Liquid-Metal Enabled Droplet Circuits
Conventional electrical circuits are generally rigid in their components and working styles, which are not flexible and stretchable. As an alternative, liquid-metal-based soft electronics offer important opportunities for innovation in modern bioelectronics and electrical engineering. However, their...
Saved in:
Published in | Micromachines (Basel) Vol. 9; no. 5; p. 218 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
05.05.2018
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2072-666X 2072-666X |
DOI | 10.3390/mi9050218 |
Cover
Loading…
Abstract | Conventional electrical circuits are generally rigid in their components and working styles, which are not flexible and stretchable. As an alternative, liquid-metal-based soft electronics offer important opportunities for innovation in modern bioelectronics and electrical engineering. However, their operation in wet environments such as aqueous solution, biological tissue or allied subjects still encounters many technical challenges. Here, we propose a new conceptual electrical circuit, termed as droplet circuit, to fulfill the special needs described above. Such unconventional circuits are immersed in a solution and composed of liquid metal droplets, conductive ions or wires, such as carbon nanotubes. With specifically-designed topological or directional structures/patterns, the liquid-metal droplets composing the circuit can be discrete and disconnected from each other, while achieving the function of electron transport through conductive routes or the quantum tunneling effect. The conductive wires serve as electron transfer stations when the distance between two separate liquid-metal droplets is far beyond that which quantum tunneling effects can support. The unique advantage of the current droplet circuit lies in the fact that it allows parallel electron transport, high flexibility, self-healing, regulation and multi-point connectivity without needing to worry about the circuit break. This would extend the category of classical electrical circuits into newly emerging areas like realizing room temperature quantum computing, making brain-like intelligence or nerve–machine interface electronics, etc. The mechanisms and potential scientific issues of the droplet circuits are interpreted and future prospects in this direction are outlined. |
---|---|
AbstractList | Conventional electrical circuits are generally rigid in their components and working styles, which are not flexible and stretchable. As an alternative, liquid-metal-based soft electronics offer important opportunities for innovation in modern bioelectronics and electrical engineering. However, their operation in wet environments such as aqueous solution, biological tissue or allied subjects still encounters many technical challenges. Here, we propose a new conceptual electrical circuit, termed as droplet circuit, to fulfill the special needs described above. Such unconventional circuits are immersed in a solution and composed of liquid metal droplets, conductive ions or wires, such as carbon nanotubes. With specifically-designed topological or directional structures/patterns, the liquid-metal droplets composing the circuit can be discrete and disconnected from each other, while achieving the function of electron transport through conductive routes or the quantum tunneling effect. The conductive wires serve as electron transfer stations when the distance between two separate liquid-metal droplets is far beyond that which quantum tunneling effects can support. The unique advantage of the current droplet circuit lies in the fact that it allows parallel electron transport, high flexibility, self-healing, regulation and multi-point connectivity without needing to worry about the circuit break. This would extend the category of classical electrical circuits into newly emerging areas like realizing room temperature quantum computing, making brain-like intelligence or nerve⁻machine interface electronics, etc. The mechanisms and potential scientific issues of the droplet circuits are interpreted and future prospects in this direction are outlined.Conventional electrical circuits are generally rigid in their components and working styles, which are not flexible and stretchable. As an alternative, liquid-metal-based soft electronics offer important opportunities for innovation in modern bioelectronics and electrical engineering. However, their operation in wet environments such as aqueous solution, biological tissue or allied subjects still encounters many technical challenges. Here, we propose a new conceptual electrical circuit, termed as droplet circuit, to fulfill the special needs described above. Such unconventional circuits are immersed in a solution and composed of liquid metal droplets, conductive ions or wires, such as carbon nanotubes. With specifically-designed topological or directional structures/patterns, the liquid-metal droplets composing the circuit can be discrete and disconnected from each other, while achieving the function of electron transport through conductive routes or the quantum tunneling effect. The conductive wires serve as electron transfer stations when the distance between two separate liquid-metal droplets is far beyond that which quantum tunneling effects can support. The unique advantage of the current droplet circuit lies in the fact that it allows parallel electron transport, high flexibility, self-healing, regulation and multi-point connectivity without needing to worry about the circuit break. This would extend the category of classical electrical circuits into newly emerging areas like realizing room temperature quantum computing, making brain-like intelligence or nerve⁻machine interface electronics, etc. The mechanisms and potential scientific issues of the droplet circuits are interpreted and future prospects in this direction are outlined. Conventional electrical circuits are generally rigid in their components and working styles, which are not flexible and stretchable. As an alternative, liquid-metal-based soft electronics offer important opportunities for innovation in modern bioelectronics and electrical engineering. However, their operation in wet environments such as aqueous solution, biological tissue or allied subjects still encounters many technical challenges. Here, we propose a new conceptual electrical circuit, termed as droplet circuit, to fulfill the special needs described above. Such unconventional circuits are immersed in a solution and composed of liquid metal droplets, conductive ions or wires, such as carbon nanotubes. With specifically-designed topological or directional structures/patterns, the liquid-metal droplets composing the circuit can be discrete and disconnected from each other, while achieving the function of electron transport through conductive routes or the quantum tunneling effect. The conductive wires serve as electron transfer stations when the distance between two separate liquid-metal droplets is far beyond that which quantum tunneling effects can support. The unique advantage of the current droplet circuit lies in the fact that it allows parallel electron transport, high flexibility, self-healing, regulation and multi-point connectivity without needing to worry about the circuit break. This would extend the category of classical electrical circuits into newly emerging areas like realizing room temperature quantum computing, making brain-like intelligence or nerve–machine interface electronics, etc. The mechanisms and potential scientific issues of the droplet circuits are interpreted and future prospects in this direction are outlined. Conventional electrical circuits are generally rigid in their components and working styles, which are not flexible and stretchable. As an alternative, liquid-metal-based soft electronics offer important opportunities for innovation in modern bioelectronics and electrical engineering. However, their operation in wet environments such as aqueous solution, biological tissue or allied subjects still encounters many technical challenges. Here, we propose a new conceptual electrical circuit, termed as droplet circuit, to fulfill the special needs described above. Such unconventional circuits are immersed in a solution and composed of liquid metal droplets, conductive ions or wires, such as carbon nanotubes. With specifically-designed topological or directional structures/patterns, the liquid-metal droplets composing the circuit can be discrete and disconnected from each other, while achieving the function of electron transport through conductive routes or the quantum tunneling effect. The conductive wires serve as electron transfer stations when the distance between two separate liquid-metal droplets is far beyond that which quantum tunneling effects can support. The unique advantage of the current droplet circuit lies in the fact that it allows parallel electron transport, high flexibility, self-healing, regulation and multi-point connectivity without needing to worry about the circuit break. This would extend the category of classical electrical circuits into newly emerging areas like realizing room temperature quantum computing, making brain-like intelligence or nerve⁻machine interface electronics, etc. The mechanisms and potential scientific issues of the droplet circuits are interpreted and future prospects in this direction are outlined. |
Author | Ren, Yi Liu, Jing |
AuthorAffiliation | 1 Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China; reny14@mails.tsinghua.edu.cn 3 School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China 2 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China |
AuthorAffiliation_xml | – name: 1 Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China; reny14@mails.tsinghua.edu.cn – name: 3 School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China – name: 2 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China |
Author_xml | – sequence: 1 givenname: Yi surname: Ren fullname: Ren, Yi – sequence: 2 givenname: Jing orcidid: 0000-0002-0844-5296 surname: Liu fullname: Liu, Jing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30424151$$D View this record in MEDLINE/PubMed |
BookMark | eNplkUtLAzEUhYMottYu_ANSEEEXY_OYSWY2gtT6gIobBXchySSaMp20yYzgvzelD2rNIrmQ7x7OPfcEHNau1gCcIXhDSAGHM1vADGKUH4AuhgwnlNKPw526A_ohTGE8jBXxOgYdAlOcogx1weXELlpbJi-6EdVgXAtZ6XJw79280s1gZL1qbRNOwZERVdD99dsD7w_jt9FTMnl9fB7dTRKVQtIkQiKVsgxjUiKsacGMlLk0OZImFTLHkpWlMFmqsJaIwoxqZEyeUkmUgKggpAduV7rzVs50qXTdeFHxubcz4X-4E5b__antF_9035yinJEcRYGrtYB3i1aHhs9sULqqRK1dGzhGhKSEYUojerGHTl3r6zgex9Eai9GRIlLnu462VjYJRmC4ApR3IXhtuLKNaKxbGrQVR5Av18S3a4od13sdG9H_7C_zNJCE |
CitedBy_id | crossref_primary_10_35848_1347_4065_ab7e11 crossref_primary_10_1002_adfm_202308116 crossref_primary_10_1002_aisy_202000246 crossref_primary_10_1002_adfm_202302895 crossref_primary_10_1002_adma_202203391 crossref_primary_10_1002_admi_201900007 crossref_primary_10_3390_mi9110605 crossref_primary_10_1002_aelm_202001006 crossref_primary_10_1063_5_0140629 crossref_primary_10_3390_mi11020200 crossref_primary_10_1002_advs_202300694 crossref_primary_10_3390_bios10110170 |
Cites_doi | 10.1016/j.biomaterials.2017.09.006 10.1186/s40169-016-0102-9 10.1002/chin.199922290 10.1088/1741-2552/aa9817 10.1002/adfm.201200837 10.1088/1361-6439/aa891c 10.1088/0268-1242/29/7/073001 10.1063/1.3069243 10.1002/advs.201700024 10.3390/mi8020039 10.1002/adma.201502200 10.1039/C7MH00065K 10.1166/jnn.2015.9775 10.1088/1741-2552/aa9c8c 10.1038/srep07116 10.1086/287052 10.1109/5.838115 10.3390/s150511823 10.3390/mi7120206 10.1016/j.cap.2013.06.014 10.1002/adma.201503875 10.1115/1.4031659 10.1063/1.3462069 10.1063/1.5013623 10.1039/C6TB00996D 10.1080/09506608.2016.1271090 10.1021/acs.nanolett.7b04050 10.1002/adfm.201706277 10.1016/0009-2614(74)85031-1 10.1002/advs.201600212 10.1002/adem.201300420 10.1016/j.biopsych.2015.03.017 10.1088/1741-2552/aa9ee7 10.1002/admt.201700173 10.1002/ange.201610890 10.1002/adma.201101257 10.1063/1.4994298 10.1038/srep03442 10.1007/s11708-015-0388-0 10.1002/adfm.201101967 10.3938/jkps.66.282 10.1016/j.eswa.2017.12.015 10.1088/2053-1591/2/4/046303 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2018 2018 by the authors. 2018 |
Copyright_xml | – notice: Copyright MDPI AG 2018 – notice: 2018 by the authors. 2018 |
DBID | AAYXX CITATION NPM 7SP 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ L6V L7M M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM |
DOI | 10.3390/mi9050218 |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database SciTech Premium Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2072-666X |
ExternalDocumentID | PMC6187381 30424151 10_3390_mi9050218 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 91748206 |
GroupedDBID | 53G 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ HYE KQ8 L6V M7S MM. MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RPM TR2 TUS NPM 7SP 7TB 8FD ABUWG AZQEC DWQXO FR3 L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c403t-ab1c475223d12e697fbb8bf81bf4ab82b7ddaf54c2eb16056e1ff846b3ca01933 |
IEDL.DBID | BENPR |
ISSN | 2072-666X |
IngestDate | Thu Aug 21 18:27:34 EDT 2025 Fri Jul 11 02:49:37 EDT 2025 Fri Jul 25 11:57:57 EDT 2025 Wed Feb 19 02:44:11 EST 2025 Tue Jul 01 00:54:22 EDT 2025 Thu Apr 24 23:10:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | liquid metal quantum computing electron transport quantum tunneling effect solution electronics ionic conduction droplet circuits brain-like intelligence |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-ab1c475223d12e697fbb8bf81bf4ab82b7ddaf54c2eb16056e1ff846b3ca01933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0844-5296 |
OpenAccessLink | https://www.proquest.com/docview/2056766639?pq-origsite=%requestingapplication% |
PMID | 30424151 |
PQID | 2056766639 |
PQPubID | 2032359 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6187381 proquest_miscellaneous_2133437266 proquest_journals_2056766639 pubmed_primary_30424151 crossref_citationtrail_10_3390_mi9050218 crossref_primary_10_3390_mi9050218 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-05 |
PublicationDateYYYYMMDD | 2018-05-05 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Micromachines (Basel) |
PublicationTitleAlternate | Micromachines (Basel) |
PublicationYear | 2018 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Aviram (ref_2) 1974; 29 Delrosso (ref_5) 2017; 129 Ding (ref_41) 2016; 10 ref_11 Li (ref_21) 2016; 5 Yang (ref_26) 2018; 112 Chen (ref_29) 2018; 28 Koo (ref_18) 2011; 23 Daly (ref_9) 2018; 15 Menzel (ref_33) 1930; 16 Tang (ref_27) 2015; 28 Tan (ref_45) 2015; 471 Ma (ref_37) 2015; 2 Chrimes (ref_48) 2017; 17 Oehme (ref_36) 2010; 97 Wang (ref_8) 2015; 27 Zhang (ref_47) 2014; 4 Tang (ref_25) 2017; 4 Brandman (ref_13) 2018; 15 Guo (ref_22) 2017; 27 Sivan (ref_30) 2013; 23 Sun (ref_20) 2017; 146 Chen (ref_28) 2017; 4 Yi (ref_15) 2017; 62 Jin (ref_43) 2013; 3 ref_35 ref_34 Kim (ref_44) 2015; 66 ref_31 Yu (ref_39) 2013; 16 Son (ref_6) 2013; 13 Yu (ref_38) 2017; 2 Jung (ref_16) 2015; 15 Che (ref_42) 2014; 29 Kim (ref_3) 2015; 15 Sen (ref_32) 2014; 107 Yuan (ref_23) 2016; 3 Lees (ref_14) 2017; 15 Zhao (ref_24) 2017; 111 Zhang (ref_46) 2016; 4 So (ref_19) 2012; 22 ref_40 ref_1 Yi (ref_17) 2015; 9 Zhang (ref_12) 2018; 96 Ellenbogen (ref_7) 2000; 88 ref_49 Fox (ref_4) 1999; 30 Dejean (ref_10) 2015; 78 28918265 - Biomaterials. 2017 Nov;146:156-167 27840803 - Adv Sci (Weinh). 2016 Aug 17;3(10):1600212 26601792 - Adv Mater. 2016 Jan 27;28(4):604-9 25908496 - Biol Psychiatry. 2015 Sep 1;78(5):298-306 27339426 - Clin Transl Med. 2016 Dec;5(1):21 26353599 - J Nanosci Nanotechnol. 2015 Feb;15(2):921-38 29363625 - J Neural Eng. 2018 Apr;15(2):026007 25408295 - Sci Rep. 2014 Nov 19;4:7116 29442072 - J Neural Eng. 2018 Apr;15(2):026022 29099388 - J Neural Eng. 2018 Apr;15(2):021001 26414428 - Adv Mater. 2015 Nov 25;27(44):7109-16 29095626 - Nano Lett. 2017 Dec 13;17(12):7831-7838 28322486 - Angew Chem Int Ed Engl. 2017 Apr 10;56(16):4443-4446 28546916 - Adv Sci (Weinh). 2017 Apr 24;4(5):1700024 24309385 - Sci Rep. 2013 Dec 06;3:3442 21726000 - Adv Mater. 2011 Aug 16;23(31):3559-64 26007732 - Sensors (Basel). 2015 May 21;15(5):11823-35 |
References_xml | – ident: ref_49 – volume: 146 start-page: 156 year: 2017 ident: ref_20 article-title: Amorphous liquid metal electrodes enabled conformable electrochemical therapy of tumors publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.09.006 – volume: 5 start-page: 1 year: 2016 ident: ref_21 article-title: Electrical stimulation towards melanoma therapy via liquid metal printed electronics on skin publication-title: Clin. Transl. Med. doi: 10.1186/s40169-016-0102-9 – volume: 30 start-page: 201 year: 1999 ident: ref_4 article-title: Fundamentals in the design of molecular electronic devices Long-range charge carrier transport and electronic coupling publication-title: Cheminform doi: 10.1002/chin.199922290 – volume: 15 start-page: 021001 year: 2017 ident: ref_14 article-title: A review of rapid serial visual presentation-based brain-computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa9817 – volume: 23 start-page: 144 year: 2013 ident: ref_30 article-title: Liquid metal marbles publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200837 – ident: ref_35 – volume: 27 start-page: 104002 year: 2017 ident: ref_22 article-title: Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion functions publication-title: J. Micromech. Microeng. doi: 10.1088/1361-6439/aa891c – volume: 29 start-page: 073001 year: 2014 ident: ref_42 article-title: Review of carbon nanotube nanoelectronics and macroelectronics publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/29/7/073001 – ident: ref_34 doi: 10.1063/1.3069243 – volume: 4 start-page: 1700024 year: 2017 ident: ref_25 article-title: Liquid metal phagocytosis: Intermetallic wetting induced particle internalization publication-title: Adv. Sci. doi: 10.1002/advs.201700024 – ident: ref_40 doi: 10.3390/mi8020039 – volume: 27 start-page: 7109 year: 2015 ident: ref_8 article-title: Flexible electronics: Fast fabrication of flexible functional circuits based on liquid metal dual-trans printing publication-title: Adv. Mater. doi: 10.1002/adma.201502200 – volume: 4 start-page: 591 year: 2017 ident: ref_28 article-title: Liquid metal droplets with high elasticity, mobility and mechanical robustness publication-title: Mater. Horiz. doi: 10.1039/C7MH00065K – ident: ref_31 – volume: 15 start-page: 921 year: 2015 ident: ref_3 article-title: Fabrication and characterization of molecular electronic devices publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2015.9775 – volume: 15 start-page: 026022 year: 2018 ident: ref_9 article-title: Cortical excitability correlates with the event-related desynchronization during brain-computer interface control publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa9c8c – volume: 4 start-page: 7116 year: 2014 ident: ref_47 article-title: Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects publication-title: Sci. Rep. doi: 10.1038/srep07116 – volume: 16 start-page: 303 year: 1930 ident: ref_33 article-title: The physical principles of the quantum theory publication-title: Philos. Sci. doi: 10.1086/287052 – volume: 88 start-page: 386 year: 2000 ident: ref_7 article-title: Architectures for molecular electronic computers, i. logic structures and an adder designed from molecular electronic diodes publication-title: Proc. IEEE doi: 10.1109/5.838115 – volume: 15 start-page: 11823 year: 2015 ident: ref_16 article-title: Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel publication-title: Sensors doi: 10.3390/s150511823 – ident: ref_1 doi: 10.3390/mi7120206 – volume: 13 start-page: 1157 year: 2013 ident: ref_6 article-title: Molecular scale electronic devices using single molecules and molecular monolayers publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2013.06.014 – volume: 28 start-page: 604 year: 2015 ident: ref_27 article-title: Liquid-metal microdroplets formed dynamically with electrical control of size and rate publication-title: Adv. Mater. doi: 10.1002/adma.201503875 – volume: 9 start-page: 44507 year: 2015 ident: ref_17 article-title: Liquid metal ink enabled rapid prototyping of electrochemical sensor for wireless glucose detection on the platform of mobile phone publication-title: ASME J. Med. Devices doi: 10.1115/1.4031659 – volume: 97 start-page: 291 year: 2010 ident: ref_36 article-title: Ge quantum dot tunneling diode with room temperature negative differential resistance publication-title: Appl. Phys. Lett. doi: 10.1063/1.3462069 – volume: 112 start-page: 063505 year: 2018 ident: ref_26 article-title: Millimeter-scale liquid metal droplet thermal switch publication-title: Appl. Phys. Lett. doi: 10.1063/1.5013623 – volume: 4 start-page: 5349 year: 2016 ident: ref_46 article-title: Self-propelled liquid metal motors steered by a magnetic or electrical field for drug delivery publication-title: J. Mater. Chem. B doi: 10.1039/C6TB00996D – volume: 62 start-page: 1 year: 2017 ident: ref_15 article-title: Liquid metal biomaterials: A newly emerging area to tackle modern biomedical challenges publication-title: Int. Mater. Rev. doi: 10.1080/09506608.2016.1271090 – volume: 17 start-page: 7831 year: 2017 ident: ref_48 article-title: A gallium-based magnetocaloric liquid metal ferrofluid publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b04050 – volume: 28 start-page: 1706277 year: 2018 ident: ref_29 article-title: Robust fabrication of nonstick, noncorrosive, conductive graphene-coated liquid metal droplets for droplet-based, floating electrodes publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706277 – volume: 29 start-page: 277 year: 1974 ident: ref_2 article-title: Molecular rectifiers publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(74)85031-1 – ident: ref_11 – volume: 3 start-page: 1600212 year: 2016 ident: ref_23 article-title: Liquid metal machine triggered violin-like wire oscillator publication-title: Adv. Sci. doi: 10.1002/advs.201600212 – volume: 16 start-page: 255 year: 2013 ident: ref_39 article-title: Channelless fabrication for large-scale preparation of room temperature liquid metal droplets publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201300420 – volume: 78 start-page: 298 year: 2015 ident: ref_10 article-title: Neuronal circuits for fear expression and recovery: Recent advances and potential therapeutic strategies publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2015.03.017 – volume: 15 start-page: 026007 year: 2018 ident: ref_13 article-title: Rapid calibration of an intracortical brain-computer interface for people with tetraplegia publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa9ee7 – volume: 2 start-page: 1700173 year: 2017 ident: ref_38 article-title: Suspension 3D printing of liquid metal into self-healing hydrogel publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201700173 – volume: 129 start-page: 4514 year: 2017 ident: ref_5 article-title: A molecular circuit regenerator to implement iterative strand displacement operations publication-title: Angew. Chem. doi: 10.1002/ange.201610890 – volume: 23 start-page: 3559 year: 2011 ident: ref_18 article-title: Towards all-soft matter circuits: Prototypes of quasi-liquid devices with memristor characteristics publication-title: Adv. Mater. doi: 10.1002/adma.201101257 – volume: 111 start-page: 101603 year: 2017 ident: ref_24 article-title: Surfing liquid metal droplet on the same metal bath via electrolyte interface publication-title: Appl. Phys. Lett. doi: 10.1063/1.4994298 – volume: 3 start-page: 3442 year: 2013 ident: ref_43 article-title: Injectable 3-D fabrication of medical electronics at the target biological tissues publication-title: Sci. Rep. doi: 10.1038/srep03442 – volume: 471 start-page: 32 year: 2015 ident: ref_45 article-title: Electrical method to control the running direction and speed of self-powered tiny liquid metal motors publication-title: Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. – volume: 10 start-page: 29 year: 2016 ident: ref_41 article-title: Water film coated composite liquid metal marble and its fluidic impact dynamics phenomenon publication-title: Front. Energy doi: 10.1007/s11708-015-0388-0 – volume: 22 start-page: 625 year: 2012 ident: ref_19 article-title: Ionic current rectification in soft-matter diodes with liquid-metal electrodes publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201101967 – volume: 107 start-page: 203 year: 2014 ident: ref_32 article-title: The uncertainty relations in quantum mechanics publication-title: Curr. Sci. – volume: 66 start-page: 282 year: 2015 ident: ref_44 article-title: Magnetic-field-induced liquid metal droplet manipulation publication-title: J. Korean Phys. Soc. doi: 10.3938/jkps.66.282 – volume: 96 start-page: 302 year: 2018 ident: ref_12 article-title: Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.12.015 – volume: 2 start-page: 046303 year: 2015 ident: ref_37 article-title: Resonance-enhanced electroresistance-magnetoresistance effects in multiferroic tunnel junctions publication-title: Mater. Res. Express doi: 10.1088/2053-1591/2/4/046303 – reference: 27840803 - Adv Sci (Weinh). 2016 Aug 17;3(10):1600212 – reference: 29363625 - J Neural Eng. 2018 Apr;15(2):026007 – reference: 25408295 - Sci Rep. 2014 Nov 19;4:7116 – reference: 21726000 - Adv Mater. 2011 Aug 16;23(31):3559-64 – reference: 26007732 - Sensors (Basel). 2015 May 21;15(5):11823-35 – reference: 26353599 - J Nanosci Nanotechnol. 2015 Feb;15(2):921-38 – reference: 28918265 - Biomaterials. 2017 Nov;146:156-167 – reference: 27339426 - Clin Transl Med. 2016 Dec;5(1):21 – reference: 26414428 - Adv Mater. 2015 Nov 25;27(44):7109-16 – reference: 29442072 - J Neural Eng. 2018 Apr;15(2):026022 – reference: 24309385 - Sci Rep. 2013 Dec 06;3:3442 – reference: 29099388 - J Neural Eng. 2018 Apr;15(2):021001 – reference: 25908496 - Biol Psychiatry. 2015 Sep 1;78(5):298-306 – reference: 26601792 - Adv Mater. 2016 Jan 27;28(4):604-9 – reference: 28546916 - Adv Sci (Weinh). 2017 Apr 24;4(5):1700024 – reference: 29095626 - Nano Lett. 2017 Dec 13;17(12):7831-7838 – reference: 28322486 - Angew Chem Int Ed Engl. 2017 Apr 10;56(16):4443-4446 |
SSID | ssj0000779007 |
Score | 2.1621163 |
Snippet | Conventional electrical circuits are generally rigid in their components and working styles, which are not flexible and stretchable. As an alternative,... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 218 |
SubjectTerms | Brain Carbon nanotubes Circuits Droplets Electrical engineering Electron transfer Electron transport Electronics Innovations Quantum computing Quantum tunnelling Transfer stations |
Title | Liquid-Metal Enabled Droplet Circuits |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30424151 https://www.proquest.com/docview/2056766639 https://www.proquest.com/docview/2133437266 https://pubmed.ncbi.nlm.nih.gov/PMC6187381 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED7W5KV7KN3Wbe6y4I0W-iJmW5ZsP5W2SxZKE0ppoW9GP5lhc5rE_v93chw3WcfAbzqwOUmn7zudvwM4UTyQJs0kCTPGSKwkJyKLFYk4ognGmDVNamA645OH-PqRPbYJt1VbVrmJiU2g1nPlcuRI0hlPEGvT7PxpQVzXKHe72rbQ2IM-huAUyVf_cjS7veuyLIGT0wuStaQQRX7_7XeRBcwdbLsH0Qt0-XeR5NapMz6EgxYu-hfr-X0Dr0z5Fl5viQi-g9ObYlEXmkwN4mh_1PwLpf3vS1cZXvlXxVLVRbU6gofx6P5qQtrmB0TFAa2IkKGKE0RHVIeR4VlipUylRZRpYyHTSCZaC8tiFWG0RU7CTWgtgglJlUDYRul76JXz0nwE31hq8dE6Ejpm1IjA0ECwRCG1ULjHPTjbeCJXrTK4a1DxK0eG4JyWd07z4Gtn-rSWw_iX0WDjzrzdEav8ef48-NIN41p2FxSiNPMabZAwu3tEzj34sPZ-9xaXdkGwEXqQ7MxLZ-B0sndHyuJno5fNwzRBYHL8_8_6BPsIhtKmmJENoFcta_MZAUclh7CXjn8M27U1bGj7H__O2PI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9xADLYQPdAeqkIfpIWSVkXqZdQk80hyQKgClqXscgKJWzpPEYlmYTerqn-qv7GeZJOypeKGlNtYSuR47M8ez2eAT1pEyma5InHOOWFaCSJzpkkiEE1wzp1tSgPjMzG8YN8u-eUK_O7uwvi2ys4nNo7aTLSvkWOSzkWKWJvm-ze3xE-N8qer3QiN1ixO7a-fmLLN9k4O8f_uJsng6PxgSBZTBYhmEa2JVLFmKcIOauLEijx1SmXKIXxzTKosUakx0nGmE3RjCPaFjZ3DKK2oloiHfAEUXf4TRmnud1Q2OO5rOpEn74vSlsAI16MvP8o84j6MLoe9e1j235bMOzFu8AKeL8Bp-LW1pnVYsdUGPLtDWfgSdkfl7bw0ZGwRtYdHzc0rEx5OfR96HR6UUz0v69kruHgUpbyG1WpS2U0IraMOH2MSaRinVkaWRpKnGhMZjR4lgM-dJgq94CH34zCuC8xHvNKKXmkBfOxFb1ryjf8JbXXqLBb7b1b8tZYAPvTLuHP8cYis7GSOMpie-1NLIQJ402q_f4sv8iC0iQNIl_5LL-BZuZdXqvKqYecWcZYiDHr78GftwNrwfDwqRidnp-_gKcKwrGmj5FuwWk_ndhuhTq3eN_YVwvfHNug_B1ETwg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC7CBkQP4juTRB3FgJcmPY_unjmIaHaXxCRLEAO5jf3EAZ1NdmcR_5q_zup5mVXxFphbF8xQU131VXX1VwCvNKfKZrkiUc4YSbXiROapJjFHNMEYc7YpDZzO-OF5-uGCXWzAz_4ujG-r7H1i46jNXPsaOSbpjAvE2km-77q2iLPx9O3lFfETpPxJaz9OozWRY_vjO6ZvyzdHY_zXe3E8nXw6OCTdhAGiU5rURKpIpwIhSGKi2PJcOKUy5RDKuVSqLFbCGOlYqmN0aQj8uY2cw4itEi0RG_liKLr_TYFZER3B5vvJ7OzjUOGhnsqPipbOKElyuv-tzCnzQXU9CP6FbP9s0LwW8ab34G4HVcN3rW3dhw1bPYA71wgMH8LeSXm1Kg05tYjhw0lzD8uE44XvSq_Dg3KhV2W9fATnN6KWxzCq5pXdgtC6xOFjTCxNyhIrqU2oZEJjWqPRvwTwutdEoTtWcj8c42uB2YlXWjEoLYCXg-hlS8XxL6HdXp1FtxuXxW_bCeDFsIz7yB-OyMrOVyiDybo_w-Q8gCet9oe3-JIPAp0oALH2XwYBz9G9vlKVXxqubh5lAkHR9v8_6zncQmMuTo5mxztwGzFZ1vRUsl0Y1YuVfYq4p1bPOgML4fNN2_QvJZgZVA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liquid-Metal+Enabled+Droplet+Circuits&rft.jtitle=Micromachines+%28Basel%29&rft.au=Ren%2C+Yi&rft.au=Liu%2C+Jing&rft.date=2018-05-05&rft.pub=MDPI+AG&rft.eissn=2072-666X&rft.volume=9&rft.issue=5&rft.spage=218&rft_id=info:doi/10.3390%2Fmi9050218&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-666X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-666X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-666X&client=summon |