Quality Assurance Technologies of Big Data Applications: A Systematic Literature Review
Big data applications are currently used in many application domains, ranging from statistical applications to prediction systems and smart cities. However, the quality of these applications is far from perfect, such as functional error, failure and low performance. Consequently, assuring the overal...
Saved in:
Published in | Applied sciences Vol. 10; no. 22; p. 8052 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Big data applications are currently used in many application domains, ranging from statistical applications to prediction systems and smart cities. However, the quality of these applications is far from perfect, such as functional error, failure and low performance. Consequently, assuring the overall quality for big data applications plays an increasingly important role. This paper aims at summarizing and assessing existing quality assurance (QA) technologies addressing quality issues in big data applications. We have conducted a systematic literature review (SLR) by searching major scientific databases, resulting in 83 primary and relevant studies on QA technologies for big data applications. The SLR results reveal the following main findings: (1) the quality attributes that are focused for the quality of big data applications, including correctness, performance, availability, scalability and reliability, and the factors influencing them; (2) the existing implementation-specific QA technologies, including specification, architectural choice and fault tolerance, and the process-specific QA technologies, including analysis, verification, testing, monitoring and fault and failure prediction; (3) existing strengths and limitations of each kind of QA technology; (4) the existing empirical evidence of each QA technology. This study provides a solid foundation for research on QA technologies of big data applications and can help developers of big data applications apply suitable QA technologies. |
---|---|
AbstractList | Big data applications are currently used in many application domains, ranging from statistical applications to prediction systems and smart cities. However, the quality of these applications is far from perfect, such as functional error, failure and low performance. Consequently, assuring the overall quality for big data applications plays an increasingly important role. This paper aims at summarizing and assessing existing quality assurance (QA) technologies addressing quality issues in big data applications. We have conducted a systematic literature review (SLR) by searching major scientific databases, resulting in 83 primary and relevant studies on QA technologies for big data applications. The SLR results reveal the following main findings: (1) the quality attributes that are focused for the quality of big data applications, including correctness, performance, availability, scalability and reliability, and the factors influencing them; (2) the existing implementation-specific QA technologies, including specification, architectural choice and fault tolerance, and the process-specific QA technologies, including analysis, verification, testing, monitoring and fault and failure prediction; (3) existing strengths and limitations of each kind of QA technology; (4) the existing empirical evidence of each QA technology. This study provides a solid foundation for research on QA technologies of big data applications and can help developers of big data applications apply suitable QA technologies. Big data applications are currently used in many application domains, ranging from statistical applications to prediction systems and smart cities. However, the quality of these applications is far from perfect, such as functional error, failure and low performance. Consequently, assuring the overall quality for big data applications plays an increasingly important role. This paper aims at summarizing and assessing existing quality assurance (QA) technologies addressing quality issues in big data applications. We have conducted a systematic literature review (SLR) by searching major scientific databases, resulting in 83 primary and relevant studies on QA technologies for big data applications. The SLR results reveal the following main findings: (1) the quality attributes that are focused for the quality of big data applications, including correctness, performance, availability, scalability and reliability and the factors influencing them; (2) the existing implementation-specific QA technologies, including specification, architectural choice and fault tolerance, and the process-specific QA technologies, including analysis, verification, testing, monitoring and fault and failure prediction; (3) existing strengths and limitations of each kind of QA technology; (4) the existing empirical evidence of each QA technology. This study provides a solid foundation for research on QA technologies of big data applications and can help developers of big data applications apply suitable QA technologies. Keywords: quality attribute; quality assurance technology; big data application; systematic literature review |
Audience | Academic |
Author | Muccini, Henry Li, Qingqiu Ji, Shunhui Cao, Wennan Zhang, Pengcheng |
Author_xml | – sequence: 1 givenname: Shunhui orcidid: 0000-0002-8584-5795 surname: Ji fullname: Ji, Shunhui – sequence: 2 givenname: Qingqiu surname: Li fullname: Li, Qingqiu – sequence: 3 givenname: Wennan surname: Cao fullname: Cao, Wennan – sequence: 4 givenname: Pengcheng orcidid: 0000-0003-3594-408X surname: Zhang fullname: Zhang, Pengcheng – sequence: 5 givenname: Henry surname: Muccini fullname: Muccini, Henry |
BookMark | eNpNkV1rFDEUhoNUsLa98g8EvJRt8zlJvBtbrYUFsa14Gc5mkjXL7GRMMpb990ZXpOdcnA_OeXjhfY1OpjR5hN5Qcsm5IVcwz5QwpolkL9ApI6pbcUHVybP-FbooZUdaGMo1Jafo-9cFxlgPuC9lyTA5jx-9-zGlMW2jLzgF_CFu8Q1UwP08j9FBjWkq73GPHw6l-n2bHV7H6jPUJXt8739F_3SOXgYYi7_4V8_Qt08fH68_r9Zfbu-u-_XKCcLrCpQjG20cCZJLprTmRoVgpGJCGDN0jAQwRBph1EAgUE7kILzW0oEARTw_Q3dH7pBgZ-cc95APNkG0fxcpby3kpnD01gTNfDB6GBQIKfhGD6YLQmy0MrTxGuvtkTXn9HPxpdpdWvLU5FsmOqoEIUq1q8vj1RYaNE4h1Qyu5eD30TVLQmz7vhOdVIIL0x7eHR9cTqVkH_7LpMT-cc4-c47_BkQFivo |
CitedBy_id | crossref_primary_10_1089_big_2021_0369 crossref_primary_10_1109_ACCESS_2023_3333920 crossref_primary_10_3390_app12020544 crossref_primary_10_3390_systems11090464 |
Cites_doi | 10.14778/2367502.2367512 10.1109/PRDC.2015.41 10.1109/WICSA.2016.27 10.1109/ICBDA.2018.8367644 10.1145/2896825.2896838 10.1186/s13677-014-0019-z 10.1109/TSC.2016.2543718 10.1016/j.asoc.2014.03.032 10.1109/SEAA.2018.00054 10.1109/CSMR.2013.66 10.1109/SOSE.2016.63 10.1016/j.future.2017.12.046 10.1145/3337065 10.1109/IPDPSW.2015.65 10.3390/informatics5020019 10.1109/ICEDEG.2014.6819936 10.1016/j.cie.2018.08.004 10.1016/j.procs.2016.05.285 10.1111/dpr.12142 10.1109/TPDS.2015.2419671 10.1109/ACCESS.2019.2917891 10.1109/APSEC.2014.23 10.1016/j.jss.2018.06.073 10.1016/j.infsof.2014.06.002 10.1109/ICSTW.2015.7107424 10.1109/BigDataService.2015.33 10.1109/BigData.2017.8258544 10.1016/j.microrel.2019.03.010 10.14236/ewic/EASE2010.14 10.1109/QRS-C.2018.00019 10.1109/TBDATA.2016.2599928 10.1016/j.isprsjprs.2015.11.006 10.1109/ICInfA.2014.6932715 10.1109/MiSE.2015.21 10.1016/j.future.2014.08.007 10.1016/j.jpdc.2014.08.007 10.1109/TR.2018.2802047 10.1007/978-3-319-23862-3_30 10.1016/j.jpdc.2016.12.017 10.1016/j.ins.2014.01.015 10.1109/MDM.2014.74 10.1109/ICENCO.2016.7856457 10.1016/j.infsof.2008.09.009 10.1109/ICInfA.2014.6932625 10.1002/cpe.3402 10.1007/978-3-319-23201-0_2 10.1109/WAINA.2016.45 10.1109/CCGRID.2017.115 10.1145/2897010.2897014 10.1109/ICMLA.2017.00-89 10.1007/978-3-319-49106-6_73 10.1109/MC.2015.62 10.1007/s10115-018-1248-0 10.1016/j.ins.2016.07.007 10.1145/3297280.3297474 10.1145/3053600.3053622 10.1109/BigDataService.2017.42 10.1109/BigMM.2016.35 10.1016/j.bdr.2014.07.001 10.1007/s12559-018-9613-6 10.1007/s11219-011-9146-7 10.1186/s40537-015-0024-1 10.1016/j.compeleceng.2017.12.009 10.1016/j.cities.2019.01.032 10.1109/SYNASC.2015.62 10.1016/j.ijpe.2014.04.018 10.1109/PAIS.2018.8598484 10.1109/IMCEC.2018.8469275 10.1109/ICCCBDA.2018.8386523 10.1109/ICSE.2015.130 10.1109/QRS-C.2018.00018 10.1109/CSCS.2019.00039 10.1007/s10766-013-0272-7 10.1111/isj.12088 10.18293/SEKE2016-166 10.1109/ICSE.2013.6606586 10.1145/2896825.2896828 10.1109/ICCCBDA.2017.7951948 10.1214/aoms/1177705148 10.1109/BigData.2015.7364064 10.1109/BigData.2016.7840733 10.1109/TSC.2015.2453973 10.1145/2464157.2466485 10.1109/CLOUDCOM-ASIA.2013.27 10.1007/s11227-016-1677-z 10.1109/BigData.2014.7004242 10.1109/QRS-C.2018.00017 10.1007/978-3-030-33702-5_3 10.1109/QRS-C.2018.00026 10.1109/ICBDACI.2017.8070806 10.1109/TrustCom.2016.0148 10.1016/B978-0-12-416681-3.00001-X 10.1016/j.future.2017.12.068 10.4304/jcm.7.1.52-61 10.1007/s11227-017-2151-2 10.1007/978-981-10-3996-6_5 10.1109/BigDataService.2016.10 10.1145/2896825.2896831 10.1109/CCCS.2015.7374131 10.1109/APPEEC.2014.7066164 10.1109/ICST.2015.7102619 10.1109/ICDE.2016.7498275 10.1016/j.infsof.2017.07.006 10.1007/s10586-017-1385-3 10.1109/TPDS.2015.2473174 10.1109/TR.2017.2712563 10.1007/978-3-319-15350-6_1 10.14445/22312803/IJCTT-V15P132 10.1109/BigData.2015.7364111 10.1109/ICIS.2015.7166567 10.1007/s10515-016-0196-8 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 MDPI AG 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2020 MDPI AG – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PIMPY PQEST PQQKQ PQUKI DOA |
DOI | 10.3390/app10228052 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Databases ProQuest One Community College ProQuest Central Korea Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ: Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Databases url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_9f82ef98dd7a4543b8d96f44b8791ca4 A646574349 10_3390_app10228052 |
GeographicLocations | Italy China |
GeographicLocations_xml | – name: China – name: Italy |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARAPS ARCSS ATCPS BBNVY BCNDV BENPR BHPHI BKSAR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ HCIFZ IAO ITC K6- K6V K7- KB. KC. KQ8 L6V LK5 LK8 M0K M7P M7R M7S MODMG M~E N95 OK1 P62 PATMY PCBAR PDBOC PIMPY PROAC PYCSY RIG TUS BGLVJ ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c403t-a7c0b89c0f5352788397ff95724499d620fa9059497d0af1305d4e885ca4a70e3 |
IEDL.DBID | 8FG |
ISSN | 2076-3417 |
IngestDate | Tue Oct 22 15:09:10 EDT 2024 Thu Oct 10 19:23:08 EDT 2024 Fri Feb 02 04:05:21 EST 2024 Fri Aug 23 05:28:01 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-a7c0b89c0f5352788397ff95724499d620fa9059497d0af1305d4e885ca4a70e3 |
ORCID | 0000-0003-3594-408X 0000-0002-8584-5795 |
OpenAccessLink | https://www.proquest.com/docview/2461740077?pq-origsite=%requestingapplication% |
PQID | 2461740077 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9f82ef98dd7a4543b8d96f44b8791ca4 proquest_journals_2461740077 gale_infotracacademiconefile_A646574349 crossref_primary_10_3390_app10228052 |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_94 ref_90 Jan (ref_5) 2019; 75 Montagud (ref_10) 2012; 20 Garg (ref_17) 2016; 85 Kitchenham (ref_25) 2009; 51 ref_14 ref_99 ref_97 ref_96 ref_95 Barsacchi (ref_113) 2019; 11 Enes (ref_93) 2018; 87 ref_19 ref_18 ref_16 ref_15 Tuma (ref_77) 2018; 144 Dobre (ref_121) 2014; 42 Dai (ref_1) 2019; 52 ref_24 ref_23 ref_21 ref_122 ref_20 Wang (ref_12) 2016; 367–368 ref_29 ref_28 ref_27 Guan (ref_108) 2012; 7 ref_72 Chen (ref_31) 2017; 10 ref_71 ref_70 Zou (ref_89) 2014; 1 Li (ref_100) 2017; 66 Gudivada (ref_9) 2015; 48 ref_76 ref_74 ref_73 Chen (ref_2) 2014; 275 Andreolini (ref_91) 2015; 79 Allam (ref_3) 2019; 89 Clarke (ref_37) 2016; 26 ref_82 ref_81 Hilbert (ref_6) 2016; 34 ref_88 ref_87 ref_85 ref_84 Osvaldo (ref_92) 2017; 92 Villalpando (ref_60) 2014; 3 Malhotra (ref_52) 2014; 21 ref_50 Fahmideh (ref_86) 2019; 128 Hazen (ref_107) 2014; 154 Cruzes (ref_11) 2015; 57 Banares (ref_79) 2018; 87 ref_57 ref_56 ref_55 ref_54 ref_53 ref_51 Liu (ref_22) 2016; 115 Tsui (ref_69) 2019; 7 ref_61 Kitchenham (ref_26) 2004; 33 ref_66 ref_65 ref_64 ref_63 Ke (ref_120) 2016; 27 ref_115 ref_114 ref_117 ref_116 ref_119 ref_118 ref_36 ref_35 ref_34 Bagriyanik (ref_13) 2016; 6 ref_33 ref_32 Xia (ref_111) 2019; 27 ref_110 Ficco (ref_75) 2015; 27 Amato (ref_98) 2016; 110 Bertolino (ref_47) 2018; 67 ref_39 ref_38 Liu (ref_62) 2015; 49 Lin (ref_68) 2019; 97 Wang (ref_58) 2016; 4 ref_104 ref_103 ref_106 ref_105 Goodman (ref_30) 1961; 32 ref_109 ref_46 Syer (ref_83) 2017; 24 ref_45 ref_44 ref_43 ref_42 Wang (ref_80) 2017; 9 ref_41 ref_102 ref_40 ref_101 Sun (ref_112) 2019; 74 ref_49 ref_48 Anagnostopoulos (ref_8) 2016; 72 Shen (ref_67) 2017; 21 ref_4 Puthal (ref_59) 2016; 16 Etani (ref_78) 2015; 2 ref_7 |
References_xml | – ident: ref_116 doi: 10.14778/2367502.2367512 – ident: ref_7 doi: 10.1109/PRDC.2015.41 – ident: ref_97 doi: 10.1109/WICSA.2016.27 – ident: ref_65 doi: 10.1109/ICBDA.2018.8367644 – ident: ref_61 doi: 10.1145/2896825.2896838 – volume: 3 start-page: 19 year: 2014 ident: ref_60 article-title: Performance analysis model for big data applications in cloud computing publication-title: J. Cloud Comput. doi: 10.1186/s13677-014-0019-z contributor: fullname: Villalpando – volume: 10 start-page: 984 year: 2017 ident: ref_31 article-title: Failure analysis and prediction for big-data systems publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2016.2543718 contributor: fullname: Chen – volume: 21 start-page: 286 year: 2014 ident: ref_52 article-title: Comparative analysis of statistical and machine learning methods for predicting faulty modules publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.03.032 contributor: fullname: Malhotra – ident: ref_64 doi: 10.1109/SEAA.2018.00054 – ident: ref_76 doi: 10.1109/CSMR.2013.66 – ident: ref_15 doi: 10.1109/SOSE.2016.63 – volume: 87 start-page: 888 year: 2018 ident: ref_79 article-title: Model-driven development of data intensive applications over cloud resources publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.12.046 contributor: fullname: Banares – volume: 52 start-page: 1 year: 2019 ident: ref_1 article-title: Big data analytics for large-scale wireless networks: Challenges and opportunities publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/3337065 contributor: fullname: Dai – ident: ref_44 doi: 10.1109/IPDPSW.2015.65 – ident: ref_21 doi: 10.3390/informatics5020019 – ident: ref_35 doi: 10.1109/ICEDEG.2014.6819936 – volume: 128 start-page: 948 year: 2019 ident: ref_86 article-title: Big data analytics architecture design—An application in manufacturing systems publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2018.08.004 contributor: fullname: Fahmideh – volume: 85 start-page: 940 year: 2016 ident: ref_17 article-title: Challenges and techniques for testing of big data publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.05.285 contributor: fullname: Garg – volume: 34 start-page: 135 year: 2016 ident: ref_6 article-title: Big Data for Development: A Review of Promises and Challenges publication-title: Dev. Policy Rev. doi: 10.1111/dpr.12142 contributor: fullname: Hilbert – volume: 27 start-page: 818 year: 2016 ident: ref_120 article-title: On Traffic-Aware Partition and Aggregation in MapReduce for Big Data Applications publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2015.2419671 contributor: fullname: Ke – volume: 7 start-page: 68853 year: 2019 ident: ref_69 article-title: Big data opportunities: System health monitoring and management publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2917891 contributor: fullname: Tsui – ident: ref_74 doi: 10.1109/APSEC.2014.23 – volume: 144 start-page: 275 year: 2018 ident: ref_77 article-title: Threat analysis of software systems: A systematic literature review publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2018.06.073 contributor: fullname: Tuma – volume: 57 start-page: 277 year: 2015 ident: ref_11 article-title: The impact of global dispersion on coordination, team performance and software quality—A systematic literature review publication-title: Inf. Soft. Technol. doi: 10.1016/j.infsof.2014.06.002 contributor: fullname: Cruzes – ident: ref_114 doi: 10.1109/ICSTW.2015.7107424 – ident: ref_27 – ident: ref_46 doi: 10.1109/BigDataService.2015.33 – ident: ref_99 doi: 10.1109/BigData.2017.8258544 – volume: 97 start-page: 66 year: 2019 ident: ref_68 article-title: A cloud-based energy data mining information agent system based on big data analysis technology publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2019.03.010 contributor: fullname: Lin – ident: ref_29 doi: 10.14236/ewic/EASE2010.14 – ident: ref_51 doi: 10.1109/QRS-C.2018.00019 – volume: 4 start-page: 418 year: 2016 ident: ref_58 article-title: Mtmr: Ensuring mapreduce computation integrity with merkle tree-based verifications publication-title: IEEE Trans. Big Data doi: 10.1109/TBDATA.2016.2599928 contributor: fullname: Wang – volume: 115 start-page: 134 year: 2016 ident: ref_22 article-title: Rethinking big data: A review on the data quality and usage issues publication-title: ISRRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.11.006 contributor: fullname: Liu – ident: ref_63 doi: 10.1109/ICInfA.2014.6932715 – volume: 33 start-page: 1 year: 2004 ident: ref_26 article-title: Procedures for Performing Systematic Reviews publication-title: Keele contributor: fullname: Kitchenham – ident: ref_28 – ident: ref_95 doi: 10.1109/MiSE.2015.21 – volume: 49 start-page: 58 year: 2015 ident: ref_62 article-title: External integrity verification for outsourced big data in cloud and IoT: A big picture publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2014.08.007 contributor: fullname: Liu – volume: 79 start-page: 67 year: 2015 ident: ref_91 article-title: Adaptive, scalable and reliable monitoring of big data on clouds publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2014.08.007 contributor: fullname: Andreolini – volume: 67 start-page: 717 year: 2018 ident: ref_47 article-title: Automatic testing of design faults in mapreduce applications publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2018.2802047 contributor: fullname: Bertolino – ident: ref_50 doi: 10.1007/978-3-319-23862-3_30 – volume: 110 start-page: 52 year: 2016 ident: ref_98 article-title: Model transformations of mapreduce design patterns for automatic development and verification publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2016.12.017 contributor: fullname: Amato – volume: 275 start-page: 314 year: 2014 ident: ref_2 article-title: Data-intensive applications, challenges, techniques and technologies: A survey on Big Data publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.01.015 contributor: fullname: Chen – ident: ref_71 doi: 10.1109/MDM.2014.74 – ident: ref_118 doi: 10.1109/ICENCO.2016.7856457 – volume: 51 start-page: 7 year: 2009 ident: ref_25 article-title: Systematic literature reviews in software engineering: A tertiary study publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2008.09.009 contributor: fullname: Kitchenham – ident: ref_14 – ident: ref_38 doi: 10.1109/ICInfA.2014.6932625 – volume: 27 start-page: 2107 year: 2015 ident: ref_75 article-title: Modeling security requirements for cloud-based system development publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.3402 contributor: fullname: Ficco – ident: ref_110 doi: 10.1007/978-3-319-23201-0_2 – ident: ref_117 doi: 10.1109/WAINA.2016.45 – ident: ref_53 doi: 10.1109/CCGRID.2017.115 – ident: ref_45 doi: 10.1145/2897010.2897014 – ident: ref_104 doi: 10.1109/ICMLA.2017.00-89 – ident: ref_81 – ident: ref_33 – ident: ref_16 doi: 10.1007/978-3-319-49106-6_73 – volume: 48 start-page: 20 year: 2015 ident: ref_9 article-title: Big Data: Promises and Problems publication-title: Computer doi: 10.1109/MC.2015.62 contributor: fullname: Gudivada – ident: ref_70 doi: 10.1007/s10115-018-1248-0 – volume: 367–368 start-page: 747 year: 2016 ident: ref_12 article-title: Towards Felicitous Decision Making: An Overview on Challenges and Trends of Big Data publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.07.007 contributor: fullname: Wang – ident: ref_87 doi: 10.1145/3297280.3297474 – ident: ref_122 doi: 10.1145/3053600.3053622 – ident: ref_20 doi: 10.1109/BigDataService.2017.42 – ident: ref_54 doi: 10.1109/BigMM.2016.35 – volume: 1 start-page: 4 year: 2014 ident: ref_89 article-title: FlexAnalytics: A flexible data analytics framework for big data applications with I/O performance improvement publication-title: Big Data Res. doi: 10.1016/j.bdr.2014.07.001 contributor: fullname: Zou – volume: 6 start-page: 107 year: 2016 ident: ref_13 article-title: Big data in software engineering: A systematic literature review publication-title: Glob. J. Inf. Technol. Emerg. Technol. contributor: fullname: Bagriyanik – volume: 11 start-page: 367 year: 2019 ident: ref_113 article-title: Optimizing partition granularity, membership function parameters, and rule bases of fuzzy classifiers for big data by a multi-objective evolutionary approach publication-title: Cogn. Comput. doi: 10.1007/s12559-018-9613-6 contributor: fullname: Barsacchi – volume: 20 start-page: 425 year: 2012 ident: ref_10 article-title: A systematic review of quality attributes and measures for software product lines publication-title: Softw. Qual. J. doi: 10.1007/s11219-011-9146-7 contributor: fullname: Montagud – volume: 2 start-page: 16 year: 2015 ident: ref_78 article-title: Database application model and its service for drug discovery in Model-driven architecture publication-title: J. Big Data doi: 10.1186/s40537-015-0024-1 contributor: fullname: Etani – volume: 75 start-page: 275 year: 2019 ident: ref_5 article-title: Deep learning in big data analytics: A comparative study publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2017.12.009 contributor: fullname: Jan – volume: 89 start-page: 80 year: 2019 ident: ref_3 article-title: On big data, artificial intelligence and smart cities publication-title: Cities doi: 10.1016/j.cities.2019.01.032 contributor: fullname: Allam – ident: ref_56 doi: 10.1109/SYNASC.2015.62 – volume: 154 start-page: 72 year: 2014 ident: ref_107 article-title: Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2014.04.018 contributor: fullname: Hazen – ident: ref_23 doi: 10.1109/PAIS.2018.8598484 – ident: ref_103 doi: 10.1109/IMCEC.2018.8469275 – ident: ref_32 doi: 10.1109/ICCCBDA.2018.8386523 – ident: ref_18 doi: 10.1109/ICSE.2015.130 – ident: ref_102 doi: 10.1109/QRS-C.2018.00018 – ident: ref_88 doi: 10.1109/CSCS.2019.00039 – volume: 42 start-page: 710 year: 2014 ident: ref_121 article-title: Parallel Programming Paradigms and Frameworks in Big Data Era publication-title: Int. J. Parallel Program. doi: 10.1007/s10766-013-0272-7 contributor: fullname: Dobre – volume: 26 start-page: 77 year: 2016 ident: ref_37 article-title: Big data, big risks publication-title: Inf. Syst. J. doi: 10.1111/isj.12088 contributor: fullname: Clarke – ident: ref_66 – ident: ref_4 doi: 10.18293/SEKE2016-166 – ident: ref_101 doi: 10.1109/ICSE.2013.6606586 – ident: ref_94 doi: 10.1145/2896825.2896828 – ident: ref_84 doi: 10.1109/ICCCBDA.2017.7951948 – volume: 32 start-page: 148 year: 1961 ident: ref_30 article-title: Snowball Sampling publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177705148 contributor: fullname: Goodman – volume: 16 start-page: 1 year: 2016 ident: ref_59 article-title: DLSeF: A dynamic key-length-based efficient real-time security verification model for big data stream publication-title: ACM Trans. Embed. Comput. Syst. (TECS) contributor: fullname: Puthal – ident: ref_36 doi: 10.1109/BigData.2015.7364064 – ident: ref_105 doi: 10.1109/BigData.2016.7840733 – ident: ref_34 – volume: 9 start-page: 84 year: 2017 ident: ref_80 article-title: Betl: Mapreduce checkpoint tactics beneath the task level publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2015.2453973 contributor: fullname: Wang – ident: ref_90 doi: 10.1145/2464157.2466485 – ident: ref_55 doi: 10.1109/CLOUDCOM-ASIA.2013.27 – volume: 72 start-page: 1494 year: 2016 ident: ref_8 article-title: Handling big data: Research challenges and future directions publication-title: J. Supercomput. doi: 10.1007/s11227-016-1677-z contributor: fullname: Anagnostopoulos – ident: ref_115 doi: 10.1109/BigData.2014.7004242 – ident: ref_48 doi: 10.1109/QRS-C.2018.00017 – ident: ref_24 doi: 10.1007/978-3-030-33702-5_3 – ident: ref_49 doi: 10.1109/QRS-C.2018.00026 – ident: ref_85 doi: 10.1109/ICBDACI.2017.8070806 – ident: ref_96 doi: 10.1109/TrustCom.2016.0148 – ident: ref_73 doi: 10.1016/B978-0-12-416681-3.00001-X – volume: 87 start-page: 420 year: 2018 ident: ref_93 article-title: BDWatchdog: Real-time monitoring and profiling of Big Data applications and frameworks publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.12.068 contributor: fullname: Enes – volume: 7 start-page: 52 year: 2012 ident: ref_108 article-title: Ensemble of bayesian predictors and decision trees for proactive failure management in cloud computing systems publication-title: J. Commun. doi: 10.4304/jcm.7.1.52-61 contributor: fullname: Guan – volume: 74 start-page: 615 year: 2019 ident: ref_112 article-title: Rethinking elastic online scheduling of big data streaming applications over high-velocity continuous data streams publication-title: J. Supercomput. doi: 10.1007/s11227-017-2151-2 contributor: fullname: Sun – ident: ref_106 doi: 10.1007/978-981-10-3996-6_5 – ident: ref_57 doi: 10.1109/BigDataService.2016.10 – ident: ref_41 doi: 10.1145/2896825.2896831 – ident: ref_19 doi: 10.1109/CCCS.2015.7374131 – ident: ref_39 doi: 10.1109/APPEEC.2014.7066164 – ident: ref_40 doi: 10.1109/ICST.2015.7102619 – ident: ref_42 doi: 10.1109/ICDE.2016.7498275 – ident: ref_43 – volume: 92 start-page: 30 year: 2017 ident: ref_92 article-title: Developing software systems to Big Data platform based on MapReduce model: An approach based on Model Driven Engineering publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2017.07.006 contributor: fullname: Osvaldo – volume: 21 start-page: 1439 year: 2017 ident: ref_67 article-title: Performance prediction of parallel computing models to analyze cloud-based big data applications publication-title: Clust. Comput. doi: 10.1007/s10586-017-1385-3 contributor: fullname: Shen – volume: 27 start-page: 1941 year: 2019 ident: ref_111 article-title: Collaboration-and fairness-aware big data management in distributed clouds publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2015.2473174 contributor: fullname: Xia – volume: 66 start-page: 783 year: 2017 ident: ref_100 article-title: Minimum backups for stream processing with recovery latency guarantees publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2017.2712563 contributor: fullname: Li – ident: ref_82 doi: 10.1007/978-3-319-15350-6_1 – ident: ref_119 doi: 10.14445/22312803/IJCTT-V15P132 – ident: ref_109 doi: 10.1109/BigData.2015.7364111 – ident: ref_72 doi: 10.1109/ICIS.2015.7166567 – volume: 24 start-page: 189 year: 2017 ident: ref_83 article-title: Continuous validation of performance test workloads publication-title: Autom. Softw. Eng. doi: 10.1007/s10515-016-0196-8 contributor: fullname: Syer |
SSID | ssj0000913810 |
Score | 2.2692811 |
Snippet | Big data applications are currently used in many application domains, ranging from statistical applications to prediction systems and smart cities. However,... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 8052 |
SubjectTerms | Big Data big data application Data collection Decision making Fault tolerance Literature reviews Quality assessment Quality assurance quality assurance technology quality attribute Quality control Quality management Recommender systems Software quality systematic literature review Systematic review Technology Technology application Velocity |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ09T8MwEIYtxAQDogVEoCAPlYAhIh9O7GNLgapCwAIV3SzbiRFLi9p04N_jS9IoDIiFNcpg3eU-Xjt-jpBhqo3hsY58cPnRR2S3L4BZ30RaBIbZlCvc0H96TidT9jBLZp1RX_hPWI0Hrg13DVZEhQWR51yxhMVa5JBaxrTgEBpVk0AD6IipKgdDiOiq-kJe7HQ9ngeHFfsliX6UoIrU_1s-rorMeJ_sNd0hzepV9chWMe-T3Q4zsE96TTSu6GWDjL46IG81CuOLOmuvcVRGQds9cyeF6cLS0cc7vVOlolnnyPqGZvSlZTnTx5axTOszg0MyHd-_3k78ZmSCb1gQl77iJtACTGAR2-LkrWs3rIWEuyoOkKdRYBUgogV4HijrCliSs0KIxFlS8aCIj8j2fDEvjgm1mnFmTFRFeZwaJ4xCEwsFBkIdxsojw40V5WdNxpBOUaCxZcfYHhmhhdtXEGddPXBOlo2T5V9O9sgF-kdi0JVLZVRzd8CtFPFVMktZmrheiIFHBhsXyiYaVxKZeRwHwPOT_1jNKdmJUHVXNxIHZLtcrosz15qU-rz6Cr8BvTjfKQ priority: 102 providerName: Directory of Open Access Journals |
Title | Quality Assurance Technologies of Big Data Applications: A Systematic Literature Review |
URI | https://www.proquest.com/docview/2461740077 https://doaj.org/article/9f82ef98dd7a4543b8d96f44b8791ca4 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3NT9swFMCfWLlshwnKpnWwygck2CEiH05sc0HtRqkQVBNQjZtlO3G1S9u16YH_Hj_HzbrDdk1ysJ7zvu3fAzgttDEs02kknH2MENkdcUFtZFLNY0NtwRQW9O8nxXhKb5_z51BwW4djlVub6A11uTBYI79A7hnDId7savk7wqlR2F0NIzTewH6SMoZHuvjopq2xIPOSJ3FzLS9z2T12hRNPgMnTvxyR5_X_yyp7VzM6gPchRiSDZlMPYa-ad-HdDjmwC4dBJ9fkPICjvx7BzwaI8UKczDc4MKMibeXcJcRkYcnw14x8V7Uig53G9SUZkMeW6EzuWtIyaToHH2A6un76No7C4ITI0DirI8VMrLkwsUV4i0tyXdBhrciZ8-VClEUaWyUQ1CJYGSvr3Fhe0orz3CiqWFxlH6EzX8yrT0Cspowak3pdzwrj0qPEZFwJIxKdZKoHp1spymXDx5Aur0Bhyx1h92CIEm4_Qai1f7BYzWTQESksTysreFkyRXOaaV6KwlKqOROJW1oPznB_JKpevVJGhRsEbqUIsZKDgha5i4io6MHJdgtl0Mm1_PMHff7_62N4m2JW7W8cnkCnXm2qLy70qHXf_1992B9eT3489H0C_wr42djY |
link.rule.ids | 315,783,787,867,2109,12778,21401,27937,27938,33386,33757,43613,43818,74370,74637 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3NT9swFMCfRnuAHRB0IMrXfEBiHCLy4cT2LlO7UXWjVAiK4GbZTlzt0kIbDvvv55e4WTmwa5KD9ez3Hf8ewFmmjWGJjgPh7GOAyO6AC2oDE2seGmozprCgfzPOhg_011P65AtuS_9b5comVoY6nxuskV8i94zhEG_27fklwKlR2F31IzQ2oI2oKt6Cdv9qfHvXVFmQesmjsL6Yl7j8HvvCUcWASeM3rqgi9r9nlytnM9iBbR8lkl69rbvwoZh14OMaO7ADu14rl-SLR0dffILHGonxhzipv-LIjII0tXOXEpO5Jf3fU_JDlYr01lrXX0mP3DdMZzJqWMuk7h3swcPgavJ9GPjRCYGhYVIGiplQc2FCi_gWl-a6sMNakTLnzYXIszi0SiCqRbA8VNY5sjSnBeepUVSxsEj2oTWbz4oDIFZTRo2JK21PMuMSpMgkXAkjIh0lqgtnKynK55qQIV1mgcKWa8LuQh8l3HyCWOvqwXwxlV5LpLA8Lqzgec4UTWmieS4yS6nmTERuaV04x_2RqHzlQhnl7xC4lSLGSvYymqUuJqKiC8erLZReK5fy3xk6_P_rz7A5nNyM5Ojn-PoItmLMsav7h8fQKhevxYkLREp96k_bXw4R2po |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ1LT9wwEIBHFKSqHBBQULfl4QNS20NEEjt-9IJ2gRVQukJtEdws24lRL7uwGw78-3oSb1gOcE1yiGY8T9vfABxw65ygNk9U8I8JIrsTqZhPXG5l6pjnwmBD_9eIn12zi9viNp5_msVjlXOf2DjqcuKwR36I3DOBQ7zFoY_HIq5Ohkf3DwlOkMKd1jhO4x2sCMZpKMRWBqejq99dxwUJmDJL20t6NNT6uEecNTyYIn8Rlhp6_2s-ugk8w3VYixkj6bcq3oClarwJqwscwU3YiBY6I98iRvr7R7hp8RhPJGjgEcdnVKTro4fymEw8Gfy7IyemNqS_sI39g_TJn47vTC477jJp9xG24Hp4-vf4LIljFBLHUlonRrjUSuVSjyiXUPKGFMR7VYgQ2ZUqeZ56oxDbokSZGh-CWlGySsrCGWZEWtFtWB5PxtUnIN4ywZzLG8un3IViKXNUGuVUZjNqenAwl6K-b2kZOlQZKGy9IOweDFDC3SeIuG4eTKZ3OlqMVl7mlVeyLIVhBaNWlop7xqwUKgu_1oOvqB-NhlhPjTPxPkH4U0Ra6T5nvAj5EVM92JmrUEcLnenn9fT57df78D4sNH15Pvr5BT7kWG43VxF3YLmePla7ISep7V5cbP8BQ0Pezg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quality+Assurance+Technologies+of+Big+Data+Applications%3A+A+Systematic+Literature+Review&rft.jtitle=Applied+sciences&rft.au=Ji%2C+Shunhui&rft.au=Li%2C+Qingqiu&rft.au=Cao%2C+Wennan&rft.au=Zhang%2C+Pengcheng&rft.date=2020-11-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=10&rft.issue=22&rft_id=info:doi/10.3390%2Fapp10228052&rft.externalDocID=A646574349 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |