Improving the Accuracy for Analyzing Heart Diseases Prediction Based on the Ensemble Method

Heart disease is the deadliest disease and one of leading causes of death worldwide. Machine learning is playing an essential role in the medical side. In this paper, ensemble learning methods are used to enhance the performance of predicting heart disease. Two features of extraction methods: linear...

Full description

Saved in:
Bibliographic Details
Published inComplexity (New York, N.Y.) Vol. 2021; no. 1
Main Authors Gao, Xiao-Yan, Amin Ali, Abdelmegeid, Shaban Hassan, Hassan, Anwar, Eman M.
Format Journal Article
LanguageEnglish
Published Hoboken Hindawi 2021
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heart disease is the deadliest disease and one of leading causes of death worldwide. Machine learning is playing an essential role in the medical side. In this paper, ensemble learning methods are used to enhance the performance of predicting heart disease. Two features of extraction methods: linear discriminant analysis (LDA) and principal component analysis (PCA), are used to select essential features from the dataset. The comparison between machine learning algorithms and ensemble learning methods is applied to selected features. The different methods are used to evaluate models: accuracy, recall, precision, F-measure, and ROC.The results show the bagging ensemble learning method with decision tree has achieved the best performance.
AbstractList Heart disease is the deadliest disease and one of leading causes of death worldwide. Machine learning is playing an essential role in the medical side. In this paper, ensemble learning methods are used to enhance the performance of predicting heart disease. Two features of extraction methods: linear discriminant analysis (LDA) and principal component analysis (PCA), are used to select essential features from the dataset. The comparison between machine learning algorithms and ensemble learning methods is applied to selected features. The different methods are used to evaluate models: accuracy, recall, precision, F-measure, and ROC.The results show the bagging ensemble learning method with decision tree has achieved the best performance.
Author Amin Ali, Abdelmegeid
Anwar, Eman M.
Gao, Xiao-Yan
Shaban Hassan, Hassan
Author_xml – sequence: 1
  givenname: Xiao-Yan
  surname: Gao
  fullname: Gao, Xiao-Yan
  organization: School of Mathematics and StatisticsYulin UniversityYulin 719000Chinayulinu.edu.cn
– sequence: 2
  givenname: Abdelmegeid
  surname: Amin Ali
  fullname: Amin Ali, Abdelmegeid
  organization: Faculty of Computers and InformationDepartment of Computer ScienceMinia UniversityMinyaEgyptminia.edu.eg
– sequence: 3
  givenname: Hassan
  surname: Shaban Hassan
  fullname: Shaban Hassan, Hassan
  organization: Faculty of Computers and InformationDepartment of Computer ScienceMinia UniversityMinyaEgyptminia.edu.eg
– sequence: 4
  givenname: Eman M.
  orcidid: 0000-0002-8743-1641
  surname: Anwar
  fullname: Anwar, Eman M.
  organization: Faculty of Computers and InformationDepartment of Information SystemMinia UniversityMinyaEgyptminia.edu.eg
BookMark eNp9UcFOGzEQtaogQYAbH2Cpx3aJ7bXX8TGloUQCwaE9cbDG3lniaLOm9qYo_fruEtRDpXKa0cx7b0bvTcmkix0ScsHZJedKzQQTfFZVVSmV-kBOODOmYEpUk7HXVSH0XB-Tac4bxpipSn1CHlfb5xR_he6J9mukC-93CfyeNjHRRQft_ve4ukFIPf0aMkLGTB8S1sH3IXb0yzCo6dCM7GWXcetapHfYr2N9Ro4aaDOev9VT8uN6-f3qpri9_7a6WtwWXrKyL8CrWgg0Dk3phRLAULtmbpzAOXKn0dToAJWGRnEN2kipPOPcGMM0SFeektVBt46wsc8pbCHtbYRgXwcxPdnh_eBbtEzXDFjTGHReQiWdLNGXjjdu-KBEPmh9PGgNrvzcYe7tJu7SYES2QhqupZnLEfX5gPIp5pyw-XuVMztGYcco7FsUA1z8A_ehh9G_PkFo_0f6dCCtQ1fDS3j_xB-ISJpj
CitedBy_id crossref_primary_10_4108_eetpht_10_5411
crossref_primary_10_1007_s11042_023_15887_9
crossref_primary_10_1155_2021_1616725
crossref_primary_10_1155_2022_6987569
crossref_primary_10_4018_IJHISI_334021
crossref_primary_10_1080_10255842_2024_2319706
crossref_primary_10_21015_vtse_v10i3_1106
crossref_primary_10_1109_ACCESS_2021_3098688
crossref_primary_10_3390_diagnostics12030722
crossref_primary_10_1109_ACCESS_2022_3207287
crossref_primary_10_3390_jimaging10120327
crossref_primary_10_60084_ijds_v1i2_131
crossref_primary_10_1007_s11042_024_19737_0
crossref_primary_10_1186_s12872_025_04627_6
crossref_primary_10_1155_2022_7268571
crossref_primary_10_1016_j_procs_2023_10_544
crossref_primary_10_3390_computers13060126
crossref_primary_10_48175_IJARSCT_5675
crossref_primary_10_1007_s11042_024_19680_0
crossref_primary_10_1007_s11831_024_10075_w
crossref_primary_10_1155_2021_6260022
crossref_primary_10_3389_fbinf_2024_1457619
crossref_primary_10_1080_10255842_2023_2218520
crossref_primary_10_3390_diagnostics14121278
crossref_primary_10_1088_2631_8695_ad5d51
crossref_primary_10_1016_j_health_2023_100173
crossref_primary_10_1088_1742_6596_2286_1_012017
crossref_primary_10_1155_acis_1989813
crossref_primary_10_3390_math11133026
crossref_primary_10_3390_info15070394
crossref_primary_10_1016_j_bspc_2024_107138
crossref_primary_10_1111_exsy_13300
crossref_primary_10_1016_j_knosys_2025_113168
crossref_primary_10_1155_2021_6718029
crossref_primary_10_1016_j_imu_2021_100584
crossref_primary_10_32604_iasc_2023_032262
crossref_primary_10_1007_s00500_022_07200_x
crossref_primary_10_1057_s41270_024_00364_5
crossref_primary_10_3390_app12157449
crossref_primary_10_37391_ijeer_110203
crossref_primary_10_33317_ssurj_649
crossref_primary_10_1038_s41598_021_04649_y
crossref_primary_10_7717_peerj_cs_2276
crossref_primary_10_3390_a17050178
crossref_primary_10_1109_ACCESS_2024_3389707
crossref_primary_10_1155_2021_5581806
crossref_primary_10_1088_1742_6596_2161_1_012010
Cites_doi 10.1109/ICTCS.2019.8923053
10.1109/BigData47090.2019.9005488
10.3233/JIFS-179566
10.1155/2018/3860146
10.1007/978-981-15-5341-7_78
10.1007/978-981-13-0059-2_8
10.3390/e21080763
10.1109/ICEENG45378.2020.9171739
10.1016/j.eswa.2012.08.028
10.31838/ijpr/2020.12.04.013
10.1109/CSIBIG.2014.7056973
10.5539/cis.v6n3p48
10.5120/2368-3115
10.1007/978-981-15-6318-8_19
10.1111/jcpe.13189
10.1007/s42978-019-0001-z
10.1109/ICIMIA48430.2020.9074954
10.4236/jsea.2014.712093
10.1016/j.knosys.2016.09.032
10.1016/j.imu.2020.100330
10.1016/j.acvd.2019.10.008
10.1007/978-981-15-1097-7_76
10.1177/1460458219899210
10.1109/ISCC.2017.8024530
10.14419/ijet.v7i4.28646
ContentType Journal Article
Copyright Copyright © 2021 Xiao-Yan Gao et al.
Copyright © 2021 Xiao-Yan Gao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2021 Xiao-Yan Gao et al.
– notice: Copyright © 2021 Xiao-Yan Gao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1155/2021/6663455
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

Research Library Prep
CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-0526
Editor Khalil, Ahmed Mostafa
Editor_xml – sequence: 1
  givenname: Ahmed Mostafa
  surname: Khalil
  fullname: Khalil, Ahmed Mostafa
ExternalDocumentID oai_doaj_org_article_07d0a0ff9ebc4a64b43ec3b1fb22e3e1
10_1155_2021_6663455
GrantInformation_xml – fundername: Yulin University-Industry Collaboration Project
  grantid: 2019-75-3
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8G5
8UM
930
A03
AAESR
AAFWJ
AAJEY
AAONW
ABCQN
ABEML
ABIJN
ABPVW
ABUWG
ACSCC
ADBBV
ADIZJ
AENEX
AFBPY
AFKRA
AFPKN
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ATUGU
AZBYB
AZQEC
AZVAB
BAFTC
BCNDV
BENPR
BGLVJ
BHBCM
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DPXWK
DR2
DU5
DWQXO
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
H.T
H.X
HBH
HCIFZ
HHY
HZ~
IAO
ITC
IX1
J0M
JPC
K6V
K7-
KQQ
LAW
LC2
LC3
LP6
LP7
M2O
MK4
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
Q.N
Q11
QB0
QRW
R.K
RHU
RHW
RHX
RWI
RX1
RYL
SUPJJ
TUS
V2E
W8V
W99
WBKPD
WIH
WQJ
WRC
XBAML
XG1
XPP
XSW
XV2
~IA
~WT
.Y3
24P
31~
3R3
5VS
AAEVG
AAHHS
AANHP
AAYXX
ACBWZ
ACCFJ
ACCMX
ACRPL
ACXQS
ACYXJ
ADNMO
ADZOD
AEEZP
AEIMD
AEQDE
AFZJQ
AGQPQ
AIWBW
AJBDE
AMVHM
ASPBG
AVWKF
AZFZN
BDRZF
BFHJK
CITATION
DCZOG
EJD
FEDTE
H13
HF~
HVGLF
ICD
LH4
LW6
PHGZM
PHGZT
ROL
WYUIH
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c403t-ac5d22e9be93c252a0e7bf89b2e8e1b7e9debae57af517a79445c01199907a4b3
IEDL.DBID DOA
ISSN 1076-2787
IngestDate Wed Aug 27 01:32:37 EDT 2025
Fri Jul 25 20:56:08 EDT 2025
Tue Jul 01 02:02:04 EDT 2025
Thu Apr 24 23:01:44 EDT 2025
Sun Jun 02 19:16:35 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-ac5d22e9be93c252a0e7bf89b2e8e1b7e9debae57af517a79445c01199907a4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8743-1641
OpenAccessLink https://doaj.org/article/07d0a0ff9ebc4a64b43ec3b1fb22e3e1
PQID 2491749841
PQPubID 2029978
ParticipantIDs doaj_primary_oai_doaj_org_article_07d0a0ff9ebc4a64b43ec3b1fb22e3e1
proquest_journals_2491749841
crossref_primary_10_1155_2021_6663455
crossref_citationtrail_10_1155_2021_6663455
hindawi_primary_10_1155_2021_6663455
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Complexity (New York, N.Y.)
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_9_10_2
e_1_2_9_33_2
e_1_2_9_34_2
e_1_2_9_31_2
e_1_2_9_11_2
e_1_2_9_32_2
Chen A. H. (e_1_2_9_22_2) 2011; 557
Zhang C. (e_1_2_9_35_2) 2012
e_1_2_9_13_2
e_1_2_9_38_2
Miao K. H. (e_1_2_9_37_2) 2016; 7
Pillai N. S. R. (e_1_2_9_14_2) 2019; 5
e_1_2_9_15_2
e_1_2_9_36_2
e_1_2_9_18_2
e_1_2_9_17_2
Raza K. (e_1_2_9_16_2) 2019
Hasan T. T. (e_1_2_9_21_2) 2017; 77
e_1_2_9_20_2
e_1_2_9_23_2
e_1_2_9_7_2
e_1_2_9_6_2
Reddy N. S. C. (e_1_2_9_12_2) 2019; 9
e_1_2_9_5_2
e_1_2_9_4_2
e_1_2_9_3_2
e_1_2_9_2_2
e_1_2_9_1_2
e_1_2_9_9_2
e_1_2_9_8_2
e_1_2_9_25_2
e_1_2_9_24_2
e_1_2_9_27_2
e_1_2_9_26_2
e_1_2_9_29_2
Yaqoob M. (e_1_2_9_30_2) 2020; 1
Bhat R. (e_1_2_9_19_2) 2019; 9
e_1_2_9_28_2
References_xml – ident: e_1_2_9_13_2
  doi: 10.1109/ICTCS.2019.8923053
– ident: e_1_2_9_9_2
  doi: 10.1109/BigData47090.2019.9005488
– ident: e_1_2_9_2_2
– ident: e_1_2_9_6_2
  doi: 10.3233/JIFS-179566
– volume: 9
  year: 2019
  ident: e_1_2_9_12_2
  article-title: Classification and feature selection approaches by machine learningtechniques: heart disease prediction
  publication-title: International Journal of Innovative Computing
– ident: e_1_2_9_25_2
  doi: 10.1155/2018/3860146
– volume: 5
  year: 2019
  ident: e_1_2_9_14_2
  article-title: Prediction of heart disease using rnn algorithm
  publication-title: International Research Journal of Engineering and Technology
– ident: e_1_2_9_24_2
  doi: 10.1007/978-981-15-5341-7_78
– ident: e_1_2_9_15_2
  doi: 10.1007/978-981-13-0059-2_8
– ident: e_1_2_9_7_2
  doi: 10.3390/e21080763
– ident: e_1_2_9_26_2
– ident: e_1_2_9_10_2
  doi: 10.1109/ICEENG45378.2020.9171739
– ident: e_1_2_9_3_2
  doi: 10.1016/j.eswa.2012.08.028
– ident: e_1_2_9_32_2
  doi: 10.31838/ijpr/2020.12.04.013
– ident: e_1_2_9_23_2
  doi: 10.1109/CSIBIG.2014.7056973
– ident: e_1_2_9_34_2
– ident: e_1_2_9_36_2
  doi: 10.5539/cis.v6n3p48
– ident: e_1_2_9_5_2
  doi: 10.5120/2368-3115
– ident: e_1_2_9_29_2
  doi: 10.1007/978-981-15-6318-8_19
– ident: e_1_2_9_1_2
  doi: 10.1111/jcpe.13189
– volume: 77
  start-page: 2277
  year: 2017
  ident: e_1_2_9_21_2
  article-title: Heart disease diagnosis system based on multi-layer perceptron neural networkand support vector machine
  publication-title: International Journal of Current Engineering and Technology
– ident: e_1_2_9_4_2
  doi: 10.1007/s42978-019-0001-z
– ident: e_1_2_9_17_2
– year: 2012
  ident: e_1_2_9_35_2
  article-title: Ensemble Machine Learning:
  publication-title: Methods and Applications
– ident: e_1_2_9_33_2
  doi: 10.1109/ICIMIA48430.2020.9074954
– volume: 7
  start-page: 30
  year: 2016
  ident: e_1_2_9_37_2
  article-title: Diagnosing coronary heart disease using ensemble machine learning
  publication-title: International Journal of Advanced Computer Science and Applications
– ident: e_1_2_9_20_2
  doi: 10.4236/jsea.2014.712093
– ident: e_1_2_9_31_2
  doi: 10.1016/j.knosys.2016.09.032
– ident: e_1_2_9_28_2
  doi: 10.1016/j.imu.2020.100330
– volume: 557
  year: 2011
  ident: e_1_2_9_22_2
  article-title: Hdps: heart disease prediction system
  publication-title: In 2011 computing in Cardiology
– ident: e_1_2_9_11_2
  doi: 10.1016/j.acvd.2019.10.008
– ident: e_1_2_9_18_2
  doi: 10.1007/978-981-15-1097-7_76
– ident: e_1_2_9_27_2
  doi: 10.1177/1460458219899210
– ident: e_1_2_9_38_2
  doi: 10.1109/ISCC.2017.8024530
– volume: 1
  year: 2020
  ident: e_1_2_9_30_2
  article-title: Comparing predictive performance of k-nearest neighbors and support vector machinefor predicting ischemic heart disease
  publication-title: Journal of Advanced Scientific Research
– ident: e_1_2_9_8_2
  doi: 10.14419/ijet.v7i4.28646
– start-page: 179
  year: 2019
  ident: e_1_2_9_16_2
  article-title: Improving the prediction accuracy of heart disease with ensemble learning and majority voting rule
  publication-title: InU-Healthcare Monitoring Systems
– volume: 9
  year: 2019
  ident: e_1_2_9_19_2
  article-title: Prediction of test for heart disease diagnosis using artificial neural network
  publication-title: Indian Journal of Applied Research
SSID ssj0009637
Score 2.5229442
Snippet Heart disease is the deadliest disease and one of leading causes of death worldwide. Machine learning is playing an essential role in the medical side. In this...
SourceID doaj
proquest
crossref
hindawi
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Age
Algorithms
Angina pectoris
Back propagation
Blood pressure
Cardiovascular disease
Data collection
Data mining
Datasets
Decision trees
Discriminant analysis
Feature extraction
Feature selection
Heart diseases
Heart rate
Literature reviews
Machine learning
Model accuracy
Neural networks
Pain
Performance prediction
Principal components analysis
Support vector machines
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA7qSQ-iq-L6IgcFRYptHn0cfawswooHhQUPJY8JCrrKdkX01zvJZldURG9tOmnpPDrzJeUbQnY9q5lwwBMoEKsKxkziW9omBWfaGWtzGdr59C7z7o246Mt-JElqfm7hY7bz8Dw7wiqbCylnySw6mAfl3f4nt24eqDERyOQJQwec_N_-be6XzBMI-rHmvfPI9_X-x5c4pJfzJbIY60J6PDbkMpmBQYss9Kakqk2LLMc4bOh-JIs-WCG301UBiqL02JiXoTJvFGtRGghH3v2lLvrziJ6NN2MaejX02zPeJPQEByzFAz-7M2jgUT8A7YW-0qvk5rxzfdpNYsOExIiUjxJlpGUMKg0VN0wylUKhXVlpBiVkuoDKglYgC-VkVigMRSGNJ33DlFQoofkamRs8DWCdUJGDQ7SSlU6VwqWytEJXVgPWM6XLLLTJ4USZtYls4r6pxUMdUIWUtVd9HVXfJntT6ecxi8YvcifeLlMZz30dBtAf6hhKdVrYVKXOVaCNULnQgoPhOnMa351D1ia70ap_PGtrYvI6xm1TIxhFiFaVItv43102ybw_HS_KbJG50fAFtrFMGemd4KQfGRndZQ
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9RAEF_0-qIP0lbF0yr7UEGR0GQ_ks2T9PTKIVwpYqHgQ9iP2SrUu3q5Iu1f35m9vasg6lvYnSRk52PnY_MbxvYJ1UxFkAU0GKsqIXxBLW2LRgoXfQi1Tu18psf15FR9OtNnOeHW52OVa5uYDHWYe8qRH2CYgM5za1T1_vJnQV2jqLqaW2jcZ1togo0ZsK3R-Pjk8x3sbp1QMzHGqQuBsrk--q41Rf3VATrvUtFvfr9tSgm7H93hbxQU__r-h5FOO8_RNnuUXUZ-uOLxDrsHs132cLrBW-132U5W0Z6_yTjSbx-zr5uEAUdSfuj91cL6a45uKk9YJDc0NUFRX_KPqzpNz08WVLkhbvERDgSOF3T3eNbDD3cBfJpaTj9hp0fjLx8mRe6lUHhVymVhvQ5CQOuglV5oYUtoXDStE2Cgcg20AZwF3dioq8ailirtCQ8Od6vGKiefssFsPoNnjKsaIgYylYnWqFhqE5RrgwN0dUysAgzZu_Vidj4DjVO_i4suBRxad7T0XV76IXu9ob5cAWz8hW5EfNnQECx2GpgvzrusZV3ZhNKWMbbgvLK1ckqCl66KDr9dQjVk-5mr_3nX3prlXVbpvrsTwOf_nn7BHtDDVnmaPTZYLq7gJXouS_cqi-ctDZPpGA
  priority: 102
  providerName: ProQuest
Title Improving the Accuracy for Analyzing Heart Diseases Prediction Based on the Ensemble Method
URI https://dx.doi.org/10.1155/2021/6663455
https://www.proquest.com/docview/2491749841
https://doaj.org/article/07d0a0ff9ebc4a64b43ec3b1fb22e3e1
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-0vuhDsVXxtB77UEGR0GQ_8vHY0zsP4UopFg58CPsxi0J7lcuVYv_6zm42R0GkL76EsJmwy8xsZn67m98AHAZWM-lRZFgRVpWc2yyUtM0qwY23zpUqlvNZnJTzc_ltqZb3Sn2FM2E9PXCvuKO8crnOvW_QWKlLaaRAK0zhDecoMAIfinkDmBrodsvIlknYpsw4-eRw5F2pgPaLI0rahQy_990LRpGzn9LgnwEM3_z66-McI87sOeymVJEd90Pcg0e42odniy3ParcPe2lqduxD4o_--AJ-bBcKGImyY2uv19r-YZSesshBchsezcnFN-xLvz_TsdN12LEJVmITanCMbsLb01WHl-YC2SKWmn4J57Pp98_zLNVQyKzMxSbTVjlSVGOwEZYrrnOsjK8bw7HGwlTYODQaVaW9KipNs1MqG3jgKEpVWhrxCnZWVyt8DUyW6AnAFLXXtfS5qp00jTNIKU7tC4cj-DQos7WJYDzUubhoI9BQqg2qb5PqR_B-K_27J9b4h9wk2GUrE-iwYwM5SZucpH3ISUZwmKz6QF8Hg8nbNJW7lvApobamlsWb_zGUt_A0dNmv4hzAzmZ9je8or9mYMTyuZ1_H8GQyPTk9G0eHpuvZfHkHu3L1IQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHRAuIhQI-tBIIRU38yOOAUEu7bGm34tBKlTgEP8aAVHbLZquq_Ch-IzNOskVCwKm3yJ44ysx4PDO2v2FsnVDNVACZQIGxqhLCJVTSNimksMF5n-tYzmd8mI-O1fsTfbLEfvZ3YehYZW8To6H2U0c58k0ME9B5rkqVvTn7nlDVKNpd7UtotGqxD5cXGLI1r_d2UL4bQgx3j96Okq6qQOJUKueJcdoLAZWFSjqhhUmhsKGsrIASMltA5cEa0IUJOisM6qvSjpDR0G4XRlmJ495gN5XElZxupg_fXYH85hGjEyOqPBE4E_qD9lpTjiHbxFBBKrpU-NsSGCsFoPP9hULwi69_LAlxnRveY3c7B5VvtRq1wpZgssrujBfors0qW-kMQsNfdKjVL--zj4v0BEdSvuXc-cy4S45OMY_IJz-oa4QcnPOddleo4R9mtE9EusG3scFzfKC3dycNfLOnwMexwPUDdnwtPH7IlifTCTxiXOUQMGzKymBKFVJdemUrbwEdqzJkHgbsVc_M2nWw5lRd47SO4Y3WNbG-7lg_YBsL6rMWzuMvdNsklwUNgXDHhunsc93N6TotfGrSECqwTplcWSXBSZsFi_8uIRuw9U6q__nWWi_yujMgTX2l7o__3f2c3RodjQ_qg73D_SfsNg3cZojW2PJ8dg5P0Wea22dRUTn7dN0z4xe01iWX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+Accuracy+for+Analyzing+Heart+Diseases+Prediction+Based+on+the+Ensemble+Method&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Xiao-Yan+Gao&rft.au=Abdelmegeid+Amin+Ali&rft.au=Hassan+Shaban+Hassan&rft.au=Eman+M.+Anwar&rft.date=2021&rft.pub=Wiley&rft.issn=1076-2787&rft.eissn=1099-0526&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F6663455&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_07d0a0ff9ebc4a64b43ec3b1fb22e3e1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon