Improving the Accuracy for Analyzing Heart Diseases Prediction Based on the Ensemble Method
Heart disease is the deadliest disease and one of leading causes of death worldwide. Machine learning is playing an essential role in the medical side. In this paper, ensemble learning methods are used to enhance the performance of predicting heart disease. Two features of extraction methods: linear...
Saved in:
Published in | Complexity (New York, N.Y.) Vol. 2021; no. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Hindawi
2021
John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Heart disease is the deadliest disease and one of leading causes of death worldwide. Machine learning is playing an essential role in the medical side. In this paper, ensemble learning methods are used to enhance the performance of predicting heart disease. Two features of extraction methods: linear discriminant analysis (LDA) and principal component analysis (PCA), are used to select essential features from the dataset. The comparison between machine learning algorithms and ensemble learning methods is applied to selected features. The different methods are used to evaluate models: accuracy, recall, precision, F-measure, and ROC.The results show the bagging ensemble learning method with decision tree has achieved the best performance. |
---|---|
AbstractList | Heart disease is the deadliest disease and one of leading causes of death worldwide. Machine learning is playing an essential role in the medical side. In this paper, ensemble learning methods are used to enhance the performance of predicting heart disease. Two features of extraction methods: linear discriminant analysis (LDA) and principal component analysis (PCA), are used to select essential features from the dataset. The comparison between machine learning algorithms and ensemble learning methods is applied to selected features. The different methods are used to evaluate models: accuracy, recall, precision, F-measure, and ROC.The results show the bagging ensemble learning method with decision tree has achieved the best performance. |
Author | Amin Ali, Abdelmegeid Anwar, Eman M. Gao, Xiao-Yan Shaban Hassan, Hassan |
Author_xml | – sequence: 1 givenname: Xiao-Yan surname: Gao fullname: Gao, Xiao-Yan organization: School of Mathematics and StatisticsYulin UniversityYulin 719000Chinayulinu.edu.cn – sequence: 2 givenname: Abdelmegeid surname: Amin Ali fullname: Amin Ali, Abdelmegeid organization: Faculty of Computers and InformationDepartment of Computer ScienceMinia UniversityMinyaEgyptminia.edu.eg – sequence: 3 givenname: Hassan surname: Shaban Hassan fullname: Shaban Hassan, Hassan organization: Faculty of Computers and InformationDepartment of Computer ScienceMinia UniversityMinyaEgyptminia.edu.eg – sequence: 4 givenname: Eman M. orcidid: 0000-0002-8743-1641 surname: Anwar fullname: Anwar, Eman M. organization: Faculty of Computers and InformationDepartment of Information SystemMinia UniversityMinyaEgyptminia.edu.eg |
BookMark | eNp9UcFOGzEQtaogQYAbH2Cpx3aJ7bXX8TGloUQCwaE9cbDG3lniaLOm9qYo_fruEtRDpXKa0cx7b0bvTcmkix0ScsHZJedKzQQTfFZVVSmV-kBOODOmYEpUk7HXVSH0XB-Tac4bxpipSn1CHlfb5xR_he6J9mukC-93CfyeNjHRRQft_ve4ukFIPf0aMkLGTB8S1sH3IXb0yzCo6dCM7GWXcetapHfYr2N9Ro4aaDOev9VT8uN6-f3qpri9_7a6WtwWXrKyL8CrWgg0Dk3phRLAULtmbpzAOXKn0dToAJWGRnEN2kipPOPcGMM0SFeektVBt46wsc8pbCHtbYRgXwcxPdnh_eBbtEzXDFjTGHReQiWdLNGXjjdu-KBEPmh9PGgNrvzcYe7tJu7SYES2QhqupZnLEfX5gPIp5pyw-XuVMztGYcco7FsUA1z8A_ehh9G_PkFo_0f6dCCtQ1fDS3j_xB-ISJpj |
CitedBy_id | crossref_primary_10_4108_eetpht_10_5411 crossref_primary_10_1007_s11042_023_15887_9 crossref_primary_10_1155_2021_1616725 crossref_primary_10_1155_2022_6987569 crossref_primary_10_4018_IJHISI_334021 crossref_primary_10_1080_10255842_2024_2319706 crossref_primary_10_21015_vtse_v10i3_1106 crossref_primary_10_1109_ACCESS_2021_3098688 crossref_primary_10_3390_diagnostics12030722 crossref_primary_10_1109_ACCESS_2022_3207287 crossref_primary_10_3390_jimaging10120327 crossref_primary_10_60084_ijds_v1i2_131 crossref_primary_10_1007_s11042_024_19737_0 crossref_primary_10_1186_s12872_025_04627_6 crossref_primary_10_1155_2022_7268571 crossref_primary_10_1016_j_procs_2023_10_544 crossref_primary_10_3390_computers13060126 crossref_primary_10_48175_IJARSCT_5675 crossref_primary_10_1007_s11042_024_19680_0 crossref_primary_10_1007_s11831_024_10075_w crossref_primary_10_1155_2021_6260022 crossref_primary_10_3389_fbinf_2024_1457619 crossref_primary_10_1080_10255842_2023_2218520 crossref_primary_10_3390_diagnostics14121278 crossref_primary_10_1088_2631_8695_ad5d51 crossref_primary_10_1016_j_health_2023_100173 crossref_primary_10_1088_1742_6596_2286_1_012017 crossref_primary_10_1155_acis_1989813 crossref_primary_10_3390_math11133026 crossref_primary_10_3390_info15070394 crossref_primary_10_1016_j_bspc_2024_107138 crossref_primary_10_1111_exsy_13300 crossref_primary_10_1016_j_knosys_2025_113168 crossref_primary_10_1155_2021_6718029 crossref_primary_10_1016_j_imu_2021_100584 crossref_primary_10_32604_iasc_2023_032262 crossref_primary_10_1007_s00500_022_07200_x crossref_primary_10_1057_s41270_024_00364_5 crossref_primary_10_3390_app12157449 crossref_primary_10_37391_ijeer_110203 crossref_primary_10_33317_ssurj_649 crossref_primary_10_1038_s41598_021_04649_y crossref_primary_10_7717_peerj_cs_2276 crossref_primary_10_3390_a17050178 crossref_primary_10_1109_ACCESS_2024_3389707 crossref_primary_10_1155_2021_5581806 crossref_primary_10_1088_1742_6596_2161_1_012010 |
Cites_doi | 10.1109/ICTCS.2019.8923053 10.1109/BigData47090.2019.9005488 10.3233/JIFS-179566 10.1155/2018/3860146 10.1007/978-981-15-5341-7_78 10.1007/978-981-13-0059-2_8 10.3390/e21080763 10.1109/ICEENG45378.2020.9171739 10.1016/j.eswa.2012.08.028 10.31838/ijpr/2020.12.04.013 10.1109/CSIBIG.2014.7056973 10.5539/cis.v6n3p48 10.5120/2368-3115 10.1007/978-981-15-6318-8_19 10.1111/jcpe.13189 10.1007/s42978-019-0001-z 10.1109/ICIMIA48430.2020.9074954 10.4236/jsea.2014.712093 10.1016/j.knosys.2016.09.032 10.1016/j.imu.2020.100330 10.1016/j.acvd.2019.10.008 10.1007/978-981-15-1097-7_76 10.1177/1460458219899210 10.1109/ISCC.2017.8024530 10.14419/ijet.v7i4.28646 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Xiao-Yan Gao et al. Copyright © 2021 Xiao-Yan Gao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2021 Xiao-Yan Gao et al. – notice: Copyright © 2021 Xiao-Yan Gao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | RHU RHW RHX AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1155/2021/6663455 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep CrossRef |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1099-0526 |
Editor | Khalil, Ahmed Mostafa |
Editor_xml | – sequence: 1 givenname: Ahmed Mostafa surname: Khalil fullname: Khalil, Ahmed Mostafa |
ExternalDocumentID | oai_doaj_org_article_07d0a0ff9ebc4a64b43ec3b1fb22e3e1 10_1155_2021_6663455 |
GrantInformation_xml | – fundername: Yulin University-Industry Collaboration Project grantid: 2019-75-3 |
GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8G5 8UM 930 A03 AAESR AAFWJ AAJEY AAONW ABCQN ABEML ABIJN ABPVW ABUWG ACSCC ADBBV ADIZJ AENEX AFBPY AFKRA AFPKN AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR ARAPS ATUGU AZBYB AZQEC AZVAB BAFTC BCNDV BENPR BGLVJ BHBCM BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 D-E D-F DPXWK DR2 DU5 DWQXO EBD EBS F00 F01 F04 F5P G-S G.N GNP GNUQQ GODZA GROUPED_DOAJ GUQSH H.T H.X HBH HCIFZ HHY HZ~ IAO ITC IX1 J0M JPC K6V K7- KQQ LAW LC2 LC3 LP6 LP7 M2O MK4 N04 N05 N9A NF~ NNB O66 O9- OIG OK1 P2P P2W P2X P4D P62 PQQKQ PROAC Q.N Q11 QB0 QRW R.K RHU RHW RHX RWI RX1 RYL SUPJJ TUS V2E W8V W99 WBKPD WIH WQJ WRC XBAML XG1 XPP XSW XV2 ~IA ~WT .Y3 24P 31~ 3R3 5VS AAEVG AAHHS AANHP AAYXX ACBWZ ACCFJ ACCMX ACRPL ACXQS ACYXJ ADNMO ADZOD AEEZP AEIMD AEQDE AFZJQ AGQPQ AIWBW AJBDE AMVHM ASPBG AVWKF AZFZN BDRZF BFHJK CITATION DCZOG EJD FEDTE H13 HF~ HVGLF ICD LH4 LW6 PHGZM PHGZT ROL WYUIH 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c403t-ac5d22e9be93c252a0e7bf89b2e8e1b7e9debae57af517a79445c01199907a4b3 |
IEDL.DBID | DOA |
ISSN | 1076-2787 |
IngestDate | Wed Aug 27 01:32:37 EDT 2025 Fri Jul 25 20:56:08 EDT 2025 Tue Jul 01 02:02:04 EDT 2025 Thu Apr 24 23:01:44 EDT 2025 Sun Jun 02 19:16:35 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-ac5d22e9be93c252a0e7bf89b2e8e1b7e9debae57af517a79445c01199907a4b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8743-1641 |
OpenAccessLink | https://doaj.org/article/07d0a0ff9ebc4a64b43ec3b1fb22e3e1 |
PQID | 2491749841 |
PQPubID | 2029978 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_07d0a0ff9ebc4a64b43ec3b1fb22e3e1 proquest_journals_2491749841 crossref_primary_10_1155_2021_6663455 crossref_citationtrail_10_1155_2021_6663455 hindawi_primary_10_1155_2021_6663455 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Complexity (New York, N.Y.) |
PublicationYear | 2021 |
Publisher | Hindawi John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
References | e_1_2_9_10_2 e_1_2_9_33_2 e_1_2_9_34_2 e_1_2_9_31_2 e_1_2_9_11_2 e_1_2_9_32_2 Chen A. H. (e_1_2_9_22_2) 2011; 557 Zhang C. (e_1_2_9_35_2) 2012 e_1_2_9_13_2 e_1_2_9_38_2 Miao K. H. (e_1_2_9_37_2) 2016; 7 Pillai N. S. R. (e_1_2_9_14_2) 2019; 5 e_1_2_9_15_2 e_1_2_9_36_2 e_1_2_9_18_2 e_1_2_9_17_2 Raza K. (e_1_2_9_16_2) 2019 Hasan T. T. (e_1_2_9_21_2) 2017; 77 e_1_2_9_20_2 e_1_2_9_23_2 e_1_2_9_7_2 e_1_2_9_6_2 Reddy N. S. C. (e_1_2_9_12_2) 2019; 9 e_1_2_9_5_2 e_1_2_9_4_2 e_1_2_9_3_2 e_1_2_9_2_2 e_1_2_9_1_2 e_1_2_9_9_2 e_1_2_9_8_2 e_1_2_9_25_2 e_1_2_9_24_2 e_1_2_9_27_2 e_1_2_9_26_2 e_1_2_9_29_2 Yaqoob M. (e_1_2_9_30_2) 2020; 1 Bhat R. (e_1_2_9_19_2) 2019; 9 e_1_2_9_28_2 |
References_xml | – ident: e_1_2_9_13_2 doi: 10.1109/ICTCS.2019.8923053 – ident: e_1_2_9_9_2 doi: 10.1109/BigData47090.2019.9005488 – ident: e_1_2_9_2_2 – ident: e_1_2_9_6_2 doi: 10.3233/JIFS-179566 – volume: 9 year: 2019 ident: e_1_2_9_12_2 article-title: Classification and feature selection approaches by machine learningtechniques: heart disease prediction publication-title: International Journal of Innovative Computing – ident: e_1_2_9_25_2 doi: 10.1155/2018/3860146 – volume: 5 year: 2019 ident: e_1_2_9_14_2 article-title: Prediction of heart disease using rnn algorithm publication-title: International Research Journal of Engineering and Technology – ident: e_1_2_9_24_2 doi: 10.1007/978-981-15-5341-7_78 – ident: e_1_2_9_15_2 doi: 10.1007/978-981-13-0059-2_8 – ident: e_1_2_9_7_2 doi: 10.3390/e21080763 – ident: e_1_2_9_26_2 – ident: e_1_2_9_10_2 doi: 10.1109/ICEENG45378.2020.9171739 – ident: e_1_2_9_3_2 doi: 10.1016/j.eswa.2012.08.028 – ident: e_1_2_9_32_2 doi: 10.31838/ijpr/2020.12.04.013 – ident: e_1_2_9_23_2 doi: 10.1109/CSIBIG.2014.7056973 – ident: e_1_2_9_34_2 – ident: e_1_2_9_36_2 doi: 10.5539/cis.v6n3p48 – ident: e_1_2_9_5_2 doi: 10.5120/2368-3115 – ident: e_1_2_9_29_2 doi: 10.1007/978-981-15-6318-8_19 – ident: e_1_2_9_1_2 doi: 10.1111/jcpe.13189 – volume: 77 start-page: 2277 year: 2017 ident: e_1_2_9_21_2 article-title: Heart disease diagnosis system based on multi-layer perceptron neural networkand support vector machine publication-title: International Journal of Current Engineering and Technology – ident: e_1_2_9_4_2 doi: 10.1007/s42978-019-0001-z – ident: e_1_2_9_17_2 – year: 2012 ident: e_1_2_9_35_2 article-title: Ensemble Machine Learning: publication-title: Methods and Applications – ident: e_1_2_9_33_2 doi: 10.1109/ICIMIA48430.2020.9074954 – volume: 7 start-page: 30 year: 2016 ident: e_1_2_9_37_2 article-title: Diagnosing coronary heart disease using ensemble machine learning publication-title: International Journal of Advanced Computer Science and Applications – ident: e_1_2_9_20_2 doi: 10.4236/jsea.2014.712093 – ident: e_1_2_9_31_2 doi: 10.1016/j.knosys.2016.09.032 – ident: e_1_2_9_28_2 doi: 10.1016/j.imu.2020.100330 – volume: 557 year: 2011 ident: e_1_2_9_22_2 article-title: Hdps: heart disease prediction system publication-title: In 2011 computing in Cardiology – ident: e_1_2_9_11_2 doi: 10.1016/j.acvd.2019.10.008 – ident: e_1_2_9_18_2 doi: 10.1007/978-981-15-1097-7_76 – ident: e_1_2_9_27_2 doi: 10.1177/1460458219899210 – ident: e_1_2_9_38_2 doi: 10.1109/ISCC.2017.8024530 – volume: 1 year: 2020 ident: e_1_2_9_30_2 article-title: Comparing predictive performance of k-nearest neighbors and support vector machinefor predicting ischemic heart disease publication-title: Journal of Advanced Scientific Research – ident: e_1_2_9_8_2 doi: 10.14419/ijet.v7i4.28646 – start-page: 179 year: 2019 ident: e_1_2_9_16_2 article-title: Improving the prediction accuracy of heart disease with ensemble learning and majority voting rule publication-title: InU-Healthcare Monitoring Systems – volume: 9 year: 2019 ident: e_1_2_9_19_2 article-title: Prediction of test for heart disease diagnosis using artificial neural network publication-title: Indian Journal of Applied Research |
SSID | ssj0009637 |
Score | 2.5229442 |
Snippet | Heart disease is the deadliest disease and one of leading causes of death worldwide. Machine learning is playing an essential role in the medical side. In this... |
SourceID | doaj proquest crossref hindawi |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Accuracy Age Algorithms Angina pectoris Back propagation Blood pressure Cardiovascular disease Data collection Data mining Datasets Decision trees Discriminant analysis Feature extraction Feature selection Heart diseases Heart rate Literature reviews Machine learning Model accuracy Neural networks Pain Performance prediction Principal components analysis Support vector machines |
SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA7qSQ-iq-L6IgcFRYptHn0cfawswooHhQUPJY8JCrrKdkX01zvJZldURG9tOmnpPDrzJeUbQnY9q5lwwBMoEKsKxkziW9omBWfaGWtzGdr59C7z7o246Mt-JElqfm7hY7bz8Dw7wiqbCylnySw6mAfl3f4nt24eqDERyOQJQwec_N_-be6XzBMI-rHmvfPI9_X-x5c4pJfzJbIY60J6PDbkMpmBQYss9Kakqk2LLMc4bOh-JIs-WCG301UBiqL02JiXoTJvFGtRGghH3v2lLvrziJ6NN2MaejX02zPeJPQEByzFAz-7M2jgUT8A7YW-0qvk5rxzfdpNYsOExIiUjxJlpGUMKg0VN0wylUKhXVlpBiVkuoDKglYgC-VkVigMRSGNJ33DlFQoofkamRs8DWCdUJGDQ7SSlU6VwqWytEJXVgPWM6XLLLTJ4USZtYls4r6pxUMdUIWUtVd9HVXfJntT6ecxi8YvcifeLlMZz30dBtAf6hhKdVrYVKXOVaCNULnQgoPhOnMa351D1ia70ap_PGtrYvI6xm1TIxhFiFaVItv43102ybw_HS_KbJG50fAFtrFMGemd4KQfGRndZQ priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9RAEF_0-qIP0lbF0yr7UEGR0GQ_ks2T9PTKIVwpYqHgQ9iP2SrUu3q5Iu1f35m9vasg6lvYnSRk52PnY_MbxvYJ1UxFkAU0GKsqIXxBLW2LRgoXfQi1Tu18psf15FR9OtNnOeHW52OVa5uYDHWYe8qRH2CYgM5za1T1_vJnQV2jqLqaW2jcZ1togo0ZsK3R-Pjk8x3sbp1QMzHGqQuBsrk--q41Rf3VATrvUtFvfr9tSgm7H93hbxQU__r-h5FOO8_RNnuUXUZ-uOLxDrsHs132cLrBW-132U5W0Z6_yTjSbx-zr5uEAUdSfuj91cL6a45uKk9YJDc0NUFRX_KPqzpNz08WVLkhbvERDgSOF3T3eNbDD3cBfJpaTj9hp0fjLx8mRe6lUHhVymVhvQ5CQOuglV5oYUtoXDStE2Cgcg20AZwF3dioq8ailirtCQ8Od6vGKiefssFsPoNnjKsaIgYylYnWqFhqE5RrgwN0dUysAgzZu_Vidj4DjVO_i4suBRxad7T0XV76IXu9ob5cAWz8hW5EfNnQECx2GpgvzrusZV3ZhNKWMbbgvLK1ckqCl66KDr9dQjVk-5mr_3nX3prlXVbpvrsTwOf_nn7BHtDDVnmaPTZYLq7gJXouS_cqi-ctDZPpGA priority: 102 providerName: ProQuest |
Title | Improving the Accuracy for Analyzing Heart Diseases Prediction Based on the Ensemble Method |
URI | https://dx.doi.org/10.1155/2021/6663455 https://www.proquest.com/docview/2491749841 https://doaj.org/article/07d0a0ff9ebc4a64b43ec3b1fb22e3e1 |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-0vuhDsVXxtB77UEGR0GQ_8vHY0zsP4UopFg58CPsxi0J7lcuVYv_6zm42R0GkL76EsJmwy8xsZn67m98AHAZWM-lRZFgRVpWc2yyUtM0qwY23zpUqlvNZnJTzc_ltqZb3Sn2FM2E9PXCvuKO8crnOvW_QWKlLaaRAK0zhDecoMAIfinkDmBrodsvIlknYpsw4-eRw5F2pgPaLI0rahQy_990LRpGzn9LgnwEM3_z66-McI87sOeymVJEd90Pcg0e42odniy3ParcPe2lqduxD4o_--AJ-bBcKGImyY2uv19r-YZSesshBchsezcnFN-xLvz_TsdN12LEJVmITanCMbsLb01WHl-YC2SKWmn4J57Pp98_zLNVQyKzMxSbTVjlSVGOwEZYrrnOsjK8bw7HGwlTYODQaVaW9KipNs1MqG3jgKEpVWhrxCnZWVyt8DUyW6AnAFLXXtfS5qp00jTNIKU7tC4cj-DQos7WJYDzUubhoI9BQqg2qb5PqR_B-K_27J9b4h9wk2GUrE-iwYwM5SZucpH3ISUZwmKz6QF8Hg8nbNJW7lvApobamlsWb_zGUt_A0dNmv4hzAzmZ9je8or9mYMTyuZ1_H8GQyPTk9G0eHpuvZfHkHu3L1IQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHRAuIhQI-tBIIRU38yOOAUEu7bGm34tBKlTgEP8aAVHbLZquq_Ch-IzNOskVCwKm3yJ44ysx4PDO2v2FsnVDNVACZQIGxqhLCJVTSNimksMF5n-tYzmd8mI-O1fsTfbLEfvZ3YehYZW8To6H2U0c58k0ME9B5rkqVvTn7nlDVKNpd7UtotGqxD5cXGLI1r_d2UL4bQgx3j96Okq6qQOJUKueJcdoLAZWFSjqhhUmhsKGsrIASMltA5cEa0IUJOisM6qvSjpDR0G4XRlmJ495gN5XElZxupg_fXYH85hGjEyOqPBE4E_qD9lpTjiHbxFBBKrpU-NsSGCsFoPP9hULwi69_LAlxnRveY3c7B5VvtRq1wpZgssrujBfors0qW-kMQsNfdKjVL--zj4v0BEdSvuXc-cy4S45OMY_IJz-oa4QcnPOddleo4R9mtE9EusG3scFzfKC3dycNfLOnwMexwPUDdnwtPH7IlifTCTxiXOUQMGzKymBKFVJdemUrbwEdqzJkHgbsVc_M2nWw5lRd47SO4Y3WNbG-7lg_YBsL6rMWzuMvdNsklwUNgXDHhunsc93N6TotfGrSECqwTplcWSXBSZsFi_8uIRuw9U6q__nWWi_yujMgTX2l7o__3f2c3RodjQ_qg73D_SfsNg3cZojW2PJ8dg5P0Wea22dRUTn7dN0z4xe01iWX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+Accuracy+for+Analyzing+Heart+Diseases+Prediction+Based+on+the+Ensemble+Method&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Xiao-Yan+Gao&rft.au=Abdelmegeid+Amin+Ali&rft.au=Hassan+Shaban+Hassan&rft.au=Eman+M.+Anwar&rft.date=2021&rft.pub=Wiley&rft.issn=1076-2787&rft.eissn=1099-0526&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F6663455&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_07d0a0ff9ebc4a64b43ec3b1fb22e3e1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon |