicrofluidics Vol. 9; no. 1; p. 016501 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
01.01.2015
AIP Publishing LLC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report the successful fabrication and testing of 3D printed microfluidic devices with integrated membrane-based valves. Fabrication is performed with a low-cost commercially available stereolithographic 3D printer. Horizontal microfluidic channels with designed rectangular cross sectional dimensions as small as 350 μm wide and 250 μm tall are printed with 100% yield, as are cylindrical vertical microfluidic channels with 350 μm designed (210 μm actual) diameters. Based on our previous work [Rogers et al., Anal. Chem. 83, 6418 (2011)], we use a custom resin formulation tailored for low non-specific protein adsorption. Valves are fabricated with a membrane consisting of a single build layer. The fluid pressure required to open a closed valve is the same as the control pressure holding the valve closed. 3D printed valves are successfully demonstrated for up to 800 actuations. |
---|---|
AbstractList | We report the successful fabrication and testing of 3D printed microfluidic devices with integrated membrane-based valves. Fabrication is performed with a low-cost commercially available stereolithographic 3D printer. Horizontal microfluidic channels with designed rectangular cross sectional dimensions as small as 350 μm wide and 250 μm tall are printed with 100% yield, as are cylindrical vertical microfluidic channels with 350 μm designed (210 μm actual) diameters. Based on our previous work [Rogers et al., Anal. Chem. 83, 6418 (2011)], we use a custom resin formulation tailored for low non-specific protein adsorption. Valves are fabricated with a membrane consisting of a single build layer. The fluid pressure required to open a closed valve is the same as the control pressure holding the valve closed. 3D printed valves are successfully demonstrated for up to 800 actuations.We report the successful fabrication and testing of 3D printed microfluidic devices with integrated membrane-based valves. Fabrication is performed with a low-cost commercially available stereolithographic 3D printer. Horizontal microfluidic channels with designed rectangular cross sectional dimensions as small as 350 μm wide and 250 μm tall are printed with 100% yield, as are cylindrical vertical microfluidic channels with 350 μm designed (210 μm actual) diameters. Based on our previous work [Rogers et al., Anal. Chem. 83, 6418 (2011)], we use a custom resin formulation tailored for low non-specific protein adsorption. Valves are fabricated with a membrane consisting of a single build layer. The fluid pressure required to open a closed valve is the same as the control pressure holding the valve closed. 3D printed valves are successfully demonstrated for up to 800 actuations. We report the successful fabrication and testing of 3D printed microfluidic devices with integrated membrane-based valves. Fabrication is performed with a low-cost commercially available stereolithographic 3D printer. Horizontal microfluidic channels with designed rectangular cross sectional dimensions as small as 350 μm wide and 250 μm tall are printed with 100% yield, as are cylindrical vertical microfluidic channels with 350 μm designed (210 μm actual) diameters. Based on our previous work [Rogers et al., Anal. Chem. 83, 6418 (2011)], we use a custom resin formulation tailored for low non-specific protein adsorption. Valves are fabricated with a membrane consisting of a single build layer. The fluid pressure required to open a closed valve is the same as the control pressure holding the valve closed. 3D printed valves are successfully demonstrated for up to 800 actuations. We report the successful fabrication and testing of 3D printed microfluidic devices with integrated membrane-based valves. Fabrication is performed with a low-cost commercially available stereolithographic 3D printer. Horizontal microfluidic channels with designed rectangular cross sectional dimensions as small as 350 μ m wide and 250 μ m tall are printed with 100% yield, as are cylindrical vertical microfluidic channels with 350 μ m designed (210 μ m actual) diameters. Based on our previous work [Rogers et al ., Anal. Chem. 83 , 6418 (2011)], we use a custom resin formulation tailored for low non-specific protein adsorption. Valves are fabricated with a membrane consisting of a single build layer. The fluid pressure required to open a closed valve is the same as the control pressure holding the valve closed. 3D printed valves are successfully demonstrated for up to 800 actuations. |
Author | Woolley, Adam T. Rogers, Chad I. Qaderi, Kamran Nordin, Gregory P. |
Author_xml | – sequence: 1 givenname: Chad I. surname: Rogers fullname: Rogers, Chad I. – sequence: 2 givenname: Kamran surname: Qaderi fullname: Qaderi, Kamran – sequence: 3 givenname: Adam T. surname: Woolley fullname: Woolley, Adam T. – sequence: 4 givenname: Gregory P. surname: Nordin fullname: Nordin, Gregory P. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25610517$$D View this record in MEDLINE/PubMed |
BookMark | eNplkclOwzAQhi1URBc48AIoEhc4pPUaJxckVFapEhc4W45jt66ylDgJ4u1x1BaVcpoZzTe__pkZg0FZlRqASwSnCEZkhqY0gSym8ASMUEJwiHw1OMiHYOzcGkKGOMZnYIhZhPpiBCLyEGxqWzY6Cwqr6srkrc2sCjLdWaVd8GWbVdD3l7XsoU7mnXbn4NTI3OmLXZyAj6fH9_lLuHh7fp3fL0JFIWlCaRihOuZEQ07TSEXGMJMmErEoSZNYcpNhhTmhULMsSbk0KMUIc59mhMmMTMDdVnfTpoXOlC6bWubCOy5k_S0qacXfTmlXYll1guKEYx57gZudQF19tto1orBO6TyXpa5aJ1DEsLcaU-zR6yN0XbV16dcT3hNNKIeIeurq0NGvlf1JPTDbAv6YztXaCGUb2diqN2hzgaDonyaQ2D3NT9weTexF_7M_KeKVLw |
CitedBy_id | crossref_primary_10_1021_acs_chemrev_1c00480 crossref_primary_10_3390_mi9100536 crossref_primary_10_1039_D0MA00704H crossref_primary_10_1039_D3RE00694H crossref_primary_10_1007_s11242_018_1136_9 crossref_primary_10_1007_s40472_016_0085_x crossref_primary_10_1039_C7LC00468K crossref_primary_10_1126_sciadv_aay7629 crossref_primary_10_1021_acs_analchem_7b00136 crossref_primary_10_1007_s00216_015_9141_0 crossref_primary_10_1021_acsomega_4c07776 crossref_primary_10_1021_acs_chemmater_4c00369 crossref_primary_10_3390_mi13081197 crossref_primary_10_1126_sciadv_abo1719 crossref_primary_10_1088_1361_6439_ab27d3 crossref_primary_10_1039_C6LC00144K crossref_primary_10_1039_D3LC00175J crossref_primary_10_3390_bioengineering11010080 crossref_primary_10_3390_mi9030116 crossref_primary_10_1109_JMEMS_2018_2869327 crossref_primary_10_3390_mi12101247 crossref_primary_10_1021_acsapm_0c01071 crossref_primary_10_1049_mnl_2018_5411 crossref_primary_10_3390_ijms23169004 crossref_primary_10_1016_j_trac_2018_08_007 crossref_primary_10_1016_j_addma_2022_102867 crossref_primary_10_3390_mi10120825 crossref_primary_10_1002_smll_201702831 crossref_primary_10_1007_s42242_020_00112_5 crossref_primary_10_1039_C6LC00153J crossref_primary_10_1016_j_eml_2020_100824 crossref_primary_10_1039_C8AY02672F crossref_primary_10_1042_EBC20200131 crossref_primary_10_1002_adma_201706344 crossref_primary_10_1002_admt_201800455 crossref_primary_10_1063_5_0094721 crossref_primary_10_1016_j_ces_2019_07_036 crossref_primary_10_1039_C5LC00685F crossref_primary_10_1016_j_nbt_2017_09_001 crossref_primary_10_3390_s21103413 crossref_primary_10_1145_3369585 crossref_primary_10_1002_admt_201900275 crossref_primary_10_1016_j_aca_2020_07_034 crossref_primary_10_1088_1361_6439_aa6152 crossref_primary_10_1089_3dp_2023_0169 crossref_primary_10_1556_1846_2017_00013 crossref_primary_10_1039_C8LC00001H crossref_primary_10_1177_0954406220932203 crossref_primary_10_1063_1_4982963 crossref_primary_10_3390_mi9080394 crossref_primary_10_1073_pnas_2405382121 crossref_primary_10_1088_1361_665X_ac6e53 crossref_primary_10_1186_s12929_017_0384_2 crossref_primary_10_1039_C6LC00284F crossref_primary_10_1039_C6LC00163G crossref_primary_10_1002_admt_201800511 crossref_primary_10_1016_j_addma_2018_04_027 crossref_primary_10_1093_bfgp_elz006 crossref_primary_10_7567_JJAP_55_06GN02 crossref_primary_10_1021_acs_macromol_0c02691 crossref_primary_10_1039_C8TB01661E crossref_primary_10_1002_adhm_201901773 crossref_primary_10_1016_j_aca_2021_338796 crossref_primary_10_1016_j_sna_2019_111802 crossref_primary_10_1063_1_5070068 crossref_primary_10_1016_j_mee_2019_111046 crossref_primary_10_1002_jbm_a_36034 crossref_primary_10_1007_s00542_019_04406_2 crossref_primary_10_1557_s43579_024_00631_7 crossref_primary_10_1039_C5LC01478F crossref_primary_10_1007_s10404_022_02593_5 crossref_primary_10_1016_j_sna_2017_10_044 crossref_primary_10_1039_C7LC00644F crossref_primary_10_1016_j_snr_2025_100285 crossref_primary_10_1126_sciadv_abc9846 crossref_primary_10_1039_D3LC00265A crossref_primary_10_1016_j_jmbbm_2024_106877 crossref_primary_10_3390_mi11090873 crossref_primary_10_1016_j_chroma_2023_463842 crossref_primary_10_1063_1_4964499 crossref_primary_10_1016_j_trac_2017_04_001 crossref_primary_10_3390_mi9040196 crossref_primary_10_1016_j_snb_2024_136961 crossref_primary_10_1007_s00216_021_03494_2 crossref_primary_10_1016_j_chroma_2023_464242 crossref_primary_10_1016_j_heliyon_2024_e37051 crossref_primary_10_1016_j_aca_2022_340587 crossref_primary_10_1021_acs_analchem_6b04546 crossref_primary_10_1038_s41467_021_25788_w crossref_primary_10_1039_D0LC00178C crossref_primary_10_3390_mi14081589 crossref_primary_10_1039_C9SM02067E crossref_primary_10_1039_C7LC00397H crossref_primary_10_1039_C6AY01671E crossref_primary_10_1016_j_talo_2021_100036 crossref_primary_10_1002_admt_202100094 crossref_primary_10_1002_admt_201800408 crossref_primary_10_1016_j_aca_2022_340456 crossref_primary_10_3390_bios14060301 crossref_primary_10_1039_C6LC00198J crossref_primary_10_1016_j_talanta_2020_121867 crossref_primary_10_1088_1758_5090_8_2_022001 crossref_primary_10_3390_app14104293 crossref_primary_10_1002_pssa_201900935 crossref_primary_10_1021_acsabm_0c00055 crossref_primary_10_1016_j_matt_2021_11_021 crossref_primary_10_1039_D1AY01569A crossref_primary_10_1002_smtd_201700277 crossref_primary_10_3390_mi15111391 crossref_primary_10_1063_1_4927379 crossref_primary_10_1063_5_0003302 crossref_primary_10_3390_bioengineering6010005 crossref_primary_10_1007_s00170_024_14149_8 crossref_primary_10_1142_S2251237316400165 crossref_primary_10_1039_C7LC01113J crossref_primary_10_1177_25165984241237357 crossref_primary_10_1002_adbi_202000024 crossref_primary_10_1039_D3LC00094J crossref_primary_10_1146_annurev_bioeng_092618_020341 crossref_primary_10_1088_1758_5090_8_2_025019 crossref_primary_10_1039_C6RA13582J crossref_primary_10_1039_C5LC01389E crossref_primary_10_1002_elan_201600043 crossref_primary_10_3389_fphys_2018_01417 crossref_primary_10_1063_1_4948507 crossref_primary_10_1002_pat_4281 crossref_primary_10_1080_00032719_2016_1166370 crossref_primary_10_1146_annurev_anchem_091619_102649 crossref_primary_10_3390_ph14060538 crossref_primary_10_1007_s00170_023_11769_4 crossref_primary_10_1039_D2LC01177H crossref_primary_10_1039_C6LC00565A crossref_primary_10_1088_1758_5090_ab6034 crossref_primary_10_1088_0960_1317_25_12_124002 crossref_primary_10_1016_j_bios_2020_112165 crossref_primary_10_1021_acs_analchem_7b04329 crossref_primary_10_1088_1758_5090_aa8858 crossref_primary_10_3390_jmmp3010026 crossref_primary_10_1007_s00216_017_0398_3 crossref_primary_10_1088_1758_5090_ab2798 crossref_primary_10_1089_3dp_2017_0028 crossref_primary_10_1002_admt_201900427 crossref_primary_10_1007_s10404_016_1715_4 crossref_primary_10_1371_journal_pone_0160624 crossref_primary_10_1021_acs_analchem_6b04344 crossref_primary_10_1016_j_trac_2022_116864 crossref_primary_10_1088_2631_8695_ab5e9f crossref_primary_10_1038_s41467_022_28579_z crossref_primary_10_1039_C5RA23855B crossref_primary_10_1039_C9PY00211A crossref_primary_10_3390_molecules26092817 crossref_primary_10_1063_1_5065899 crossref_primary_10_1002_adma_201800364 crossref_primary_10_1038_s41378_023_00607_y crossref_primary_10_1063_1_4958909 crossref_primary_10_1126_sciadv_abe5257 crossref_primary_10_1039_C7LC00694B crossref_primary_10_1063_5_0020531 crossref_primary_10_1039_C6LC00712K crossref_primary_10_1039_C8LC00826D crossref_primary_10_1115_1_4064628 crossref_primary_10_3390_mi10110754 crossref_primary_10_1038_srep15609 crossref_primary_10_1007_s10544_019_0444_3 crossref_primary_10_1088_1361_6439_abd9a9 crossref_primary_10_3390_s24061797 crossref_primary_10_1021_acssensors_8b01085 crossref_primary_10_1021_acs_analchem_4c05363 crossref_primary_10_3390_mi14071286 crossref_primary_10_1016_j_cej_2024_152687 crossref_primary_10_1088_1361_6439_aa7a72 crossref_primary_10_1007_s10544_024_00697_z crossref_primary_10_1016_j_cej_2019_123413 crossref_primary_10_1016_j_chroma_2021_462763 crossref_primary_10_1039_C6AY01512C crossref_primary_10_1049_mnl_2016_0530 crossref_primary_10_1515_revac_2020_0111 crossref_primary_10_1038_micronano_2016_63 crossref_primary_10_1063_1_4939031 crossref_primary_10_3390_mi11070648 crossref_primary_10_1016_j_bios_2017_07_024 crossref_primary_10_1016_j_trac_2016_09_008 crossref_primary_10_1021_acssensors_5b00156 crossref_primary_10_1021_acs_analchem_7b00443 crossref_primary_10_1016_j_microc_2024_111165 crossref_primary_10_1116_1_5003203 crossref_primary_10_1016_j_aca_2017_12_039 crossref_primary_10_3390_mi14122213 crossref_primary_10_1039_D3LC00529A crossref_primary_10_3390_technologies11060179 crossref_primary_10_1039_C5AY01969A crossref_primary_10_1016_j_snb_2018_06_054 crossref_primary_10_3390_s19081917 crossref_primary_10_1088_0957_4484_27_28_284002 crossref_primary_10_1016_j_mee_2017_12_010 crossref_primary_10_3390_pr12061066 crossref_primary_10_1007_s10404_015_1688_8 crossref_primary_10_3390_bios14050225 crossref_primary_10_1039_C9RE00492K crossref_primary_10_1088_1361_6439_abec1c crossref_primary_10_3390_mi7070108 crossref_primary_10_1007_s00216_023_04862_w crossref_primary_10_3390_en13112800 crossref_primary_10_1016_j_jconhyd_2017_08_001 crossref_primary_10_1039_D4AY01701C crossref_primary_10_1063_5_0156704 crossref_primary_10_1039_C5LC01374G crossref_primary_10_1039_D3LC00356F crossref_primary_10_1016_j_chroma_2020_461820 crossref_primary_10_1038_s41598_018_22756_1 crossref_primary_10_1002_adfm_202315419 crossref_primary_10_1021_acsami_1c05547 crossref_primary_10_1063_1_5003477 |
Cites_doi | 10.1002/elps.200600118 10.1039/b908985c 10.1063/1.4769050 10.1021/ac201539h 10.1016/j.bios.2008.06.010 10.1021/ac301392g 10.1073/pnas.0507681102 10.1039/b509251e 10.1586/14737159.2014.888313 10.1073/pnas.1001515107 10.1021/nn901404h 10.1073/pnas.1414764111 10.1039/c1lc20025a 10.1007/s00216-012-5755-7 10.1039/c3lc50481f 10.1016/j.sna.2004.12.011 10.1038/nrd3799 10.1002/elps.200305584 10.1039/c3sc51253c 10.1109/JSEN.2012.2225613 10.1038/nm.2408 10.1007/s00604-014-1384-5 10.1016/j.bios.2007.03.029 10.1039/c3lc41394b 10.1016/j.bios.2011.10.056 10.1021/ac303767m 10.1038/nchem.1313 10.1021/ac980656z 10.1021/ac201598b 10.1021/ac403397r 10.1039/c2lc40630f 10.1021/ac800843v 10.1021/ac4041857 10.1021/cr300337x 10.1016/j.nbt.2008.08.005 10.1063/1.3259624 10.1007/s10404-012-0968-9 10.1039/c3lc51360b 10.1021/ac4009594 10.1039/c2lc40761b 10.1016/j.snb.2013.10.008 10.1016/j.bios.2011.05.005 10.1007/s10544-009-9350-4 10.1002/hed.20680 10.1158/0008-5472.CAN-10-1229 |
ContentType | Journal Article |
Copyright | 2015 AIP Publishing LLC. Copyright © 2015 AIP Publishing LLC 2015 AIP Publishing LLC |
Copyright_xml | – notice: 2015 AIP Publishing LLC. – notice: Copyright © 2015 AIP Publishing LLC 2015 AIP Publishing LLC |
DBID | AAYXX CITATION NPM 8FD H8D L7M 7X8 5PM |
DOI | 10.1063/1.4905840 |
DatabaseName | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Technology Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1932-1058 |
ExternalDocumentID | PMC4297278 25610517 10_1063_1_4905840 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB006124 – fundername: ; ; grantid: R01 EB006124 |
GroupedDBID | 1UP 2-P 23N 2WC 4.4 53G 5GY 5VS 6J9 AAAAW AABDS AAGWI AAKDD AAPUP AAYIH AAYXX ABFTF ABJGX ABJNI ACBRY ACGFO ACGFS ACZLF ADBBV ADCTM ADMLS AEGXH AEJMO AENEX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW ALEPV ALMA_UNASSIGNED_HOLDINGS AOIJS AQWKA ATXIE AWQPM BAWUL BPZLN CITATION CS3 DU5 E3Z EBS EJD F5P FDOHQ FFFMQ GX1 HYE M71 OK1 OVT P2P RIP RNS RPM RQS TR2 C1A NPM 8FD H8D L7M 7X8 5PM |
ID | FETCH-LOGICAL-c403t-af534e873e074b6c6ff5fb9a1569b98a7fd2c27340e5d9b7af1b21279b7d35ad3 |
ISSN | 1932-1058 |
IngestDate | Thu Aug 21 18:31:03 EDT 2025 Fri Jul 11 00:09:11 EDT 2025 Sun Jun 29 12:33:44 EDT 2025 Mon Jul 21 06:02:09 EDT 2025 Thu Apr 24 23:02:54 EDT 2025 Tue Jul 01 03:53:12 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 1932-1058/2015/9(1)/016501/9/$30.00 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c403t-af534e873e074b6c6ff5fb9a1569b98a7fd2c27340e5d9b7af1b21279b7d35ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Authors to whom correspondence should be addressed. Electronic addresses: nordin@byu.edu, Telephone: 801-422-1863 and atw@byu.edu, Telephone: 801-422-1701. |
OpenAccessLink | https://aip.scitation.org/doi/pdf/10.1063/1.4905840 |
PMID | 25610517 |
PQID | 2124947014 |
PQPubID | 2050670 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4297278 proquest_miscellaneous_1652403842 proquest_journals_2124947014 pubmed_primary_25610517 crossref_citationtrail_10_1063_1_4905840 crossref_primary_10_1063_1_4905840 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Melville |
PublicationTitle | Biomicrofluidics |
PublicationTitleAlternate | Biomicrofluidics |
PublicationYear | 2015 |
Publisher | American Institute of Physics AIP Publishing LLC |
Publisher_xml | – name: American Institute of Physics – name: AIP Publishing LLC |
References | (2023080309010419000_c9) 2010; 107 (2023080309010419000_c24) 2014; 86 (2023080309010419000_c38) 2011; 83 (2023080309010419000_c45) 2013; 85 (2023080309010419000_c4) 2012; 11 (2023080309010419000_c17) 2008; 80 (2023080309010419000_c44) 2013; 13 (2023080309010419000_c6) 2012; 12 (2023080309010419000_c28) 2014; 111 (2023080309010419000_c30) 2014; 86 (2023080309010419000_c35) 2012; 13 (2023080309010419000_c33) 2011; 83 (2023080309010419000_c12) 2012; 84 (2023080309010419000_c15) 2011; 71 (2023080309010419000_c36) 2013; 85 (2023080309010419000_c5) 2011; 17 (2023080309010419000_c37) 2013; 13 (2023080309010419000_c46) 2010; 135 (2023080309010419000_c13) 2008; 30 (2023080309010419000_c11) 2010; 4 (2023080309010419000_c19) 2003; 24 (2023080309010419000_c14) 2007; 23 (2023080309010419000_c2) 2006; 103 (2023080309010419000_c31) 2005; 121 (2023080309010419000_c26) 2013; 4 (2023080309010419000_c3) 2009; 11 (2023080309010419000_c41) 2014 (2023080309010419000_c42) 2012; 31 (2023080309010419000_c40) 2012; 402 (2023080309010419000_c7) 2009; 24 (2023080309010419000_c16) 2008; 25 (2023080309010419000_c29) 2014; 14 (2023080309010419000_c22) 2005; 5 (2023080309010419000_c18) 2010; 4 (2023080309010419000_c34) 2014; 191 (2023080309010419000_c21) 1998; 70 (2023080309010419000_c10) 2011; 26 (2023080309010419000_c32) 2012; 83 (2023080309010419000_c39) 2013; 13 (2023080309010419000_c1) 2013; 113 2023080309010419000_c20 (2023080309010419000_c43) 2011; 11 (2023080309010419000_c23) 2006; 27 (2023080309010419000_c8) 2014; 14 (2023080309010419000_c25) 2012; 12 (2023080309010419000_c27) 2012; 4 19806459 - Biomed Microdevices. 2009 Dec;11(6):1309-15 23675832 - Anal Chem. 2013 Aug 20;85(16):7682-8 25246553 - Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15013-8 21728310 - Anal Chem. 2011 Aug 15;83(16):6418-25 22859057 - Lab Chip. 2012 Sep 21;12(18):3249-66 18593194 - Anal Chem. 2008 Aug 1;80(15):6045-50 20697575 - Biomicrofluidics. 2010 Mar 15;4(2):null 23846477 - Lab Chip. 2013 Sep 21;13(18):3668-74 24512498 - Anal Chem. 2014 Mar 18;86(6):3124-30 16477028 - Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2480-7 16960835 - Electrophoresis. 2006 Oct;27(19):3788-96 14613181 - Electrophoresis. 2003 Nov;24(21):3563-76 22138465 - Biosens Bioelectron. 2012 Jan 15;31(1):388-92 24432804 - Anal Chem. 2014 Apr 1;86(7):3240-53 21632234 - Biosens Bioelectron. 2011 Jul 15;26(11):4477-83 21098088 - Cancer Res. 2011 Jan 15;71(2):550-60 24524681 - Expert Rev Mol Diagn. 2014 Mar;14(2):225-44 23529280 - Lab Chip. 2013 May 21;13(10):1911-8 24510161 - Lab Chip. 2014 Apr 7;14(7):1294-301 16175253 - Lab Chip. 2005 Oct;5(10):1005-7 24357897 - Sens Actuators B Chem. 2014 Feb 1;191:null 21644679 - Anal Chem. 1998 Dec 1;70(23):4974-84 17902150 - Head Neck. 2008 Jan;30(1):111-21 17532619 - Biosens Bioelectron. 2007 Sep 30;23(2):191-200 22850786 - Nat Rev Drug Discov. 2012 Aug;11(8):620-32 20024187 - Analyst. 2010 Jan;135(1):96-103 18786664 - N Biotechnol. 2008 Oct-Dec;25(2-3):142-9 20041634 - ACS Nano. 2010 Jan 26;4(1):488-94 18656344 - Biosens Bioelectron. 2009 Jan 1;24(5):1109-15 22875258 - Lab Chip. 2012 Sep 21;12(18):3267-71 22286080 - Anal Bioanal Chem. 2012 Mar;402(9):2797-803 23410114 - Chem Rev. 2013 Apr 10;113(4):2550-83 21804541 - Nat Med. 2011 Jul 31;17(8):1015-9 22697359 - Anal Chem. 2012 Jul 17;84(14):6249-55 20679245 - Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14524-9 21806019 - Anal Chem. 2011 Sep 15;83(18):7166-72 22522253 - Nat Chem. 2012 Apr 15;4(5):349-54 23687961 - Anal Chem. 2013 Jun 18;85(12):5622-6 21547316 - Lab Chip. 2011 Jun 21;11(12):2088-96 23278017 - Rev Sci Instrum. 2012 Dec;83(12):125001 |
References_xml | – volume: 27 start-page: 3788 year: 2006 ident: 2023080309010419000_c23 publication-title: Electrophoresis doi: 10.1002/elps.200600118 – volume: 135 start-page: 96 year: 2010 ident: 2023080309010419000_c46 publication-title: Analyst doi: 10.1039/b908985c – volume: 83 start-page: 125001 year: 2012 ident: 2023080309010419000_c32 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4769050 – volume: 83 start-page: 6418 year: 2011 ident: 2023080309010419000_c33 publication-title: Anal. Chem. doi: 10.1021/ac201539h – volume: 24 start-page: 1109 year: 2009 ident: 2023080309010419000_c7 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2008.06.010 – volume: 84 start-page: 6249 year: 2012 ident: 2023080309010419000_c12 publication-title: Anal. Chem. doi: 10.1021/ac301392g – volume: 103 start-page: 2480 year: 2006 ident: 2023080309010419000_c2 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0507681102 – volume: 5 start-page: 1005 year: 2005 ident: 2023080309010419000_c22 publication-title: Lab Chip doi: 10.1039/b509251e – volume: 14 start-page: 225 year: 2014 ident: 2023080309010419000_c8 publication-title: Expert Rev. Mol. Diagn. doi: 10.1586/14737159.2014.888313 – volume: 107 start-page: 14524 year: 2010 ident: 2023080309010419000_c9 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1001515107 – volume: 4 start-page: 488 year: 2010 ident: 2023080309010419000_c11 publication-title: ACS Nano doi: 10.1021/nn901404h – volume: 111 start-page: 15013 year: 2014 ident: 2023080309010419000_c28 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1414764111 – volume: 11 start-page: 2088 year: 2011 ident: 2023080309010419000_c43 publication-title: Lab Chip doi: 10.1039/c1lc20025a – volume: 402 start-page: 2797 year: 2012 ident: 2023080309010419000_c40 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-012-5755-7 – volume: 13 start-page: 3668 year: 2013 ident: 2023080309010419000_c37 publication-title: Lab Chip doi: 10.1039/c3lc50481f – volume: 121 start-page: 113 year: 2005 ident: 2023080309010419000_c31 publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2004.12.011 – volume: 11 start-page: 620 year: 2012 ident: 2023080309010419000_c4 publication-title: Nat. Rev. Drug Discovery doi: 10.1038/nrd3799 – volume: 24 start-page: 3563 year: 2003 ident: 2023080309010419000_c19 publication-title: Electrophoresis doi: 10.1002/elps.200305584 – volume: 4 start-page: 3099 year: 2013 ident: 2023080309010419000_c26 publication-title: Chem. Sci. doi: 10.1039/c3sc51253c – volume: 13 start-page: 959 year: 2013 ident: 2023080309010419000_c44 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2012.2225613 – volume: 17 start-page: 1015 year: 2011 ident: 2023080309010419000_c5 publication-title: Nat. Med. doi: 10.1038/nm.2408 – start-page: 1 year: 2014 ident: 2023080309010419000_c41 article-title: Microfluidic system for enzymeless electrochemical determination of inulin using catalytically active metal nanowires publication-title: Microchim. Acta doi: 10.1007/s00604-014-1384-5 – volume: 23 start-page: 191 year: 2007 ident: 2023080309010419000_c14 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2007.03.029 – volume: 13 start-page: 1911 year: 2013 ident: 2023080309010419000_c39 publication-title: Lab Chip doi: 10.1039/c3lc41394b – ident: 2023080309010419000_c20 – volume: 31 start-page: 388 year: 2012 ident: 2023080309010419000_c42 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2011.10.056 – volume: 85 start-page: 7682 year: 2013 ident: 2023080309010419000_c36 publication-title: Anal. Chem. doi: 10.1021/ac303767m – volume: 4 start-page: 349 year: 2012 ident: 2023080309010419000_c27 publication-title: Nat. Chem. doi: 10.1038/nchem.1313 – volume: 70 start-page: 4974 year: 1998 ident: 2023080309010419000_c21 publication-title: Anal. Chem. doi: 10.1021/ac980656z – volume: 83 start-page: 7166 year: 2011 ident: 2023080309010419000_c38 publication-title: Anal. Chem. doi: 10.1021/ac201598b – volume: 86 start-page: 3240 year: 2014 ident: 2023080309010419000_c24 publication-title: Anal. Chem. doi: 10.1021/ac403397r – volume: 12 start-page: 3249 year: 2012 ident: 2023080309010419000_c6 publication-title: Lab Chip doi: 10.1039/c2lc40630f – volume: 80 start-page: 6045 year: 2008 ident: 2023080309010419000_c17 publication-title: Anal. Chem. doi: 10.1021/ac800843v – volume: 86 start-page: 3124 year: 2014 ident: 2023080309010419000_c30 publication-title: Anal. Chem. doi: 10.1021/ac4041857 – volume: 113 start-page: 2550 year: 2013 ident: 2023080309010419000_c1 publication-title: Chem. Rev. doi: 10.1021/cr300337x – volume: 25 start-page: 142 year: 2008 ident: 2023080309010419000_c16 publication-title: New Biotechnol. doi: 10.1016/j.nbt.2008.08.005 – volume: 4 start-page: 026502 year: 2010 ident: 2023080309010419000_c18 publication-title: Biomicrofluidics doi: 10.1063/1.3259624 – volume: 13 start-page: 383 year: 2012 ident: 2023080309010419000_c35 publication-title: Microfluid. Nanofluid. doi: 10.1007/s10404-012-0968-9 – volume: 14 start-page: 1294 year: 2014 ident: 2023080309010419000_c29 publication-title: Lab Chip doi: 10.1039/c3lc51360b – volume: 85 start-page: 5622 year: 2013 ident: 2023080309010419000_c45 publication-title: Anal. Chem. doi: 10.1021/ac4009594 – volume: 12 start-page: 3267 year: 2012 ident: 2023080309010419000_c25 publication-title: Lab Chip doi: 10.1039/c2lc40761b – volume: 191 start-page: 438 year: 2014 ident: 2023080309010419000_c34 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2013.10.008 – volume: 26 start-page: 4477 year: 2011 ident: 2023080309010419000_c10 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2011.05.005 – volume: 11 start-page: 1309 year: 2009 ident: 2023080309010419000_c3 publication-title: Biomed. Microdevices doi: 10.1007/s10544-009-9350-4 – volume: 30 start-page: 111 year: 2008 ident: 2023080309010419000_c13 publication-title: Head Neck doi: 10.1002/hed.20680 – volume: 71 start-page: 550 year: 2011 ident: 2023080309010419000_c15 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-1229 – reference: 23529280 - Lab Chip. 2013 May 21;13(10):1911-8 – reference: 19806459 - Biomed Microdevices. 2009 Dec;11(6):1309-15 – reference: 21632234 - Biosens Bioelectron. 2011 Jul 15;26(11):4477-83 – reference: 22859057 - Lab Chip. 2012 Sep 21;12(18):3249-66 – reference: 22138465 - Biosens Bioelectron. 2012 Jan 15;31(1):388-92 – reference: 23675832 - Anal Chem. 2013 Aug 20;85(16):7682-8 – reference: 14613181 - Electrophoresis. 2003 Nov;24(21):3563-76 – reference: 18786664 - N Biotechnol. 2008 Oct-Dec;25(2-3):142-9 – reference: 21547316 - Lab Chip. 2011 Jun 21;11(12):2088-96 – reference: 24510161 - Lab Chip. 2014 Apr 7;14(7):1294-301 – reference: 20041634 - ACS Nano. 2010 Jan 26;4(1):488-94 – reference: 22875258 - Lab Chip. 2012 Sep 21;12(18):3267-71 – reference: 18593194 - Anal Chem. 2008 Aug 1;80(15):6045-50 – reference: 25246553 - Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15013-8 – reference: 21644679 - Anal Chem. 1998 Dec 1;70(23):4974-84 – reference: 22522253 - Nat Chem. 2012 Apr 15;4(5):349-54 – reference: 22286080 - Anal Bioanal Chem. 2012 Mar;402(9):2797-803 – reference: 21806019 - Anal Chem. 2011 Sep 15;83(18):7166-72 – reference: 22697359 - Anal Chem. 2012 Jul 17;84(14):6249-55 – reference: 20679245 - Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14524-9 – reference: 17532619 - Biosens Bioelectron. 2007 Sep 30;23(2):191-200 – reference: 24512498 - Anal Chem. 2014 Mar 18;86(6):3124-30 – reference: 20024187 - Analyst. 2010 Jan;135(1):96-103 – reference: 24357897 - Sens Actuators B Chem. 2014 Feb 1;191:null – reference: 24432804 - Anal Chem. 2014 Apr 1;86(7):3240-53 – reference: 17902150 - Head Neck. 2008 Jan;30(1):111-21 – reference: 23410114 - Chem Rev. 2013 Apr 10;113(4):2550-83 – reference: 21804541 - Nat Med. 2011 Jul 31;17(8):1015-9 – reference: 21098088 - Cancer Res. 2011 Jan 15;71(2):550-60 – reference: 23278017 - Rev Sci Instrum. 2012 Dec;83(12):125001 – reference: 16175253 - Lab Chip. 2005 Oct;5(10):1005-7 – reference: 21728310 - Anal Chem. 2011 Aug 15;83(16):6418-25 – reference: 16477028 - Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2480-7 – reference: 24524681 - Expert Rev Mol Diagn. 2014 Mar;14(2):225-44 – reference: 16960835 - Electrophoresis. 2006 Oct;27(19):3788-96 – reference: 18656344 - Biosens Bioelectron. 2009 Jan 1;24(5):1109-15 – reference: 23846477 - Lab Chip. 2013 Sep 21;13(18):3668-74 – reference: 22850786 - Nat Rev Drug Discov. 2012 Aug;11(8):620-32 – reference: 20697575 - Biomicrofluidics. 2010 Mar 15;4(2):null – reference: 23687961 - Anal Chem. 2013 Jun 18;85(12):5622-6 |
SSID | ssj0051722 |
Score | 2.4781568 |
Snippet | We report the successful fabrication and testing of 3D printed microfluidic devices with integrated membrane-based valves. Fabrication is performed with a... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 016501 |
SubjectTerms | Channels Fabrication and Laboratory Methods Fluid pressure Protein adsorption Proteins Three dimensional printing Valves |
Title | 3D printed microfluidic devices with integrated valves |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25610517 https://www.proquest.com/docview/2124947014 https://www.proquest.com/docview/1652403842 https://pubmed.ncbi.nlm.nih.gov/PMC4297278 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXOCAeBMoKCAOSKuUxI7zOFZ9UEFZhLQr9mY5sd1G6iao3eXAr2cmdpLNtkLAJYoS5yF_tvXNeOYbQt4pymkheRgA3jKIS5kGUkc6SBnMSlkqxSXu6H6ZJifz-NOCL4bCiW12yarYK3_dmFfyP6jCNcAVs2T_Adn-pXABzgFfOALCcPwrjNnhBP1ySBqXGFhnLtaVqkrMhML5b52svSCEmsC3f7qYwW4ft2o2nxwC35szVzzt4FyqwbX6DQOfq8lnubwchtX3Br0PLVr7Si6HuOspWLZWo8ClwrhsMudliPiWl6HfPhqFMLRBqu7XtF0_gQ7Cym7V2LsFNt8eR9eWbeBJ6EHYi3N41Mo3jaWxp1_F8fz0VMyOFrPb5A4FmwDLVXxc9PE8HJgY7aSjEvahf9mYcFyzIraDYTfYxewBue_MAn_fYvyQ3NL1I3JvQyzyMUnYoe_Q9jcx8x3aPqLtD2j7Fu0nZH58NDs4CVzVi6CMQ7YKpOEs1lnKNLC7IikTY7gpcgmGdl7kmUyNoiWKEoWaq7xIpYkKlOmHU8W4VOwp2ambWj8nfmpSymD-hVxKtDsLCfwV-C4LqQkZyzzyvusaUTpJeKxMciHa0ISEiUi4XvTI277pD6uDclOj3a5_hZsmV4JiefM4BVPcI2_627CI4c6UrHWzvhJRwlEXMoupR55ZOPqvUGT4gK5H0hFQfQMUSB_fqavzVigduBbQ8-zFn3_rJbk7jPhdsrO6XOtXwDRXxet2hP0GdJmDPg |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+printed+microfluidic+devices+with+integrated+valves&rft.jtitle=Biomicrofluidics&rft.au=Rogers%2C+Chad+I&rft.au=Qaderi+Kamran&rft.au=Woolley%2C+Adam+T&rft.au=Nordin%2C+Gregory+P&rft.date=2015-01-01&rft.pub=American+Institute+of+Physics&rft.eissn=1932-1058&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1063%2F1.4905840&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-1058&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-1058&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-1058&client=summon |