Antifouling strategies in advanced electrochemical sensors and biosensors
Electrochemical biosensors have been applied in a broad range of clinical applications for pathogen biomarker detection and medical applications and diagnosis due to the sensitivity of electrochemical methods and the bioselectivity of the components. The complexity of clinical conditions with variou...
Saved in:
Published in | Analyst (London) Vol. 145; no. 4; pp. 111 - 112 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
17.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrochemical biosensors have been applied in a broad range of clinical applications for pathogen biomarker detection and medical applications and diagnosis due to the sensitivity of electrochemical methods and the bioselectivity of the components. The complexity of clinical conditions with various biofoulants (proteins, cells, polysaccharides and lipids) severely influences the reliability and stability of sensors for direct detection or immersion under changing conditions. Therefore, designing an antifouling sensing platform that can effectively reduce undesired binding to maintain biosensor performance in optimized analysis is necessary. For this purpose, the fundamental mechanisms of fouling materials and commonly used biocompatible antifouling components have been discussed, and the relevant effective modification strategies are introduced in this review. Recent advances in these strategies are demonstrated in examples with analysis of essential modification methods for reliable sensing in non-specific binding solutions or complex biofluids. The challenges and future perspectives of modification strategies for current clinical application are also discussed in this review.
A review presented recent development of antifouling strategies in electrochemical sensors and biosensors based on the modification methods. |
---|---|
AbstractList | Electrochemical biosensors have been applied in a broad range of clinical applications for pathogen biomarker detection and medical applications and diagnosis due to the sensitivity of electrochemical methods and the bioselectivity of the components. The complexity of clinical conditions with various biofoulants (proteins, cells, polysaccharides and lipids) severely influences the reliability and stability of sensors for direct detection or immersion under changing conditions. Therefore, designing an antifouling sensing platform that can effectively reduce undesired binding to maintain biosensor performance in optimized analysis is necessary. For this purpose, the fundamental mechanisms of fouling materials and commonly used biocompatible antifouling components have been discussed, and the relevant effective modification strategies are introduced in this review. Recent advances in these strategies are demonstrated in examples with analysis of essential modification methods for reliable sensing in non-specific binding solutions or complex biofluids. The challenges and future perspectives of modification strategies for current clinical application are also discussed in this review.Electrochemical biosensors have been applied in a broad range of clinical applications for pathogen biomarker detection and medical applications and diagnosis due to the sensitivity of electrochemical methods and the bioselectivity of the components. The complexity of clinical conditions with various biofoulants (proteins, cells, polysaccharides and lipids) severely influences the reliability and stability of sensors for direct detection or immersion under changing conditions. Therefore, designing an antifouling sensing platform that can effectively reduce undesired binding to maintain biosensor performance in optimized analysis is necessary. For this purpose, the fundamental mechanisms of fouling materials and commonly used biocompatible antifouling components have been discussed, and the relevant effective modification strategies are introduced in this review. Recent advances in these strategies are demonstrated in examples with analysis of essential modification methods for reliable sensing in non-specific binding solutions or complex biofluids. The challenges and future perspectives of modification strategies for current clinical application are also discussed in this review. Electrochemical biosensors have been applied in a broad range of clinical applications for pathogen biomarker detection and medical applications and diagnosis due to the sensitivity of electrochemical methods and the bioselectivity of the components. The complexity of clinical conditions with various biofoulants (proteins, cells, polysaccharides and lipids) severely influences the reliability and stability of sensors for direct detection or immersion under changing conditions. Therefore, designing an antifouling sensing platform that can effectively reduce undesired binding to maintain biosensor performance in optimized analysis is necessary. For this purpose, the fundamental mechanisms of fouling materials and commonly used biocompatible antifouling components have been discussed, and the relevant effective modification strategies are introduced in this review. Recent advances in these strategies are demonstrated in examples with analysis of essential modification methods for reliable sensing in non-specific binding solutions or complex biofluids. The challenges and future perspectives of modification strategies for current clinical application are also discussed in this review. Electrochemical biosensors have been applied in a broad range of clinical applications for pathogen biomarker detection and medical applications and diagnosis due to the sensitivity of electrochemical methods and the bioselectivity of the components. The complexity of clinical conditions with various biofoulants (proteins, cells, polysaccharides and lipids) severely influences the reliability and stability of sensors for direct detection or immersion under changing conditions. Therefore, designing an antifouling sensing platform that can effectively reduce undesired binding to maintain biosensor performance in optimized analysis is necessary. For this purpose, the fundamental mechanisms of fouling materials and commonly used biocompatible antifouling components have been discussed, and the relevant effective modification strategies are introduced in this review. Recent advances in these strategies are demonstrated in examples with analysis of essential modification methods for reliable sensing in non-specific binding solutions or complex biofluids. The challenges and future perspectives of modification strategies for current clinical application are also discussed in this review. A review presented recent development of antifouling strategies in electrochemical sensors and biosensors based on the modification methods. |
Author | Li, Bor-Ran Lin, Pei-Heng |
AuthorAffiliation | Department of Electrical and Computer Engineering Center for Emergent Functional Matter Science Institute of Biomedical Engineering National Chiao Tung University College of Electrical and Computer Engineering |
AuthorAffiliation_xml | – sequence: 0 name: Institute of Biomedical Engineering – sequence: 0 name: Department of Electrical and Computer Engineering – sequence: 0 name: Center for Emergent Functional Matter Science – sequence: 0 name: National Chiao Tung University – sequence: 0 name: College of Electrical and Computer Engineering |
Author_xml | – sequence: 1 givenname: Pei-Heng surname: Lin fullname: Lin, Pei-Heng – sequence: 2 givenname: Bor-Ran surname: Li fullname: Li, Bor-Ran |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31916551$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0UtLAzEQB_Agin3oxbuy4EWE1Tw22-xxKT4KRS96XrLJbE3ZJjXZFfz2RtsqFE9h4DczYf4jdGidBYTOCL4hmBW3qpAWU0wm8gANCcuzlHMqDtEQY8xSmvNsgEYhLGNJMMfHaMBIQXLOyRDNStuZxvWtsYskdF52sDAQEmMTqT-kVaATaEF13qk3WBkl2ySADc6HRFqd1MZtyxN01Mg2wOn2HaPX-7uX6WM6f36YTct5qjLMulRKXdC81qzBlApCNRR1PSF6IkBpLTKQXEBGRKMxbjjLiK5pU1NNSSEawSgbo6vN3LV37z2ErlqZoKBtpQXXh4oyxskk7iKRXu7Rpeu9jb-LinOBMy54VBdb1dcr0NXam5X0n9XuSBHgDVDeheChqZTpZGecjfcybUVw9Z1DNS3Kp58cythyvdeym_ovPt9gH9Sv-wuVfQFwmpEv |
CitedBy_id | crossref_primary_10_1016_j_bios_2022_114983 crossref_primary_10_1039_D1RA04631D crossref_primary_10_1002_admt_202100049 crossref_primary_10_1021_acs_analchem_0c02240 crossref_primary_10_1111_1541_4337_13209 crossref_primary_10_1021_acssensors_3c02766 crossref_primary_10_1016_j_isci_2020_101658 crossref_primary_10_1016_j_colsurfa_2024_135431 crossref_primary_10_1007_s00604_022_05190_z crossref_primary_10_1016_j_snb_2021_131086 crossref_primary_10_1021_acsapm_3c02150 crossref_primary_10_1016_j_trac_2023_117372 crossref_primary_10_1039_D1EN00966D crossref_primary_10_1016_j_inoche_2023_110714 crossref_primary_10_1002_anbr_202000104 crossref_primary_10_3390_pharmaceutics14051051 crossref_primary_10_1002_adma_202107892 crossref_primary_10_1016_j_diamond_2024_111940 crossref_primary_10_1021_acssensors_2c02140 crossref_primary_10_1016_j_talanta_2021_123124 crossref_primary_10_1021_acs_iecr_3c00140 crossref_primary_10_1002_adhm_202102244 crossref_primary_10_1080_24725854_2023_2222162 crossref_primary_10_1002_anie_202218080 crossref_primary_10_1016_j_aca_2021_338907 crossref_primary_10_1016_j_cis_2022_102657 crossref_primary_10_1021_acsami_4c05685 crossref_primary_10_1016_j_talanta_2025_127850 crossref_primary_10_1080_19475411_2024_2385350 crossref_primary_10_1016_j_bios_2021_113477 crossref_primary_10_1002_elan_202100406 crossref_primary_10_1016_j_talanta_2023_124341 crossref_primary_10_1016_j_mtchem_2022_101129 crossref_primary_10_1016_j_microc_2023_108619 crossref_primary_10_1016_j_watres_2020_115926 crossref_primary_10_1002_ange_202218080 crossref_primary_10_1021_acs_accounts_1c00382 crossref_primary_10_1016_j_jelechem_2021_115466 crossref_primary_10_1021_acs_jafc_4c09423 crossref_primary_10_3390_bios11080246 crossref_primary_10_1039_D4LC00073K crossref_primary_10_1039_D0LC00663G crossref_primary_10_1016_j_bios_2024_116949 crossref_primary_10_1109_JSEN_2020_3004426 crossref_primary_10_1002_smll_202108112 crossref_primary_10_1016_j_bios_2021_113626 crossref_primary_10_1016_j_polymer_2024_127230 crossref_primary_10_1021_acssensors_2c00518 crossref_primary_10_1039_D1NA00748C crossref_primary_10_1002_smll_202003934 crossref_primary_10_1016_j_bios_2021_113466 crossref_primary_10_1021_acs_analchem_1c03292 crossref_primary_10_1021_acs_jafc_4c01665 crossref_primary_10_3390_chemosensors10070263 crossref_primary_10_3390_jfb14060329 crossref_primary_10_3390_bios11070232 crossref_primary_10_3390_molecules25153373 crossref_primary_10_1016_j_jelechem_2020_114969 crossref_primary_10_1016_j_microc_2023_108805 crossref_primary_10_1016_j_eng_2021_08_010 crossref_primary_10_1016_j_talanta_2021_123187 crossref_primary_10_1016_j_talanta_2024_125623 crossref_primary_10_1016_j_aca_2023_341244 crossref_primary_10_1016_j_coelec_2020_08_007 crossref_primary_10_1016_j_talanta_2021_122776 crossref_primary_10_1142_S2737599422400035 crossref_primary_10_1016_j_bios_2021_113737 crossref_primary_10_1016_j_snb_2021_130349 crossref_primary_10_1021_acsami_4c08891 crossref_primary_10_1021_acs_analchem_1c04153 crossref_primary_10_2116_analsci_21SAR01 crossref_primary_10_1016_j_colsurfb_2024_113936 crossref_primary_10_1016_j_sna_2022_113525 crossref_primary_10_1002_cjoc_202100685 crossref_primary_10_1039_D1AN02308J crossref_primary_10_1007_s40820_020_00533_y crossref_primary_10_1039_D3AN00291H crossref_primary_10_1038_s41598_023_33654_6 crossref_primary_10_1039_D0CS00107D crossref_primary_10_1016_j_snb_2024_136974 crossref_primary_10_1016_j_snb_2024_135520 crossref_primary_10_3390_nano12213736 crossref_primary_10_1146_annurev_anchem_061417_125655 crossref_primary_10_1016_j_cej_2024_148975 crossref_primary_10_1039_D2CC03509J crossref_primary_10_3390_s22072784 crossref_primary_10_1016_j_aca_2023_341575 crossref_primary_10_1016_j_apsusc_2023_158532 crossref_primary_10_1016_j_foodcont_2024_110695 crossref_primary_10_1080_10408347_2022_2114784 crossref_primary_10_1039_D5SC00199D crossref_primary_10_1016_j_elecom_2020_106862 crossref_primary_10_1016_j_cclet_2023_108314 crossref_primary_10_1007_s11356_022_21035_x crossref_primary_10_1016_j_bios_2021_113603 crossref_primary_10_1007_s00604_024_06521_y crossref_primary_10_3390_mi13030362 crossref_primary_10_1021_acsnano_2c12606 crossref_primary_10_1149_1945_7111_ad2732 crossref_primary_10_1021_acs_bioconjchem_3c00444 crossref_primary_10_1021_acs_analchem_1c00089 crossref_primary_10_1007_s00604_023_05785_0 crossref_primary_10_1016_j_ijbiomac_2023_127269 crossref_primary_10_1016_j_ccr_2024_216149 crossref_primary_10_1038_s41598_021_00470_9 crossref_primary_10_1021_acsami_3c15849 crossref_primary_10_1021_acs_macromol_3c01469 crossref_primary_10_1039_D3CS00417A crossref_primary_10_1002_btpr_3297 crossref_primary_10_1016_j_apsusc_2024_160226 crossref_primary_10_3390_encyclopedia1030065 crossref_primary_10_1002_admt_202401808 crossref_primary_10_1021_acs_est_3c09889 crossref_primary_10_1021_acs_langmuir_4c03901 crossref_primary_10_1016_j_cej_2024_153522 crossref_primary_10_1021_acs_analchem_3c04868 crossref_primary_10_1016_j_microc_2023_108419 crossref_primary_10_1021_acsnano_3c01629 crossref_primary_10_1002_bit_27793 crossref_primary_10_1016_j_talanta_2023_125510 crossref_primary_10_1007_s00604_024_06218_2 crossref_primary_10_1021_acsestengg_1c00256 crossref_primary_10_1016_j_aca_2022_339759 crossref_primary_10_1021_acssensors_4c02670 crossref_primary_10_1016_j_aca_2020_01_047 crossref_primary_10_3390_bios10020010 crossref_primary_10_1002_adma_202305917 crossref_primary_10_1002_elan_202060071 crossref_primary_10_1016_j_snb_2022_131823 crossref_primary_10_1371_journal_pone_0287824 crossref_primary_10_1080_10408347_2022_2063683 crossref_primary_10_1039_D1BM01330K crossref_primary_10_1039_D0RA10000E crossref_primary_10_1002_adsr_202300170 crossref_primary_10_1016_j_snb_2022_133166 crossref_primary_10_1080_10408347_2020_1809339 crossref_primary_10_1021_acssensors_4c00126 crossref_primary_10_1016_j_apsadv_2023_100513 crossref_primary_10_1007_s10876_021_02165_7 crossref_primary_10_1016_j_snb_2020_129426 crossref_primary_10_1021_acs_analchem_4c05771 crossref_primary_10_1021_acssensors_1c00390 crossref_primary_10_1016_j_apmt_2021_101128 crossref_primary_10_1016_j_talanta_2024_127058 crossref_primary_10_1021_acs_langmuir_4c04859 crossref_primary_10_1021_acssensors_2c00787 crossref_primary_10_1007_s10854_022_08117_9 crossref_primary_10_1016_j_talanta_2025_127599 crossref_primary_10_2147_IJN_S406078 crossref_primary_10_3390_bios13121004 crossref_primary_10_1002_admi_202201210 crossref_primary_10_1016_j_cej_2021_132966 crossref_primary_10_1016_j_nantod_2023_102141 crossref_primary_10_1021_acsami_0c07614 crossref_primary_10_1021_acsami_3c18546 |
Cites_doi | 10.1016/0021-9797(91)90043-8 10.1039/C4RA14089C 10.1039/b801491d 10.1039/C7SC05104B 10.1021/acsami.5b05627 10.1016/0022-0728(82)85127-9 10.1016/j.elecom.2007.11.002 10.1039/b807129b 10.1021/la403983b 10.1039/C6AN00146G 10.1016/j.jelechem.2019.05.042 10.1021/ja9719586 10.1016/j.snb.2019.03.038 10.1039/C7AN01295K 10.1515/revac-2015-0008 10.1021/la4049067 10.1016/j.snb.2014.11.083 10.1016/S0079-6700(00)00012-5 10.1021/cm401512c 10.1039/b210143m 10.1021/ac504513a 10.1039/C4CC01329H 10.1039/b406228k 10.1021/acs.chemrev.7b00088 10.1016/j.bios.2014.03.057 10.1016/j.actbio.2016.02.035 10.1016/j.polymer.2010.08.022 10.1021/ac403013r 10.1021/acsami.6b11682 10.1016/j.jcis.2005.08.051 10.1007/s002160051557 10.1557/jmr.2012.398 10.1016/j.bios.2016.01.040 10.1039/C8CC08331B 10.1039/c0cs00149j 10.1021/ja408485m 10.1039/C9AN01300H 10.1021/acssensors.8b00318 10.1016/j.trac.2015.07.018 10.1016/j.jelechem.2016.01.031 10.3390/s19112488 10.1016/j.snb.2017.09.128 10.1016/j.snb.2015.10.044 10.1079/BJN2002702 10.1039/C8AY02674B 10.1016/j.snb.2017.01.060 10.1021/jacs.8b08894 10.1039/c3an01861j 10.1016/j.bios.2017.10.012 10.1021/acs.langmuir.8b01492 10.1021/ja2024355 10.1021/acsomega.9b01317 10.1021/ma9508616 10.1088/0957-4484/17/5/032 10.1016/j.actbio.2013.09.038 10.1021/acs.analchem.5b01834 10.3390/ijms20020423 10.1021/acs.langmuir.6b03016 10.3390/s19010028 10.3390/s8074110 10.3390/nano8010017 10.1016/j.apsusc.2011.04.033 10.1021/la202907f 10.1021/acs.analchem.5b02969 10.1016/j.aca.2017.10.017 10.1186/s40824-016-0064-4 10.1039/C1CS15145B 10.1016/S0001-8686(97)00040-7 10.1021/ma020444a 10.1016/j.bios.2016.01.012 10.1007/s10853-019-03635-0 10.1038/pj.2015.137 10.1021/ac401281t 10.1021/acsami.9b04924 10.1039/b714449k 10.1016/j.snb.2016.01.118 10.1021/cr800208y 10.5483/BMBRep.2016.49.12.166 10.1039/C8RA08527G 10.1016/j.actbio.2016.11.070 10.1021/ac303142e 10.1016/j.bsbt.2017.10.001 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/c9an02017a |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1364-5528 |
EndPage | 112 |
ExternalDocumentID | 31916551 10_1039_C9AN02017A c9an02017a |
Genre | Journal Article |
GroupedDBID | --- -JG -~X .HR 0-7 0R~ 23M 2WC 4.4 5RE 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABGFH ABJNI ABOCM ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K COF CS3 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- P2P R7B R7E RAOCF RCNCU RPMJG RRA RRC RSCEA SKM SKR SKZ SLC SLF TN5 UPT VH6 WH7 ~02 AAYXX AFRZK AKMSF CITATION R56 NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c403t-aad926bd3f022812de9bb71d78ecdd84ea58e418fd00f5341db2fb2d2198f8323 |
ISSN | 0003-2654 1364-5528 |
IngestDate | Fri Jul 11 02:43:29 EDT 2025 Mon Jun 30 04:34:30 EDT 2025 Wed Feb 19 02:31:32 EST 2025 Tue Jul 01 01:56:59 EDT 2025 Thu Apr 24 22:52:39 EDT 2025 Tue Dec 17 20:58:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c403t-aad926bd3f022812de9bb71d78ecdd84ea58e418fd00f5341db2fb2d2198f8323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2266-680X |
PMID | 31916551 |
PQID | 2355804585 |
PQPubID | 2047505 |
PageCount | 11 |
ParticipantIDs | pubmed_primary_31916551 proquest_journals_2355804585 rsc_primary_c9an02017a proquest_miscellaneous_2335174031 crossref_citationtrail_10_1039_C9AN02017A crossref_primary_10_1039_C9AN02017A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200217 |
PublicationDateYYYYMMDD | 2020-02-17 |
PublicationDate_xml | – month: 2 year: 2020 text: 20200217 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Analyst (London) |
PublicationTitleAlternate | Analyst |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Sang (C9AN02017A-(cit47)/*[position()=1]) 2011; 27 Patel (C9AN02017A-(cit49)/*[position()=1]) 2013; 85 Leng (C9AN02017A-(cit30)/*[position()=1]) 2015; 7 Campuzano (C9AN02017A-(cit13)/*[position()=1]) 2019; 20 Yang (C9AN02017A-(cit63)/*[position()=1]) 2017; 3 Lee (C9AN02017A-(cit46)/*[position()=1]) 2019; 9 Wu (C9AN02017A-(cit51)/*[position()=1]) 2019; 11 Belanger (C9AN02017A-(cit75)/*[position()=1]) 2011; 40 Matharu (C9AN02017A-(cit53)/*[position()=1]) 2012; 41 Li (C9AN02017A-(cit4)/*[position()=1]) 2014; 139 Lüsse (C9AN02017A-(cit24)/*[position()=1]) 1996; 29 Li (C9AN02017A-(cit79)/*[position()=1]) 2014; 50 Shen (C9AN02017A-(cit2)/*[position()=1]) 2014; 60 Warsinke (C9AN02017A-(cit7)/*[position()=1]) 2000; 366 Hang (C9AN02017A-(cit44)/*[position()=1]) 2019; 289 Cui (C9AN02017A-(cit69)/*[position()=1]) 2016; 79 Rodovalho (C9AN02017A-(cit39)/*[position()=1]) 2018; 100 Pinson (C9AN02017A-(cit77)/*[position()=1]) 2005; 34 Lin (C9AN02017A-(cit5)/*[position()=1]) 2019; 19 Hasanzadeh (C9AN02017A-(cit10)/*[position()=1]) 2016; 80 Zaccari (C9AN02017A-(cit58)/*[position()=1]) 2014; 30 Islam (C9AN02017A-(cit11)/*[position()=1]) 2002; 88 Menanteau (C9AN02017A-(cit76)/*[position()=1]) 2013; 25 Ronkainen (C9AN02017A-(cit6)/*[position()=1]) 2010; 39 Megelski (C9AN02017A-(cit23)/*[position()=1]) 2002; 35 Yao (C9AN02017A-(cit26)/*[position()=1]) 2017; 142 Deng (C9AN02017A-(cit31)/*[position()=1]) 2019; 19 Yan (C9AN02017A-(cit35)/*[position()=1]) 2016; 141 Vaisocherová-Lísalová (C9AN02017A-(cit74)/*[position()=1]) 2016; 80 Li (C9AN02017A-(cit3)/*[position()=1]) 2013; 135 Kim (C9AN02017A-(cit62)/*[position()=1]) 2016; 49 Jeon (C9AN02017A-(cit27)/*[position()=1]) 1991; 142 Herne (C9AN02017A-(cit59)/*[position()=1]) 1997; 119 Jeong (C9AN02017A-(cit38)/*[position()=1]) 2013; 85 Mesnage (C9AN02017A-(cit54)/*[position()=1]) 2011; 257 Kim (C9AN02017A-(cit19)/*[position()=1]) 2008; 8 Wu (C9AN02017A-(cit34)/*[position()=1]) 2019; 54 Cui (C9AN02017A-(cit57)/*[position()=1]) 2017; 244 Pichereau (C9AN02017A-(cit81)/*[position()=1]) 2019; 55 Vogler (C9AN02017A-(cit22)/*[position()=1]) 1998; 74 Laurent (C9AN02017A-(cit65)/*[position()=1]) 2011; 133 Hu (C9AN02017A-(cit73)/*[position()=1]) 2016; 32 Damodaran (C9AN02017A-(cit16)/*[position()=1]) 2016; 20 Krishnan (C9AN02017A-(cit52)/*[position()=1]) 2008; 18 Liu (C9AN02017A-(cit12)/*[position()=1]) 2019; 11 Goda (C9AN02017A-(cit67)/*[position()=1]) 2018; 35 Jolly (C9AN02017A-(cit61)/*[position()=1]) 2015; 209 Wu (C9AN02017A-(cit29)/*[position()=1]) 2014; 10 Daggumati (C9AN02017A-(cit48)/*[position()=1]) 2015; 87 Wang (C9AN02017A-(cit45)/*[position()=1]) 2008; 10 Wu (C9AN02017A-(cit33)/*[position()=1]) 2019; 15 Lin (C9AN02017A-(cit40)/*[position()=1]) 2015; 87 Taufik (C9AN02017A-(cit80)/*[position()=1]) 2016; 779 Lichtenberg (C9AN02017A-(cit41)/*[position()=1]) 2019; 19 Liu (C9AN02017A-(cit14)/*[position()=1]) 2016; 40 He (C9AN02017A-(cit25)/*[position()=1]) 2008; 10 Zhao (C9AN02017A-(cit70)/*[position()=1]) 2018; 997 Rana (C9AN02017A-(cit36)/*[position()=1]) 2010; 110 Jing (C9AN02017A-(cit21)/*[position()=1]) 2015; 5 Chen (C9AN02017A-(cit28)/*[position()=1]) 2010; 51 Ganesh (C9AN02017A-(cit55)/*[position()=1]) 2006; 296 Montiel (C9AN02017A-(cit42)/*[position()=1]) 2018; 140 Singh (C9AN02017A-(cit1)/*[position()=1]) 2016; 229 Hui (C9AN02017A-(cit71)/*[position()=1]) 2017; 9 Singha (C9AN02017A-(cit8)/*[position()=1]) 2017; 50 Murakami (C9AN02017A-(cit37)/*[position()=1]) 2014; 30 Zhao (C9AN02017A-(cit66)/*[position()=1]) 2000; 25 Valette (C9AN02017A-(cit18)/*[position()=1]) 1982; 139 Zhang (C9AN02017A-(cit17)/*[position()=1]) 2017; 117 Hanssen (C9AN02017A-(cit15)/*[position()=1]) 2016; 35 Silva (C9AN02017A-(cit50)/*[position()=1]) 2019; 846 Luong-Van (C9AN02017A-(cit32)/*[position()=1]) 2013; 28 González-Fernández (C9AN02017A-(cit56)/*[position()=1]) 2018; 255 Cheng (C9AN02017A-(cit43)/*[position()=1]) 2006; 17 Malecka (C9AN02017A-(cit60)/*[position()=1]) 2016; 224 Zou (C9AN02017A-(cit78)/*[position()=1]) 2015; 87 Edmondson (C9AN02017A-(cit72)/*[position()=1]) 2004; 33 Liu (C9AN02017A-(cit82)/*[position()=1]) 2018; 3 Bertok (C9AN02017A-(cit9)/*[position()=1]) 2013; 85 Wu (C9AN02017A-(cit68)/*[position()=1]) 2018; 9 Lee (C9AN02017A-(cit20)/*[position()=1]) 2017; 8 Higaki (C9AN02017A-(cit64)/*[position()=1]) 2016; 48 |
References_xml | – volume: 142 start-page: 149 year: 1991 ident: C9AN02017A-(cit27)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(91)90043-8 – volume: 5 start-page: 13443 year: 2015 ident: C9AN02017A-(cit21)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C4RA14089C – volume: 18 start-page: 3405 year: 2008 ident: C9AN02017A-(cit52)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/b801491d – volume: 9 start-page: 2540 year: 2018 ident: C9AN02017A-(cit68)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C7SC05104B – volume: 7 start-page: 16881 year: 2015 ident: C9AN02017A-(cit30)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05627 – volume: 139 start-page: 285 year: 1982 ident: C9AN02017A-(cit18)/*[position()=1] publication-title: J. Electroanal. Chem. Interfacial Electrochem. doi: 10.1016/0022-0728(82)85127-9 – volume: 10 start-page: 95 year: 2008 ident: C9AN02017A-(cit45)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2007.11.002 – volume: 10 start-page: 5539 year: 2008 ident: C9AN02017A-(cit25)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b807129b – volume: 30 start-page: 1321 year: 2014 ident: C9AN02017A-(cit58)/*[position()=1] publication-title: Langmuir doi: 10.1021/la403983b – volume: 141 start-page: 3482 year: 2016 ident: C9AN02017A-(cit35)/*[position()=1] publication-title: Analyst doi: 10.1039/C6AN00146G – volume: 846 start-page: 113160 year: 2019 ident: C9AN02017A-(cit50)/*[position()=1] publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2019.05.042 – volume: 119 start-page: 8916 year: 1997 ident: C9AN02017A-(cit59)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9719586 – volume: 289 start-page: 15 year: 2019 ident: C9AN02017A-(cit44)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2019.03.038 – volume: 142 start-page: 4215 year: 2017 ident: C9AN02017A-(cit26)/*[position()=1] publication-title: Analyst doi: 10.1039/C7AN01295K – volume: 35 start-page: 1 year: 2016 ident: C9AN02017A-(cit15)/*[position()=1] publication-title: Rev. Anal. Chem. doi: 10.1515/revac-2015-0008 – volume: 30 start-page: 2061 year: 2014 ident: C9AN02017A-(cit37)/*[position()=1] publication-title: Langmuir doi: 10.1021/la4049067 – volume: 209 start-page: 306 year: 2015 ident: C9AN02017A-(cit61)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2014.11.083 – volume: 25 start-page: 677 year: 2000 ident: C9AN02017A-(cit66)/*[position()=1] publication-title: Prog. Polym. Sci. doi: 10.1016/S0079-6700(00)00012-5 – volume: 25 start-page: 2905 year: 2013 ident: C9AN02017A-(cit76)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm401512c – volume: 33 start-page: 14 year: 2004 ident: C9AN02017A-(cit72)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b210143m – volume: 87 start-page: 2488 year: 2015 ident: C9AN02017A-(cit78)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac504513a – volume: 50 start-page: 6793 year: 2014 ident: C9AN02017A-(cit79)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC01329H – volume: 34 start-page: 429 year: 2005 ident: C9AN02017A-(cit77)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b406228k – volume: 117 start-page: 12942 year: 2017 ident: C9AN02017A-(cit17)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00088 – volume: 60 start-page: 101 year: 2014 ident: C9AN02017A-(cit2)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2014.03.057 – volume: 40 start-page: 100 year: 2016 ident: C9AN02017A-(cit14)/*[position()=1] publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.02.035 – volume: 51 start-page: 5283 year: 2010 ident: C9AN02017A-(cit28)/*[position()=1] publication-title: Polymer doi: 10.1016/j.polymer.2010.08.022 – volume: 85 start-page: 11610 year: 2013 ident: C9AN02017A-(cit49)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac403013r – volume: 9 start-page: 2914 year: 2017 ident: C9AN02017A-(cit71)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b11682 – volume: 296 start-page: 195 year: 2006 ident: C9AN02017A-(cit55)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2005.08.051 – volume: 366 start-page: 622 year: 2000 ident: C9AN02017A-(cit7)/*[position()=1] publication-title: Fresenius’ J. Anal. Chem. doi: 10.1007/s002160051557 – volume: 28 start-page: 165 year: 2013 ident: C9AN02017A-(cit32)/*[position()=1] publication-title: J. Mater. Res. doi: 10.1557/jmr.2012.398 – volume: 80 start-page: 84 year: 2016 ident: C9AN02017A-(cit74)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.01.040 – volume: 55 start-page: 455 year: 2019 ident: C9AN02017A-(cit81)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC08331B – volume: 40 start-page: 3995 year: 2011 ident: C9AN02017A-(cit75)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00149j – volume: 135 start-page: 16034 year: 2013 ident: C9AN02017A-(cit3)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja408485m – volume: 19 start-page: 5682 year: 2019 ident: C9AN02017A-(cit31)/*[position()=1] publication-title: Analyst doi: 10.1039/C9AN01300H – volume: 3 start-page: 1210 year: 2018 ident: C9AN02017A-(cit82)/*[position()=1] publication-title: ACS Sens. doi: 10.1021/acssensors.8b00318 – volume: 80 start-page: 167 year: 2016 ident: C9AN02017A-(cit10)/*[position()=1] publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2015.07.018 – volume: 779 start-page: 229 year: 2016 ident: C9AN02017A-(cit80)/*[position()=1] publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2016.01.031 – volume: 19 start-page: 2488 year: 2019 ident: C9AN02017A-(cit41)/*[position()=1] publication-title: Sensors doi: 10.3390/s19112488 – volume: 255 start-page: 3040 year: 2018 ident: C9AN02017A-(cit56)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2017.09.128 – volume: 224 start-page: 290 year: 2016 ident: C9AN02017A-(cit60)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2015.10.044 – volume: 88 start-page: 507 year: 2002 ident: C9AN02017A-(cit11)/*[position()=1] publication-title: Br. J. Nutr. doi: 10.1079/BJN2002702 – volume: 11 start-page: 702 year: 2019 ident: C9AN02017A-(cit12)/*[position()=1] publication-title: Anal. Methods doi: 10.1039/C8AY02674B – volume: 244 start-page: 742 year: 2017 ident: C9AN02017A-(cit57)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2017.01.060 – volume: 140 start-page: 14050 year: 2018 ident: C9AN02017A-(cit42)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08894 – volume: 139 start-page: 1589 year: 2014 ident: C9AN02017A-(cit4)/*[position()=1] publication-title: Analyst doi: 10.1039/c3an01861j – volume: 100 start-page: 577 year: 2018 ident: C9AN02017A-(cit39)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.10.012 – volume: 35 start-page: 1126 year: 2018 ident: C9AN02017A-(cit67)/*[position()=1] publication-title: Langmuir doi: 10.1021/acs.langmuir.8b01492 – volume: 133 start-page: 13421 year: 2011 ident: C9AN02017A-(cit65)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2024355 – volume: 15 start-page: 16292 year: 2019 ident: C9AN02017A-(cit33)/*[position()=1] publication-title: ACS Omega doi: 10.1021/acsomega.9b01317 – volume: 29 start-page: 4251 year: 1996 ident: C9AN02017A-(cit24)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma9508616 – volume: 17 start-page: 1359 year: 2006 ident: C9AN02017A-(cit43)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/17/5/032 – volume: 10 start-page: 751 year: 2014 ident: C9AN02017A-(cit29)/*[position()=1] publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.09.038 – volume: 87 start-page: 8047 year: 2015 ident: C9AN02017A-(cit40)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b01834 – volume: 20 start-page: 423 year: 2019 ident: C9AN02017A-(cit13)/*[position()=1] publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20020423 – volume: 32 start-page: 11763 year: 2016 ident: C9AN02017A-(cit73)/*[position()=1] publication-title: Langmuir doi: 10.1021/acs.langmuir.6b03016 – volume: 19 start-page: 28 year: 2019 ident: C9AN02017A-(cit5)/*[position()=1] publication-title: Sensors doi: 10.3390/s19010028 – volume: 8 start-page: 4110 year: 2008 ident: C9AN02017A-(cit19)/*[position()=1] publication-title: Sensors doi: 10.3390/s8074110 – volume: 8 start-page: 17 year: 2017 ident: C9AN02017A-(cit20)/*[position()=1] publication-title: Nanomaterials doi: 10.3390/nano8010017 – volume: 257 start-page: 7805 year: 2011 ident: C9AN02017A-(cit54)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2011.04.033 – volume: 27 start-page: 13828 year: 2011 ident: C9AN02017A-(cit47)/*[position()=1] publication-title: Langmuir doi: 10.1021/la202907f – volume: 87 start-page: 8618 year: 2015 ident: C9AN02017A-(cit48)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b02969 – volume: 997 start-page: 60 year: 2018 ident: C9AN02017A-(cit70)/*[position()=1] publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2017.10.017 – volume: 20 start-page: 18 year: 2016 ident: C9AN02017A-(cit16)/*[position()=1] publication-title: Biomater. Res. doi: 10.1186/s40824-016-0064-4 – volume: 41 start-page: 1363 year: 2012 ident: C9AN02017A-(cit53)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15145B – volume: 74 start-page: 69 year: 1998 ident: C9AN02017A-(cit22)/*[position()=1] publication-title: Adv. Colloid Interface Sci. doi: 10.1016/S0001-8686(97)00040-7 – volume: 35 start-page: 8456 year: 2002 ident: C9AN02017A-(cit23)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma020444a – volume: 79 start-page: 736 year: 2016 ident: C9AN02017A-(cit69)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.01.012 – volume: 54 start-page: 10179 year: 2019 ident: C9AN02017A-(cit34)/*[position()=1] publication-title: J. Mater. Sci. doi: 10.1007/s10853-019-03635-0 – volume: 48 start-page: 325 year: 2016 ident: C9AN02017A-(cit64)/*[position()=1] publication-title: Polym. J. doi: 10.1038/pj.2015.137 – volume: 85 start-page: 7324 year: 2013 ident: C9AN02017A-(cit9)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac401281t – volume: 11 start-page: 21294 year: 2019 ident: C9AN02017A-(cit51)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b04924 – volume: 39 start-page: 1747 year: 2010 ident: C9AN02017A-(cit6)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b714449k – volume: 229 start-page: 110 year: 2016 ident: C9AN02017A-(cit1)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2016.01.118 – volume: 110 start-page: 2448 year: 2010 ident: C9AN02017A-(cit36)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr800208y – volume: 49 start-page: 655 year: 2016 ident: C9AN02017A-(cit62)/*[position()=1] publication-title: BMB Rep. doi: 10.5483/BMBRep.2016.49.12.166 – volume: 9 start-page: 761 year: 2019 ident: C9AN02017A-(cit46)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C8RA08527G – volume: 50 start-page: 20 year: 2017 ident: C9AN02017A-(cit8)/*[position()=1] publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.11.070 – volume: 85 start-page: 1784 year: 2013 ident: C9AN02017A-(cit38)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac303142e – volume: 3 start-page: 97 year: 2017 ident: C9AN02017A-(cit63)/*[position()=1] publication-title: Biosurf. Biotribol. doi: 10.1016/j.bsbt.2017.10.001 |
SSID | ssj0001050 |
Score | 2.6345866 |
SecondaryResourceType | review_article |
Snippet | Electrochemical biosensors have been applied in a broad range of clinical applications for pathogen biomarker detection and medical applications and diagnosis... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 111 |
SubjectTerms | Antifouling Binding Biocompatibility Biomarkers Biosensors Chemical sensors Complexity Lipids Polysaccharides Submerging |
Title | Antifouling strategies in advanced electrochemical sensors and biosensors |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31916551 https://www.proquest.com/docview/2355804585 https://www.proquest.com/docview/2335174031 |
Volume | 145 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7aDbS5hL7SOo_i0l56UGtLsi0fzZKwKWkoZQO5GethWEi9YeNc-uszsiXbabfQ9mJ2ZdmC-UajmZH1DcAH9PhFivE_iaXihKuMEcGFImma1Bk1PKEdpdDXi3Rxyb9cJVdjqcPudEkrP6mfW8-V_A-q2Ia42lOy_4Ds8FJswN-IL14RYbz-FcaF_dLHljTvcgKe9MGmMIatfVfmRnlegFsMW219HZsvl6u1-zt1UXuaknZa62NIFpz3jAPfzIosjFvzuuZOTdYb8t0pm8sjYNBoq5r0a53pbR9LOUkSd1bbG8ee7NFpAZ-YOjSS0VYbHDFLYaryqsFR4qyadkL53fzo0MCpH6eJI5t9yHjtbz2GHYrOP53BTnGyPDsfVlj0CSNPNcvyz-NQu_DEP_zQz_gteEBXYuNLvHSuxPIZ7LkYICx6QJ_DI9O8gKdzX3rvJZxNgA1HYMNVE3pgw1-ADR2SIQIbjsC-gsvTk-V8QVzNC6J4xFpSVTqnqdSstsREMdUmlzKLdSaM0lpwUyXC8FjUOorqBF0QLWktqcaFR9Rondk-zJp1Y95AmFFl4lxJYVnUhMZQCmdianI063UW51UAH72ESuUI4W1dkuuy-zCB5eU8Ly46wRYBvB_63vQ0KFt7HXlBl26a3JbUEvjb7fgkgHfDbRSo3ZmqGrO-s32YZUzHBSaA1z1AwzAe0AD2EbGheQT94I-PHMLuqOlHMGs3d-YYfchWvnUqdQ97ZG6W |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antifouling+strategies+in+advanced+electrochemical+sensors+and+biosensors&rft.jtitle=Analyst+%28London%29&rft.au=Lin%2C+Pei-Heng&rft.au=Li%2C+Bor-Ran&rft.date=2020-02-17&rft.eissn=1364-5528&rft.volume=145&rft.issue=4&rft.spage=1110&rft_id=info:doi/10.1039%2Fc9an02017a&rft_id=info%3Apmid%2F31916551&rft.externalDocID=31916551 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2654&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2654&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2654&client=summon |