Cardiac Disorder Classification by Electrocardiogram Sensing Using Deep Neural Network

Cardiac disease is the leading cause of death worldwide. Cardiovascular diseases can be prevented if an effective diagnostic is made at the initial stages. The ECG test is referred to as the diagnostic assistant tool for screening of cardiac disorder. The research purposes of a cardiac disorder dete...

Full description

Saved in:
Bibliographic Details
Published inComplexity (New York, N.Y.) Vol. 2021; no. 1
Main Authors Khan, Ali Haider, Hussain, Muzammil, Malik, Muhammad Kamran
Format Journal Article
LanguageEnglish
Published Hoboken Hindawi 2021
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cardiac disease is the leading cause of death worldwide. Cardiovascular diseases can be prevented if an effective diagnostic is made at the initial stages. The ECG test is referred to as the diagnostic assistant tool for screening of cardiac disorder. The research purposes of a cardiac disorder detection system from 12-lead-based ECG Images. The healthcare institutes used various ECG equipment that present results in nonuniform formats of ECG images. The research study proposes a generalized methodology to process all formats of ECG. Single Shoot Detection (SSD) MobileNet v2-based Deep Neural Network architecture was used to detect cardiovascular disease detection. The study focused on detecting the four major cardiac abnormalities (i.e., myocardial infarction, abnormal heartbeat, previous history of MI, and normal class) with 98% accuracy results were calculated. The work is relatively rare based on their dataset; a collection of 11,148 standard 12-lead-based ECG images used in this study were manually collected from health care institutes and annotated by the domain experts. The study achieved high accuracy results to differentiate and detect four major cardiac abnormalities. Several cardiologists manually verified the proposed system’s accuracy result and recommended that the proposed system can be used to screen for a cardiac disorder.
AbstractList Cardiac disease is the leading cause of death worldwide. Cardiovascular diseases can be prevented if an effective diagnostic is made at the initial stages. The ECG test is referred to as the diagnostic assistant tool for screening of cardiac disorder. The research purposes of a cardiac disorder detection system from 12-lead-based ECG Images. The healthcare institutes used various ECG equipment that present results in nonuniform formats of ECG images. The research study proposes a generalized methodology to process all formats of ECG. Single Shoot Detection (SSD) MobileNet v2-based Deep Neural Network architecture was used to detect cardiovascular disease detection. The study focused on detecting the four major cardiac abnormalities (i.e., myocardial infarction, abnormal heartbeat, previous history of MI, and normal class) with 98% accuracy results were calculated. The work is relatively rare based on their dataset; a collection of 11,148 standard 12-lead-based ECG images used in this study were manually collected from health care institutes and annotated by the domain experts. The study achieved high accuracy results to differentiate and detect four major cardiac abnormalities. Several cardiologists manually verified the proposed system’s accuracy result and recommended that the proposed system can be used to screen for a cardiac disorder.
Author Malik, Muhammad Kamran
Khan, Ali Haider
Hussain, Muzammil
Author_xml – sequence: 1
  givenname: Ali Haider
  orcidid: 0000-0002-2393-7600
  surname: Khan
  fullname: Khan, Ali Haider
  organization: Department of Computer ScienceSchool of Systems & TechnologyUniversity of Management and TechnologyLahore 54000Pakistanumt.edu.pk
– sequence: 2
  givenname: Muzammil
  orcidid: 0000-0003-1288-7967
  surname: Hussain
  fullname: Hussain, Muzammil
  organization: Department of Computer ScienceSchool of Systems & TechnologyUniversity of Management and TechnologyLahore 54000Pakistanumt.edu.pk
– sequence: 3
  givenname: Muhammad Kamran
  surname: Malik
  fullname: Malik, Muhammad Kamran
  organization: Punjab University College of Information TechnologyUniversity of the PunjabLahore 54000Pakistanpu.edu.pk
BookMark eNp9kctqHDEQRYVxwI9k5w9oyDLpWI9RS1qG8RNMsrCdrShJpbEm7dZE6sH479M9Y7IIJJuqQpy6t9A9IYdDHpCQM0a_MCblOaecnUvJOF-IA3LMqDEtlbw7nGfVtVxpdUROal1TSk0n1DH5sYQSEvjmItVcApZm2UOtKSYPY8pD416byx79WLKfybwq8Nzc41DTsGoed_UCcdN8w22BfmrjSy4_35N3EfqKH976KXm8unxY3rR3369vl1_vWr-gYmzBBM4RvQIfgoOoTVRiAVLFTiMLYKJ3GBhl0gsQWiBGTTlooz1GxZw4Jbd73ZBhbTclPUN5tRmS3T3ksrJQxuR7tIz5TnqnNRd-YWLnBODs6k1wwjmctD7utTYl_9piHe06b8swnW-5pJp3HVd8oj7vKV9yrQXjH1dG7ZyCnVOwbylMOP8L92nc_exYIPX_Wvq0X3pKQ4CX9H-L31UTmnc
CitedBy_id crossref_primary_10_3390_diagnostics13010111
crossref_primary_10_1109_TAI_2022_3159505
crossref_primary_10_3390_app12073291
crossref_primary_10_1007_s11042_024_18789_6
crossref_primary_10_1080_02648725_2023_2213041
crossref_primary_10_1007_s42044_025_00227_x
crossref_primary_10_3390_computers13050109
crossref_primary_10_3390_s24247896
crossref_primary_10_1007_s00034_022_02035_1
crossref_primary_10_3390_s23187697
crossref_primary_10_2174_18741207_v16_e221031_2022_HT27_3589_16
crossref_primary_10_3390_biomedicines10112835
crossref_primary_10_3390_s24082484
crossref_primary_10_1007_s13246_022_01112_8
crossref_primary_10_3389_fcvm_2022_860032
crossref_primary_10_1109_ACCESS_2024_3516495
crossref_primary_10_3390_bios12050299
crossref_primary_10_1016_j_bspc_2022_103992
crossref_primary_10_1155_2021_9919588
crossref_primary_10_14801_jkiit_2024_22_1_23
crossref_primary_10_35940_ijeat_C3984_0212323
crossref_primary_10_1109_ACCESS_2024_3385787
crossref_primary_10_3233_JIFS_223719
crossref_primary_10_1109_ACCESS_2024_3373191
crossref_primary_10_3390_bioengineering11010058
crossref_primary_10_48175_IJARSCT_18318
crossref_primary_10_1038_s41598_025_88567_3
crossref_primary_10_1155_2022_8571970
crossref_primary_10_2174_2666255816666220804161549
Cites_doi 10.22489/CinC.2016.182-399
10.1109/access.2017.2707460
10.17632/gwbz3fsgp8.1
10.1109/ICASSP.2019.8682668
10.3390/s19112558
10.1016/j.imu.2017.05.002
10.1109/tbme.2006.880879
10.1016/j.compbiomed.2017.08.022
10.1016/j.ins.2017.04.012
10.1016/j.media.2017.07.005
10.1109/access.2019.2928017
10.1016/j.bspc.2017.11.010
10.1007/s13534-018-0058-3
10.1007/978-981-13-0923-6_51
10.1109/TBME.2009.2024531
10.1109/TIM.2018.2816458
10.1109/tbme.2015.2468589
10.1016/j.dsp.2008.09.002
10.1109/ACCESS.2018.2807700
10.1016/j.neucom.2018.11.110
10.1016/j.neucom.2018.09.101
10.1007/978-3-030-01057-7_27
ContentType Journal Article
Copyright Copyright © 2021 Ali Haider Khan et al.
Copyright © 2021 Ali Haider Khan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2021 Ali Haider Khan et al.
– notice: Copyright © 2021 Ali Haider Khan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1155/2021/5512243
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

Research Library Prep
CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-0526
Editor Khan, Atif
Editor_xml – sequence: 1
  givenname: Atif
  surname: Khan
  fullname: Khan, Atif
ExternalDocumentID oai_doaj_org_article_11c65cb8823c49f6b3aecddbc9db3bbe
10_1155_2021_5512243
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8G5
8UM
930
A03
AAESR
AAFWJ
AAJEY
AAONW
ABCQN
ABEML
ABIJN
ABPVW
ABUWG
ACSCC
ADBBV
ADIZJ
AENEX
AFBPY
AFKRA
AFPKN
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ATUGU
AZBYB
AZQEC
AZVAB
BAFTC
BCNDV
BENPR
BGLVJ
BHBCM
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DPXWK
DR2
DU5
DWQXO
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
H.T
H.X
HBH
HCIFZ
HHY
HZ~
IAO
ITC
IX1
J0M
JPC
K6V
K7-
KQQ
LAW
LC2
LC3
LP6
LP7
M2O
MK4
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
Q.N
Q11
QB0
QRW
R.K
RHU
RHW
RHX
RWI
RX1
RYL
SUPJJ
TUS
V2E
W8V
W99
WBKPD
WIH
WQJ
WRC
XBAML
XG1
XPP
XSW
XV2
~IA
~WT
.Y3
24P
31~
3R3
5VS
AAEVG
AAHHS
AANHP
AAYXX
ACBWZ
ACCFJ
ACCMX
ACRPL
ACXQS
ACYXJ
ADNMO
ADZOD
AEEZP
AEIMD
AEQDE
AFZJQ
AGQPQ
AIWBW
AJBDE
AMVHM
ASPBG
AVWKF
AZFZN
BDRZF
BFHJK
CITATION
DCZOG
EJD
FEDTE
H13
HF~
HVGLF
ICD
LH4
LW6
PHGZM
PHGZT
ROL
WYUIH
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c403t-a9d22eec7acddbaf89f734a57f68e1da9fcbed1015c3a383eef802a898cef71b3
IEDL.DBID BENPR
ISSN 1076-2787
IngestDate Wed Aug 27 01:27:19 EDT 2025
Fri Jul 25 21:03:13 EDT 2025
Tue Jul 01 02:02:05 EDT 2025
Thu Apr 24 23:09:20 EDT 2025
Sun Jun 02 19:17:31 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-a9d22eec7acddbaf89f734a57f68e1da9fcbed1015c3a383eef802a898cef71b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2393-7600
0000-0003-1288-7967
OpenAccessLink https://dx.doi.org/10.1155/2021/5512243
PQID 2508266272
PQPubID 2029978
ParticipantIDs doaj_primary_oai_doaj_org_article_11c65cb8823c49f6b3aecddbc9db3bbe
proquest_journals_2508266272
crossref_primary_10_1155_2021_5512243
crossref_citationtrail_10_1155_2021_5512243
hindawi_primary_10_1155_2021_5512243
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Complexity (New York, N.Y.)
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References Ali S. (e_1_2_11_11_2) 2017; 22
Centers for Disease Control and Prevention (e_1_2_11_1_2) 2020
World Health Organization (e_1_2_11_2_2) 2020
e_1_2_11_13_2
e_1_2_11_6_2
e_1_2_11_28_2
e_1_2_11_5_2
e_1_2_11_27_2
e_1_2_11_4_2
e_1_2_11_26_2
e_1_2_11_3_2
e_1_2_11_25_2
e_1_2_11_20_2
e_1_2_11_24_2
e_1_2_11_9_2
e_1_2_11_23_2
e_1_2_11_8_2
e_1_2_11_22_2
e_1_2_11_7_2
e_1_2_11_21_2
e_1_2_11_17_2
e_1_2_11_16_2
e_1_2_11_15_2
Deperlioglu O. (e_1_2_11_10_2) 2018; 9
e_1_2_11_14_2
Bahekar L. (e_1_2_11_12_2) 2017; 3
e_1_2_11_19_2
e_1_2_11_18_2
References_xml – ident: e_1_2_11_6_2
  doi: 10.22489/CinC.2016.182-399
– ident: e_1_2_11_4_2
  doi: 10.1109/access.2017.2707460
– ident: e_1_2_11_22_2
  doi: 10.17632/gwbz3fsgp8.1
– ident: e_1_2_11_15_2
  doi: 10.1109/ICASSP.2019.8682668
– ident: e_1_2_11_19_2
  doi: 10.3390/s19112558
– ident: e_1_2_11_23_2
– volume: 3
  start-page: 279
  year: 2017
  ident: e_1_2_11_12_2
  article-title: Heart valve diseases detection using anfis and wavelet transform
  publication-title: International Journal of Research in Science & Engineering
– ident: e_1_2_11_13_2
  doi: 10.1016/j.imu.2017.05.002
– volume-title: Heart Disease Fats
  year: 2020
  ident: e_1_2_11_1_2
– ident: e_1_2_11_26_2
  doi: 10.1109/tbme.2006.880879
– ident: e_1_2_11_5_2
  doi: 10.1016/j.compbiomed.2017.08.022
– volume: 9
  year: 2018
  ident: e_1_2_11_10_2
  article-title: Segmentation of heart sounds by Re-sampled signal energy method, BRAIN
  publication-title: Broad Research in Artificial Intelligence and Neuroscience
– ident: e_1_2_11_24_2
  doi: 10.1016/j.ins.2017.04.012
– ident: e_1_2_11_20_2
  doi: 10.1016/j.media.2017.07.005
– ident: e_1_2_11_17_2
  doi: 10.1109/access.2019.2928017
– ident: e_1_2_11_18_2
  doi: 10.1016/j.bspc.2017.11.010
– ident: e_1_2_11_21_2
  doi: 10.1007/s13534-018-0058-3
– ident: e_1_2_11_8_2
  doi: 10.1007/978-981-13-0923-6_51
– ident: e_1_2_11_3_2
  doi: 10.1109/TBME.2009.2024531
– ident: e_1_2_11_27_2
  doi: 10.1109/TIM.2018.2816458
– ident: e_1_2_11_25_2
  doi: 10.1109/tbme.2015.2468589
– ident: e_1_2_11_7_2
  doi: 10.1016/j.dsp.2008.09.002
– ident: e_1_2_11_16_2
  doi: 10.1109/ACCESS.2018.2807700
– ident: e_1_2_11_9_2
  doi: 10.1016/j.neucom.2018.11.110
– volume-title: Cardiovascular Diseases
  year: 2020
  ident: e_1_2_11_2_2
– ident: e_1_2_11_14_2
  doi: 10.1016/j.neucom.2018.09.101
– volume: 22
  start-page: 113
  year: 2017
  ident: e_1_2_11_11_2
  article-title: Human heart sounds classification using ensemble methods
  publication-title: Technical Journal, University of Engineering and Technology (UET)
– ident: e_1_2_11_28_2
  doi: 10.1007/978-3-030-01057-7_27
SSID ssj0009637
Score 2.544048
Snippet Cardiac disease is the leading cause of death worldwide. Cardiovascular diseases can be prevented if an effective diagnostic is made at the initial stages. The...
SourceID doaj
proquest
crossref
hindawi
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Abnormalities
Accuracy
Artificial intelligence
Artificial neural networks
Automation
Brain
Cardiovascular disease
Classification
Computer architecture
Datasets
Deep learning
Electrocardiography
Heart
Medical imaging
Myocardial infarction
Neural networks
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA3iSQ9iq2K1Sg4VFFna3Wx2N0etlSK0F630tuRjooLUYiviv3eSzRZFxIvXJZAwH5l54e0bQjppLHkPRILYxIgo1QLvwUTZCCQw9-sj557yPxpnw0l6M-XTL6O-HCeskgeuDNeNY51xrbARZDoVNlNMgjZGaWEUUwrc7Ys1rwZTtdxu5tUyEdtkUYIxWVPeOXdoP-5in4C1i30rRl6zH9vgRweG359-XM6-4lxvk63QKtKL6ogNsgazJtkcrXRWF03SCKm5oKdBP_psh9z3vdc1rZU1qZ986ThB3g1UfdBBNf1GezaqI2jRW8dknz1QzyGgVwBz6oQ78ADjiim-SybXg7v-MArjEyKd9tgyksIkCYDOpbOXtIWwOUslz21WQGyksFqBwZTkmkkEqgC26CWyEIUGm8eK7ZH12csM9gntmbwwVomYW7SaUApxjdQCGFY3ZjPeIue1HUsdtMXdiIvn0mMMzktn9TJYvUVOVqvnlabGL-sunUtWa5wStv-A8VGG-Cj_io8W6QSH_rFXu_Z2GbJ4UWJ7iOgrS_Lk4D-Ockg23JbVA06brC9f3-AIW5qlOvbR-wkymvIn
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uT_ogbipOp-RhgiLFtWna5lHnZAjbixf2VnI5UUHmcBPx33uSZhMV0ceWpJdz6cnXfv0OIZ00lrwLIkFsYkSUaoHPwUTZCCQw9-sj557yPxxlg9v0aszHQSRp9vMTPlY7B8_jUyzsWGxYjdQwwBwoH4w_tXUzL42JQCaLEgzABb_929wvlccL9OOa98Eh37fHH09iX14uN8h6WBfSs8qRDbICkyZZGy5FVWdN0gh5OKNHQSz6eJPc9byLNV3IaFLf5tIRgLzNqXqn_arVjfbUU8fGoteOtj65p54wQC8AptSpdOAFjCpa-Ba5vezf9AZR6JUQ6bTL5pEUJkkAdC61MUraQticpZLnNisgNlJYrcBg_nHNJKJSAFt0E1mIQoPNY8W2SX3yPIEdQrsmL4xVIuYWrSaUQhAjtQCGpYzZjLfIycKOpQ5C4q6fxVPpAQXnpbN6GazeIofL0dNKQOOXcefOJcsxTvba78BQKEMW4Sydca0QFTCdCpspJsHdrxZGMaWgRTrBoX-cq73wdhlSdlbiWhChVpbkye7_jrJHVt1m9T6mTerzl1fYxxXKXB34-PwAXafdAg
  priority: 102
  providerName: Hindawi Publishing
Title Cardiac Disorder Classification by Electrocardiogram Sensing Using Deep Neural Network
URI https://dx.doi.org/10.1155/2021/5512243
https://www.proquest.com/docview/2508266272
https://doaj.org/article/11c65cb8823c49f6b3aecddbc9db3bbe
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9tAEB4a55IeQvModeuaPSSQUEQsrVbSnkqT2jWBmJA0xTexj9m0UGwndin9951drRxCaXLRQVq9ZnZn51t9-gbgIE-VGKDMCJtYmeRGUhzMtEtQIfe_PgoRKP8Xk2J8k59PxTQuuC0jrbKNiSFQ27nxa-QnNFVTJlxkZfZxcZf4qlH-62osobEBmxSCKwJfm6fDyeXVg-xuEVQzCeMUSUZ9s6W-C-FRf3pC-QLNYfzRpBS0-ykd_u5B8e8f_wTpMPOMXsF2TBnZp8bHO_ACZ7vw8mKtt7rchZ04RJfsKOpIH-_Bt7PgfcNahU0WKmB6blBwB9N_2LCpgmMCK9UTtdi1Z7TPblngErDPiAvmBTzoASYNY3wfbkbDr2fjJJZRSEw-4KtESZtliKZUxlqtXCVdyXMlSldUmFolndFoaWgKwxUBVkRXDTJVycqgK1PNX0NnNp_hG2ADW1bWaZkKR1aTWhO-UUYiJ-NzV4gufGjtWJuoMe5LXfysA9YQovZWr6PVu3C4br1otDX-0-7Uu2Tdxitihx3z-9s6DjA6yxTCaAIM3OTSFZor9O9rpNVca-zCQXToM_fqtd6u42he1g997-3Th9_Blr9Ys0TTg87q_he-p6RlpfuwUY2-9GP_7AfoT9ur8fQvkkXrqg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiBYQCy340EogFHVjx0l8QBW0Xba0uxda1FvwY1yQ0O7SXVT1T_EbGTvOVggBp14T5zUznofz-RuArSLXso-KU23iVFZYRX6QG5-hRhG2PkoZIf-jcTk8LT6cybMV-NnthQmwys4nRkftpjaske9QqKZMuOQV3519z0LXqPB3tWuh0ZrFEV5dUsk2f3O4T_rd5nxwcLI3zFJXgcwWfbHItHKcI9pKW-eM9rXylSi0rHxZY-608tagI0uVVmiq3xB93ee6VrVFX-VG0H1vwe1CCBVmVD14f03yW0aOTqqoyozTTOiA9lKGNYZ8h7ITipjitxAYOwVQ8v0llOCXX_8ICTHODR7A_ZSgsretRa3BCk7W4d5oye46X4e15BDm7GVirX71ED7tRVuzrOPzZLHfZkAiReUzc8UO2p47NmJgAyyMfQz4-ck5i8gFto84Y4EuhF5g3OLTH8HpjYj3MaxOphN8Aqzvqtp5o3LpSWrKGKqmtFUoKKYKX8oevO7k2NjEaB4aa3xrYmUjZROk3iSp92B7OXrWMnn8Zdy7oJLlmMC_HQ9ML86bNJ3pKltKa6g8EbZQvjRCY_heq5wRxmAPtpJC__OsjU7bTfId8-ba0p_--_QLuDM8GR03x4fjo2dwN9y4XRzagNXFxQ_cpHRpYZ5HG2Xw-aYnxS_J2yd_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cardiac+Disorder+Classification+by+Electrocardiogram+Sensing+Using+Deep+Neural+Network&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Ali+Haider+Khan&rft.au=Hussain%2C+Muzammil&rft.au=Muhammad+Kamran+Malik&rft.date=2021&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1076-2787&rft.eissn=1099-0526&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F5512243
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon