Perceiving Conflict of Interest Experts Recommendation System Based on a Machine Learning Approach
Academic societies and funding bodies that conduct peer reviews need to select the best reviewers in each field to ensure publication quality. Conventional approaches for reviewer selection focus on evaluating expertise based on research relevance by subject or discipline. An improved perceiving con...
Saved in:
Published in | Applied sciences Vol. 13; no. 4; p. 2214 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Academic societies and funding bodies that conduct peer reviews need to select the best reviewers in each field to ensure publication quality. Conventional approaches for reviewer selection focus on evaluating expertise based on research relevance by subject or discipline. An improved perceiving conflict of interest (CoI) reviewer recommendation process that combines the five expertise indices and graph analysis techniques is proposed in this paper. This approach collects metadata from the academic database and extracts candidates based on research field similarities utilizing text mining; then, the candidate scores are calculated and ranked through a professionalism index-based analysis. The highly connected subgraphs (HCS) algorithm is used to cluster similar researchers based on their association or intimacy in the researcher network. The proposed method is evaluated using root mean square error (RMSE) indicators for matching the field of publication and research fields of the recommended experts using keywords of papers published in Korean journals over the past five years. The results show that the system configures a group of Top-K reviewers with an RMSE 0.76. The proposed method can be applied to the academic society and national research management system to realize fair and efficient screening and management. |
---|---|
AbstractList | Academic societies and funding bodies that conduct peer reviews need to select the best reviewers in each field to ensure publication quality. Conventional approaches for reviewer selection focus on evaluating expertise based on research relevance by subject or discipline. An improved perceiving conflict of interest (CoI) reviewer recommendation process that combines the five expertise indices and graph analysis techniques is proposed in this paper. This approach collects metadata from the academic database and extracts candidates based on research field similarities utilizing text mining; then, the candidate scores are calculated and ranked through a professionalism index-based analysis. The highly connected subgraphs (HCS) algorithm is used to cluster similar researchers based on their association or intimacy in the researcher network. The proposed method is evaluated using root mean square error (RMSE) indicators for matching the field of publication and research fields of the recommended experts using keywords of papers published in Korean journals over the past five years. The results show that the system configures a group of Top-K reviewers with an RMSE 0.76. The proposed method can be applied to the academic society and national research management system to realize fair and efficient screening and management. |
Audience | Academic |
Author | Song, Gyuwon Im, Yunjeong Cho, Minsang |
Author_xml | – sequence: 1 givenname: Yunjeong orcidid: 0000-0002-9809-1312 surname: Im fullname: Im, Yunjeong – sequence: 2 givenname: Gyuwon orcidid: 0000-0002-6505-0370 surname: Song fullname: Song, Gyuwon – sequence: 3 givenname: Minsang orcidid: 0000-0002-9326-8350 surname: Cho fullname: Cho, Minsang |
BookMark | eNptUV1vFCEUJaYm1ton_wCJj2YrcGEYHtdN1U3WaLTvkzt8rGx2YGRoY_-9tGtMY4QHLifnHC73vCRnKSdPyGvOrgAMe4fzzIFJIbh8Rs4F090KJNdnT-oX5HJZDqwtw6Hn7JyMX32xPt7FtKebnMIx2kpzoNtUffFLpde_Zl_qQr95m6fJJ4c15kS_3y_VT_Q9Lt7Rdkf6Ge2PmDzdeSzpwW49zyU38BV5HvC4-Ms_5wW5-XB9s_m02n35uN2sdysrGdQVghsZcCn6zksjueoMCo1olNaoWFDMAcrOmnEMYgTohB174TrnMPSCwQXZnmxdxsMwlzhhuR8yxuERyGU_YKnRHv0gtDMgA-heeQnSjtohKosjggIhXfN6c_JqP_h528YwHPJtSa37ptVGCaUlNNbVibXHZhpTyLWgbdv5KdoWTogNX2vFTa970E3w9iSwJS9L8eFvm5wNDxkOTzJsbP4P28b6OP32TDz-V_MbUmuf4g |
CitedBy_id | crossref_primary_10_1016_j_jksuci_2024_102111 |
Cites_doi | 10.1016/j.neucom.2019.06.074 10.1007/978-3-319-45814-4_24 10.1007/s10489-013-0445-5 10.1109/ACCESS.2019.2894680 10.1016/j.engappai.2019.03.020 10.1007/978-3-319-55705-2_11 10.1007/s11192-020-03519-0 10.1109/TBDATA.2016.2641460 10.1016/j.patrec.2017.09.020 10.1016/j.ipm.2019.02.017 10.1007/s11192-019-03261-2 10.1007/s10791-021-09390-8 10.1109/ACCESS.2018.2883742 10.1016/j.compind.2015.11.001 10.1016/j.eswa.2018.05.039 10.1016/j.patcog.2010.06.010 10.1016/j.knosys.2016.05.041 10.1109/ICIS46139.2019.8940293 10.1007/s11192-018-2726-6 10.1109/TETC.2018.2861214 10.1109/HICSS.2007.17 10.1016/j.joi.2020.101022 10.1177/0165551516644168 10.1016/S0020-0190(00)00142-3 10.1109/ACCESS.2021.3059312 10.1145/1150402.1150521 10.1016/j.knosys.2018.05.001 10.1109/TIM.2008.925015 10.1016/j.eswa.2020.114331 10.1016/j.ipm.2019.01.007 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app13042214 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_27d934f3785e434cb7daa5caba35324d A751987837 10_3390_app13042214 |
GeographicLocations | South Korea |
GeographicLocations_xml | – name: South Korea |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c403t-a3db0314286e4941569a27aa9577a50f50d3a46c9bbf2b3362cb82d6ddaf8203 |
IEDL.DBID | BENPR |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:32:11 EDT 2025 Mon Jun 30 07:31:38 EDT 2025 Tue Jun 10 20:25:47 EDT 2025 Tue Jul 01 04:32:52 EDT 2025 Thu Apr 24 22:56:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-a3db0314286e4941569a27aa9577a50f50d3a46c9bbf2b3362cb82d6ddaf8203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9809-1312 0000-0002-9326-8350 0000-0002-6505-0370 |
OpenAccessLink | https://www.proquest.com/docview/2779525743?pq-origsite=%requestingapplication% |
PQID | 2779525743 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_27d934f3785e434cb7daa5caba35324d proquest_journals_2779525743 gale_infotracacademiconefile_A751987837 crossref_primary_10_3390_app13042214 crossref_citationtrail_10_3390_app13042214 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Shon (ref_24) 2017; 43 Pradhan (ref_27) 2020; 14 Protasiewicz (ref_10) 2016; 106 Nguyen (ref_6) 2018; 105 Liu (ref_13) 2016; 76 ref_14 ref_35 Pradhan (ref_8) 2021; 169 ref_33 ref_31 ref_30 Kumar (ref_34) 2010; 43 Dehghan (ref_26) 2019; 56 Tan (ref_11) 2021; 24 Xiong (ref_19) 2018; 110 Kanwal (ref_18) 2021; 9 Hartuv (ref_15) 2000; 76 Wang (ref_2) 2018; 157 Duan (ref_3) 2019; 366 Jalili (ref_17) 2018; 6 Chughtai (ref_21) 2020; 122 Vicencio (ref_32) 2008; 57 Kalmukov (ref_7) 2020; 124 ref_25 Mun (ref_29) 2009; 5 ref_20 Tayal (ref_23) 2014; 40 Zhao (ref_5) 2018; 115 Cagliero (ref_12) 2018; 9 ref_28 Balafar (ref_16) 2019; 82 Xia (ref_1) 2017; 3 ref_4 Ishag (ref_9) 2019; 7 Mirzaei (ref_22) 2019; 56 |
References_xml | – volume: 366 start-page: 97 year: 2019 ident: ref_3 article-title: Reviewer assignment based on sentence pair modeling publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.06.074 – ident: ref_28 – ident: ref_20 doi: 10.1007/978-3-319-45814-4_24 – ident: ref_30 – volume: 40 start-page: 54 year: 2014 ident: ref_23 article-title: New method for solving reviewer assignment problem using type-2 fuzzy sets and fuzzy functions publication-title: Appl. Intell. doi: 10.1007/s10489-013-0445-5 – volume: 7 start-page: 16460 year: 2019 ident: ref_9 article-title: A pattern-based academic reviewer recommendation combining author-paper and diversity metrics publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2894680 – volume: 82 start-page: 126 year: 2019 ident: ref_16 article-title: The state-of-the-art in expert recommendation systems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.03.020 – ident: ref_14 doi: 10.1007/978-3-319-55705-2_11 – volume: 124 start-page: 1811 year: 2020 ident: ref_7 article-title: An algorithm for automatic assignment of reviewers to papers publication-title: Scientometrics doi: 10.1007/s11192-020-03519-0 – volume: 3 start-page: 18 year: 2017 ident: ref_1 article-title: Big scholarly data: A survey publication-title: IEEE Trans. Big Data doi: 10.1109/TBDATA.2016.2641460 – volume: 105 start-page: 114 year: 2018 ident: ref_6 article-title: A decision support tool using Order Weighted Averaging for conference review assignment publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2017.09.020 – volume: 56 start-page: 1067 year: 2019 ident: ref_26 article-title: Temporal expert profiling: With an application to t-shaped expert finding publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2019.02.017 – volume: 122 start-page: 249 year: 2020 ident: ref_21 article-title: An efficient ontology-based topic-specific article recommendation model for best-fit reviewers publication-title: Scientometrics doi: 10.1007/s11192-019-03261-2 – ident: ref_35 – volume: 24 start-page: 175 year: 2021 ident: ref_11 article-title: Improved reviewer assignment based on both word and semantic features publication-title: Inf. Retr. J. doi: 10.1007/s10791-021-09390-8 – volume: 6 start-page: 74003 year: 2018 ident: ref_17 article-title: Evaluating collaborative filtering recommender algorithms: A survey publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2883742 – volume: 76 start-page: 1 year: 2016 ident: ref_13 article-title: An intelligent decision support approach for reviewer assignment in R&D project selection publication-title: Comput. Ind. doi: 10.1016/j.compind.2015.11.001 – volume: 110 start-page: 191 year: 2018 ident: ref_19 article-title: Deep hybrid collaborative filtering for web service recommendation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.05.039 – volume: 43 start-page: 3977 year: 2010 ident: ref_34 article-title: A hybrid SVM based decision tree publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2010.06.010 – volume: 106 start-page: 164 year: 2016 ident: ref_10 article-title: A recommender system of reviewers and experts in reviewing problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2016.05.041 – ident: ref_31 doi: 10.1109/ICIS46139.2019.8940293 – volume: 115 start-page: 1293 year: 2018 ident: ref_5 article-title: A novel classification method for paper-reviewer recommendation publication-title: Scientometrics doi: 10.1007/s11192-018-2726-6 – ident: ref_33 – volume: 9 start-page: 329 year: 2018 ident: ref_12 article-title: Additional reviewer assignment by means of weighted association rules publication-title: IEEE Trans. Emerg. Top. Comput. doi: 10.1109/TETC.2018.2861214 – ident: ref_4 doi: 10.1109/HICSS.2007.17 – volume: 14 start-page: 101022 year: 2020 ident: ref_27 article-title: An automated conflict of interest based greedy approach for conference paper assignment system publication-title: J. Informetr. doi: 10.1016/j.joi.2020.101022 – volume: 43 start-page: 147 year: 2017 ident: ref_24 article-title: Proposal reviewer recommendation system based on big data for a national research management institute publication-title: J. Inf. Sci. doi: 10.1177/0165551516644168 – volume: 76 start-page: 175 year: 2000 ident: ref_15 article-title: A clustering algorithm based on graph connectivity publication-title: Inf. Process. Lett. doi: 10.1016/S0020-0190(00)00142-3 – volume: 9 start-page: 31638 year: 2021 ident: ref_18 article-title: A review of text-based recommendation systems publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3059312 – ident: ref_25 doi: 10.1145/1150402.1150521 – volume: 157 start-page: 1 year: 2018 ident: ref_2 article-title: A content-based recommender system for computer science publications publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.05.001 – volume: 5 start-page: 1 year: 2009 ident: ref_29 article-title: Researcher Clustering Technique based on Weighted Researcher Network publication-title: J. Korea Soc. Digit. Ind. Inf. Manag. – volume: 57 start-page: 2421 year: 2008 ident: ref_32 article-title: Chilean wine classification using volatile organic compounds data obtained with a fast GC analyzer publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2008.925015 – volume: 169 start-page: 114331 year: 2021 ident: ref_8 article-title: A proactive decision support system for reviewer recommendation in academia publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114331 – volume: 56 start-page: 858 year: 2019 ident: ref_22 article-title: Multi-aspect review-team assignment using latent research areas publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2019.01.007 |
SSID | ssj0000913810 |
Score | 2.2659822 |
Snippet | Academic societies and funding bodies that conduct peer reviews need to select the best reviewers in each field to ensure publication quality. Conventional... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2214 |
SubjectTerms | Algorithms Bias Computational linguistics conflict of interest Data mining Ethical aspects expert recommendation highly connected subgraph Keywords Language processing Learned societies Machine learning Methods Natural language interfaces Natural language processing Peer review Productivity Proposals R&D Rankings Recommender systems Research & development Researchers scholarly big data Semantics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EVsVqlRwKPmCxzWPTHFuxFKHioUJvS54i2FZs_f_O7KalguLF4y5hNzuZZOabnfmGkLYCRfBBxsxGbzPBrMjAruvMaaEiuMBKGixOHj_mo2fxMJXTrVZfmBNW0QNXgrtlymsuIlc9GQQXzipvjHTGGi7BGfB4-oLN2wJT5Rmsu0hdVRXkccD1-D-4i9CddcU3E1Qy9f92HpdGZnhA9pN3SPvVrOpkJ8wbZG-LM7BB6mk3LulVooy-PiT2CfNTXjE4QO9SoQddRFrG--A9tGQ0Xi0pos3ZLKROSrTiK6cDMGWewrWh4zK5MtDEu_pC-4l0_IhMhveTu1GWuidkTnT4KjPcW-SmZ708CI04TRumjNFSKSM7UXY8NyJ32trILAdD5myP-dx7E8Et4MekNl_Mwwmh0TNnNNxSygrHQ0_nXc86HmMhLI-xSW7W8ixcYhbHBhdvBSAMFH6xJfwmaW8Gv1eEGj8PG-DCbIYgC3Z5A3SjSLpR_KUbTXKJy1rgXoUJOZNKDuCzkPWq6CuJMRfA6E3SWq98kTbxEh6vNJLFCn76H7M5I7vYq75K-W6R2urjM5yDR7OyF6XyfgFx9_MJ priority: 102 providerName: Directory of Open Access Journals |
Title | Perceiving Conflict of Interest Experts Recommendation System Based on a Machine Learning Approach |
URI | https://www.proquest.com/docview/2779525743 https://doaj.org/article/27d934f3785e434cb7daa5caba35324d |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEB4a59IeQpK21GlqdAj0AUvXeqxWp2CHuKGQEEoKuQk9Q6Gxk9j5_53Zld0U2h5XK1itRvPUzDcARxoPQkwqVz5HX0nuZYV63VTBSJ3RBNbKUXHy-UVz9l1-vVbXJeC2LGmVa5nYCeq4CBQj_8y1NoTcKcXx3X1FXaPodrW00NiCbRTBbTuA7enpxeW3TZSFUC_bcd0X5gn07-leeEwuPB_LP1RRh9j_L7ncKZvZLuwUK5FNerLuwbM034cXT7AD92GvcOWSfSjQ0R9fgr-kPJUfFCRgJ6Xggy0y6-J--B3WIRuvloy8ztvbVDoqsR63nE1RpUWGz46dd0mWiRX81Rs2KeDjr-Bqdnp1claVLgpVkLVYVU5ETxj1vG2SNOSvGce1c0Zp7VSdVR2Fk00w3mfuBSq04FsemxhdRvNAvIbBfDFPb4DlyIMzOKS1l0Gk1jTjyOtIMRHe5DyET-v9tKEgjFOji58WPQ3afPtk84dwtJl81wNr_H3alAizmUJo2N3A4uHGFuayXOMaZBa6VUkKGbyOzqngvBMKDcY4hPdEVks8iwsKrpQe4G8R-pWdaEWxF_TVh3C4prwtzLy0v4_ewf9fv4Xn1I2-T-o-hMHq4TG9Q5tl5Uew1c6-jMrxHHWe_y_6Ke1u |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOiBYQKQV8KOIhrbrxY717QCgthJQ2FYcg9Wb5WSHRpG2CED-K_8jMrhOKBNx6XNva9c6MZ8ZjzzcAOxoFIUSVCpeCKyR3skC73hS-kTqhC6yVpeTk8XE1-iw_nqiTNfi5zIWha5VLndgq6jDzFCPf5Vo3hNwpxdvzi4KqRtHp6rKERicWh_HHd9yyzd8cvEP-Pud8-H6yPypyVYHCy1IsCiuCI8x2XldRNrR_aSzX1jZKa6vKpMogrKx841ziTqCC967moQrBJjSXAl97A25KgYacEtOHH1YhHYLYrPtllwWI_SUdQvcpXsD78g-715YH-JcRaC3b8B7czS4pG3QytAFrcboJd64AFW7CRlYBc_Yy41S_ug_uE12K-UIRCbafs0vYLLE2yIjfYS2M8mLOaIt7dhZz-SbWgaSzPbSfgeGzZeP2RmdkGez1lA0y0vkDmFwHcR_C-nQ2jY-ApcC9bbBJaye9iHVT9QMvAwVgeJVSD14v6Wl8hjOnqhpfDW5riPjmCvF7sLMafN6hePx92B4xZjWEoLfbhtnlqckr2XCNc5BJ6FpFKaR3OlirvHVWKPROQw9eEFsNKQickLc5zwF_i6C2zEArCvTUQvdge8l5kzXH3PyW863_dz-DW6PJ-MgcHRwfPobbHJ2v7jb5NqwvLr_FJ-gsLdzTVkQZmGteEr8A8XMl9g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC7iBkQPYqKS1ah9iPiAIbP9mJ4-iOwmWRJjlkUi5Nb0MwhmN2ZXxJ_mv7NrpmeNoN5ynJ5mHtXV9eqqrwB2ZGIEH0QsbPS24NTyIul1VTjFZUwmsBQGi5NPJtXhJ_7-TJytwc-uFgbTKjuZ2AhqP3cYI9-lUipE7uRsN-a0iOn--N3l1wI7SOFJa9dOo2WR4_Dje3LfFm-P9tNav6B0fHC6d1jkDgOF4yVbFoZ5i_jttK4CV-jLKEOlMUpIaUQZRemZ4ZVT1kZqWRL2ztbUV96bmFQnS4-9BesSnaIerI8OJtOPqwAPAm7Wg7KtCWRMlXgkPcDoAR3wP7Rg0yzgXyqh0XPj-3AvG6hk2HLUBqyF2SbcvQZbuAkbWSAsyKuMWv36Adgppsh8xvgE2cu1JmQeSRNyTO8hDajyckHQ4b24CLmZE2kh08koaVNP0rUhJ01-ZyAZ-vWcDDPu-UM4vQnyPoLebD4LW0Cip86oNCSl5Y6FWlUDT0uP4RhaxdiHNx09tcvg5thj44tOTg4SX18jfh92VpMvW0yPv08b4cKspiAQdzMwvzrXeV9rKtM38MhkLQJn3FnpjRHOWMNEslV9H17ismoUF-mDnMlVD-m3EHhLD6XAsE_NZB-2u5XXWY4s9G-uf_z_28_hdtoO-sPR5PgJ3KHJEmtTy7eht7z6Fp4my2lpn2UeJaBveFf8AnoiK4g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perceiving+Conflict+of+Interest+Experts+Recommendation+System+Based+on+a+Machine+Learning+Approach&rft.jtitle=Applied+sciences&rft.au=Im%2C+Yunjeong&rft.au=Song%2C+Gyuwon&rft.au=Cho%2C+Minsang&rft.date=2023-02-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=13&rft.issue=4&rft.spage=2214&rft_id=info:doi/10.3390%2Fapp13042214&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app13042214 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |