Data-Driven ICA-Bi-LSTM-Combined Lithium Battery SOH Estimation
Lithium battery state of health (SOH) is a key parameter to characterize the actual battery life. SOH cannot be directly measured. In order to further improve the accuracy of SOH estimation of lithium batteries, a model combining incremental capacity analysis (ICA) and bidirectional long- and short-...
Saved in:
Published in | Mathematical problems in engineering Vol. 2022; pp. 1 - 8 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Hindawi
28.03.2022
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1024-123X 1563-5147 |
DOI | 10.1155/2022/9645892 |
Cover
Loading…
Abstract | Lithium battery state of health (SOH) is a key parameter to characterize the actual battery life. SOH cannot be directly measured. In order to further improve the accuracy of SOH estimation of lithium batteries, a model combining incremental capacity analysis (ICA) and bidirectional long- and short-term memory (Bi-LSTM) neural networks based on health characteristic parameters is proposed to predict the SOH of lithium-ion batteries. First, the health characteristic parameters are initially selected from the lithium battery charging curve, and the health characteristics are extracted by the Pearson correlation coefficient, including the charging time of constant current, charging time of constant voltage, voltage change rate from 300 s to 1000 s, 200s of voltage per cycle at a time. Second, ICA was used to deeply mine the deep associations related to SOH and the peaks of IC curves and their corresponding voltages were extracted as additional inputs to the model. Then, Bi-LSTM is used to form a combined SOH estimation model through adaptive weighting factors. Finally, the verification is based on the 5th battery parameters of the NASA lithium battery data set. The experimental results show that the proposed combined model reduces the mean square error by 55.17%, 49.28%, and 41.47%, respectively, compared with single models such as BP neural network (BPNN), LSTM, and gated recurrent neural network (GRU). |
---|---|
AbstractList | Lithium battery state of health (SOH) is a key parameter to characterize the actual battery life. SOH cannot be directly measured. In order to further improve the accuracy of SOH estimation of lithium batteries, a model combining incremental capacity analysis (ICA) and bidirectional long- and short-term memory (Bi-LSTM) neural networks based on health characteristic parameters is proposed to predict the SOH of lithium-ion batteries. First, the health characteristic parameters are initially selected from the lithium battery charging curve, and the health characteristics are extracted by the Pearson correlation coefficient, including the charging time of constant current, charging time of constant voltage, voltage change rate from 300 s to 1000 s, 200s of voltage per cycle at a time. Second, ICA was used to deeply mine the deep associations related to SOH and the peaks of IC curves and their corresponding voltages were extracted as additional inputs to the model. Then, Bi-LSTM is used to form a combined SOH estimation model through adaptive weighting factors. Finally, the verification is based on the 5th battery parameters of the NASA lithium battery data set. The experimental results show that the proposed combined model reduces the mean square error by 55.17%, 49.28%, and 41.47%, respectively, compared with single models such as BP neural network (BPNN), LSTM, and gated recurrent neural network (GRU). |
Author | Sun, Jianrui Sun, Hanlei Wang, Kai Wang, Licheng Zhao, Kun |
Author_xml | – sequence: 1 givenname: Hanlei orcidid: 0000-0002-4564-2600 surname: Sun fullname: Sun, Hanlei organization: School of Electrical EngineeringWeihai Innovation Research InstituteQingdao UniversityQingdao 266000Chinaqdu.edu.cn – sequence: 2 givenname: Jianrui orcidid: 0000-0001-5486-8399 surname: Sun fullname: Sun, Jianrui organization: Shandong Wide Area Technology Co., Ltd.Dongying 257081China – sequence: 3 givenname: Kun orcidid: 0000-0002-9331-4927 surname: Zhao fullname: Zhao, Kun organization: Shandong Wide Area Technology Co., Ltd.Dongying 257081China – sequence: 4 givenname: Licheng orcidid: 0000-0002-7216-8721 surname: Wang fullname: Wang, Licheng organization: School of Information EngineeringZhejiang University of TechnologyHangzhou 310023Chinazjut.edu.cn – sequence: 5 givenname: Kai orcidid: 0000-0002-3513-3511 surname: Wang fullname: Wang, Kai organization: School of Electrical EngineeringWeihai Innovation Research InstituteQingdao UniversityQingdao 266000Chinaqdu.edu.cn |
BookMark | eNp9kM1OwzAQhC1UJNrCjQeIxBFM7XWc2CdEf6BIQT20SNwsJ3ZUV21SHBfUtyelPSHBaffwzezO9FCnqiuL0DUl95RyPgACMJBJzIWEM9SlPGGY0zjttDuBGFNg7xeo1zQrQoByKrroYayDxmPvPm0VvYwe8dDhbL54xaN6k7vKmihzYel2m2ioQ7B-H81n02jSBLfRwdXVJTov9bqxV6fZR29Pk8VoirPZc2uX4SImLGCdMiN1YQyHnPAYSpOmQkshmSGpTaktSWlAFHkOnOUAJU95XmiTGMaTsuCsj26Ovltff-xsE9Sq3vmqPakgiYUgkkrWUnCkCl83jbelKlz4-TN47daKEnUoSh2KUqeiWtHdL9HWt-n8_i_89ogvXWX0l_uf_gao4nWq |
CitedBy_id | crossref_primary_10_23919_PCMP_2023_000280 crossref_primary_10_1109_JSEN_2023_3341857 crossref_primary_10_3390_en16145313 crossref_primary_10_1063_5_0217697 crossref_primary_10_1186_s41601_022_00261_y crossref_primary_10_1063_5_0162519 crossref_primary_10_1063_5_0092074 crossref_primary_10_1109_TIM_2024_3417600 crossref_primary_10_1587_elex_20_20230370 crossref_primary_10_1115_1_4065762 crossref_primary_10_1155_2024_5822106 crossref_primary_10_1155_2022_1221745 crossref_primary_10_1155_2022_7620382 crossref_primary_10_1155_2022_4251341 crossref_primary_10_1002_est2_70066 crossref_primary_10_1109_TPEL_2023_3280576 crossref_primary_10_1186_s41601_023_00300_2 crossref_primary_10_1155_2022_3001939 crossref_primary_10_1155_2022_9616124 crossref_primary_10_4271_12_07_03_0016 |
Cites_doi | 10.1021/acsami.0c16489 10.1002/er.7360 10.26599/tst.2021.9010009 10.32604/jrm.2021.016090 10.1109/tpel.2013.2243918 10.1166/sam.2021.3943 10.1155/2021/6693690 10.1016/j.rser.2021.111408 10.1007/s40843-021-1910-2 10.1016/j.jpowsour.2019.227149 10.1002/er.7905 10.11113/matematika.v34.n2.935 10.1155/2020/8231243 10.3390/en13205297 10.1109/tsmc.2019.2907575 10.1109/tie.2018.2798606 10.1002/er.7545 10.1007/s11595-021-2396-8 10.1016/j.apenergy.2019.114169 10.1016/j.energy.2020.117852 10.1007/s10845-017-1385-4 10.1016/j.pmatsci.2020.100704 10.1016/j.cclet.2021.04.050 10.1049/iet-pel.2012.0706 10.1016/j.jpowsour.2018.06.036 10.1002/inf2.12262 10.1109/access.2020.2968939 10.1109/tie.2017.2733475 10.1155/2021/8816250 10.1016/j.ceramint.2021.05.231 10.1016/j.est.2022.104215 10.1016/j.energy.2022.123773 10.1149/2.0411904jes 10.1016/j.matt.2021.09.006 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Hanlei Sun et al. Copyright © 2022 Hanlei Sun et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2022 Hanlei Sun et al. – notice: Copyright © 2022 Hanlei Sun et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | RHU RHW RHX AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU CWDGH DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1155/2022/9645892 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Middle East & Africa Database (NC LIVE) ProQuest Central Engineering Research Database ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection ProQuest Engineering Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Middle East & Africa Database ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1563-5147 |
Editor | Abdollahzadeh Jamalabadi, Mohammad Yaghoub |
Editor_xml | – sequence: 1 givenname: Mohammad Yaghoub surname: Abdollahzadeh Jamalabadi fullname: Abdollahzadeh Jamalabadi, Mohammad Yaghoub |
EndPage | 8 |
ExternalDocumentID | 10_1155_2022_9645892 |
GrantInformation_xml | – fundername: Key Projects of Shandong Natural Science Foundation grantid: ZR2020KF020 – fundername: Youth Fund of Shandong Natural Science Foundation grantid: ZR2020QE212 – fundername: Natural Science Foundation of Shandong Province grantid: ZR201911140024; ZR2020MF068 – fundername: National Natural Science Foundation of China grantid: 52007170 |
GroupedDBID | 29M 2WC 3V. 4.4 5GY 5VS 8FE 8FG 8R4 8R5 AAFWJ AAJEY ABDBF ABJCF ABUWG ACIPV ACIWK ADBBV AENEX AFKRA AINHJ ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BPHCQ CCPQU CS3 CWDGH E3Z EBS ESX GROUPED_DOAJ HCIFZ I-F IAO IEA IOF ISR ITC K6V K7- KQ8 L6V M7S MK~ M~E OK1 P2P P62 PIMPY PQQKQ PROAC PTHSS Q2X REM RHU RHW RHX RNS TR2 TUS XSB YQT ~8M 0R~ 24P AAYXX ACCMX CITATION H13 OVT PHGZM PHGZT 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO FR3 GNUQQ JQ2 KR7 PKEHL PQEST PQGLB PQUKI PRINS |
ID | FETCH-LOGICAL-c403t-a73d9acdd52b0542fd778a9893d07e71ef0fd28cbb253b22f575bcad6d356fc53 |
IEDL.DBID | RHX |
ISSN | 1024-123X |
IngestDate | Fri Jul 25 10:27:30 EDT 2025 Tue Jul 01 04:24:23 EDT 2025 Thu Apr 24 23:13:01 EDT 2025 Sun Jun 02 18:51:20 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-a73d9acdd52b0542fd778a9893d07e71ef0fd28cbb253b22f575bcad6d356fc53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4564-2600 0000-0002-9331-4927 0000-0001-5486-8399 0000-0002-7216-8721 0000-0002-3513-3511 |
OpenAccessLink | https://dx.doi.org/10.1155/2022/9645892 |
PQID | 2648809193 |
PQPubID | 237775 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2648809193 crossref_citationtrail_10_1155_2022_9645892 crossref_primary_10_1155_2022_9645892 hindawi_primary_10_1155_2022_9645892 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-28 |
PublicationDateYYYYMMDD | 2022-03-28 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Mathematical problems in engineering |
PublicationYear | 2022 |
Publisher | Hindawi John Wiley & Sons, Inc |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
References | 22 23 25 26 27 29 J. C. Zhao (15) 2021; 32 C. Y. Ma (14) 2021; 47 C. Duan (19) 2022 30 31 10 32 33 12 34 13 35 36 37 16 17 18 Z. H. Cui (28) 2022; 46 1 2 3 4 5 6 7 8 9 J. Li (11) 2018; 42 20 21 H. Gholizade-Narm (24) 2013; 6 |
References_xml | – ident: 10 doi: 10.1021/acsami.0c16489 – ident: 8 doi: 10.1002/er.7360 – ident: 3 doi: 10.26599/tst.2021.9010009 – ident: 4 doi: 10.32604/jrm.2021.016090 – ident: 30 doi: 10.1109/tpel.2013.2243918 – ident: 12 doi: 10.1166/sam.2021.3943 – ident: 25 doi: 10.1155/2021/6693690 – ident: 31 doi: 10.1016/j.rser.2021.111408 – start-page: 1 year: 2022 ident: 19 article-title: Recent advances in the synthesis of nanoscale hierarchically porous metal–organic frameworks [J] publication-title: Nano Materials Science – ident: 20 doi: 10.1007/s40843-021-1910-2 – ident: 32 doi: 10.1016/j.jpowsour.2019.227149 – ident: 13 doi: 10.1002/er.7905 – ident: 36 doi: 10.11113/matematika.v34.n2.935 – ident: 26 doi: 10.1155/2020/8231243 – ident: 7 doi: 10.3390/en13205297 – ident: 27 doi: 10.1109/tsmc.2019.2907575 – volume: 32 start-page: 14715 issue: 11 year: 2021 ident: 15 article-title: Flexible PVDF nanogenerator-driven motion sensors for human body motion energy tracking and monitoring[J] publication-title: Journal of Materials Science: Materials in Electronics – ident: 16 doi: 10.1109/tie.2018.2798606 – volume: 46 start-page: 5423 issue: 5 year: 2022 ident: 28 article-title: A comprehensive review on the state of charge estimation for lithium-ion battery based on neural network[J] publication-title: International Journal of Energy Research doi: 10.1002/er.7545 – ident: 5 doi: 10.1007/s11595-021-2396-8 – ident: 9 doi: 10.1016/j.apenergy.2019.114169 – ident: 34 doi: 10.1016/j.energy.2020.117852 – ident: 18 doi: 10.1007/s10845-017-1385-4 – ident: 2 doi: 10.1016/j.pmatsci.2020.100704 – ident: 1 doi: 10.1016/j.cclet.2021.04.050 – volume: 6 start-page: 1833 issue: 9 year: 2013 ident: 24 article-title: Lithium-ion battery state of charge estimation based on square-root unscented kalman filter[J] publication-title: IET Power Electronics doi: 10.1049/iet-pel.2012.0706 – ident: 33 doi: 10.1016/j.jpowsour.2018.06.036 – ident: 6 doi: 10.1002/inf2.12262 – ident: 35 doi: 10.1109/access.2020.2968939 – ident: 22 doi: 10.1109/tie.2017.2733475 – ident: 23 doi: 10.1155/2021/8816250 – volume: 42 start-page: 725 issue: 5 year: 2018 ident: 11 article-title: Application status and development trends of the lithium pprimary batteries[J] publication-title: Chinese Journal of Power Sources – volume: 47 start-page: 25029 issue: 17 year: 2021 ident: 14 article-title: High-temperature stability of dielectric and energy-storage properties of weakly-coupled relaxor (1-x)BaTiO3-xBi(Y1/3Ti1/2)O3 ceramics[J] publication-title: Ceramics International doi: 10.1016/j.ceramint.2021.05.231 – ident: 37 doi: 10.1016/j.est.2022.104215 – ident: 21 doi: 10.1016/j.energy.2022.123773 – ident: 29 doi: 10.1149/2.0411904jes – ident: 17 doi: 10.1016/j.matt.2021.09.006 |
SSID | ssj0021518 |
Score | 2.5877113 |
Snippet | Lithium battery state of health (SOH) is a key parameter to characterize the actual battery life. SOH cannot be directly measured. In order to further improve... |
SourceID | proquest crossref hindawi |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Aging Artificial neural networks Back propagation Back propagation networks Battery chargers Charging Correlation coefficients Deep learning Electric potential Energy Engineering Lithium Lithium batteries Lithium-ion batteries Machine learning Mathematical models Methods Neural networks Parameters Power Random variables Rechargeable batteries Recurrent neural networks Standard deviation Support vector machines Voltage |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwELWgCAkO7IiloBzghCxaO46TE6KlqKCyiEXqLfKqRoJSaCrE3zNOHBYh4JxJDmPPm_ec8QxCeyA6CECvxkIaiUOtLRbKRDjigMhNrmVTFQWyl1H3Pjzvs74_cBv7ssoKEwug1k_KnZEfukqsGJJbQo9Gz9hNjXJ_V_0IjWk0AxAcg_iaaXUur28-JBfks_IyHHHd-Wi_Kn1nzKl-cphEIYsT8i0pzQ6cGn7NfqBzkXJOl9CC54rBcbm4y2jKDFfQoueNgY_K8Qqa_9JUcBUdnYhc4JMXB2PBWfsYtzLcu727wBD6IIPhzV6WD7LJY1D21nwLbq-6QQdCvbzFuIbuTzt37S72YxKwChs0x4JTnQilNSMSCBixmvNYJEBEdIMb3jS2YTWJlZSEUUmIBYYmldCRpiyyitF1VBs-Dc0GCqxsEskhJpUAXhLFEvQxFY42WGMot5vooPJTqnwPcTfK4iEttARjqfNq6r26ifY_rEdl74xf7Pa8y_8xq1frkfpAG6ef22Lr78fbaM59zJWPkbiOavnLxOwAn8jlrt8079x3xdQ priority: 102 providerName: ProQuest |
Title | Data-Driven ICA-Bi-LSTM-Combined Lithium Battery SOH Estimation |
URI | https://dx.doi.org/10.1155/2022/9645892 https://www.proquest.com/docview/2648809193 |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4UY-LFtxFFsgc8mUZo2e3uyfAUFfEBJNw2fQYSRQNLjP_eKVtIlBg9NpntYTrzzfdlp1OECiA6CECvwlxogctKGcylDnDAAJFLTImSnDfIdoJWv3w78AduSNJ09Rc-VDsrz8llFJT9MAKsXYcAs6K8NVjqKiha6Y03Ykfw0cGiv_3Ht98qz-bQSt6P0QoEz-tKcxdtO0LoVdIT3ENreryPdhw59FzqTQ_QVZ0nHNcnFp28m1oFV0e43e3dY8hoULdg2x4lw9Hs1UtHZn563YeW14AMTi8nHqJ-s9GrtbB7_QDLcpEmmDOqIi6V8okAXkWMYizkEfALVWSalbQpGkVCKQTxqSDEAPESkqtAUT8w0qdHKDN-G-tj5BlRIoJBqkkOdCMIBcheyi0bMFpTZrLoYuGZWLrR4PaFipd4LhF8P7Z-jJ0fs-h8af2ejsT4xa7gnPyHWW5xArHLn2ls--5CoDIRPfnfLqdoyy5tdxgJcyiTTGb6DOhCIvIQMs3rPNqoNjqPz7C6ewrz8wD6AqevuR4 |
linkProvider | Hindawi Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VRQg4UEipSBvoHtITspLY6_XuoYoKSZqSpByaSLktfiqRIH1kq6p_it_IeB8BhCinntdracfjb77PO54BaKLooAi9hkhlFQmNcURqG5FIICJ3hFEdnSfInkfDWfh5zudb8KO6C-PTKitMzIHaXGp_Rt7ymVgxBreEda-uie8a5f-uVi00CrcY2fs7lGzr47Meru8RpYP-9NOQlF0FiA7bLCNSMJNIbQynCvkKdUaIWCYYt01bWNGxru0MjbVSlDNFqUNCo7Q0kWE8ctp3iUDIfxIylvgdFQ9ONwIPo2dx9Y76WoBsXiXac-7PGGgriUIeJ_SPEPh04bX33fKvWJAHuMEreFky0-CkcKXXsGVXNdgpWWpQYsC6Bi9-K2G4C92ezCTp3XjQDPD7ycclGV9MJwSBBkU3vjleZovl7fegqOR5H1x8GQZ9BJbizuQbmD2K-fZge3W5sm8hcKpDlUAE0BJZUBQrVONMepLirGXC1eFDZadUlxXLfeOMb2muXDhPvVXT0qp1ONqMvioqdfxjXLM0-X-GNar1SMttvU5_OeH-w48P4dlwOhmn47Pz0QE89xP7xDUaN2A7u7m175DJZOp97j4BfH1sf_0JiaYCqw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NTxRBEK2QJRo5iKIGFKUPcDLN7vZMT_ccDFGGdZEVTYC4t7E_w0ZdkJ0NwZ_mX_HPWL3TA35EPXHwPJXJTM_rV1U9r6oA1jHpYEi9lirtNE2t9VQZl9FMICN3hdVdMxPI7mf9o_TVkA_n4GtTCxNklQ0nzojanphwRt4OSiyJzi1P2j7KIt4Wva3TzzRMkAp_WptxGjVE9tzFOaZvk2e7BX7rDcZ6O4fbfRonDFCTdpKKKpHYXBlrOdMYuzBvhZAqRx9uO8KJrvMdb5k0WjOeaMY8BjfaKJvZhGfehIkRSP_zYapT2oL57XfFy_5luoe-tC7EY6EzYDJsZPechxMH1s6zlMuc_eQQbxyHTPx89JtnmLm73iJ8axaqVrl82JxWetN8-aWH5P-5knfgdozCyfN629yFOTdegsUYkZPId5MlWPihXeM92CpUpWhxFhwEwaeiL0Z0cHD4miKpajSzZDCqjkfTT6TuWnpBDt70yQ6SaF0feh-OruWlHkBrfDJ2y0C87jItkO2Mwogvk1pKmagQkHnnEuFX4GmDgtLE7uxhSMjHcpalcV4GzJQRMyuwcWl9Wncl-YPdegTUP8xWG6SUkcIm5RVMHv798hrcRPyUg939vUdwK9w3aPSYXIVWdTZ1jzFoq_STuDsIvL9uGH0HCbtQXg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+ICA-Bi-LSTM-Combined+Lithium+Battery+SOH+Estimation&rft.jtitle=Mathematical+problems+in+engineering&rft.au=Sun%2C+Hanlei&rft.au=Sun%2C+Jianrui&rft.au=Zhao%2C+Kun&rft.au=Wang%2C+Licheng&rft.date=2022-03-28&rft.pub=Hindawi&rft.issn=1024-123X&rft.eissn=1563-5147&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F9645892&rft.externalDocID=10_1155_2022_9645892 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1024-123X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1024-123X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1024-123X&client=summon |