Data-Driven ICA-Bi-LSTM-Combined Lithium Battery SOH Estimation

Lithium battery state of health (SOH) is a key parameter to characterize the actual battery life. SOH cannot be directly measured. In order to further improve the accuracy of SOH estimation of lithium batteries, a model combining incremental capacity analysis (ICA) and bidirectional long- and short-...

Full description

Saved in:
Bibliographic Details
Published inMathematical problems in engineering Vol. 2022; pp. 1 - 8
Main Authors Sun, Hanlei, Sun, Jianrui, Zhao, Kun, Wang, Licheng, Wang, Kai
Format Journal Article
LanguageEnglish
Published New York Hindawi 28.03.2022
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1024-123X
1563-5147
DOI10.1155/2022/9645892

Cover

Loading…
Abstract Lithium battery state of health (SOH) is a key parameter to characterize the actual battery life. SOH cannot be directly measured. In order to further improve the accuracy of SOH estimation of lithium batteries, a model combining incremental capacity analysis (ICA) and bidirectional long- and short-term memory (Bi-LSTM) neural networks based on health characteristic parameters is proposed to predict the SOH of lithium-ion batteries. First, the health characteristic parameters are initially selected from the lithium battery charging curve, and the health characteristics are extracted by the Pearson correlation coefficient, including the charging time of constant current, charging time of constant voltage, voltage change rate from 300 s to 1000 s, 200s of voltage per cycle at a time. Second, ICA was used to deeply mine the deep associations related to SOH and the peaks of IC curves and their corresponding voltages were extracted as additional inputs to the model. Then, Bi-LSTM is used to form a combined SOH estimation model through adaptive weighting factors. Finally, the verification is based on the 5th battery parameters of the NASA lithium battery data set. The experimental results show that the proposed combined model reduces the mean square error by 55.17%, 49.28%, and 41.47%, respectively, compared with single models such as BP neural network (BPNN), LSTM, and gated recurrent neural network (GRU).
AbstractList Lithium battery state of health (SOH) is a key parameter to characterize the actual battery life. SOH cannot be directly measured. In order to further improve the accuracy of SOH estimation of lithium batteries, a model combining incremental capacity analysis (ICA) and bidirectional long- and short-term memory (Bi-LSTM) neural networks based on health characteristic parameters is proposed to predict the SOH of lithium-ion batteries. First, the health characteristic parameters are initially selected from the lithium battery charging curve, and the health characteristics are extracted by the Pearson correlation coefficient, including the charging time of constant current, charging time of constant voltage, voltage change rate from 300 s to 1000 s, 200s of voltage per cycle at a time. Second, ICA was used to deeply mine the deep associations related to SOH and the peaks of IC curves and their corresponding voltages were extracted as additional inputs to the model. Then, Bi-LSTM is used to form a combined SOH estimation model through adaptive weighting factors. Finally, the verification is based on the 5th battery parameters of the NASA lithium battery data set. The experimental results show that the proposed combined model reduces the mean square error by 55.17%, 49.28%, and 41.47%, respectively, compared with single models such as BP neural network (BPNN), LSTM, and gated recurrent neural network (GRU).
Author Sun, Jianrui
Sun, Hanlei
Wang, Kai
Wang, Licheng
Zhao, Kun
Author_xml – sequence: 1
  givenname: Hanlei
  orcidid: 0000-0002-4564-2600
  surname: Sun
  fullname: Sun, Hanlei
  organization: School of Electrical EngineeringWeihai Innovation Research InstituteQingdao UniversityQingdao 266000Chinaqdu.edu.cn
– sequence: 2
  givenname: Jianrui
  orcidid: 0000-0001-5486-8399
  surname: Sun
  fullname: Sun, Jianrui
  organization: Shandong Wide Area Technology Co., Ltd.Dongying 257081China
– sequence: 3
  givenname: Kun
  orcidid: 0000-0002-9331-4927
  surname: Zhao
  fullname: Zhao, Kun
  organization: Shandong Wide Area Technology Co., Ltd.Dongying 257081China
– sequence: 4
  givenname: Licheng
  orcidid: 0000-0002-7216-8721
  surname: Wang
  fullname: Wang, Licheng
  organization: School of Information EngineeringZhejiang University of TechnologyHangzhou 310023Chinazjut.edu.cn
– sequence: 5
  givenname: Kai
  orcidid: 0000-0002-3513-3511
  surname: Wang
  fullname: Wang, Kai
  organization: School of Electrical EngineeringWeihai Innovation Research InstituteQingdao UniversityQingdao 266000Chinaqdu.edu.cn
BookMark eNp9kM1OwzAQhC1UJNrCjQeIxBFM7XWc2CdEf6BIQT20SNwsJ3ZUV21SHBfUtyelPSHBaffwzezO9FCnqiuL0DUl95RyPgACMJBJzIWEM9SlPGGY0zjttDuBGFNg7xeo1zQrQoByKrroYayDxmPvPm0VvYwe8dDhbL54xaN6k7vKmihzYel2m2ioQ7B-H81n02jSBLfRwdXVJTov9bqxV6fZR29Pk8VoirPZc2uX4SImLGCdMiN1YQyHnPAYSpOmQkshmSGpTaktSWlAFHkOnOUAJU95XmiTGMaTsuCsj26Ovltff-xsE9Sq3vmqPakgiYUgkkrWUnCkCl83jbelKlz4-TN47daKEnUoSh2KUqeiWtHdL9HWt-n8_i_89ogvXWX0l_uf_gao4nWq
CitedBy_id crossref_primary_10_23919_PCMP_2023_000280
crossref_primary_10_1109_JSEN_2023_3341857
crossref_primary_10_3390_en16145313
crossref_primary_10_1063_5_0217697
crossref_primary_10_1186_s41601_022_00261_y
crossref_primary_10_1063_5_0162519
crossref_primary_10_1063_5_0092074
crossref_primary_10_1109_TIM_2024_3417600
crossref_primary_10_1587_elex_20_20230370
crossref_primary_10_1115_1_4065762
crossref_primary_10_1155_2024_5822106
crossref_primary_10_1155_2022_1221745
crossref_primary_10_1155_2022_7620382
crossref_primary_10_1155_2022_4251341
crossref_primary_10_1002_est2_70066
crossref_primary_10_1109_TPEL_2023_3280576
crossref_primary_10_1186_s41601_023_00300_2
crossref_primary_10_1155_2022_3001939
crossref_primary_10_1155_2022_9616124
crossref_primary_10_4271_12_07_03_0016
Cites_doi 10.1021/acsami.0c16489
10.1002/er.7360
10.26599/tst.2021.9010009
10.32604/jrm.2021.016090
10.1109/tpel.2013.2243918
10.1166/sam.2021.3943
10.1155/2021/6693690
10.1016/j.rser.2021.111408
10.1007/s40843-021-1910-2
10.1016/j.jpowsour.2019.227149
10.1002/er.7905
10.11113/matematika.v34.n2.935
10.1155/2020/8231243
10.3390/en13205297
10.1109/tsmc.2019.2907575
10.1109/tie.2018.2798606
10.1002/er.7545
10.1007/s11595-021-2396-8
10.1016/j.apenergy.2019.114169
10.1016/j.energy.2020.117852
10.1007/s10845-017-1385-4
10.1016/j.pmatsci.2020.100704
10.1016/j.cclet.2021.04.050
10.1049/iet-pel.2012.0706
10.1016/j.jpowsour.2018.06.036
10.1002/inf2.12262
10.1109/access.2020.2968939
10.1109/tie.2017.2733475
10.1155/2021/8816250
10.1016/j.ceramint.2021.05.231
10.1016/j.est.2022.104215
10.1016/j.energy.2022.123773
10.1149/2.0411904jes
10.1016/j.matt.2021.09.006
ContentType Journal Article
Copyright Copyright © 2022 Hanlei Sun et al.
Copyright © 2022 Hanlei Sun et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2022 Hanlei Sun et al.
– notice: Copyright © 2022 Hanlei Sun et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CWDGH
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1155/2022/9645892
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Middle East & Africa Database (NC LIVE)
ProQuest Central
Engineering Research Database
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
ProQuest Engineering Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Middle East & Africa Database
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1563-5147
Editor Abdollahzadeh Jamalabadi, Mohammad Yaghoub
Editor_xml – sequence: 1
  givenname: Mohammad Yaghoub
  surname: Abdollahzadeh Jamalabadi
  fullname: Abdollahzadeh Jamalabadi, Mohammad Yaghoub
EndPage 8
ExternalDocumentID 10_1155_2022_9645892
GrantInformation_xml – fundername: Key Projects of Shandong Natural Science Foundation
  grantid: ZR2020KF020
– fundername: Youth Fund of Shandong Natural Science Foundation
  grantid: ZR2020QE212
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR201911140024; ZR2020MF068
– fundername: National Natural Science Foundation of China
  grantid: 52007170
GroupedDBID 29M
2WC
3V.
4.4
5GY
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJEY
ABDBF
ABJCF
ABUWG
ACIPV
ACIWK
ADBBV
AENEX
AFKRA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CS3
CWDGH
E3Z
EBS
ESX
GROUPED_DOAJ
HCIFZ
I-F
IAO
IEA
IOF
ISR
ITC
K6V
K7-
KQ8
L6V
M7S
MK~
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
REM
RHU
RHW
RHX
RNS
TR2
TUS
XSB
YQT
~8M
0R~
24P
AAYXX
ACCMX
CITATION
H13
OVT
PHGZM
PHGZT
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
FR3
GNUQQ
JQ2
KR7
PKEHL
PQEST
PQGLB
PQUKI
PRINS
ID FETCH-LOGICAL-c403t-a73d9acdd52b0542fd778a9893d07e71ef0fd28cbb253b22f575bcad6d356fc53
IEDL.DBID RHX
ISSN 1024-123X
IngestDate Fri Jul 25 10:27:30 EDT 2025
Tue Jul 01 04:24:23 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Sun Jun 02 18:51:20 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-a73d9acdd52b0542fd778a9893d07e71ef0fd28cbb253b22f575bcad6d356fc53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4564-2600
0000-0002-9331-4927
0000-0001-5486-8399
0000-0002-7216-8721
0000-0002-3513-3511
OpenAccessLink https://dx.doi.org/10.1155/2022/9645892
PQID 2648809193
PQPubID 237775
PageCount 8
ParticipantIDs proquest_journals_2648809193
crossref_citationtrail_10_1155_2022_9645892
crossref_primary_10_1155_2022_9645892
hindawi_primary_10_1155_2022_9645892
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-28
PublicationDateYYYYMMDD 2022-03-28
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-28
  day: 28
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Mathematical problems in engineering
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References 22
23
25
26
27
29
J. C. Zhao (15) 2021; 32
C. Y. Ma (14) 2021; 47
C. Duan (19) 2022
30
31
10
32
33
12
34
13
35
36
37
16
17
18
Z. H. Cui (28) 2022; 46
1
2
3
4
5
6
7
8
9
J. Li (11) 2018; 42
20
21
H. Gholizade-Narm (24) 2013; 6
References_xml – ident: 10
  doi: 10.1021/acsami.0c16489
– ident: 8
  doi: 10.1002/er.7360
– ident: 3
  doi: 10.26599/tst.2021.9010009
– ident: 4
  doi: 10.32604/jrm.2021.016090
– ident: 30
  doi: 10.1109/tpel.2013.2243918
– ident: 12
  doi: 10.1166/sam.2021.3943
– ident: 25
  doi: 10.1155/2021/6693690
– ident: 31
  doi: 10.1016/j.rser.2021.111408
– start-page: 1
  year: 2022
  ident: 19
  article-title: Recent advances in the synthesis of nanoscale hierarchically porous metal–organic frameworks [J]
  publication-title: Nano Materials Science
– ident: 20
  doi: 10.1007/s40843-021-1910-2
– ident: 32
  doi: 10.1016/j.jpowsour.2019.227149
– ident: 13
  doi: 10.1002/er.7905
– ident: 36
  doi: 10.11113/matematika.v34.n2.935
– ident: 26
  doi: 10.1155/2020/8231243
– ident: 7
  doi: 10.3390/en13205297
– ident: 27
  doi: 10.1109/tsmc.2019.2907575
– volume: 32
  start-page: 14715
  issue: 11
  year: 2021
  ident: 15
  article-title: Flexible PVDF nanogenerator-driven motion sensors for human body motion energy tracking and monitoring[J]
  publication-title: Journal of Materials Science: Materials in Electronics
– ident: 16
  doi: 10.1109/tie.2018.2798606
– volume: 46
  start-page: 5423
  issue: 5
  year: 2022
  ident: 28
  article-title: A comprehensive review on the state of charge estimation for lithium-ion battery based on neural network[J]
  publication-title: International Journal of Energy Research
  doi: 10.1002/er.7545
– ident: 5
  doi: 10.1007/s11595-021-2396-8
– ident: 9
  doi: 10.1016/j.apenergy.2019.114169
– ident: 34
  doi: 10.1016/j.energy.2020.117852
– ident: 18
  doi: 10.1007/s10845-017-1385-4
– ident: 2
  doi: 10.1016/j.pmatsci.2020.100704
– ident: 1
  doi: 10.1016/j.cclet.2021.04.050
– volume: 6
  start-page: 1833
  issue: 9
  year: 2013
  ident: 24
  article-title: Lithium-ion battery state of charge estimation based on square-root unscented kalman filter[J]
  publication-title: IET Power Electronics
  doi: 10.1049/iet-pel.2012.0706
– ident: 33
  doi: 10.1016/j.jpowsour.2018.06.036
– ident: 6
  doi: 10.1002/inf2.12262
– ident: 35
  doi: 10.1109/access.2020.2968939
– ident: 22
  doi: 10.1109/tie.2017.2733475
– ident: 23
  doi: 10.1155/2021/8816250
– volume: 42
  start-page: 725
  issue: 5
  year: 2018
  ident: 11
  article-title: Application status and development trends of the lithium pprimary batteries[J]
  publication-title: Chinese Journal of Power Sources
– volume: 47
  start-page: 25029
  issue: 17
  year: 2021
  ident: 14
  article-title: High-temperature stability of dielectric and energy-storage properties of weakly-coupled relaxor (1-x)BaTiO3-xBi(Y1/3Ti1/2)O3 ceramics[J]
  publication-title: Ceramics International
  doi: 10.1016/j.ceramint.2021.05.231
– ident: 37
  doi: 10.1016/j.est.2022.104215
– ident: 21
  doi: 10.1016/j.energy.2022.123773
– ident: 29
  doi: 10.1149/2.0411904jes
– ident: 17
  doi: 10.1016/j.matt.2021.09.006
SSID ssj0021518
Score 2.5877113
Snippet Lithium battery state of health (SOH) is a key parameter to characterize the actual battery life. SOH cannot be directly measured. In order to further improve...
SourceID proquest
crossref
hindawi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Aging
Artificial neural networks
Back propagation
Back propagation networks
Battery chargers
Charging
Correlation coefficients
Deep learning
Electric potential
Energy
Engineering
Lithium
Lithium batteries
Lithium-ion batteries
Machine learning
Mathematical models
Methods
Neural networks
Parameters
Power
Random variables
Rechargeable batteries
Recurrent neural networks
Standard deviation
Support vector machines
Voltage
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwELWgCAkO7IiloBzghCxaO46TE6KlqKCyiEXqLfKqRoJSaCrE3zNOHBYh4JxJDmPPm_ec8QxCeyA6CECvxkIaiUOtLRbKRDjigMhNrmVTFQWyl1H3Pjzvs74_cBv7ssoKEwug1k_KnZEfukqsGJJbQo9Gz9hNjXJ_V_0IjWk0AxAcg_iaaXUur28-JBfks_IyHHHd-Wi_Kn1nzKl-cphEIYsT8i0pzQ6cGn7NfqBzkXJOl9CC54rBcbm4y2jKDFfQoueNgY_K8Qqa_9JUcBUdnYhc4JMXB2PBWfsYtzLcu727wBD6IIPhzV6WD7LJY1D21nwLbq-6QQdCvbzFuIbuTzt37S72YxKwChs0x4JTnQilNSMSCBixmvNYJEBEdIMb3jS2YTWJlZSEUUmIBYYmldCRpiyyitF1VBs-Dc0GCqxsEskhJpUAXhLFEvQxFY42WGMot5vooPJTqnwPcTfK4iEttARjqfNq6r26ifY_rEdl74xf7Pa8y_8xq1frkfpAG6ef22Lr78fbaM59zJWPkbiOavnLxOwAn8jlrt8079x3xdQ
  priority: 102
  providerName: ProQuest
Title Data-Driven ICA-Bi-LSTM-Combined Lithium Battery SOH Estimation
URI https://dx.doi.org/10.1155/2022/9645892
https://www.proquest.com/docview/2648809193
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4UY-LFtxFFsgc8mUZo2e3uyfAUFfEBJNw2fQYSRQNLjP_eKVtIlBg9NpntYTrzzfdlp1OECiA6CECvwlxogctKGcylDnDAAJFLTImSnDfIdoJWv3w78AduSNJ09Rc-VDsrz8llFJT9MAKsXYcAs6K8NVjqKiha6Y03Ykfw0cGiv_3Ht98qz-bQSt6P0QoEz-tKcxdtO0LoVdIT3ENreryPdhw59FzqTQ_QVZ0nHNcnFp28m1oFV0e43e3dY8hoULdg2x4lw9Hs1UtHZn563YeW14AMTi8nHqJ-s9GrtbB7_QDLcpEmmDOqIi6V8okAXkWMYizkEfALVWSalbQpGkVCKQTxqSDEAPESkqtAUT8w0qdHKDN-G-tj5BlRIoJBqkkOdCMIBcheyi0bMFpTZrLoYuGZWLrR4PaFipd4LhF8P7Z-jJ0fs-h8af2ejsT4xa7gnPyHWW5xArHLn2ls--5CoDIRPfnfLqdoyy5tdxgJcyiTTGb6DOhCIvIQMs3rPNqoNjqPz7C6ewrz8wD6AqevuR4
linkProvider Hindawi Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VRQg4UEipSBvoHtITspLY6_XuoYoKSZqSpByaSLktfiqRIH1kq6p_it_IeB8BhCinntdracfjb77PO54BaKLooAi9hkhlFQmNcURqG5FIICJ3hFEdnSfInkfDWfh5zudb8KO6C-PTKitMzIHaXGp_Rt7ymVgxBreEda-uie8a5f-uVi00CrcY2fs7lGzr47Meru8RpYP-9NOQlF0FiA7bLCNSMJNIbQynCvkKdUaIWCYYt01bWNGxru0MjbVSlDNFqUNCo7Q0kWE8ctp3iUDIfxIylvgdFQ9ONwIPo2dx9Y76WoBsXiXac-7PGGgriUIeJ_SPEPh04bX33fKvWJAHuMEreFky0-CkcKXXsGVXNdgpWWpQYsC6Bi9-K2G4C92ezCTp3XjQDPD7ycclGV9MJwSBBkU3vjleZovl7fegqOR5H1x8GQZ9BJbizuQbmD2K-fZge3W5sm8hcKpDlUAE0BJZUBQrVONMepLirGXC1eFDZadUlxXLfeOMb2muXDhPvVXT0qp1ONqMvioqdfxjXLM0-X-GNar1SMttvU5_OeH-w48P4dlwOhmn47Pz0QE89xP7xDUaN2A7u7m175DJZOp97j4BfH1sf_0JiaYCqw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NTxRBEK2QJRo5iKIGFKUPcDLN7vZMT_ccDFGGdZEVTYC4t7E_w0ZdkJ0NwZ_mX_HPWL3TA35EPXHwPJXJTM_rV1U9r6oA1jHpYEi9lirtNE2t9VQZl9FMICN3hdVdMxPI7mf9o_TVkA_n4GtTCxNklQ0nzojanphwRt4OSiyJzi1P2j7KIt4Wva3TzzRMkAp_WptxGjVE9tzFOaZvk2e7BX7rDcZ6O4fbfRonDFCTdpKKKpHYXBlrOdMYuzBvhZAqRx9uO8KJrvMdb5k0WjOeaMY8BjfaKJvZhGfehIkRSP_zYapT2oL57XfFy_5luoe-tC7EY6EzYDJsZPechxMH1s6zlMuc_eQQbxyHTPx89JtnmLm73iJ8axaqVrl82JxWetN8-aWH5P-5knfgdozCyfN629yFOTdegsUYkZPId5MlWPihXeM92CpUpWhxFhwEwaeiL0Z0cHD4miKpajSzZDCqjkfTT6TuWnpBDt70yQ6SaF0feh-OruWlHkBrfDJ2y0C87jItkO2Mwogvk1pKmagQkHnnEuFX4GmDgtLE7uxhSMjHcpalcV4GzJQRMyuwcWl9Wncl-YPdegTUP8xWG6SUkcIm5RVMHv798hrcRPyUg939vUdwK9w3aPSYXIVWdTZ1jzFoq_STuDsIvL9uGH0HCbtQXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+ICA-Bi-LSTM-Combined+Lithium+Battery+SOH+Estimation&rft.jtitle=Mathematical+problems+in+engineering&rft.au=Sun%2C+Hanlei&rft.au=Sun%2C+Jianrui&rft.au=Zhao%2C+Kun&rft.au=Wang%2C+Licheng&rft.date=2022-03-28&rft.pub=Hindawi&rft.issn=1024-123X&rft.eissn=1563-5147&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F9645892&rft.externalDocID=10_1155_2022_9645892
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1024-123X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1024-123X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1024-123X&client=summon