Cardiac Disorder Classification by Electrocardiogram Sensing Using Deep Neural Network
Cardiac disease is the leading cause of death worldwide. Cardiovascular diseases can be prevented if an effective diagnostic is made at the initial stages. The ECG test is referred to as the diagnostic assistant tool for screening of cardiac disorder. The research purposes of a cardiac disorder dete...
Saved in:
Published in | Complexity (New York, N.Y.) Vol. 2021; no. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Hindawi
2021
John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cardiac disease is the leading cause of death worldwide. Cardiovascular diseases can be prevented if an effective diagnostic is made at the initial stages. The ECG test is referred to as the diagnostic assistant tool for screening of cardiac disorder. The research purposes of a cardiac disorder detection system from 12-lead-based ECG Images. The healthcare institutes used various ECG equipment that present results in nonuniform formats of ECG images. The research study proposes a generalized methodology to process all formats of ECG. Single Shoot Detection (SSD) MobileNet v2-based Deep Neural Network architecture was used to detect cardiovascular disease detection. The study focused on detecting the four major cardiac abnormalities (i.e., myocardial infarction, abnormal heartbeat, previous history of MI, and normal class) with 98% accuracy results were calculated. The work is relatively rare based on their dataset; a collection of 11,148 standard 12-lead-based ECG images used in this study were manually collected from health care institutes and annotated by the domain experts. The study achieved high accuracy results to differentiate and detect four major cardiac abnormalities. Several cardiologists manually verified the proposed system’s accuracy result and recommended that the proposed system can be used to screen for a cardiac disorder. |
---|---|
AbstractList | Cardiac disease is the leading cause of death worldwide. Cardiovascular diseases can be prevented if an effective diagnostic is made at the initial stages. The ECG test is referred to as the diagnostic assistant tool for screening of cardiac disorder. The research purposes of a cardiac disorder detection system from 12-lead-based ECG Images. The healthcare institutes used various ECG equipment that present results in nonuniform formats of ECG images. The research study proposes a generalized methodology to process all formats of ECG. Single Shoot Detection (SSD) MobileNet v2-based Deep Neural Network architecture was used to detect cardiovascular disease detection. The study focused on detecting the four major cardiac abnormalities (i.e., myocardial infarction, abnormal heartbeat, previous history of MI, and normal class) with 98% accuracy results were calculated. The work is relatively rare based on their dataset; a collection of 11,148 standard 12-lead-based ECG images used in this study were manually collected from health care institutes and annotated by the domain experts. The study achieved high accuracy results to differentiate and detect four major cardiac abnormalities. Several cardiologists manually verified the proposed system’s accuracy result and recommended that the proposed system can be used to screen for a cardiac disorder. |
Author | Malik, Muhammad Kamran Khan, Ali Haider Hussain, Muzammil |
Author_xml | – sequence: 1 givenname: Ali Haider orcidid: 0000-0002-2393-7600 surname: Khan fullname: Khan, Ali Haider organization: Department of Computer ScienceSchool of Systems & TechnologyUniversity of Management and TechnologyLahore 54000Pakistanumt.edu.pk – sequence: 2 givenname: Muzammil orcidid: 0000-0003-1288-7967 surname: Hussain fullname: Hussain, Muzammil organization: Department of Computer ScienceSchool of Systems & TechnologyUniversity of Management and TechnologyLahore 54000Pakistanumt.edu.pk – sequence: 3 givenname: Muhammad Kamran surname: Malik fullname: Malik, Muhammad Kamran organization: Punjab University College of Information TechnologyUniversity of the PunjabLahore 54000Pakistanpu.edu.pk |
BookMark | eNp9kctqHDEQRYVxwI9k5w9oyDLpWI9RS1qG8RNMsrCdrShJpbEm7dZE6sH479M9Y7IIJJuqQpy6t9A9IYdDHpCQM0a_MCblOaecnUvJOF-IA3LMqDEtlbw7nGfVtVxpdUROal1TSk0n1DH5sYQSEvjmItVcApZm2UOtKSYPY8pD416byx79WLKfybwq8Nzc41DTsGoed_UCcdN8w22BfmrjSy4_35N3EfqKH976KXm8unxY3rR3369vl1_vWr-gYmzBBM4RvQIfgoOoTVRiAVLFTiMLYKJ3GBhl0gsQWiBGTTlooz1GxZw4Jbd73ZBhbTclPUN5tRmS3T3ksrJQxuR7tIz5TnqnNRd-YWLnBODs6k1wwjmctD7utTYl_9piHe06b8swnW-5pJp3HVd8oj7vKV9yrQXjH1dG7ZyCnVOwbylMOP8L92nc_exYIPX_Wvq0X3pKQ4CX9H-L31UTmnc |
CitedBy_id | crossref_primary_10_3390_diagnostics13010111 crossref_primary_10_1109_TAI_2022_3159505 crossref_primary_10_3390_app12073291 crossref_primary_10_1007_s11042_024_18789_6 crossref_primary_10_1080_02648725_2023_2213041 crossref_primary_10_1007_s42044_025_00227_x crossref_primary_10_3390_computers13050109 crossref_primary_10_3390_s24247896 crossref_primary_10_1007_s00034_022_02035_1 crossref_primary_10_3390_s23187697 crossref_primary_10_2174_18741207_v16_e221031_2022_HT27_3589_16 crossref_primary_10_3390_biomedicines10112835 crossref_primary_10_3390_s24082484 crossref_primary_10_1007_s13246_022_01112_8 crossref_primary_10_3389_fcvm_2022_860032 crossref_primary_10_1109_ACCESS_2024_3516495 crossref_primary_10_3390_bios12050299 crossref_primary_10_1016_j_bspc_2022_103992 crossref_primary_10_1155_2021_9919588 crossref_primary_10_14801_jkiit_2024_22_1_23 crossref_primary_10_35940_ijeat_C3984_0212323 crossref_primary_10_1109_ACCESS_2024_3385787 crossref_primary_10_3233_JIFS_223719 crossref_primary_10_1109_ACCESS_2024_3373191 crossref_primary_10_3390_bioengineering11010058 crossref_primary_10_48175_IJARSCT_18318 crossref_primary_10_1038_s41598_025_88567_3 crossref_primary_10_1155_2022_8571970 crossref_primary_10_2174_2666255816666220804161549 |
Cites_doi | 10.22489/CinC.2016.182-399 10.1109/access.2017.2707460 10.17632/gwbz3fsgp8.1 10.1109/ICASSP.2019.8682668 10.3390/s19112558 10.1016/j.imu.2017.05.002 10.1109/tbme.2006.880879 10.1016/j.compbiomed.2017.08.022 10.1016/j.ins.2017.04.012 10.1016/j.media.2017.07.005 10.1109/access.2019.2928017 10.1016/j.bspc.2017.11.010 10.1007/s13534-018-0058-3 10.1007/978-981-13-0923-6_51 10.1109/TBME.2009.2024531 10.1109/TIM.2018.2816458 10.1109/tbme.2015.2468589 10.1016/j.dsp.2008.09.002 10.1109/ACCESS.2018.2807700 10.1016/j.neucom.2018.11.110 10.1016/j.neucom.2018.09.101 10.1007/978-3-030-01057-7_27 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Ali Haider Khan et al. Copyright © 2021 Ali Haider Khan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2021 Ali Haider Khan et al. – notice: Copyright © 2021 Ali Haider Khan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | RHU RHW RHX AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1155/2021/5512243 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep CrossRef |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1099-0526 |
Editor | Khan, Atif |
Editor_xml | – sequence: 1 givenname: Atif surname: Khan fullname: Khan, Atif |
ExternalDocumentID | oai_doaj_org_article_11c65cb8823c49f6b3aecddbc9db3bbe 10_1155_2021_5512243 |
GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8G5 8UM 930 A03 AAESR AAFWJ AAJEY AAONW ABCQN ABEML ABIJN ABPVW ABUWG ACSCC ADBBV ADIZJ AENEX AFBPY AFKRA AFPKN AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR ARAPS ATUGU AZBYB AZQEC AZVAB BAFTC BCNDV BENPR BGLVJ BHBCM BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 D-E D-F DPXWK DR2 DU5 DWQXO EBD EBS F00 F01 F04 F5P G-S G.N GNP GNUQQ GODZA GROUPED_DOAJ GUQSH H.T H.X HBH HCIFZ HHY HZ~ IAO ITC IX1 J0M JPC K6V K7- KQQ LAW LC2 LC3 LP6 LP7 M2O MK4 N04 N05 N9A NF~ NNB O66 O9- OIG OK1 P2P P2W P2X P4D P62 PQQKQ PROAC Q.N Q11 QB0 QRW R.K RHU RHW RHX RWI RX1 RYL SUPJJ TUS V2E W8V W99 WBKPD WIH WQJ WRC XBAML XG1 XPP XSW XV2 ~IA ~WT .Y3 24P 31~ 3R3 5VS AAEVG AAHHS AANHP AAYXX ACBWZ ACCFJ ACCMX ACRPL ACXQS ACYXJ ADNMO ADZOD AEEZP AEIMD AEQDE AFZJQ AGQPQ AIWBW AJBDE AMVHM ASPBG AVWKF AZFZN BDRZF BFHJK CITATION DCZOG EJD FEDTE H13 HF~ HVGLF ICD LH4 LW6 PHGZM PHGZT ROL WYUIH 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c403t-a9d22eec7acddbaf89f734a57f68e1da9fcbed1015c3a383eef802a898cef71b3 |
IEDL.DBID | BENPR |
ISSN | 1076-2787 |
IngestDate | Wed Aug 27 01:27:19 EDT 2025 Fri Jul 25 21:03:13 EDT 2025 Tue Jul 01 02:02:05 EDT 2025 Thu Apr 24 23:09:20 EDT 2025 Sun Jun 02 19:17:31 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-a9d22eec7acddbaf89f734a57f68e1da9fcbed1015c3a383eef802a898cef71b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2393-7600 0000-0003-1288-7967 |
OpenAccessLink | https://dx.doi.org/10.1155/2021/5512243 |
PQID | 2508266272 |
PQPubID | 2029978 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_11c65cb8823c49f6b3aecddbc9db3bbe proquest_journals_2508266272 crossref_primary_10_1155_2021_5512243 crossref_citationtrail_10_1155_2021_5512243 hindawi_primary_10_1155_2021_5512243 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Complexity (New York, N.Y.) |
PublicationYear | 2021 |
Publisher | Hindawi John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
References | Ali S. (e_1_2_11_11_2) 2017; 22 Centers for Disease Control and Prevention (e_1_2_11_1_2) 2020 World Health Organization (e_1_2_11_2_2) 2020 e_1_2_11_13_2 e_1_2_11_6_2 e_1_2_11_28_2 e_1_2_11_5_2 e_1_2_11_27_2 e_1_2_11_4_2 e_1_2_11_26_2 e_1_2_11_3_2 e_1_2_11_25_2 e_1_2_11_20_2 e_1_2_11_24_2 e_1_2_11_9_2 e_1_2_11_23_2 e_1_2_11_8_2 e_1_2_11_22_2 e_1_2_11_7_2 e_1_2_11_21_2 e_1_2_11_17_2 e_1_2_11_16_2 e_1_2_11_15_2 Deperlioglu O. (e_1_2_11_10_2) 2018; 9 e_1_2_11_14_2 Bahekar L. (e_1_2_11_12_2) 2017; 3 e_1_2_11_19_2 e_1_2_11_18_2 |
References_xml | – ident: e_1_2_11_6_2 doi: 10.22489/CinC.2016.182-399 – ident: e_1_2_11_4_2 doi: 10.1109/access.2017.2707460 – ident: e_1_2_11_22_2 doi: 10.17632/gwbz3fsgp8.1 – ident: e_1_2_11_15_2 doi: 10.1109/ICASSP.2019.8682668 – ident: e_1_2_11_19_2 doi: 10.3390/s19112558 – ident: e_1_2_11_23_2 – volume: 3 start-page: 279 year: 2017 ident: e_1_2_11_12_2 article-title: Heart valve diseases detection using anfis and wavelet transform publication-title: International Journal of Research in Science & Engineering – ident: e_1_2_11_13_2 doi: 10.1016/j.imu.2017.05.002 – volume-title: Heart Disease Fats year: 2020 ident: e_1_2_11_1_2 – ident: e_1_2_11_26_2 doi: 10.1109/tbme.2006.880879 – ident: e_1_2_11_5_2 doi: 10.1016/j.compbiomed.2017.08.022 – volume: 9 year: 2018 ident: e_1_2_11_10_2 article-title: Segmentation of heart sounds by Re-sampled signal energy method, BRAIN publication-title: Broad Research in Artificial Intelligence and Neuroscience – ident: e_1_2_11_24_2 doi: 10.1016/j.ins.2017.04.012 – ident: e_1_2_11_20_2 doi: 10.1016/j.media.2017.07.005 – ident: e_1_2_11_17_2 doi: 10.1109/access.2019.2928017 – ident: e_1_2_11_18_2 doi: 10.1016/j.bspc.2017.11.010 – ident: e_1_2_11_21_2 doi: 10.1007/s13534-018-0058-3 – ident: e_1_2_11_8_2 doi: 10.1007/978-981-13-0923-6_51 – ident: e_1_2_11_3_2 doi: 10.1109/TBME.2009.2024531 – ident: e_1_2_11_27_2 doi: 10.1109/TIM.2018.2816458 – ident: e_1_2_11_25_2 doi: 10.1109/tbme.2015.2468589 – ident: e_1_2_11_7_2 doi: 10.1016/j.dsp.2008.09.002 – ident: e_1_2_11_16_2 doi: 10.1109/ACCESS.2018.2807700 – ident: e_1_2_11_9_2 doi: 10.1016/j.neucom.2018.11.110 – volume-title: Cardiovascular Diseases year: 2020 ident: e_1_2_11_2_2 – ident: e_1_2_11_14_2 doi: 10.1016/j.neucom.2018.09.101 – volume: 22 start-page: 113 year: 2017 ident: e_1_2_11_11_2 article-title: Human heart sounds classification using ensemble methods publication-title: Technical Journal, University of Engineering and Technology (UET) – ident: e_1_2_11_28_2 doi: 10.1007/978-3-030-01057-7_27 |
SSID | ssj0009637 |
Score | 2.544048 |
Snippet | Cardiac disease is the leading cause of death worldwide. Cardiovascular diseases can be prevented if an effective diagnostic is made at the initial stages. The... |
SourceID | doaj proquest crossref hindawi |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Abnormalities Accuracy Artificial intelligence Artificial neural networks Automation Brain Cardiovascular disease Classification Computer architecture Datasets Deep learning Electrocardiography Heart Medical imaging Myocardial infarction Neural networks |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA3iSQ9iq2K1Sg4VFFna3Wx2N0etlSK0F630tuRjooLUYiviv3eSzRZFxIvXJZAwH5l54e0bQjppLHkPRILYxIgo1QLvwUTZCCQw9-sj557yPxpnw0l6M-XTL6O-HCeskgeuDNeNY51xrbARZDoVNlNMgjZGaWEUUwrc7Ys1rwZTtdxu5tUyEdtkUYIxWVPeOXdoP-5in4C1i30rRl6zH9vgRweG359-XM6-4lxvk63QKtKL6ogNsgazJtkcrXRWF03SCKm5oKdBP_psh9z3vdc1rZU1qZ986ThB3g1UfdBBNf1GezaqI2jRW8dknz1QzyGgVwBz6oQ78ADjiim-SybXg7v-MArjEyKd9tgyksIkCYDOpbOXtIWwOUslz21WQGyksFqBwZTkmkkEqgC26CWyEIUGm8eK7ZH12csM9gntmbwwVomYW7SaUApxjdQCGFY3ZjPeIue1HUsdtMXdiIvn0mMMzktn9TJYvUVOVqvnlabGL-sunUtWa5wStv-A8VGG-Cj_io8W6QSH_rFXu_Z2GbJ4UWJ7iOgrS_Lk4D-Ockg23JbVA06brC9f3-AIW5qlOvbR-wkymvIn priority: 102 providerName: Directory of Open Access Journals – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uT_ogbipOp-RhgiLFtWna5lHnZAjbixf2VnI5UUHmcBPx33uSZhMV0ceWpJdz6cnXfv0OIZ00lrwLIkFsYkSUaoHPwUTZCCQw9-sj557yPxxlg9v0aszHQSRp9vMTPlY7B8_jUyzsWGxYjdQwwBwoH4w_tXUzL42JQCaLEgzABb_929wvlccL9OOa98Eh37fHH09iX14uN8h6WBfSs8qRDbICkyZZGy5FVWdN0gh5OKNHQSz6eJPc9byLNV3IaFLf5tIRgLzNqXqn_arVjfbUU8fGoteOtj65p54wQC8AptSpdOAFjCpa-Ba5vezf9AZR6JUQ6bTL5pEUJkkAdC61MUraQticpZLnNisgNlJYrcBg_nHNJKJSAFt0E1mIQoPNY8W2SX3yPIEdQrsmL4xVIuYWrSaUQhAjtQCGpYzZjLfIycKOpQ5C4q6fxVPpAQXnpbN6GazeIofL0dNKQOOXcefOJcsxTvba78BQKEMW4Sydca0QFTCdCpspJsHdrxZGMaWgRTrBoX-cq73wdhlSdlbiWhChVpbkye7_jrJHVt1m9T6mTerzl1fYxxXKXB34-PwAXafdAg priority: 102 providerName: Hindawi Publishing |
Title | Cardiac Disorder Classification by Electrocardiogram Sensing Using Deep Neural Network |
URI | https://dx.doi.org/10.1155/2021/5512243 https://www.proquest.com/docview/2508266272 https://doaj.org/article/11c65cb8823c49f6b3aecddbc9db3bbe |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9tAEB4a55IeQvModeuaPSSQUEQsrVbSnkqT2jWBmJA0xTexj9m0UGwndin9951drRxCaXLRQVq9ZnZn51t9-gbgIE-VGKDMCJtYmeRGUhzMtEtQIfe_PgoRKP8Xk2J8k59PxTQuuC0jrbKNiSFQ27nxa-QnNFVTJlxkZfZxcZf4qlH-62osobEBmxSCKwJfm6fDyeXVg-xuEVQzCeMUSUZ9s6W-C-FRf3pC-QLNYfzRpBS0-ykd_u5B8e8f_wTpMPOMXsF2TBnZp8bHO_ACZ7vw8mKtt7rchZ04RJfsKOpIH-_Bt7PgfcNahU0WKmB6blBwB9N_2LCpgmMCK9UTtdi1Z7TPblngErDPiAvmBTzoASYNY3wfbkbDr2fjJJZRSEw-4KtESZtliKZUxlqtXCVdyXMlSldUmFolndFoaWgKwxUBVkRXDTJVycqgK1PNX0NnNp_hG2ADW1bWaZkKR1aTWhO-UUYiJ-NzV4gufGjtWJuoMe5LXfysA9YQovZWr6PVu3C4br1otDX-0-7Uu2Tdxitihx3z-9s6DjA6yxTCaAIM3OTSFZor9O9rpNVca-zCQXToM_fqtd6u42he1g997-3Th9_Blr9Ys0TTg87q_he-p6RlpfuwUY2-9GP_7AfoT9ur8fQvkkXrqg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiBYQCy340EogFHVjx0l8QBW0Xba0uxda1FvwY1yQ0O7SXVT1T_EbGTvOVggBp14T5zUznofz-RuArSLXso-KU23iVFZYRX6QG5-hRhG2PkoZIf-jcTk8LT6cybMV-NnthQmwys4nRkftpjaske9QqKZMuOQV3519z0LXqPB3tWuh0ZrFEV5dUsk2f3O4T_rd5nxwcLI3zFJXgcwWfbHItHKcI9pKW-eM9rXylSi0rHxZY-608tagI0uVVmiq3xB93ee6VrVFX-VG0H1vwe1CCBVmVD14f03yW0aOTqqoyozTTOiA9lKGNYZ8h7ITipjitxAYOwVQ8v0llOCXX_8ICTHODR7A_ZSgsretRa3BCk7W4d5oye46X4e15BDm7GVirX71ED7tRVuzrOPzZLHfZkAiReUzc8UO2p47NmJgAyyMfQz4-ck5i8gFto84Y4EuhF5g3OLTH8HpjYj3MaxOphN8Aqzvqtp5o3LpSWrKGKqmtFUoKKYKX8oevO7k2NjEaB4aa3xrYmUjZROk3iSp92B7OXrWMnn8Zdy7oJLlmMC_HQ9ML86bNJ3pKltKa6g8EbZQvjRCY_heq5wRxmAPtpJC__OsjU7bTfId8-ba0p_--_QLuDM8GR03x4fjo2dwN9y4XRzagNXFxQ_cpHRpYZ5HG2Xw-aYnxS_J2yd_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cardiac+Disorder+Classification+by+Electrocardiogram+Sensing+Using+Deep+Neural+Network&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Ali+Haider+Khan&rft.au=Hussain%2C+Muzammil&rft.au=Muhammad+Kamran+Malik&rft.date=2021&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1076-2787&rft.eissn=1099-0526&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F5512243 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon |