Liquid-Metal Enabled Droplet Circuits

Conventional electrical circuits are generally rigid in their components and working styles, which are not flexible and stretchable. As an alternative, liquid-metal-based soft electronics offer important opportunities for innovation in modern bioelectronics and electrical engineering. However, their...

Full description

Saved in:
Bibliographic Details
Published inMicromachines (Basel) Vol. 9; no. 5; p. 218
Main Authors Ren, Yi, Liu, Jing
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 05.05.2018
MDPI
Subjects
Online AccessGet full text
ISSN2072-666X
2072-666X
DOI10.3390/mi9050218

Cover

Loading…
Abstract Conventional electrical circuits are generally rigid in their components and working styles, which are not flexible and stretchable. As an alternative, liquid-metal-based soft electronics offer important opportunities for innovation in modern bioelectronics and electrical engineering. However, their operation in wet environments such as aqueous solution, biological tissue or allied subjects still encounters many technical challenges. Here, we propose a new conceptual electrical circuit, termed as droplet circuit, to fulfill the special needs described above. Such unconventional circuits are immersed in a solution and composed of liquid metal droplets, conductive ions or wires, such as carbon nanotubes. With specifically-designed topological or directional structures/patterns, the liquid-metal droplets composing the circuit can be discrete and disconnected from each other, while achieving the function of electron transport through conductive routes or the quantum tunneling effect. The conductive wires serve as electron transfer stations when the distance between two separate liquid-metal droplets is far beyond that which quantum tunneling effects can support. The unique advantage of the current droplet circuit lies in the fact that it allows parallel electron transport, high flexibility, self-healing, regulation and multi-point connectivity without needing to worry about the circuit break. This would extend the category of classical electrical circuits into newly emerging areas like realizing room temperature quantum computing, making brain-like intelligence or nerve–machine interface electronics, etc. The mechanisms and potential scientific issues of the droplet circuits are interpreted and future prospects in this direction are outlined.
AbstractList Conventional electrical circuits are generally rigid in their components and working styles, which are not flexible and stretchable. As an alternative, liquid-metal-based soft electronics offer important opportunities for innovation in modern bioelectronics and electrical engineering. However, their operation in wet environments such as aqueous solution, biological tissue or allied subjects still encounters many technical challenges. Here, we propose a new conceptual electrical circuit, termed as droplet circuit, to fulfill the special needs described above. Such unconventional circuits are immersed in a solution and composed of liquid metal droplets, conductive ions or wires, such as carbon nanotubes. With specifically-designed topological or directional structures/patterns, the liquid-metal droplets composing the circuit can be discrete and disconnected from each other, while achieving the function of electron transport through conductive routes or the quantum tunneling effect. The conductive wires serve as electron transfer stations when the distance between two separate liquid-metal droplets is far beyond that which quantum tunneling effects can support. The unique advantage of the current droplet circuit lies in the fact that it allows parallel electron transport, high flexibility, self-healing, regulation and multi-point connectivity without needing to worry about the circuit break. This would extend the category of classical electrical circuits into newly emerging areas like realizing room temperature quantum computing, making brain-like intelligence or nerve⁻machine interface electronics, etc. The mechanisms and potential scientific issues of the droplet circuits are interpreted and future prospects in this direction are outlined.Conventional electrical circuits are generally rigid in their components and working styles, which are not flexible and stretchable. As an alternative, liquid-metal-based soft electronics offer important opportunities for innovation in modern bioelectronics and electrical engineering. However, their operation in wet environments such as aqueous solution, biological tissue or allied subjects still encounters many technical challenges. Here, we propose a new conceptual electrical circuit, termed as droplet circuit, to fulfill the special needs described above. Such unconventional circuits are immersed in a solution and composed of liquid metal droplets, conductive ions or wires, such as carbon nanotubes. With specifically-designed topological or directional structures/patterns, the liquid-metal droplets composing the circuit can be discrete and disconnected from each other, while achieving the function of electron transport through conductive routes or the quantum tunneling effect. The conductive wires serve as electron transfer stations when the distance between two separate liquid-metal droplets is far beyond that which quantum tunneling effects can support. The unique advantage of the current droplet circuit lies in the fact that it allows parallel electron transport, high flexibility, self-healing, regulation and multi-point connectivity without needing to worry about the circuit break. This would extend the category of classical electrical circuits into newly emerging areas like realizing room temperature quantum computing, making brain-like intelligence or nerve⁻machine interface electronics, etc. The mechanisms and potential scientific issues of the droplet circuits are interpreted and future prospects in this direction are outlined.
Conventional electrical circuits are generally rigid in their components and working styles, which are not flexible and stretchable. As an alternative, liquid-metal-based soft electronics offer important opportunities for innovation in modern bioelectronics and electrical engineering. However, their operation in wet environments such as aqueous solution, biological tissue or allied subjects still encounters many technical challenges. Here, we propose a new conceptual electrical circuit, termed as droplet circuit, to fulfill the special needs described above. Such unconventional circuits are immersed in a solution and composed of liquid metal droplets, conductive ions or wires, such as carbon nanotubes. With specifically-designed topological or directional structures/patterns, the liquid-metal droplets composing the circuit can be discrete and disconnected from each other, while achieving the function of electron transport through conductive routes or the quantum tunneling effect. The conductive wires serve as electron transfer stations when the distance between two separate liquid-metal droplets is far beyond that which quantum tunneling effects can support. The unique advantage of the current droplet circuit lies in the fact that it allows parallel electron transport, high flexibility, self-healing, regulation and multi-point connectivity without needing to worry about the circuit break. This would extend the category of classical electrical circuits into newly emerging areas like realizing room temperature quantum computing, making brain-like intelligence or nerve–machine interface electronics, etc. The mechanisms and potential scientific issues of the droplet circuits are interpreted and future prospects in this direction are outlined.
Conventional electrical circuits are generally rigid in their components and working styles, which are not flexible and stretchable. As an alternative, liquid-metal-based soft electronics offer important opportunities for innovation in modern bioelectronics and electrical engineering. However, their operation in wet environments such as aqueous solution, biological tissue or allied subjects still encounters many technical challenges. Here, we propose a new conceptual electrical circuit, termed as droplet circuit, to fulfill the special needs described above. Such unconventional circuits are immersed in a solution and composed of liquid metal droplets, conductive ions or wires, such as carbon nanotubes. With specifically-designed topological or directional structures/patterns, the liquid-metal droplets composing the circuit can be discrete and disconnected from each other, while achieving the function of electron transport through conductive routes or the quantum tunneling effect. The conductive wires serve as electron transfer stations when the distance between two separate liquid-metal droplets is far beyond that which quantum tunneling effects can support. The unique advantage of the current droplet circuit lies in the fact that it allows parallel electron transport, high flexibility, self-healing, regulation and multi-point connectivity without needing to worry about the circuit break. This would extend the category of classical electrical circuits into newly emerging areas like realizing room temperature quantum computing, making brain-like intelligence or nerve⁻machine interface electronics, etc. The mechanisms and potential scientific issues of the droplet circuits are interpreted and future prospects in this direction are outlined.
Author Ren, Yi
Liu, Jing
AuthorAffiliation 1 Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China; reny14@mails.tsinghua.edu.cn
3 School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
2 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
AuthorAffiliation_xml – name: 1 Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China; reny14@mails.tsinghua.edu.cn
– name: 3 School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
– name: 2 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Author_xml – sequence: 1
  givenname: Yi
  surname: Ren
  fullname: Ren, Yi
– sequence: 2
  givenname: Jing
  orcidid: 0000-0002-0844-5296
  surname: Liu
  fullname: Liu, Jing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30424151$$D View this record in MEDLINE/PubMed
BookMark eNplkUtLAzEUhYMottYu_ANSEEEXY_OYSWY2gtT6gIobBXchySSaMp20yYzgvzelD2rNIrmQ7x7OPfcEHNau1gCcIXhDSAGHM1vADGKUH4AuhgwnlNKPw526A_ohTGE8jBXxOgYdAlOcogx1weXELlpbJi-6EdVgXAtZ6XJw79280s1gZL1qbRNOwZERVdD99dsD7w_jt9FTMnl9fB7dTRKVQtIkQiKVsgxjUiKsacGMlLk0OZImFTLHkpWlMFmqsJaIwoxqZEyeUkmUgKggpAduV7rzVs50qXTdeFHxubcz4X-4E5b__antF_9035yinJEcRYGrtYB3i1aHhs9sULqqRK1dGzhGhKSEYUojerGHTl3r6zgex9Eai9GRIlLnu462VjYJRmC4ApR3IXhtuLKNaKxbGrQVR5Av18S3a4od13sdG9H_7C_zNJCE
CitedBy_id crossref_primary_10_35848_1347_4065_ab7e11
crossref_primary_10_1002_adfm_202308116
crossref_primary_10_1002_aisy_202000246
crossref_primary_10_1002_adfm_202302895
crossref_primary_10_1002_adma_202203391
crossref_primary_10_1002_admi_201900007
crossref_primary_10_3390_mi9110605
crossref_primary_10_1002_aelm_202001006
crossref_primary_10_1063_5_0140629
crossref_primary_10_3390_mi11020200
crossref_primary_10_1002_advs_202300694
crossref_primary_10_3390_bios10110170
Cites_doi 10.1016/j.biomaterials.2017.09.006
10.1186/s40169-016-0102-9
10.1002/chin.199922290
10.1088/1741-2552/aa9817
10.1002/adfm.201200837
10.1088/1361-6439/aa891c
10.1088/0268-1242/29/7/073001
10.1063/1.3069243
10.1002/advs.201700024
10.3390/mi8020039
10.1002/adma.201502200
10.1039/C7MH00065K
10.1166/jnn.2015.9775
10.1088/1741-2552/aa9c8c
10.1038/srep07116
10.1086/287052
10.1109/5.838115
10.3390/s150511823
10.3390/mi7120206
10.1016/j.cap.2013.06.014
10.1002/adma.201503875
10.1115/1.4031659
10.1063/1.3462069
10.1063/1.5013623
10.1039/C6TB00996D
10.1080/09506608.2016.1271090
10.1021/acs.nanolett.7b04050
10.1002/adfm.201706277
10.1016/0009-2614(74)85031-1
10.1002/advs.201600212
10.1002/adem.201300420
10.1016/j.biopsych.2015.03.017
10.1088/1741-2552/aa9ee7
10.1002/admt.201700173
10.1002/ange.201610890
10.1002/adma.201101257
10.1063/1.4994298
10.1038/srep03442
10.1007/s11708-015-0388-0
10.1002/adfm.201101967
10.3938/jkps.66.282
10.1016/j.eswa.2017.12.015
10.1088/2053-1591/2/4/046303
ContentType Journal Article
Copyright Copyright MDPI AG 2018
2018 by the authors. 2018
Copyright_xml – notice: Copyright MDPI AG 2018
– notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
NPM
7SP
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
L6V
L7M
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOI 10.3390/mi9050218
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2072-666X
ExternalDocumentID PMC6187381
30424151
10_3390_mi9050218
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 91748206
GroupedDBID 53G
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
KQ8
L6V
M7S
MM.
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RPM
TR2
TUS
NPM
7SP
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c403t-ab1c475223d12e697fbb8bf81bf4ab82b7ddaf54c2eb16056e1ff846b3ca01933
IEDL.DBID BENPR
ISSN 2072-666X
IngestDate Thu Aug 21 18:27:34 EDT 2025
Fri Jul 11 02:49:37 EDT 2025
Fri Jul 25 11:57:57 EDT 2025
Wed Feb 19 02:44:11 EST 2025
Tue Jul 01 00:54:22 EDT 2025
Thu Apr 24 23:10:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords liquid metal
quantum computing
electron transport
quantum tunneling effect
solution electronics
ionic conduction
droplet circuits
brain-like intelligence
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-ab1c475223d12e697fbb8bf81bf4ab82b7ddaf54c2eb16056e1ff846b3ca01933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0844-5296
OpenAccessLink https://www.proquest.com/docview/2056766639?pq-origsite=%requestingapplication%
PMID 30424151
PQID 2056766639
PQPubID 2032359
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6187381
proquest_miscellaneous_2133437266
proquest_journals_2056766639
pubmed_primary_30424151
crossref_citationtrail_10_3390_mi9050218
crossref_primary_10_3390_mi9050218
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-05
PublicationDateYYYYMMDD 2018-05-05
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-05
  day: 05
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Micromachines (Basel)
PublicationTitleAlternate Micromachines (Basel)
PublicationYear 2018
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Aviram (ref_2) 1974; 29
Delrosso (ref_5) 2017; 129
Ding (ref_41) 2016; 10
ref_11
Li (ref_21) 2016; 5
Yang (ref_26) 2018; 112
Chen (ref_29) 2018; 28
Koo (ref_18) 2011; 23
Daly (ref_9) 2018; 15
Menzel (ref_33) 1930; 16
Tang (ref_27) 2015; 28
Tan (ref_45) 2015; 471
Ma (ref_37) 2015; 2
Chrimes (ref_48) 2017; 17
Oehme (ref_36) 2010; 97
Wang (ref_8) 2015; 27
Zhang (ref_47) 2014; 4
Tang (ref_25) 2017; 4
Brandman (ref_13) 2018; 15
Guo (ref_22) 2017; 27
Sivan (ref_30) 2013; 23
Sun (ref_20) 2017; 146
Chen (ref_28) 2017; 4
Yi (ref_15) 2017; 62
Jin (ref_43) 2013; 3
ref_35
ref_34
Kim (ref_44) 2015; 66
ref_31
Yu (ref_39) 2013; 16
Son (ref_6) 2013; 13
Yu (ref_38) 2017; 2
Jung (ref_16) 2015; 15
Che (ref_42) 2014; 29
Kim (ref_3) 2015; 15
Sen (ref_32) 2014; 107
Yuan (ref_23) 2016; 3
Lees (ref_14) 2017; 15
Zhao (ref_24) 2017; 111
Zhang (ref_46) 2016; 4
So (ref_19) 2012; 22
ref_40
ref_1
Yi (ref_17) 2015; 9
Zhang (ref_12) 2018; 96
Ellenbogen (ref_7) 2000; 88
ref_49
Fox (ref_4) 1999; 30
Dejean (ref_10) 2015; 78
28918265 - Biomaterials. 2017 Nov;146:156-167
27840803 - Adv Sci (Weinh). 2016 Aug 17;3(10):1600212
26601792 - Adv Mater. 2016 Jan 27;28(4):604-9
25908496 - Biol Psychiatry. 2015 Sep 1;78(5):298-306
27339426 - Clin Transl Med. 2016 Dec;5(1):21
26353599 - J Nanosci Nanotechnol. 2015 Feb;15(2):921-38
29363625 - J Neural Eng. 2018 Apr;15(2):026007
25408295 - Sci Rep. 2014 Nov 19;4:7116
29442072 - J Neural Eng. 2018 Apr;15(2):026022
29099388 - J Neural Eng. 2018 Apr;15(2):021001
26414428 - Adv Mater. 2015 Nov 25;27(44):7109-16
29095626 - Nano Lett. 2017 Dec 13;17(12):7831-7838
28322486 - Angew Chem Int Ed Engl. 2017 Apr 10;56(16):4443-4446
28546916 - Adv Sci (Weinh). 2017 Apr 24;4(5):1700024
24309385 - Sci Rep. 2013 Dec 06;3:3442
21726000 - Adv Mater. 2011 Aug 16;23(31):3559-64
26007732 - Sensors (Basel). 2015 May 21;15(5):11823-35
References_xml – ident: ref_49
– volume: 146
  start-page: 156
  year: 2017
  ident: ref_20
  article-title: Amorphous liquid metal electrodes enabled conformable electrochemical therapy of tumors
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.09.006
– volume: 5
  start-page: 1
  year: 2016
  ident: ref_21
  article-title: Electrical stimulation towards melanoma therapy via liquid metal printed electronics on skin
  publication-title: Clin. Transl. Med.
  doi: 10.1186/s40169-016-0102-9
– volume: 30
  start-page: 201
  year: 1999
  ident: ref_4
  article-title: Fundamentals in the design of molecular electronic devices Long-range charge carrier transport and electronic coupling
  publication-title: Cheminform
  doi: 10.1002/chin.199922290
– volume: 15
  start-page: 021001
  year: 2017
  ident: ref_14
  article-title: A review of rapid serial visual presentation-based brain-computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa9817
– volume: 23
  start-page: 144
  year: 2013
  ident: ref_30
  article-title: Liquid metal marbles
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200837
– ident: ref_35
– volume: 27
  start-page: 104002
  year: 2017
  ident: ref_22
  article-title: Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion functions
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/1361-6439/aa891c
– volume: 29
  start-page: 073001
  year: 2014
  ident: ref_42
  article-title: Review of carbon nanotube nanoelectronics and macroelectronics
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/29/7/073001
– ident: ref_34
  doi: 10.1063/1.3069243
– volume: 4
  start-page: 1700024
  year: 2017
  ident: ref_25
  article-title: Liquid metal phagocytosis: Intermetallic wetting induced particle internalization
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700024
– ident: ref_40
  doi: 10.3390/mi8020039
– volume: 27
  start-page: 7109
  year: 2015
  ident: ref_8
  article-title: Flexible electronics: Fast fabrication of flexible functional circuits based on liquid metal dual-trans printing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502200
– volume: 4
  start-page: 591
  year: 2017
  ident: ref_28
  article-title: Liquid metal droplets with high elasticity, mobility and mechanical robustness
  publication-title: Mater. Horiz.
  doi: 10.1039/C7MH00065K
– ident: ref_31
– volume: 15
  start-page: 921
  year: 2015
  ident: ref_3
  article-title: Fabrication and characterization of molecular electronic devices
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2015.9775
– volume: 15
  start-page: 026022
  year: 2018
  ident: ref_9
  article-title: Cortical excitability correlates with the event-related desynchronization during brain-computer interface control
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa9c8c
– volume: 4
  start-page: 7116
  year: 2014
  ident: ref_47
  article-title: Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects
  publication-title: Sci. Rep.
  doi: 10.1038/srep07116
– volume: 16
  start-page: 303
  year: 1930
  ident: ref_33
  article-title: The physical principles of the quantum theory
  publication-title: Philos. Sci.
  doi: 10.1086/287052
– volume: 88
  start-page: 386
  year: 2000
  ident: ref_7
  article-title: Architectures for molecular electronic computers, i. logic structures and an adder designed from molecular electronic diodes
  publication-title: Proc. IEEE
  doi: 10.1109/5.838115
– volume: 15
  start-page: 11823
  year: 2015
  ident: ref_16
  article-title: Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel
  publication-title: Sensors
  doi: 10.3390/s150511823
– ident: ref_1
  doi: 10.3390/mi7120206
– volume: 13
  start-page: 1157
  year: 2013
  ident: ref_6
  article-title: Molecular scale electronic devices using single molecules and molecular monolayers
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2013.06.014
– volume: 28
  start-page: 604
  year: 2015
  ident: ref_27
  article-title: Liquid-metal microdroplets formed dynamically with electrical control of size and rate
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503875
– volume: 9
  start-page: 44507
  year: 2015
  ident: ref_17
  article-title: Liquid metal ink enabled rapid prototyping of electrochemical sensor for wireless glucose detection on the platform of mobile phone
  publication-title: ASME J. Med. Devices
  doi: 10.1115/1.4031659
– volume: 97
  start-page: 291
  year: 2010
  ident: ref_36
  article-title: Ge quantum dot tunneling diode with room temperature negative differential resistance
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3462069
– volume: 112
  start-page: 063505
  year: 2018
  ident: ref_26
  article-title: Millimeter-scale liquid metal droplet thermal switch
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5013623
– volume: 4
  start-page: 5349
  year: 2016
  ident: ref_46
  article-title: Self-propelled liquid metal motors steered by a magnetic or electrical field for drug delivery
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C6TB00996D
– volume: 62
  start-page: 1
  year: 2017
  ident: ref_15
  article-title: Liquid metal biomaterials: A newly emerging area to tackle modern biomedical challenges
  publication-title: Int. Mater. Rev.
  doi: 10.1080/09506608.2016.1271090
– volume: 17
  start-page: 7831
  year: 2017
  ident: ref_48
  article-title: A gallium-based magnetocaloric liquid metal ferrofluid
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b04050
– volume: 28
  start-page: 1706277
  year: 2018
  ident: ref_29
  article-title: Robust fabrication of nonstick, noncorrosive, conductive graphene-coated liquid metal droplets for droplet-based, floating electrodes
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706277
– volume: 29
  start-page: 277
  year: 1974
  ident: ref_2
  article-title: Molecular rectifiers
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(74)85031-1
– ident: ref_11
– volume: 3
  start-page: 1600212
  year: 2016
  ident: ref_23
  article-title: Liquid metal machine triggered violin-like wire oscillator
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600212
– volume: 16
  start-page: 255
  year: 2013
  ident: ref_39
  article-title: Channelless fabrication for large-scale preparation of room temperature liquid metal droplets
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201300420
– volume: 78
  start-page: 298
  year: 2015
  ident: ref_10
  article-title: Neuronal circuits for fear expression and recovery: Recent advances and potential therapeutic strategies
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2015.03.017
– volume: 15
  start-page: 026007
  year: 2018
  ident: ref_13
  article-title: Rapid calibration of an intracortical brain-computer interface for people with tetraplegia
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa9ee7
– volume: 2
  start-page: 1700173
  year: 2017
  ident: ref_38
  article-title: Suspension 3D printing of liquid metal into self-healing hydrogel
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201700173
– volume: 129
  start-page: 4514
  year: 2017
  ident: ref_5
  article-title: A molecular circuit regenerator to implement iterative strand displacement operations
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201610890
– volume: 23
  start-page: 3559
  year: 2011
  ident: ref_18
  article-title: Towards all-soft matter circuits: Prototypes of quasi-liquid devices with memristor characteristics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201101257
– volume: 111
  start-page: 101603
  year: 2017
  ident: ref_24
  article-title: Surfing liquid metal droplet on the same metal bath via electrolyte interface
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4994298
– volume: 3
  start-page: 3442
  year: 2013
  ident: ref_43
  article-title: Injectable 3-D fabrication of medical electronics at the target biological tissues
  publication-title: Sci. Rep.
  doi: 10.1038/srep03442
– volume: 471
  start-page: 32
  year: 2015
  ident: ref_45
  article-title: Electrical method to control the running direction and speed of self-powered tiny liquid metal motors
  publication-title: Proc. R. Soc. Lond. A Math. Phys. Eng. Sci.
– volume: 10
  start-page: 29
  year: 2016
  ident: ref_41
  article-title: Water film coated composite liquid metal marble and its fluidic impact dynamics phenomenon
  publication-title: Front. Energy
  doi: 10.1007/s11708-015-0388-0
– volume: 22
  start-page: 625
  year: 2012
  ident: ref_19
  article-title: Ionic current rectification in soft-matter diodes with liquid-metal electrodes
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201101967
– volume: 107
  start-page: 203
  year: 2014
  ident: ref_32
  article-title: The uncertainty relations in quantum mechanics
  publication-title: Curr. Sci.
– volume: 66
  start-page: 282
  year: 2015
  ident: ref_44
  article-title: Magnetic-field-induced liquid metal droplet manipulation
  publication-title: J. Korean Phys. Soc.
  doi: 10.3938/jkps.66.282
– volume: 96
  start-page: 302
  year: 2018
  ident: ref_12
  article-title: Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.12.015
– volume: 2
  start-page: 046303
  year: 2015
  ident: ref_37
  article-title: Resonance-enhanced electroresistance-magnetoresistance effects in multiferroic tunnel junctions
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/2/4/046303
– reference: 27840803 - Adv Sci (Weinh). 2016 Aug 17;3(10):1600212
– reference: 29363625 - J Neural Eng. 2018 Apr;15(2):026007
– reference: 25408295 - Sci Rep. 2014 Nov 19;4:7116
– reference: 21726000 - Adv Mater. 2011 Aug 16;23(31):3559-64
– reference: 26007732 - Sensors (Basel). 2015 May 21;15(5):11823-35
– reference: 26353599 - J Nanosci Nanotechnol. 2015 Feb;15(2):921-38
– reference: 28918265 - Biomaterials. 2017 Nov;146:156-167
– reference: 27339426 - Clin Transl Med. 2016 Dec;5(1):21
– reference: 26414428 - Adv Mater. 2015 Nov 25;27(44):7109-16
– reference: 29442072 - J Neural Eng. 2018 Apr;15(2):026022
– reference: 24309385 - Sci Rep. 2013 Dec 06;3:3442
– reference: 29099388 - J Neural Eng. 2018 Apr;15(2):021001
– reference: 25908496 - Biol Psychiatry. 2015 Sep 1;78(5):298-306
– reference: 26601792 - Adv Mater. 2016 Jan 27;28(4):604-9
– reference: 28546916 - Adv Sci (Weinh). 2017 Apr 24;4(5):1700024
– reference: 29095626 - Nano Lett. 2017 Dec 13;17(12):7831-7838
– reference: 28322486 - Angew Chem Int Ed Engl. 2017 Apr 10;56(16):4443-4446
SSID ssj0000779007
Score 2.1621163
Snippet Conventional electrical circuits are generally rigid in their components and working styles, which are not flexible and stretchable. As an alternative,...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 218
SubjectTerms Brain
Carbon nanotubes
Circuits
Droplets
Electrical engineering
Electron transfer
Electron transport
Electronics
Innovations
Quantum computing
Quantum tunnelling
Transfer stations
Title Liquid-Metal Enabled Droplet Circuits
URI https://www.ncbi.nlm.nih.gov/pubmed/30424151
https://www.proquest.com/docview/2056766639
https://www.proquest.com/docview/2133437266
https://pubmed.ncbi.nlm.nih.gov/PMC6187381
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED7W5KV7KN3Wbe6y4I0W-iJmW5ZsP5W2SxZKE0ppoW9GP5lhc5rE_v93chw3WcfAbzqwOUmn7zudvwM4UTyQJs0kCTPGSKwkJyKLFYk4ognGmDVNamA645OH-PqRPbYJt1VbVrmJiU2g1nPlcuRI0hlPEGvT7PxpQVzXKHe72rbQ2IM-huAUyVf_cjS7veuyLIGT0wuStaQQRX7_7XeRBcwdbLsH0Qt0-XeR5NapMz6EgxYu-hfr-X0Dr0z5Fl5viQi-g9ObYlEXmkwN4mh_1PwLpf3vS1cZXvlXxVLVRbU6gofx6P5qQtrmB0TFAa2IkKGKE0RHVIeR4VlipUylRZRpYyHTSCZaC8tiFWG0RU7CTWgtgglJlUDYRul76JXz0nwE31hq8dE6Ejpm1IjA0ECwRCG1ULjHPTjbeCJXrTK4a1DxK0eG4JyWd07z4Gtn-rSWw_iX0WDjzrzdEav8ef48-NIN41p2FxSiNPMabZAwu3tEzj34sPZ-9xaXdkGwEXqQ7MxLZ-B0sndHyuJno5fNwzRBYHL8_8_6BPsIhtKmmJENoFcta_MZAUclh7CXjn8M27U1bGj7H__O2PI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9xADLYQPdAeqkIfpIWSVkXqZdQk80hyQKgClqXscgKJWzpPEYlmYTerqn-qv7GeZJOypeKGlNtYSuR47M8ez2eAT1pEyma5InHOOWFaCSJzpkkiEE1wzp1tSgPjMzG8YN8u-eUK_O7uwvi2ys4nNo7aTLSvkWOSzkWKWJvm-ze3xE-N8qer3QiN1ixO7a-fmLLN9k4O8f_uJsng6PxgSBZTBYhmEa2JVLFmKcIOauLEijx1SmXKIXxzTKosUakx0nGmE3RjCPaFjZ3DKK2oloiHfAEUXf4TRmnud1Q2OO5rOpEn74vSlsAI16MvP8o84j6MLoe9e1j235bMOzFu8AKeL8Bp-LW1pnVYsdUGPLtDWfgSdkfl7bw0ZGwRtYdHzc0rEx5OfR96HR6UUz0v69kruHgUpbyG1WpS2U0IraMOH2MSaRinVkaWRpKnGhMZjR4lgM-dJgq94CH34zCuC8xHvNKKXmkBfOxFb1ryjf8JbXXqLBb7b1b8tZYAPvTLuHP8cYis7GSOMpie-1NLIQJ402q_f4sv8iC0iQNIl_5LL-BZuZdXqvKqYecWcZYiDHr78GftwNrwfDwqRidnp-_gKcKwrGmj5FuwWk_ndhuhTq3eN_YVwvfHNug_B1ETwg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC7CBkQP4juTRB3FgJcmPY_unjmIaHaXxCRLEAO5jf3EAZ1NdmcR_5q_zup5mVXxFphbF8xQU131VXX1VwCvNKfKZrkiUc4YSbXiROapJjFHNMEYc7YpDZzO-OF5-uGCXWzAz_4ujG-r7H1i46jNXPsaOSbpjAvE2km-77q2iLPx9O3lFfETpPxJaz9OozWRY_vjO6ZvyzdHY_zXe3E8nXw6OCTdhAGiU5rURKpIpwIhSGKi2PJcOKUy5RDKuVSqLFbCGOlYqmN0aQj8uY2cw4itEi0RG_liKLr_TYFZER3B5vvJ7OzjUOGhnsqPipbOKElyuv-tzCnzQXU9CP6FbP9s0LwW8ab34G4HVcN3rW3dhw1bPYA71wgMH8LeSXm1Kg05tYjhw0lzD8uE44XvSq_Dg3KhV2W9fATnN6KWxzCq5pXdgtC6xOFjTCxNyhIrqU2oZEJjWqPRvwTwutdEoTtWcj8c42uB2YlXWjEoLYCXg-hlS8XxL6HdXp1FtxuXxW_bCeDFsIz7yB-OyMrOVyiDybo_w-Q8gCet9oe3-JIPAp0oALH2XwYBz9G9vlKVXxqubh5lAkHR9v8_6zncQmMuTo5mxztwGzFZ1vRUsl0Y1YuVfYq4p1bPOgML4fNN2_QvJZgZVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liquid-Metal+Enabled+Droplet+Circuits&rft.jtitle=Micromachines+%28Basel%29&rft.au=Ren%2C+Yi&rft.au=Liu%2C+Jing&rft.date=2018-05-05&rft.pub=MDPI+AG&rft.eissn=2072-666X&rft.volume=9&rft.issue=5&rft.spage=218&rft_id=info:doi/10.3390%2Fmi9050218&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-666X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-666X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-666X&client=summon