Antifouling strategies in advanced electrochemical sensors and biosensors

Electrochemical biosensors have been applied in a broad range of clinical applications for pathogen biomarker detection and medical applications and diagnosis due to the sensitivity of electrochemical methods and the bioselectivity of the components. The complexity of clinical conditions with variou...

Full description

Saved in:
Bibliographic Details
Published inAnalyst (London) Vol. 145; no. 4; pp. 111 - 112
Main Authors Lin, Pei-Heng, Li, Bor-Ran
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 17.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrochemical biosensors have been applied in a broad range of clinical applications for pathogen biomarker detection and medical applications and diagnosis due to the sensitivity of electrochemical methods and the bioselectivity of the components. The complexity of clinical conditions with various biofoulants (proteins, cells, polysaccharides and lipids) severely influences the reliability and stability of sensors for direct detection or immersion under changing conditions. Therefore, designing an antifouling sensing platform that can effectively reduce undesired binding to maintain biosensor performance in optimized analysis is necessary. For this purpose, the fundamental mechanisms of fouling materials and commonly used biocompatible antifouling components have been discussed, and the relevant effective modification strategies are introduced in this review. Recent advances in these strategies are demonstrated in examples with analysis of essential modification methods for reliable sensing in non-specific binding solutions or complex biofluids. The challenges and future perspectives of modification strategies for current clinical application are also discussed in this review. A review presented recent development of antifouling strategies in electrochemical sensors and biosensors based on the modification methods.
AbstractList Electrochemical biosensors have been applied in a broad range of clinical applications for pathogen biomarker detection and medical applications and diagnosis due to the sensitivity of electrochemical methods and the bioselectivity of the components. The complexity of clinical conditions with various biofoulants (proteins, cells, polysaccharides and lipids) severely influences the reliability and stability of sensors for direct detection or immersion under changing conditions. Therefore, designing an antifouling sensing platform that can effectively reduce undesired binding to maintain biosensor performance in optimized analysis is necessary. For this purpose, the fundamental mechanisms of fouling materials and commonly used biocompatible antifouling components have been discussed, and the relevant effective modification strategies are introduced in this review. Recent advances in these strategies are demonstrated in examples with analysis of essential modification methods for reliable sensing in non-specific binding solutions or complex biofluids. The challenges and future perspectives of modification strategies for current clinical application are also discussed in this review.Electrochemical biosensors have been applied in a broad range of clinical applications for pathogen biomarker detection and medical applications and diagnosis due to the sensitivity of electrochemical methods and the bioselectivity of the components. The complexity of clinical conditions with various biofoulants (proteins, cells, polysaccharides and lipids) severely influences the reliability and stability of sensors for direct detection or immersion under changing conditions. Therefore, designing an antifouling sensing platform that can effectively reduce undesired binding to maintain biosensor performance in optimized analysis is necessary. For this purpose, the fundamental mechanisms of fouling materials and commonly used biocompatible antifouling components have been discussed, and the relevant effective modification strategies are introduced in this review. Recent advances in these strategies are demonstrated in examples with analysis of essential modification methods for reliable sensing in non-specific binding solutions or complex biofluids. The challenges and future perspectives of modification strategies for current clinical application are also discussed in this review.
Electrochemical biosensors have been applied in a broad range of clinical applications for pathogen biomarker detection and medical applications and diagnosis due to the sensitivity of electrochemical methods and the bioselectivity of the components. The complexity of clinical conditions with various biofoulants (proteins, cells, polysaccharides and lipids) severely influences the reliability and stability of sensors for direct detection or immersion under changing conditions. Therefore, designing an antifouling sensing platform that can effectively reduce undesired binding to maintain biosensor performance in optimized analysis is necessary. For this purpose, the fundamental mechanisms of fouling materials and commonly used biocompatible antifouling components have been discussed, and the relevant effective modification strategies are introduced in this review. Recent advances in these strategies are demonstrated in examples with analysis of essential modification methods for reliable sensing in non-specific binding solutions or complex biofluids. The challenges and future perspectives of modification strategies for current clinical application are also discussed in this review.
Electrochemical biosensors have been applied in a broad range of clinical applications for pathogen biomarker detection and medical applications and diagnosis due to the sensitivity of electrochemical methods and the bioselectivity of the components. The complexity of clinical conditions with various biofoulants (proteins, cells, polysaccharides and lipids) severely influences the reliability and stability of sensors for direct detection or immersion under changing conditions. Therefore, designing an antifouling sensing platform that can effectively reduce undesired binding to maintain biosensor performance in optimized analysis is necessary. For this purpose, the fundamental mechanisms of fouling materials and commonly used biocompatible antifouling components have been discussed, and the relevant effective modification strategies are introduced in this review. Recent advances in these strategies are demonstrated in examples with analysis of essential modification methods for reliable sensing in non-specific binding solutions or complex biofluids. The challenges and future perspectives of modification strategies for current clinical application are also discussed in this review. A review presented recent development of antifouling strategies in electrochemical sensors and biosensors based on the modification methods.
Author Li, Bor-Ran
Lin, Pei-Heng
AuthorAffiliation Department of Electrical and Computer Engineering
Center for Emergent Functional Matter Science
Institute of Biomedical Engineering
National Chiao Tung University
College of Electrical and Computer Engineering
AuthorAffiliation_xml – sequence: 0
  name: Institute of Biomedical Engineering
– sequence: 0
  name: Department of Electrical and Computer Engineering
– sequence: 0
  name: Center for Emergent Functional Matter Science
– sequence: 0
  name: National Chiao Tung University
– sequence: 0
  name: College of Electrical and Computer Engineering
Author_xml – sequence: 1
  givenname: Pei-Heng
  surname: Lin
  fullname: Lin, Pei-Heng
– sequence: 2
  givenname: Bor-Ran
  surname: Li
  fullname: Li, Bor-Ran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31916551$$D View this record in MEDLINE/PubMed
BookMark eNpt0UtLAzEQB_Agin3oxbuy4EWE1Tw22-xxKT4KRS96XrLJbE3ZJjXZFfz2RtsqFE9h4DczYf4jdGidBYTOCL4hmBW3qpAWU0wm8gANCcuzlHMqDtEQY8xSmvNsgEYhLGNJMMfHaMBIQXLOyRDNStuZxvWtsYskdF52sDAQEmMTqT-kVaATaEF13qk3WBkl2ySADc6HRFqd1MZtyxN01Mg2wOn2HaPX-7uX6WM6f36YTct5qjLMulRKXdC81qzBlApCNRR1PSF6IkBpLTKQXEBGRKMxbjjLiK5pU1NNSSEawSgbo6vN3LV37z2ErlqZoKBtpQXXh4oyxskk7iKRXu7Rpeu9jb-LinOBMy54VBdb1dcr0NXam5X0n9XuSBHgDVDeheChqZTpZGecjfcybUVw9Z1DNS3Kp58cythyvdeym_ovPt9gH9Sv-wuVfQFwmpEv
CitedBy_id crossref_primary_10_1016_j_bios_2022_114983
crossref_primary_10_1039_D1RA04631D
crossref_primary_10_1002_admt_202100049
crossref_primary_10_1021_acs_analchem_0c02240
crossref_primary_10_1111_1541_4337_13209
crossref_primary_10_1021_acssensors_3c02766
crossref_primary_10_1016_j_isci_2020_101658
crossref_primary_10_1016_j_colsurfa_2024_135431
crossref_primary_10_1007_s00604_022_05190_z
crossref_primary_10_1016_j_snb_2021_131086
crossref_primary_10_1021_acsapm_3c02150
crossref_primary_10_1016_j_trac_2023_117372
crossref_primary_10_1039_D1EN00966D
crossref_primary_10_1016_j_inoche_2023_110714
crossref_primary_10_1002_anbr_202000104
crossref_primary_10_3390_pharmaceutics14051051
crossref_primary_10_1002_adma_202107892
crossref_primary_10_1016_j_diamond_2024_111940
crossref_primary_10_1021_acssensors_2c02140
crossref_primary_10_1016_j_talanta_2021_123124
crossref_primary_10_1021_acs_iecr_3c00140
crossref_primary_10_1002_adhm_202102244
crossref_primary_10_1080_24725854_2023_2222162
crossref_primary_10_1002_anie_202218080
crossref_primary_10_1016_j_aca_2021_338907
crossref_primary_10_1016_j_cis_2022_102657
crossref_primary_10_1021_acsami_4c05685
crossref_primary_10_1016_j_talanta_2025_127850
crossref_primary_10_1080_19475411_2024_2385350
crossref_primary_10_1016_j_bios_2021_113477
crossref_primary_10_1002_elan_202100406
crossref_primary_10_1016_j_talanta_2023_124341
crossref_primary_10_1016_j_mtchem_2022_101129
crossref_primary_10_1016_j_microc_2023_108619
crossref_primary_10_1016_j_watres_2020_115926
crossref_primary_10_1002_ange_202218080
crossref_primary_10_1021_acs_accounts_1c00382
crossref_primary_10_1016_j_jelechem_2021_115466
crossref_primary_10_1021_acs_jafc_4c09423
crossref_primary_10_3390_bios11080246
crossref_primary_10_1039_D4LC00073K
crossref_primary_10_1039_D0LC00663G
crossref_primary_10_1016_j_bios_2024_116949
crossref_primary_10_1109_JSEN_2020_3004426
crossref_primary_10_1002_smll_202108112
crossref_primary_10_1016_j_bios_2021_113626
crossref_primary_10_1016_j_polymer_2024_127230
crossref_primary_10_1021_acssensors_2c00518
crossref_primary_10_1039_D1NA00748C
crossref_primary_10_1002_smll_202003934
crossref_primary_10_1016_j_bios_2021_113466
crossref_primary_10_1021_acs_analchem_1c03292
crossref_primary_10_1021_acs_jafc_4c01665
crossref_primary_10_3390_chemosensors10070263
crossref_primary_10_3390_jfb14060329
crossref_primary_10_3390_bios11070232
crossref_primary_10_3390_molecules25153373
crossref_primary_10_1016_j_jelechem_2020_114969
crossref_primary_10_1016_j_microc_2023_108805
crossref_primary_10_1016_j_eng_2021_08_010
crossref_primary_10_1016_j_talanta_2021_123187
crossref_primary_10_1016_j_talanta_2024_125623
crossref_primary_10_1016_j_aca_2023_341244
crossref_primary_10_1016_j_coelec_2020_08_007
crossref_primary_10_1016_j_talanta_2021_122776
crossref_primary_10_1142_S2737599422400035
crossref_primary_10_1016_j_bios_2021_113737
crossref_primary_10_1016_j_snb_2021_130349
crossref_primary_10_1021_acsami_4c08891
crossref_primary_10_1021_acs_analchem_1c04153
crossref_primary_10_2116_analsci_21SAR01
crossref_primary_10_1016_j_colsurfb_2024_113936
crossref_primary_10_1016_j_sna_2022_113525
crossref_primary_10_1002_cjoc_202100685
crossref_primary_10_1039_D1AN02308J
crossref_primary_10_1007_s40820_020_00533_y
crossref_primary_10_1039_D3AN00291H
crossref_primary_10_1038_s41598_023_33654_6
crossref_primary_10_1039_D0CS00107D
crossref_primary_10_1016_j_snb_2024_136974
crossref_primary_10_1016_j_snb_2024_135520
crossref_primary_10_3390_nano12213736
crossref_primary_10_1146_annurev_anchem_061417_125655
crossref_primary_10_1016_j_cej_2024_148975
crossref_primary_10_1039_D2CC03509J
crossref_primary_10_3390_s22072784
crossref_primary_10_1016_j_aca_2023_341575
crossref_primary_10_1016_j_apsusc_2023_158532
crossref_primary_10_1016_j_foodcont_2024_110695
crossref_primary_10_1080_10408347_2022_2114784
crossref_primary_10_1039_D5SC00199D
crossref_primary_10_1016_j_elecom_2020_106862
crossref_primary_10_1016_j_cclet_2023_108314
crossref_primary_10_1007_s11356_022_21035_x
crossref_primary_10_1016_j_bios_2021_113603
crossref_primary_10_1007_s00604_024_06521_y
crossref_primary_10_3390_mi13030362
crossref_primary_10_1021_acsnano_2c12606
crossref_primary_10_1149_1945_7111_ad2732
crossref_primary_10_1021_acs_bioconjchem_3c00444
crossref_primary_10_1021_acs_analchem_1c00089
crossref_primary_10_1007_s00604_023_05785_0
crossref_primary_10_1016_j_ijbiomac_2023_127269
crossref_primary_10_1016_j_ccr_2024_216149
crossref_primary_10_1038_s41598_021_00470_9
crossref_primary_10_1021_acsami_3c15849
crossref_primary_10_1021_acs_macromol_3c01469
crossref_primary_10_1039_D3CS00417A
crossref_primary_10_1002_btpr_3297
crossref_primary_10_1016_j_apsusc_2024_160226
crossref_primary_10_3390_encyclopedia1030065
crossref_primary_10_1002_admt_202401808
crossref_primary_10_1021_acs_est_3c09889
crossref_primary_10_1021_acs_langmuir_4c03901
crossref_primary_10_1016_j_cej_2024_153522
crossref_primary_10_1021_acs_analchem_3c04868
crossref_primary_10_1016_j_microc_2023_108419
crossref_primary_10_1021_acsnano_3c01629
crossref_primary_10_1002_bit_27793
crossref_primary_10_1016_j_talanta_2023_125510
crossref_primary_10_1007_s00604_024_06218_2
crossref_primary_10_1021_acsestengg_1c00256
crossref_primary_10_1016_j_aca_2022_339759
crossref_primary_10_1021_acssensors_4c02670
crossref_primary_10_1016_j_aca_2020_01_047
crossref_primary_10_3390_bios10020010
crossref_primary_10_1002_adma_202305917
crossref_primary_10_1002_elan_202060071
crossref_primary_10_1016_j_snb_2022_131823
crossref_primary_10_1371_journal_pone_0287824
crossref_primary_10_1080_10408347_2022_2063683
crossref_primary_10_1039_D1BM01330K
crossref_primary_10_1039_D0RA10000E
crossref_primary_10_1002_adsr_202300170
crossref_primary_10_1016_j_snb_2022_133166
crossref_primary_10_1080_10408347_2020_1809339
crossref_primary_10_1021_acssensors_4c00126
crossref_primary_10_1016_j_apsadv_2023_100513
crossref_primary_10_1007_s10876_021_02165_7
crossref_primary_10_1016_j_snb_2020_129426
crossref_primary_10_1021_acs_analchem_4c05771
crossref_primary_10_1021_acssensors_1c00390
crossref_primary_10_1016_j_apmt_2021_101128
crossref_primary_10_1016_j_talanta_2024_127058
crossref_primary_10_1021_acs_langmuir_4c04859
crossref_primary_10_1021_acssensors_2c00787
crossref_primary_10_1007_s10854_022_08117_9
crossref_primary_10_1016_j_talanta_2025_127599
crossref_primary_10_2147_IJN_S406078
crossref_primary_10_3390_bios13121004
crossref_primary_10_1002_admi_202201210
crossref_primary_10_1016_j_cej_2021_132966
crossref_primary_10_1016_j_nantod_2023_102141
crossref_primary_10_1021_acsami_0c07614
crossref_primary_10_1021_acsami_3c18546
Cites_doi 10.1016/0021-9797(91)90043-8
10.1039/C4RA14089C
10.1039/b801491d
10.1039/C7SC05104B
10.1021/acsami.5b05627
10.1016/0022-0728(82)85127-9
10.1016/j.elecom.2007.11.002
10.1039/b807129b
10.1021/la403983b
10.1039/C6AN00146G
10.1016/j.jelechem.2019.05.042
10.1021/ja9719586
10.1016/j.snb.2019.03.038
10.1039/C7AN01295K
10.1515/revac-2015-0008
10.1021/la4049067
10.1016/j.snb.2014.11.083
10.1016/S0079-6700(00)00012-5
10.1021/cm401512c
10.1039/b210143m
10.1021/ac504513a
10.1039/C4CC01329H
10.1039/b406228k
10.1021/acs.chemrev.7b00088
10.1016/j.bios.2014.03.057
10.1016/j.actbio.2016.02.035
10.1016/j.polymer.2010.08.022
10.1021/ac403013r
10.1021/acsami.6b11682
10.1016/j.jcis.2005.08.051
10.1007/s002160051557
10.1557/jmr.2012.398
10.1016/j.bios.2016.01.040
10.1039/C8CC08331B
10.1039/c0cs00149j
10.1021/ja408485m
10.1039/C9AN01300H
10.1021/acssensors.8b00318
10.1016/j.trac.2015.07.018
10.1016/j.jelechem.2016.01.031
10.3390/s19112488
10.1016/j.snb.2017.09.128
10.1016/j.snb.2015.10.044
10.1079/BJN2002702
10.1039/C8AY02674B
10.1016/j.snb.2017.01.060
10.1021/jacs.8b08894
10.1039/c3an01861j
10.1016/j.bios.2017.10.012
10.1021/acs.langmuir.8b01492
10.1021/ja2024355
10.1021/acsomega.9b01317
10.1021/ma9508616
10.1088/0957-4484/17/5/032
10.1016/j.actbio.2013.09.038
10.1021/acs.analchem.5b01834
10.3390/ijms20020423
10.1021/acs.langmuir.6b03016
10.3390/s19010028
10.3390/s8074110
10.3390/nano8010017
10.1016/j.apsusc.2011.04.033
10.1021/la202907f
10.1021/acs.analchem.5b02969
10.1016/j.aca.2017.10.017
10.1186/s40824-016-0064-4
10.1039/C1CS15145B
10.1016/S0001-8686(97)00040-7
10.1021/ma020444a
10.1016/j.bios.2016.01.012
10.1007/s10853-019-03635-0
10.1038/pj.2015.137
10.1021/ac401281t
10.1021/acsami.9b04924
10.1039/b714449k
10.1016/j.snb.2016.01.118
10.1021/cr800208y
10.5483/BMBRep.2016.49.12.166
10.1039/C8RA08527G
10.1016/j.actbio.2016.11.070
10.1021/ac303142e
10.1016/j.bsbt.2017.10.001
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/c9an02017a
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1364-5528
EndPage 112
ExternalDocumentID 31916551
10_1039_C9AN02017A
c9an02017a
Genre Journal Article
GroupedDBID ---
-JG
-~X
.HR
0-7
0R~
23M
2WC
4.4
5RE
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABGFH
ABJNI
ABOCM
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
COF
CS3
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
O9-
P2P
R7B
R7E
RAOCF
RCNCU
RPMJG
RRA
RRC
RSCEA
SKM
SKR
SKZ
SLC
SLF
TN5
UPT
VH6
WH7
~02
AAYXX
AFRZK
AKMSF
CITATION
R56
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c403t-aad926bd3f022812de9bb71d78ecdd84ea58e418fd00f5341db2fb2d2198f8323
ISSN 0003-2654
1364-5528
IngestDate Fri Jul 11 02:43:29 EDT 2025
Mon Jun 30 04:34:30 EDT 2025
Wed Feb 19 02:31:32 EST 2025
Tue Jul 01 01:56:59 EDT 2025
Thu Apr 24 22:52:39 EDT 2025
Tue Dec 17 20:58:30 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c403t-aad926bd3f022812de9bb71d78ecdd84ea58e418fd00f5341db2fb2d2198f8323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2266-680X
PMID 31916551
PQID 2355804585
PQPubID 2047505
PageCount 11
ParticipantIDs pubmed_primary_31916551
proquest_journals_2355804585
rsc_primary_c9an02017a
proquest_miscellaneous_2335174031
crossref_citationtrail_10_1039_C9AN02017A
crossref_primary_10_1039_C9AN02017A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200217
PublicationDateYYYYMMDD 2020-02-17
PublicationDate_xml – month: 2
  year: 2020
  text: 20200217
  day: 17
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Analyst (London)
PublicationTitleAlternate Analyst
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Sang (C9AN02017A-(cit47)/*[position()=1]) 2011; 27
Patel (C9AN02017A-(cit49)/*[position()=1]) 2013; 85
Leng (C9AN02017A-(cit30)/*[position()=1]) 2015; 7
Campuzano (C9AN02017A-(cit13)/*[position()=1]) 2019; 20
Yang (C9AN02017A-(cit63)/*[position()=1]) 2017; 3
Lee (C9AN02017A-(cit46)/*[position()=1]) 2019; 9
Wu (C9AN02017A-(cit51)/*[position()=1]) 2019; 11
Belanger (C9AN02017A-(cit75)/*[position()=1]) 2011; 40
Matharu (C9AN02017A-(cit53)/*[position()=1]) 2012; 41
Li (C9AN02017A-(cit4)/*[position()=1]) 2014; 139
Lüsse (C9AN02017A-(cit24)/*[position()=1]) 1996; 29
Li (C9AN02017A-(cit79)/*[position()=1]) 2014; 50
Shen (C9AN02017A-(cit2)/*[position()=1]) 2014; 60
Warsinke (C9AN02017A-(cit7)/*[position()=1]) 2000; 366
Hang (C9AN02017A-(cit44)/*[position()=1]) 2019; 289
Cui (C9AN02017A-(cit69)/*[position()=1]) 2016; 79
Rodovalho (C9AN02017A-(cit39)/*[position()=1]) 2018; 100
Pinson (C9AN02017A-(cit77)/*[position()=1]) 2005; 34
Lin (C9AN02017A-(cit5)/*[position()=1]) 2019; 19
Hasanzadeh (C9AN02017A-(cit10)/*[position()=1]) 2016; 80
Zaccari (C9AN02017A-(cit58)/*[position()=1]) 2014; 30
Islam (C9AN02017A-(cit11)/*[position()=1]) 2002; 88
Menanteau (C9AN02017A-(cit76)/*[position()=1]) 2013; 25
Ronkainen (C9AN02017A-(cit6)/*[position()=1]) 2010; 39
Megelski (C9AN02017A-(cit23)/*[position()=1]) 2002; 35
Yao (C9AN02017A-(cit26)/*[position()=1]) 2017; 142
Deng (C9AN02017A-(cit31)/*[position()=1]) 2019; 19
Yan (C9AN02017A-(cit35)/*[position()=1]) 2016; 141
Vaisocherová-Lísalová (C9AN02017A-(cit74)/*[position()=1]) 2016; 80
Li (C9AN02017A-(cit3)/*[position()=1]) 2013; 135
Kim (C9AN02017A-(cit62)/*[position()=1]) 2016; 49
Jeon (C9AN02017A-(cit27)/*[position()=1]) 1991; 142
Herne (C9AN02017A-(cit59)/*[position()=1]) 1997; 119
Jeong (C9AN02017A-(cit38)/*[position()=1]) 2013; 85
Mesnage (C9AN02017A-(cit54)/*[position()=1]) 2011; 257
Kim (C9AN02017A-(cit19)/*[position()=1]) 2008; 8
Wu (C9AN02017A-(cit34)/*[position()=1]) 2019; 54
Cui (C9AN02017A-(cit57)/*[position()=1]) 2017; 244
Pichereau (C9AN02017A-(cit81)/*[position()=1]) 2019; 55
Vogler (C9AN02017A-(cit22)/*[position()=1]) 1998; 74
Laurent (C9AN02017A-(cit65)/*[position()=1]) 2011; 133
Hu (C9AN02017A-(cit73)/*[position()=1]) 2016; 32
Damodaran (C9AN02017A-(cit16)/*[position()=1]) 2016; 20
Krishnan (C9AN02017A-(cit52)/*[position()=1]) 2008; 18
Liu (C9AN02017A-(cit12)/*[position()=1]) 2019; 11
Goda (C9AN02017A-(cit67)/*[position()=1]) 2018; 35
Jolly (C9AN02017A-(cit61)/*[position()=1]) 2015; 209
Wu (C9AN02017A-(cit29)/*[position()=1]) 2014; 10
Daggumati (C9AN02017A-(cit48)/*[position()=1]) 2015; 87
Wang (C9AN02017A-(cit45)/*[position()=1]) 2008; 10
Wu (C9AN02017A-(cit33)/*[position()=1]) 2019; 15
Lin (C9AN02017A-(cit40)/*[position()=1]) 2015; 87
Taufik (C9AN02017A-(cit80)/*[position()=1]) 2016; 779
Lichtenberg (C9AN02017A-(cit41)/*[position()=1]) 2019; 19
Liu (C9AN02017A-(cit14)/*[position()=1]) 2016; 40
He (C9AN02017A-(cit25)/*[position()=1]) 2008; 10
Zhao (C9AN02017A-(cit70)/*[position()=1]) 2018; 997
Rana (C9AN02017A-(cit36)/*[position()=1]) 2010; 110
Jing (C9AN02017A-(cit21)/*[position()=1]) 2015; 5
Chen (C9AN02017A-(cit28)/*[position()=1]) 2010; 51
Ganesh (C9AN02017A-(cit55)/*[position()=1]) 2006; 296
Montiel (C9AN02017A-(cit42)/*[position()=1]) 2018; 140
Singh (C9AN02017A-(cit1)/*[position()=1]) 2016; 229
Hui (C9AN02017A-(cit71)/*[position()=1]) 2017; 9
Singha (C9AN02017A-(cit8)/*[position()=1]) 2017; 50
Murakami (C9AN02017A-(cit37)/*[position()=1]) 2014; 30
Zhao (C9AN02017A-(cit66)/*[position()=1]) 2000; 25
Valette (C9AN02017A-(cit18)/*[position()=1]) 1982; 139
Zhang (C9AN02017A-(cit17)/*[position()=1]) 2017; 117
Hanssen (C9AN02017A-(cit15)/*[position()=1]) 2016; 35
Silva (C9AN02017A-(cit50)/*[position()=1]) 2019; 846
Luong-Van (C9AN02017A-(cit32)/*[position()=1]) 2013; 28
González-Fernández (C9AN02017A-(cit56)/*[position()=1]) 2018; 255
Cheng (C9AN02017A-(cit43)/*[position()=1]) 2006; 17
Malecka (C9AN02017A-(cit60)/*[position()=1]) 2016; 224
Zou (C9AN02017A-(cit78)/*[position()=1]) 2015; 87
Edmondson (C9AN02017A-(cit72)/*[position()=1]) 2004; 33
Liu (C9AN02017A-(cit82)/*[position()=1]) 2018; 3
Bertok (C9AN02017A-(cit9)/*[position()=1]) 2013; 85
Wu (C9AN02017A-(cit68)/*[position()=1]) 2018; 9
Lee (C9AN02017A-(cit20)/*[position()=1]) 2017; 8
Higaki (C9AN02017A-(cit64)/*[position()=1]) 2016; 48
References_xml – volume: 142
  start-page: 149
  year: 1991
  ident: C9AN02017A-(cit27)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(91)90043-8
– volume: 5
  start-page: 13443
  year: 2015
  ident: C9AN02017A-(cit21)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA14089C
– volume: 18
  start-page: 3405
  year: 2008
  ident: C9AN02017A-(cit52)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/b801491d
– volume: 9
  start-page: 2540
  year: 2018
  ident: C9AN02017A-(cit68)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC05104B
– volume: 7
  start-page: 16881
  year: 2015
  ident: C9AN02017A-(cit30)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b05627
– volume: 139
  start-page: 285
  year: 1982
  ident: C9AN02017A-(cit18)/*[position()=1]
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
  doi: 10.1016/0022-0728(82)85127-9
– volume: 10
  start-page: 95
  year: 2008
  ident: C9AN02017A-(cit45)/*[position()=1]
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2007.11.002
– volume: 10
  start-page: 5539
  year: 2008
  ident: C9AN02017A-(cit25)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b807129b
– volume: 30
  start-page: 1321
  year: 2014
  ident: C9AN02017A-(cit58)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la403983b
– volume: 141
  start-page: 3482
  year: 2016
  ident: C9AN02017A-(cit35)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/C6AN00146G
– volume: 846
  start-page: 113160
  year: 2019
  ident: C9AN02017A-(cit50)/*[position()=1]
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2019.05.042
– volume: 119
  start-page: 8916
  year: 1997
  ident: C9AN02017A-(cit59)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9719586
– volume: 289
  start-page: 15
  year: 2019
  ident: C9AN02017A-(cit44)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2019.03.038
– volume: 142
  start-page: 4215
  year: 2017
  ident: C9AN02017A-(cit26)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/C7AN01295K
– volume: 35
  start-page: 1
  year: 2016
  ident: C9AN02017A-(cit15)/*[position()=1]
  publication-title: Rev. Anal. Chem.
  doi: 10.1515/revac-2015-0008
– volume: 30
  start-page: 2061
  year: 2014
  ident: C9AN02017A-(cit37)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la4049067
– volume: 209
  start-page: 306
  year: 2015
  ident: C9AN02017A-(cit61)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2014.11.083
– volume: 25
  start-page: 677
  year: 2000
  ident: C9AN02017A-(cit66)/*[position()=1]
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/S0079-6700(00)00012-5
– volume: 25
  start-page: 2905
  year: 2013
  ident: C9AN02017A-(cit76)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm401512c
– volume: 33
  start-page: 14
  year: 2004
  ident: C9AN02017A-(cit72)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b210143m
– volume: 87
  start-page: 2488
  year: 2015
  ident: C9AN02017A-(cit78)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac504513a
– volume: 50
  start-page: 6793
  year: 2014
  ident: C9AN02017A-(cit79)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC01329H
– volume: 34
  start-page: 429
  year: 2005
  ident: C9AN02017A-(cit77)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b406228k
– volume: 117
  start-page: 12942
  year: 2017
  ident: C9AN02017A-(cit17)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00088
– volume: 60
  start-page: 101
  year: 2014
  ident: C9AN02017A-(cit2)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2014.03.057
– volume: 40
  start-page: 100
  year: 2016
  ident: C9AN02017A-(cit14)/*[position()=1]
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.02.035
– volume: 51
  start-page: 5283
  year: 2010
  ident: C9AN02017A-(cit28)/*[position()=1]
  publication-title: Polymer
  doi: 10.1016/j.polymer.2010.08.022
– volume: 85
  start-page: 11610
  year: 2013
  ident: C9AN02017A-(cit49)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac403013r
– volume: 9
  start-page: 2914
  year: 2017
  ident: C9AN02017A-(cit71)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b11682
– volume: 296
  start-page: 195
  year: 2006
  ident: C9AN02017A-(cit55)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2005.08.051
– volume: 366
  start-page: 622
  year: 2000
  ident: C9AN02017A-(cit7)/*[position()=1]
  publication-title: Fresenius’ J. Anal. Chem.
  doi: 10.1007/s002160051557
– volume: 28
  start-page: 165
  year: 2013
  ident: C9AN02017A-(cit32)/*[position()=1]
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2012.398
– volume: 80
  start-page: 84
  year: 2016
  ident: C9AN02017A-(cit74)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.01.040
– volume: 55
  start-page: 455
  year: 2019
  ident: C9AN02017A-(cit81)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC08331B
– volume: 40
  start-page: 3995
  year: 2011
  ident: C9AN02017A-(cit75)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00149j
– volume: 135
  start-page: 16034
  year: 2013
  ident: C9AN02017A-(cit3)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja408485m
– volume: 19
  start-page: 5682
  year: 2019
  ident: C9AN02017A-(cit31)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/C9AN01300H
– volume: 3
  start-page: 1210
  year: 2018
  ident: C9AN02017A-(cit82)/*[position()=1]
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.8b00318
– volume: 80
  start-page: 167
  year: 2016
  ident: C9AN02017A-(cit10)/*[position()=1]
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2015.07.018
– volume: 779
  start-page: 229
  year: 2016
  ident: C9AN02017A-(cit80)/*[position()=1]
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2016.01.031
– volume: 19
  start-page: 2488
  year: 2019
  ident: C9AN02017A-(cit41)/*[position()=1]
  publication-title: Sensors
  doi: 10.3390/s19112488
– volume: 255
  start-page: 3040
  year: 2018
  ident: C9AN02017A-(cit56)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2017.09.128
– volume: 224
  start-page: 290
  year: 2016
  ident: C9AN02017A-(cit60)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2015.10.044
– volume: 88
  start-page: 507
  year: 2002
  ident: C9AN02017A-(cit11)/*[position()=1]
  publication-title: Br. J. Nutr.
  doi: 10.1079/BJN2002702
– volume: 11
  start-page: 702
  year: 2019
  ident: C9AN02017A-(cit12)/*[position()=1]
  publication-title: Anal. Methods
  doi: 10.1039/C8AY02674B
– volume: 244
  start-page: 742
  year: 2017
  ident: C9AN02017A-(cit57)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2017.01.060
– volume: 140
  start-page: 14050
  year: 2018
  ident: C9AN02017A-(cit42)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08894
– volume: 139
  start-page: 1589
  year: 2014
  ident: C9AN02017A-(cit4)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/c3an01861j
– volume: 100
  start-page: 577
  year: 2018
  ident: C9AN02017A-(cit39)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2017.10.012
– volume: 35
  start-page: 1126
  year: 2018
  ident: C9AN02017A-(cit67)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b01492
– volume: 133
  start-page: 13421
  year: 2011
  ident: C9AN02017A-(cit65)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2024355
– volume: 15
  start-page: 16292
  year: 2019
  ident: C9AN02017A-(cit33)/*[position()=1]
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b01317
– volume: 29
  start-page: 4251
  year: 1996
  ident: C9AN02017A-(cit24)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma9508616
– volume: 17
  start-page: 1359
  year: 2006
  ident: C9AN02017A-(cit43)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/17/5/032
– volume: 10
  start-page: 751
  year: 2014
  ident: C9AN02017A-(cit29)/*[position()=1]
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.09.038
– volume: 87
  start-page: 8047
  year: 2015
  ident: C9AN02017A-(cit40)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b01834
– volume: 20
  start-page: 423
  year: 2019
  ident: C9AN02017A-(cit13)/*[position()=1]
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20020423
– volume: 32
  start-page: 11763
  year: 2016
  ident: C9AN02017A-(cit73)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b03016
– volume: 19
  start-page: 28
  year: 2019
  ident: C9AN02017A-(cit5)/*[position()=1]
  publication-title: Sensors
  doi: 10.3390/s19010028
– volume: 8
  start-page: 4110
  year: 2008
  ident: C9AN02017A-(cit19)/*[position()=1]
  publication-title: Sensors
  doi: 10.3390/s8074110
– volume: 8
  start-page: 17
  year: 2017
  ident: C9AN02017A-(cit20)/*[position()=1]
  publication-title: Nanomaterials
  doi: 10.3390/nano8010017
– volume: 257
  start-page: 7805
  year: 2011
  ident: C9AN02017A-(cit54)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.04.033
– volume: 27
  start-page: 13828
  year: 2011
  ident: C9AN02017A-(cit47)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la202907f
– volume: 87
  start-page: 8618
  year: 2015
  ident: C9AN02017A-(cit48)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b02969
– volume: 997
  start-page: 60
  year: 2018
  ident: C9AN02017A-(cit70)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2017.10.017
– volume: 20
  start-page: 18
  year: 2016
  ident: C9AN02017A-(cit16)/*[position()=1]
  publication-title: Biomater. Res.
  doi: 10.1186/s40824-016-0064-4
– volume: 41
  start-page: 1363
  year: 2012
  ident: C9AN02017A-(cit53)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15145B
– volume: 74
  start-page: 69
  year: 1998
  ident: C9AN02017A-(cit22)/*[position()=1]
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/S0001-8686(97)00040-7
– volume: 35
  start-page: 8456
  year: 2002
  ident: C9AN02017A-(cit23)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma020444a
– volume: 79
  start-page: 736
  year: 2016
  ident: C9AN02017A-(cit69)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.01.012
– volume: 54
  start-page: 10179
  year: 2019
  ident: C9AN02017A-(cit34)/*[position()=1]
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-019-03635-0
– volume: 48
  start-page: 325
  year: 2016
  ident: C9AN02017A-(cit64)/*[position()=1]
  publication-title: Polym. J.
  doi: 10.1038/pj.2015.137
– volume: 85
  start-page: 7324
  year: 2013
  ident: C9AN02017A-(cit9)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac401281t
– volume: 11
  start-page: 21294
  year: 2019
  ident: C9AN02017A-(cit51)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b04924
– volume: 39
  start-page: 1747
  year: 2010
  ident: C9AN02017A-(cit6)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b714449k
– volume: 229
  start-page: 110
  year: 2016
  ident: C9AN02017A-(cit1)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2016.01.118
– volume: 110
  start-page: 2448
  year: 2010
  ident: C9AN02017A-(cit36)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr800208y
– volume: 49
  start-page: 655
  year: 2016
  ident: C9AN02017A-(cit62)/*[position()=1]
  publication-title: BMB Rep.
  doi: 10.5483/BMBRep.2016.49.12.166
– volume: 9
  start-page: 761
  year: 2019
  ident: C9AN02017A-(cit46)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C8RA08527G
– volume: 50
  start-page: 20
  year: 2017
  ident: C9AN02017A-(cit8)/*[position()=1]
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.11.070
– volume: 85
  start-page: 1784
  year: 2013
  ident: C9AN02017A-(cit38)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac303142e
– volume: 3
  start-page: 97
  year: 2017
  ident: C9AN02017A-(cit63)/*[position()=1]
  publication-title: Biosurf. Biotribol.
  doi: 10.1016/j.bsbt.2017.10.001
SSID ssj0001050
Score 2.6345866
SecondaryResourceType review_article
Snippet Electrochemical biosensors have been applied in a broad range of clinical applications for pathogen biomarker detection and medical applications and diagnosis...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 111
SubjectTerms Antifouling
Binding
Biocompatibility
Biomarkers
Biosensors
Chemical sensors
Complexity
Lipids
Polysaccharides
Submerging
Title Antifouling strategies in advanced electrochemical sensors and biosensors
URI https://www.ncbi.nlm.nih.gov/pubmed/31916551
https://www.proquest.com/docview/2355804585
https://www.proquest.com/docview/2335174031
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7aDbS5hL7SOo_i0l56UGtLsi0fzZKwKWkoZQO5GethWEi9YeNc-uszsiXbabfQ9mJ2ZdmC-UajmZH1DcAH9PhFivE_iaXihKuMEcGFImma1Bk1PKEdpdDXi3Rxyb9cJVdjqcPudEkrP6mfW8-V_A-q2Ia42lOy_4Ds8FJswN-IL14RYbz-FcaF_dLHljTvcgKe9MGmMIatfVfmRnlegFsMW219HZsvl6u1-zt1UXuaknZa62NIFpz3jAPfzIosjFvzuuZOTdYb8t0pm8sjYNBoq5r0a53pbR9LOUkSd1bbG8ee7NFpAZ-YOjSS0VYbHDFLYaryqsFR4qyadkL53fzo0MCpH6eJI5t9yHjtbz2GHYrOP53BTnGyPDsfVlj0CSNPNcvyz-NQu_DEP_zQz_gteEBXYuNLvHSuxPIZ7LkYICx6QJ_DI9O8gKdzX3rvJZxNgA1HYMNVE3pgw1-ADR2SIQIbjsC-gsvTk-V8QVzNC6J4xFpSVTqnqdSstsREMdUmlzKLdSaM0lpwUyXC8FjUOorqBF0QLWktqcaFR9Rondk-zJp1Y95AmFFl4lxJYVnUhMZQCmdianI063UW51UAH72ESuUI4W1dkuuy-zCB5eU8Ly46wRYBvB_63vQ0KFt7HXlBl26a3JbUEvjb7fgkgHfDbRSo3ZmqGrO-s32YZUzHBSaA1z1AwzAe0AD2EbGheQT94I-PHMLuqOlHMGs3d-YYfchWvnUqdQ97ZG6W
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antifouling+strategies+in+advanced+electrochemical+sensors+and+biosensors&rft.jtitle=Analyst+%28London%29&rft.au=Lin%2C+Pei-Heng&rft.au=Li%2C+Bor-Ran&rft.date=2020-02-17&rft.eissn=1364-5528&rft.volume=145&rft.issue=4&rft.spage=1110&rft_id=info:doi/10.1039%2Fc9an02017a&rft_id=info%3Apmid%2F31916551&rft.externalDocID=31916551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2654&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2654&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2654&client=summon