Quality Assurance Technologies of Big Data Applications: A Systematic Literature Review

Big data applications are currently used in many application domains, ranging from statistical applications to prediction systems and smart cities. However, the quality of these applications is far from perfect, such as functional error, failure and low performance. Consequently, assuring the overal...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 10; no. 22; p. 8052
Main Authors Ji, Shunhui, Li, Qingqiu, Cao, Wennan, Zhang, Pengcheng, Muccini, Henry
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Big data applications are currently used in many application domains, ranging from statistical applications to prediction systems and smart cities. However, the quality of these applications is far from perfect, such as functional error, failure and low performance. Consequently, assuring the overall quality for big data applications plays an increasingly important role. This paper aims at summarizing and assessing existing quality assurance (QA) technologies addressing quality issues in big data applications. We have conducted a systematic literature review (SLR) by searching major scientific databases, resulting in 83 primary and relevant studies on QA technologies for big data applications. The SLR results reveal the following main findings: (1) the quality attributes that are focused for the quality of big data applications, including correctness, performance, availability, scalability and reliability, and the factors influencing them; (2) the existing implementation-specific QA technologies, including specification, architectural choice and fault tolerance, and the process-specific QA technologies, including analysis, verification, testing, monitoring and fault and failure prediction; (3) existing strengths and limitations of each kind of QA technology; (4) the existing empirical evidence of each QA technology. This study provides a solid foundation for research on QA technologies of big data applications and can help developers of big data applications apply suitable QA technologies.
AbstractList Big data applications are currently used in many application domains, ranging from statistical applications to prediction systems and smart cities. However, the quality of these applications is far from perfect, such as functional error, failure and low performance. Consequently, assuring the overall quality for big data applications plays an increasingly important role. This paper aims at summarizing and assessing existing quality assurance (QA) technologies addressing quality issues in big data applications. We have conducted a systematic literature review (SLR) by searching major scientific databases, resulting in 83 primary and relevant studies on QA technologies for big data applications. The SLR results reveal the following main findings: (1) the quality attributes that are focused for the quality of big data applications, including correctness, performance, availability, scalability and reliability, and the factors influencing them; (2) the existing implementation-specific QA technologies, including specification, architectural choice and fault tolerance, and the process-specific QA technologies, including analysis, verification, testing, monitoring and fault and failure prediction; (3) existing strengths and limitations of each kind of QA technology; (4) the existing empirical evidence of each QA technology. This study provides a solid foundation for research on QA technologies of big data applications and can help developers of big data applications apply suitable QA technologies.
Big data applications are currently used in many application domains, ranging from statistical applications to prediction systems and smart cities. However, the quality of these applications is far from perfect, such as functional error, failure and low performance. Consequently, assuring the overall quality for big data applications plays an increasingly important role. This paper aims at summarizing and assessing existing quality assurance (QA) technologies addressing quality issues in big data applications. We have conducted a systematic literature review (SLR) by searching major scientific databases, resulting in 83 primary and relevant studies on QA technologies for big data applications. The SLR results reveal the following main findings: (1) the quality attributes that are focused for the quality of big data applications, including correctness, performance, availability, scalability and reliability and the factors influencing them; (2) the existing implementation-specific QA technologies, including specification, architectural choice and fault tolerance, and the process-specific QA technologies, including analysis, verification, testing, monitoring and fault and failure prediction; (3) existing strengths and limitations of each kind of QA technology; (4) the existing empirical evidence of each QA technology. This study provides a solid foundation for research on QA technologies of big data applications and can help developers of big data applications apply suitable QA technologies. Keywords: quality attribute; quality assurance technology; big data application; systematic literature review
Audience Academic
Author Muccini, Henry
Li, Qingqiu
Ji, Shunhui
Cao, Wennan
Zhang, Pengcheng
Author_xml – sequence: 1
  givenname: Shunhui
  orcidid: 0000-0002-8584-5795
  surname: Ji
  fullname: Ji, Shunhui
– sequence: 2
  givenname: Qingqiu
  surname: Li
  fullname: Li, Qingqiu
– sequence: 3
  givenname: Wennan
  surname: Cao
  fullname: Cao, Wennan
– sequence: 4
  givenname: Pengcheng
  orcidid: 0000-0003-3594-408X
  surname: Zhang
  fullname: Zhang, Pengcheng
– sequence: 5
  givenname: Henry
  surname: Muccini
  fullname: Muccini, Henry
BookMark eNpNkV1rFDEUhoNUsLa98g8EvJRt8zlJvBtbrYUFsa14Gc5mkjXL7GRMMpb990ZXpOdcnA_OeXjhfY1OpjR5hN5Qcsm5IVcwz5QwpolkL9ApI6pbcUHVybP-FbooZUdaGMo1Jafo-9cFxlgPuC9lyTA5jx-9-zGlMW2jLzgF_CFu8Q1UwP08j9FBjWkq73GPHw6l-n2bHV7H6jPUJXt8739F_3SOXgYYi7_4V8_Qt08fH68_r9Zfbu-u-_XKCcLrCpQjG20cCZJLprTmRoVgpGJCGDN0jAQwRBph1EAgUE7kILzW0oEARTw_Q3dH7pBgZ-cc95APNkG0fxcpby3kpnD01gTNfDB6GBQIKfhGD6YLQmy0MrTxGuvtkTXn9HPxpdpdWvLU5FsmOqoEIUq1q8vj1RYaNE4h1Qyu5eD30TVLQmz7vhOdVIIL0x7eHR9cTqVkH_7LpMT-cc4-c47_BkQFivo
CitedBy_id crossref_primary_10_1089_big_2021_0369
crossref_primary_10_1109_ACCESS_2023_3333920
crossref_primary_10_3390_app12020544
crossref_primary_10_3390_systems11090464
Cites_doi 10.14778/2367502.2367512
10.1109/PRDC.2015.41
10.1109/WICSA.2016.27
10.1109/ICBDA.2018.8367644
10.1145/2896825.2896838
10.1186/s13677-014-0019-z
10.1109/TSC.2016.2543718
10.1016/j.asoc.2014.03.032
10.1109/SEAA.2018.00054
10.1109/CSMR.2013.66
10.1109/SOSE.2016.63
10.1016/j.future.2017.12.046
10.1145/3337065
10.1109/IPDPSW.2015.65
10.3390/informatics5020019
10.1109/ICEDEG.2014.6819936
10.1016/j.cie.2018.08.004
10.1016/j.procs.2016.05.285
10.1111/dpr.12142
10.1109/TPDS.2015.2419671
10.1109/ACCESS.2019.2917891
10.1109/APSEC.2014.23
10.1016/j.jss.2018.06.073
10.1016/j.infsof.2014.06.002
10.1109/ICSTW.2015.7107424
10.1109/BigDataService.2015.33
10.1109/BigData.2017.8258544
10.1016/j.microrel.2019.03.010
10.14236/ewic/EASE2010.14
10.1109/QRS-C.2018.00019
10.1109/TBDATA.2016.2599928
10.1016/j.isprsjprs.2015.11.006
10.1109/ICInfA.2014.6932715
10.1109/MiSE.2015.21
10.1016/j.future.2014.08.007
10.1016/j.jpdc.2014.08.007
10.1109/TR.2018.2802047
10.1007/978-3-319-23862-3_30
10.1016/j.jpdc.2016.12.017
10.1016/j.ins.2014.01.015
10.1109/MDM.2014.74
10.1109/ICENCO.2016.7856457
10.1016/j.infsof.2008.09.009
10.1109/ICInfA.2014.6932625
10.1002/cpe.3402
10.1007/978-3-319-23201-0_2
10.1109/WAINA.2016.45
10.1109/CCGRID.2017.115
10.1145/2897010.2897014
10.1109/ICMLA.2017.00-89
10.1007/978-3-319-49106-6_73
10.1109/MC.2015.62
10.1007/s10115-018-1248-0
10.1016/j.ins.2016.07.007
10.1145/3297280.3297474
10.1145/3053600.3053622
10.1109/BigDataService.2017.42
10.1109/BigMM.2016.35
10.1016/j.bdr.2014.07.001
10.1007/s12559-018-9613-6
10.1007/s11219-011-9146-7
10.1186/s40537-015-0024-1
10.1016/j.compeleceng.2017.12.009
10.1016/j.cities.2019.01.032
10.1109/SYNASC.2015.62
10.1016/j.ijpe.2014.04.018
10.1109/PAIS.2018.8598484
10.1109/IMCEC.2018.8469275
10.1109/ICCCBDA.2018.8386523
10.1109/ICSE.2015.130
10.1109/QRS-C.2018.00018
10.1109/CSCS.2019.00039
10.1007/s10766-013-0272-7
10.1111/isj.12088
10.18293/SEKE2016-166
10.1109/ICSE.2013.6606586
10.1145/2896825.2896828
10.1109/ICCCBDA.2017.7951948
10.1214/aoms/1177705148
10.1109/BigData.2015.7364064
10.1109/BigData.2016.7840733
10.1109/TSC.2015.2453973
10.1145/2464157.2466485
10.1109/CLOUDCOM-ASIA.2013.27
10.1007/s11227-016-1677-z
10.1109/BigData.2014.7004242
10.1109/QRS-C.2018.00017
10.1007/978-3-030-33702-5_3
10.1109/QRS-C.2018.00026
10.1109/ICBDACI.2017.8070806
10.1109/TrustCom.2016.0148
10.1016/B978-0-12-416681-3.00001-X
10.1016/j.future.2017.12.068
10.4304/jcm.7.1.52-61
10.1007/s11227-017-2151-2
10.1007/978-981-10-3996-6_5
10.1109/BigDataService.2016.10
10.1145/2896825.2896831
10.1109/CCCS.2015.7374131
10.1109/APPEEC.2014.7066164
10.1109/ICST.2015.7102619
10.1109/ICDE.2016.7498275
10.1016/j.infsof.2017.07.006
10.1007/s10586-017-1385-3
10.1109/TPDS.2015.2473174
10.1109/TR.2017.2712563
10.1007/978-3-319-15350-6_1
10.14445/22312803/IJCTT-V15P132
10.1109/BigData.2015.7364111
10.1109/ICIS.2015.7166567
10.1007/s10515-016-0196-8
ContentType Journal Article
Copyright COPYRIGHT 2020 MDPI AG
2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2020 MDPI AG
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PIMPY
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app10228052
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Databases
ProQuest One Community College
ProQuest Central Korea
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ: Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Academic
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Databases
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_9f82ef98dd7a4543b8d96f44b8791ca4
A646574349
10_3390_app10228052
GeographicLocations Italy
China
GeographicLocations_xml – name: China
– name: Italy
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARAPS
ARCSS
ATCPS
BBNVY
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6-
K6V
K7-
KB.
KC.
KQ8
L6V
LK5
LK8
M0K
M7P
M7R
M7S
MODMG
M~E
N95
OK1
P62
PATMY
PCBAR
PDBOC
PIMPY
PROAC
PYCSY
RIG
TUS
BGLVJ
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c403t-a7c0b89c0f5352788397ff95724499d620fa9059497d0af1305d4e885ca4a70e3
IEDL.DBID 8FG
ISSN 2076-3417
IngestDate Tue Oct 22 15:09:10 EDT 2024
Thu Oct 10 19:23:08 EDT 2024
Fri Feb 02 04:05:21 EST 2024
Fri Aug 23 05:28:01 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-a7c0b89c0f5352788397ff95724499d620fa9059497d0af1305d4e885ca4a70e3
ORCID 0000-0003-3594-408X
0000-0002-8584-5795
OpenAccessLink https://www.proquest.com/docview/2461740077?pq-origsite=%requestingapplication%
PQID 2461740077
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_9f82ef98dd7a4543b8d96f44b8791ca4
proquest_journals_2461740077
gale_infotracacademiconefile_A646574349
crossref_primary_10_3390_app10228052
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_94
ref_90
Jan (ref_5) 2019; 75
Montagud (ref_10) 2012; 20
Garg (ref_17) 2016; 85
Kitchenham (ref_25) 2009; 51
ref_14
ref_99
ref_97
ref_96
ref_95
Barsacchi (ref_113) 2019; 11
Enes (ref_93) 2018; 87
ref_19
ref_18
ref_16
ref_15
Tuma (ref_77) 2018; 144
Dobre (ref_121) 2014; 42
Dai (ref_1) 2019; 52
ref_24
ref_23
ref_21
ref_122
ref_20
Wang (ref_12) 2016; 367–368
ref_29
ref_28
ref_27
Guan (ref_108) 2012; 7
ref_72
Chen (ref_31) 2017; 10
ref_71
ref_70
Zou (ref_89) 2014; 1
Li (ref_100) 2017; 66
Gudivada (ref_9) 2015; 48
ref_76
ref_74
ref_73
Chen (ref_2) 2014; 275
Andreolini (ref_91) 2015; 79
Allam (ref_3) 2019; 89
Clarke (ref_37) 2016; 26
ref_82
ref_81
Hilbert (ref_6) 2016; 34
ref_88
ref_87
ref_85
ref_84
Osvaldo (ref_92) 2017; 92
Villalpando (ref_60) 2014; 3
Malhotra (ref_52) 2014; 21
ref_50
Fahmideh (ref_86) 2019; 128
Hazen (ref_107) 2014; 154
Cruzes (ref_11) 2015; 57
Banares (ref_79) 2018; 87
ref_57
ref_56
ref_55
ref_54
ref_53
ref_51
Liu (ref_22) 2016; 115
Tsui (ref_69) 2019; 7
ref_61
Kitchenham (ref_26) 2004; 33
ref_66
ref_65
ref_64
ref_63
Ke (ref_120) 2016; 27
ref_115
ref_114
ref_117
ref_116
ref_119
ref_118
ref_36
ref_35
ref_34
Bagriyanik (ref_13) 2016; 6
ref_33
ref_32
Xia (ref_111) 2019; 27
ref_110
Ficco (ref_75) 2015; 27
Amato (ref_98) 2016; 110
Bertolino (ref_47) 2018; 67
ref_39
ref_38
Liu (ref_62) 2015; 49
Lin (ref_68) 2019; 97
Wang (ref_58) 2016; 4
ref_104
ref_103
ref_106
ref_105
Goodman (ref_30) 1961; 32
ref_109
ref_46
Syer (ref_83) 2017; 24
ref_45
ref_44
ref_43
ref_42
Wang (ref_80) 2017; 9
ref_41
ref_102
ref_40
ref_101
Sun (ref_112) 2019; 74
ref_49
ref_48
Anagnostopoulos (ref_8) 2016; 72
Shen (ref_67) 2017; 21
ref_4
Puthal (ref_59) 2016; 16
Etani (ref_78) 2015; 2
ref_7
References_xml – ident: ref_116
  doi: 10.14778/2367502.2367512
– ident: ref_7
  doi: 10.1109/PRDC.2015.41
– ident: ref_97
  doi: 10.1109/WICSA.2016.27
– ident: ref_65
  doi: 10.1109/ICBDA.2018.8367644
– ident: ref_61
  doi: 10.1145/2896825.2896838
– volume: 3
  start-page: 19
  year: 2014
  ident: ref_60
  article-title: Performance analysis model for big data applications in cloud computing
  publication-title: J. Cloud Comput.
  doi: 10.1186/s13677-014-0019-z
  contributor:
    fullname: Villalpando
– volume: 10
  start-page: 984
  year: 2017
  ident: ref_31
  article-title: Failure analysis and prediction for big-data systems
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2016.2543718
  contributor:
    fullname: Chen
– volume: 21
  start-page: 286
  year: 2014
  ident: ref_52
  article-title: Comparative analysis of statistical and machine learning methods for predicting faulty modules
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.03.032
  contributor:
    fullname: Malhotra
– ident: ref_64
  doi: 10.1109/SEAA.2018.00054
– ident: ref_76
  doi: 10.1109/CSMR.2013.66
– ident: ref_15
  doi: 10.1109/SOSE.2016.63
– volume: 87
  start-page: 888
  year: 2018
  ident: ref_79
  article-title: Model-driven development of data intensive applications over cloud resources
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.12.046
  contributor:
    fullname: Banares
– volume: 52
  start-page: 1
  year: 2019
  ident: ref_1
  article-title: Big data analytics for large-scale wireless networks: Challenges and opportunities
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/3337065
  contributor:
    fullname: Dai
– ident: ref_44
  doi: 10.1109/IPDPSW.2015.65
– ident: ref_21
  doi: 10.3390/informatics5020019
– ident: ref_35
  doi: 10.1109/ICEDEG.2014.6819936
– volume: 128
  start-page: 948
  year: 2019
  ident: ref_86
  article-title: Big data analytics architecture design—An application in manufacturing systems
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2018.08.004
  contributor:
    fullname: Fahmideh
– volume: 85
  start-page: 940
  year: 2016
  ident: ref_17
  article-title: Challenges and techniques for testing of big data
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.05.285
  contributor:
    fullname: Garg
– volume: 34
  start-page: 135
  year: 2016
  ident: ref_6
  article-title: Big Data for Development: A Review of Promises and Challenges
  publication-title: Dev. Policy Rev.
  doi: 10.1111/dpr.12142
  contributor:
    fullname: Hilbert
– volume: 27
  start-page: 818
  year: 2016
  ident: ref_120
  article-title: On Traffic-Aware Partition and Aggregation in MapReduce for Big Data Applications
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2015.2419671
  contributor:
    fullname: Ke
– volume: 7
  start-page: 68853
  year: 2019
  ident: ref_69
  article-title: Big data opportunities: System health monitoring and management
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917891
  contributor:
    fullname: Tsui
– ident: ref_74
  doi: 10.1109/APSEC.2014.23
– volume: 144
  start-page: 275
  year: 2018
  ident: ref_77
  article-title: Threat analysis of software systems: A systematic literature review
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2018.06.073
  contributor:
    fullname: Tuma
– volume: 57
  start-page: 277
  year: 2015
  ident: ref_11
  article-title: The impact of global dispersion on coordination, team performance and software quality—A systematic literature review
  publication-title: Inf. Soft. Technol.
  doi: 10.1016/j.infsof.2014.06.002
  contributor:
    fullname: Cruzes
– ident: ref_114
  doi: 10.1109/ICSTW.2015.7107424
– ident: ref_27
– ident: ref_46
  doi: 10.1109/BigDataService.2015.33
– ident: ref_99
  doi: 10.1109/BigData.2017.8258544
– volume: 97
  start-page: 66
  year: 2019
  ident: ref_68
  article-title: A cloud-based energy data mining information agent system based on big data analysis technology
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2019.03.010
  contributor:
    fullname: Lin
– ident: ref_29
  doi: 10.14236/ewic/EASE2010.14
– ident: ref_51
  doi: 10.1109/QRS-C.2018.00019
– volume: 4
  start-page: 418
  year: 2016
  ident: ref_58
  article-title: Mtmr: Ensuring mapreduce computation integrity with merkle tree-based verifications
  publication-title: IEEE Trans. Big Data
  doi: 10.1109/TBDATA.2016.2599928
  contributor:
    fullname: Wang
– volume: 115
  start-page: 134
  year: 2016
  ident: ref_22
  article-title: Rethinking big data: A review on the data quality and usage issues
  publication-title: ISRRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.11.006
  contributor:
    fullname: Liu
– ident: ref_63
  doi: 10.1109/ICInfA.2014.6932715
– volume: 33
  start-page: 1
  year: 2004
  ident: ref_26
  article-title: Procedures for Performing Systematic Reviews
  publication-title: Keele
  contributor:
    fullname: Kitchenham
– ident: ref_28
– ident: ref_95
  doi: 10.1109/MiSE.2015.21
– volume: 49
  start-page: 58
  year: 2015
  ident: ref_62
  article-title: External integrity verification for outsourced big data in cloud and IoT: A big picture
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2014.08.007
  contributor:
    fullname: Liu
– volume: 79
  start-page: 67
  year: 2015
  ident: ref_91
  article-title: Adaptive, scalable and reliable monitoring of big data on clouds
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2014.08.007
  contributor:
    fullname: Andreolini
– volume: 67
  start-page: 717
  year: 2018
  ident: ref_47
  article-title: Automatic testing of design faults in mapreduce applications
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2018.2802047
  contributor:
    fullname: Bertolino
– ident: ref_50
  doi: 10.1007/978-3-319-23862-3_30
– volume: 110
  start-page: 52
  year: 2016
  ident: ref_98
  article-title: Model transformations of mapreduce design patterns for automatic development and verification
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2016.12.017
  contributor:
    fullname: Amato
– volume: 275
  start-page: 314
  year: 2014
  ident: ref_2
  article-title: Data-intensive applications, challenges, techniques and technologies: A survey on Big Data
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.01.015
  contributor:
    fullname: Chen
– ident: ref_71
  doi: 10.1109/MDM.2014.74
– ident: ref_118
  doi: 10.1109/ICENCO.2016.7856457
– volume: 51
  start-page: 7
  year: 2009
  ident: ref_25
  article-title: Systematic literature reviews in software engineering: A tertiary study
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/j.infsof.2008.09.009
  contributor:
    fullname: Kitchenham
– ident: ref_14
– ident: ref_38
  doi: 10.1109/ICInfA.2014.6932625
– volume: 27
  start-page: 2107
  year: 2015
  ident: ref_75
  article-title: Modeling security requirements for cloud-based system development
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.3402
  contributor:
    fullname: Ficco
– ident: ref_110
  doi: 10.1007/978-3-319-23201-0_2
– ident: ref_117
  doi: 10.1109/WAINA.2016.45
– ident: ref_53
  doi: 10.1109/CCGRID.2017.115
– ident: ref_45
  doi: 10.1145/2897010.2897014
– ident: ref_104
  doi: 10.1109/ICMLA.2017.00-89
– ident: ref_81
– ident: ref_33
– ident: ref_16
  doi: 10.1007/978-3-319-49106-6_73
– volume: 48
  start-page: 20
  year: 2015
  ident: ref_9
  article-title: Big Data: Promises and Problems
  publication-title: Computer
  doi: 10.1109/MC.2015.62
  contributor:
    fullname: Gudivada
– ident: ref_70
  doi: 10.1007/s10115-018-1248-0
– volume: 367–368
  start-page: 747
  year: 2016
  ident: ref_12
  article-title: Towards Felicitous Decision Making: An Overview on Challenges and Trends of Big Data
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.07.007
  contributor:
    fullname: Wang
– ident: ref_87
  doi: 10.1145/3297280.3297474
– ident: ref_122
  doi: 10.1145/3053600.3053622
– ident: ref_20
  doi: 10.1109/BigDataService.2017.42
– ident: ref_54
  doi: 10.1109/BigMM.2016.35
– volume: 1
  start-page: 4
  year: 2014
  ident: ref_89
  article-title: FlexAnalytics: A flexible data analytics framework for big data applications with I/O performance improvement
  publication-title: Big Data Res.
  doi: 10.1016/j.bdr.2014.07.001
  contributor:
    fullname: Zou
– volume: 6
  start-page: 107
  year: 2016
  ident: ref_13
  article-title: Big data in software engineering: A systematic literature review
  publication-title: Glob. J. Inf. Technol. Emerg. Technol.
  contributor:
    fullname: Bagriyanik
– volume: 11
  start-page: 367
  year: 2019
  ident: ref_113
  article-title: Optimizing partition granularity, membership function parameters, and rule bases of fuzzy classifiers for big data by a multi-objective evolutionary approach
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-018-9613-6
  contributor:
    fullname: Barsacchi
– volume: 20
  start-page: 425
  year: 2012
  ident: ref_10
  article-title: A systematic review of quality attributes and measures for software product lines
  publication-title: Softw. Qual. J.
  doi: 10.1007/s11219-011-9146-7
  contributor:
    fullname: Montagud
– volume: 2
  start-page: 16
  year: 2015
  ident: ref_78
  article-title: Database application model and its service for drug discovery in Model-driven architecture
  publication-title: J. Big Data
  doi: 10.1186/s40537-015-0024-1
  contributor:
    fullname: Etani
– volume: 75
  start-page: 275
  year: 2019
  ident: ref_5
  article-title: Deep learning in big data analytics: A comparative study
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2017.12.009
  contributor:
    fullname: Jan
– volume: 89
  start-page: 80
  year: 2019
  ident: ref_3
  article-title: On big data, artificial intelligence and smart cities
  publication-title: Cities
  doi: 10.1016/j.cities.2019.01.032
  contributor:
    fullname: Allam
– ident: ref_56
  doi: 10.1109/SYNASC.2015.62
– volume: 154
  start-page: 72
  year: 2014
  ident: ref_107
  article-title: Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2014.04.018
  contributor:
    fullname: Hazen
– ident: ref_23
  doi: 10.1109/PAIS.2018.8598484
– ident: ref_103
  doi: 10.1109/IMCEC.2018.8469275
– ident: ref_32
  doi: 10.1109/ICCCBDA.2018.8386523
– ident: ref_18
  doi: 10.1109/ICSE.2015.130
– ident: ref_102
  doi: 10.1109/QRS-C.2018.00018
– ident: ref_88
  doi: 10.1109/CSCS.2019.00039
– volume: 42
  start-page: 710
  year: 2014
  ident: ref_121
  article-title: Parallel Programming Paradigms and Frameworks in Big Data Era
  publication-title: Int. J. Parallel Program.
  doi: 10.1007/s10766-013-0272-7
  contributor:
    fullname: Dobre
– volume: 26
  start-page: 77
  year: 2016
  ident: ref_37
  article-title: Big data, big risks
  publication-title: Inf. Syst. J.
  doi: 10.1111/isj.12088
  contributor:
    fullname: Clarke
– ident: ref_66
– ident: ref_4
  doi: 10.18293/SEKE2016-166
– ident: ref_101
  doi: 10.1109/ICSE.2013.6606586
– ident: ref_94
  doi: 10.1145/2896825.2896828
– ident: ref_84
  doi: 10.1109/ICCCBDA.2017.7951948
– volume: 32
  start-page: 148
  year: 1961
  ident: ref_30
  article-title: Snowball Sampling
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177705148
  contributor:
    fullname: Goodman
– volume: 16
  start-page: 1
  year: 2016
  ident: ref_59
  article-title: DLSeF: A dynamic key-length-based efficient real-time security verification model for big data stream
  publication-title: ACM Trans. Embed. Comput. Syst. (TECS)
  contributor:
    fullname: Puthal
– ident: ref_36
  doi: 10.1109/BigData.2015.7364064
– ident: ref_105
  doi: 10.1109/BigData.2016.7840733
– ident: ref_34
– volume: 9
  start-page: 84
  year: 2017
  ident: ref_80
  article-title: Betl: Mapreduce checkpoint tactics beneath the task level
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2015.2453973
  contributor:
    fullname: Wang
– ident: ref_90
  doi: 10.1145/2464157.2466485
– ident: ref_55
  doi: 10.1109/CLOUDCOM-ASIA.2013.27
– volume: 72
  start-page: 1494
  year: 2016
  ident: ref_8
  article-title: Handling big data: Research challenges and future directions
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-016-1677-z
  contributor:
    fullname: Anagnostopoulos
– ident: ref_115
  doi: 10.1109/BigData.2014.7004242
– ident: ref_48
  doi: 10.1109/QRS-C.2018.00017
– ident: ref_24
  doi: 10.1007/978-3-030-33702-5_3
– ident: ref_49
  doi: 10.1109/QRS-C.2018.00026
– ident: ref_85
  doi: 10.1109/ICBDACI.2017.8070806
– ident: ref_96
  doi: 10.1109/TrustCom.2016.0148
– ident: ref_73
  doi: 10.1016/B978-0-12-416681-3.00001-X
– volume: 87
  start-page: 420
  year: 2018
  ident: ref_93
  article-title: BDWatchdog: Real-time monitoring and profiling of Big Data applications and frameworks
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.12.068
  contributor:
    fullname: Enes
– volume: 7
  start-page: 52
  year: 2012
  ident: ref_108
  article-title: Ensemble of bayesian predictors and decision trees for proactive failure management in cloud computing systems
  publication-title: J. Commun.
  doi: 10.4304/jcm.7.1.52-61
  contributor:
    fullname: Guan
– volume: 74
  start-page: 615
  year: 2019
  ident: ref_112
  article-title: Rethinking elastic online scheduling of big data streaming applications over high-velocity continuous data streams
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-017-2151-2
  contributor:
    fullname: Sun
– ident: ref_106
  doi: 10.1007/978-981-10-3996-6_5
– ident: ref_57
  doi: 10.1109/BigDataService.2016.10
– ident: ref_41
  doi: 10.1145/2896825.2896831
– ident: ref_19
  doi: 10.1109/CCCS.2015.7374131
– ident: ref_39
  doi: 10.1109/APPEEC.2014.7066164
– ident: ref_40
  doi: 10.1109/ICST.2015.7102619
– ident: ref_42
  doi: 10.1109/ICDE.2016.7498275
– ident: ref_43
– volume: 92
  start-page: 30
  year: 2017
  ident: ref_92
  article-title: Developing software systems to Big Data platform based on MapReduce model: An approach based on Model Driven Engineering
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/j.infsof.2017.07.006
  contributor:
    fullname: Osvaldo
– volume: 21
  start-page: 1439
  year: 2017
  ident: ref_67
  article-title: Performance prediction of parallel computing models to analyze cloud-based big data applications
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-017-1385-3
  contributor:
    fullname: Shen
– volume: 27
  start-page: 1941
  year: 2019
  ident: ref_111
  article-title: Collaboration-and fairness-aware big data management in distributed clouds
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2015.2473174
  contributor:
    fullname: Xia
– volume: 66
  start-page: 783
  year: 2017
  ident: ref_100
  article-title: Minimum backups for stream processing with recovery latency guarantees
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2017.2712563
  contributor:
    fullname: Li
– ident: ref_82
  doi: 10.1007/978-3-319-15350-6_1
– ident: ref_119
  doi: 10.14445/22312803/IJCTT-V15P132
– ident: ref_109
  doi: 10.1109/BigData.2015.7364111
– ident: ref_72
  doi: 10.1109/ICIS.2015.7166567
– volume: 24
  start-page: 189
  year: 2017
  ident: ref_83
  article-title: Continuous validation of performance test workloads
  publication-title: Autom. Softw. Eng.
  doi: 10.1007/s10515-016-0196-8
  contributor:
    fullname: Syer
SSID ssj0000913810
Score 2.2692811
Snippet Big data applications are currently used in many application domains, ranging from statistical applications to prediction systems and smart cities. However,...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 8052
SubjectTerms Big Data
big data application
Data collection
Decision making
Fault tolerance
Literature reviews
Quality assessment
Quality assurance
quality assurance technology
quality attribute
Quality control
Quality management
Recommender systems
Software quality
systematic literature review
Systematic review
Technology
Technology application
Velocity
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ09T8MwEIYtxAQDogVEoCAPlYAhIh9O7GNLgapCwAIV3SzbiRFLi9p04N_jS9IoDIiFNcpg3eU-Xjt-jpBhqo3hsY58cPnRR2S3L4BZ30RaBIbZlCvc0H96TidT9jBLZp1RX_hPWI0Hrg13DVZEhQWR51yxhMVa5JBaxrTgEBpVk0AD6IipKgdDiOiq-kJe7HQ9ngeHFfsliX6UoIrU_1s-rorMeJ_sNd0hzepV9chWMe-T3Q4zsE96TTSu6GWDjL46IG81CuOLOmuvcVRGQds9cyeF6cLS0cc7vVOlolnnyPqGZvSlZTnTx5axTOszg0MyHd-_3k78ZmSCb1gQl77iJtACTGAR2-LkrWs3rIWEuyoOkKdRYBUgogV4HijrCliSs0KIxFlS8aCIj8j2fDEvjgm1mnFmTFRFeZwaJ4xCEwsFBkIdxsojw40V5WdNxpBOUaCxZcfYHhmhhdtXEGddPXBOlo2T5V9O9sgF-kdi0JVLZVRzd8CtFPFVMktZmrheiIFHBhsXyiYaVxKZeRwHwPOT_1jNKdmJUHVXNxIHZLtcrosz15qU-rz6Cr8BvTjfKQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Quality Assurance Technologies of Big Data Applications: A Systematic Literature Review
URI https://www.proquest.com/docview/2461740077
https://doaj.org/article/9f82ef98dd7a4543b8d96f44b8791ca4
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3NT9swFMCfWLlshwnKpnWwygck2CEiH05sc0HtRqkQVBNQjZtlO3G1S9u16YH_Hj_HzbrDdk1ysJ7zvu3fAzgttDEs02kknH2MENkdcUFtZFLNY0NtwRQW9O8nxXhKb5_z51BwW4djlVub6A11uTBYI79A7hnDId7savk7wqlR2F0NIzTewH6SMoZHuvjopq2xIPOSJ3FzLS9z2T12hRNPgMnTvxyR5_X_yyp7VzM6gPchRiSDZlMPYa-ad-HdDjmwC4dBJ9fkPICjvx7BzwaI8UKczDc4MKMibeXcJcRkYcnw14x8V7Uig53G9SUZkMeW6EzuWtIyaToHH2A6un76No7C4ITI0DirI8VMrLkwsUV4i0tyXdBhrciZ8-VClEUaWyUQ1CJYGSvr3Fhe0orz3CiqWFxlH6EzX8yrT0Cspowak3pdzwrj0qPEZFwJIxKdZKoHp1spymXDx5Aur0Bhyx1h92CIEm4_Qai1f7BYzWTQESksTysreFkyRXOaaV6KwlKqOROJW1oPznB_JKpevVJGhRsEbqUIsZKDgha5i4io6MHJdgtl0Mm1_PMHff7_62N4m2JW7W8cnkCnXm2qLy70qHXf_1992B9eT3489H0C_wr42djY
link.rule.ids 315,783,787,867,2109,12778,21401,27937,27938,33386,33757,43613,43818,74370,74637
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3NT9swFMCfRnuAHRB0IMrXfEBiHCLy4cT2LlO7UXWjVAiK4GbZTlzt0kIbDvvv55e4WTmwa5KD9ez3Hf8ewFmmjWGJjgPh7GOAyO6AC2oDE2seGmozprCgfzPOhg_011P65AtuS_9b5comVoY6nxuskV8i94zhEG_27fklwKlR2F31IzQ2oI2oKt6Cdv9qfHvXVFmQesmjsL6Yl7j8HvvCUcWASeM3rqgi9r9nlytnM9iBbR8lkl69rbvwoZh14OMaO7ADu14rl-SLR0dffILHGonxhzipv-LIjII0tXOXEpO5Jf3fU_JDlYr01lrXX0mP3DdMZzJqWMuk7h3swcPgavJ9GPjRCYGhYVIGiplQc2FCi_gWl-a6sMNakTLnzYXIszi0SiCqRbA8VNY5sjSnBeepUVSxsEj2oTWbz4oDIFZTRo2JK21PMuMSpMgkXAkjIh0lqgtnKynK55qQIV1mgcKWa8LuQh8l3HyCWOvqwXwxlV5LpLA8Lqzgec4UTWmieS4yS6nmTERuaV04x_2RqHzlQhnl7xC4lSLGSvYymqUuJqKiC8erLZReK5fy3xk6_P_rz7A5nNyM5Ojn-PoItmLMsav7h8fQKhevxYkLREp96k_bXw4R2po
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ1LT9wwEIBHFKSqHBBQULfl4QNS20NEEjt-9IJ2gRVQukJtEdws24lRL7uwGw78-3oSb1gOcE1yiGY8T9vfABxw65ygNk9U8I8JIrsTqZhPXG5l6pjnwmBD_9eIn12zi9viNp5_msVjlXOf2DjqcuKwR36I3DOBQ7zFoY_HIq5Ohkf3DwlOkMKd1jhO4x2sCMZpKMRWBqejq99dxwUJmDJL20t6NNT6uEecNTyYIn8Rlhp6_2s-ugk8w3VYixkj6bcq3oClarwJqwscwU3YiBY6I98iRvr7R7hp8RhPJGjgEcdnVKTro4fymEw8Gfy7IyemNqS_sI39g_TJn47vTC477jJp9xG24Hp4-vf4LIljFBLHUlonRrjUSuVSjyiXUPKGFMR7VYgQ2ZUqeZ56oxDbokSZGh-CWlGySsrCGWZEWtFtWB5PxtUnIN4ywZzLG8un3IViKXNUGuVUZjNqenAwl6K-b2kZOlQZKGy9IOweDFDC3SeIuG4eTKZ3OlqMVl7mlVeyLIVhBaNWlop7xqwUKgu_1oOvqB-NhlhPjTPxPkH4U0Ra6T5nvAj5EVM92JmrUEcLnenn9fT57df78D4sNH15Pvr5BT7kWG43VxF3YLmePla7ISep7V5cbP8BQ0Pezg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quality+Assurance+Technologies+of+Big+Data+Applications%3A+A+Systematic+Literature+Review&rft.jtitle=Applied+sciences&rft.au=Ji%2C+Shunhui&rft.au=Li%2C+Qingqiu&rft.au=Cao%2C+Wennan&rft.au=Zhang%2C+Pengcheng&rft.date=2020-11-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=10&rft.issue=22&rft_id=info:doi/10.3390%2Fapp10228052&rft.externalDocID=A646574349
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon