Perceiving Conflict of Interest Experts Recommendation System Based on a Machine Learning Approach

Academic societies and funding bodies that conduct peer reviews need to select the best reviewers in each field to ensure publication quality. Conventional approaches for reviewer selection focus on evaluating expertise based on research relevance by subject or discipline. An improved perceiving con...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 13; no. 4; p. 2214
Main Authors Im, Yunjeong, Song, Gyuwon, Cho, Minsang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Academic societies and funding bodies that conduct peer reviews need to select the best reviewers in each field to ensure publication quality. Conventional approaches for reviewer selection focus on evaluating expertise based on research relevance by subject or discipline. An improved perceiving conflict of interest (CoI) reviewer recommendation process that combines the five expertise indices and graph analysis techniques is proposed in this paper. This approach collects metadata from the academic database and extracts candidates based on research field similarities utilizing text mining; then, the candidate scores are calculated and ranked through a professionalism index-based analysis. The highly connected subgraphs (HCS) algorithm is used to cluster similar researchers based on their association or intimacy in the researcher network. The proposed method is evaluated using root mean square error (RMSE) indicators for matching the field of publication and research fields of the recommended experts using keywords of papers published in Korean journals over the past five years. The results show that the system configures a group of Top-K reviewers with an RMSE 0.76. The proposed method can be applied to the academic society and national research management system to realize fair and efficient screening and management.
AbstractList Academic societies and funding bodies that conduct peer reviews need to select the best reviewers in each field to ensure publication quality. Conventional approaches for reviewer selection focus on evaluating expertise based on research relevance by subject or discipline. An improved perceiving conflict of interest (CoI) reviewer recommendation process that combines the five expertise indices and graph analysis techniques is proposed in this paper. This approach collects metadata from the academic database and extracts candidates based on research field similarities utilizing text mining; then, the candidate scores are calculated and ranked through a professionalism index-based analysis. The highly connected subgraphs (HCS) algorithm is used to cluster similar researchers based on their association or intimacy in the researcher network. The proposed method is evaluated using root mean square error (RMSE) indicators for matching the field of publication and research fields of the recommended experts using keywords of papers published in Korean journals over the past five years. The results show that the system configures a group of Top-K reviewers with an RMSE 0.76. The proposed method can be applied to the academic society and national research management system to realize fair and efficient screening and management.
Audience Academic
Author Song, Gyuwon
Im, Yunjeong
Cho, Minsang
Author_xml – sequence: 1
  givenname: Yunjeong
  orcidid: 0000-0002-9809-1312
  surname: Im
  fullname: Im, Yunjeong
– sequence: 2
  givenname: Gyuwon
  orcidid: 0000-0002-6505-0370
  surname: Song
  fullname: Song, Gyuwon
– sequence: 3
  givenname: Minsang
  orcidid: 0000-0002-9326-8350
  surname: Cho
  fullname: Cho, Minsang
BookMark eNptUV1vFCEUJaYm1ton_wCJj2YrcGEYHtdN1U3WaLTvkzt8rGx2YGRoY_-9tGtMY4QHLifnHC73vCRnKSdPyGvOrgAMe4fzzIFJIbh8Rs4F090KJNdnT-oX5HJZDqwtw6Hn7JyMX32xPt7FtKebnMIx2kpzoNtUffFLpde_Zl_qQr95m6fJJ4c15kS_3y_VT_Q9Lt7Rdkf6Ge2PmDzdeSzpwW49zyU38BV5HvC4-Ms_5wW5-XB9s_m02n35uN2sdysrGdQVghsZcCn6zksjueoMCo1olNaoWFDMAcrOmnEMYgTohB174TrnMPSCwQXZnmxdxsMwlzhhuR8yxuERyGU_YKnRHv0gtDMgA-heeQnSjtohKosjggIhXfN6c_JqP_h528YwHPJtSa37ptVGCaUlNNbVibXHZhpTyLWgbdv5KdoWTogNX2vFTa970E3w9iSwJS9L8eFvm5wNDxkOTzJsbP4P28b6OP32TDz-V_MbUmuf4g
CitedBy_id crossref_primary_10_1016_j_jksuci_2024_102111
Cites_doi 10.1016/j.neucom.2019.06.074
10.1007/978-3-319-45814-4_24
10.1007/s10489-013-0445-5
10.1109/ACCESS.2019.2894680
10.1016/j.engappai.2019.03.020
10.1007/978-3-319-55705-2_11
10.1007/s11192-020-03519-0
10.1109/TBDATA.2016.2641460
10.1016/j.patrec.2017.09.020
10.1016/j.ipm.2019.02.017
10.1007/s11192-019-03261-2
10.1007/s10791-021-09390-8
10.1109/ACCESS.2018.2883742
10.1016/j.compind.2015.11.001
10.1016/j.eswa.2018.05.039
10.1016/j.patcog.2010.06.010
10.1016/j.knosys.2016.05.041
10.1109/ICIS46139.2019.8940293
10.1007/s11192-018-2726-6
10.1109/TETC.2018.2861214
10.1109/HICSS.2007.17
10.1016/j.joi.2020.101022
10.1177/0165551516644168
10.1016/S0020-0190(00)00142-3
10.1109/ACCESS.2021.3059312
10.1145/1150402.1150521
10.1016/j.knosys.2018.05.001
10.1109/TIM.2008.925015
10.1016/j.eswa.2020.114331
10.1016/j.ipm.2019.01.007
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app13042214
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_27d934f3785e434cb7daa5caba35324d
A751987837
10_3390_app13042214
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c403t-a3db0314286e4941569a27aa9577a50f50d3a46c9bbf2b3362cb82d6ddaf8203
IEDL.DBID BENPR
ISSN 2076-3417
IngestDate Wed Aug 27 01:32:11 EDT 2025
Mon Jun 30 07:31:38 EDT 2025
Tue Jun 10 20:25:47 EDT 2025
Tue Jul 01 04:32:52 EDT 2025
Thu Apr 24 22:56:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-a3db0314286e4941569a27aa9577a50f50d3a46c9bbf2b3362cb82d6ddaf8203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9809-1312
0000-0002-9326-8350
0000-0002-6505-0370
OpenAccessLink https://www.proquest.com/docview/2779525743?pq-origsite=%requestingapplication%
PQID 2779525743
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_27d934f3785e434cb7daa5caba35324d
proquest_journals_2779525743
gale_infotracacademiconefile_A751987837
crossref_primary_10_3390_app13042214
crossref_citationtrail_10_3390_app13042214
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Shon (ref_24) 2017; 43
Pradhan (ref_27) 2020; 14
Protasiewicz (ref_10) 2016; 106
Nguyen (ref_6) 2018; 105
Liu (ref_13) 2016; 76
ref_14
ref_35
Pradhan (ref_8) 2021; 169
ref_33
ref_31
ref_30
Kumar (ref_34) 2010; 43
Dehghan (ref_26) 2019; 56
Tan (ref_11) 2021; 24
Xiong (ref_19) 2018; 110
Kanwal (ref_18) 2021; 9
Hartuv (ref_15) 2000; 76
Wang (ref_2) 2018; 157
Duan (ref_3) 2019; 366
Jalili (ref_17) 2018; 6
Chughtai (ref_21) 2020; 122
Vicencio (ref_32) 2008; 57
Kalmukov (ref_7) 2020; 124
ref_25
Mun (ref_29) 2009; 5
ref_20
Tayal (ref_23) 2014; 40
Zhao (ref_5) 2018; 115
Cagliero (ref_12) 2018; 9
ref_28
Balafar (ref_16) 2019; 82
Xia (ref_1) 2017; 3
ref_4
Ishag (ref_9) 2019; 7
Mirzaei (ref_22) 2019; 56
References_xml – volume: 366
  start-page: 97
  year: 2019
  ident: ref_3
  article-title: Reviewer assignment based on sentence pair modeling
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.06.074
– ident: ref_28
– ident: ref_20
  doi: 10.1007/978-3-319-45814-4_24
– ident: ref_30
– volume: 40
  start-page: 54
  year: 2014
  ident: ref_23
  article-title: New method for solving reviewer assignment problem using type-2 fuzzy sets and fuzzy functions
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-013-0445-5
– volume: 7
  start-page: 16460
  year: 2019
  ident: ref_9
  article-title: A pattern-based academic reviewer recommendation combining author-paper and diversity metrics
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2894680
– volume: 82
  start-page: 126
  year: 2019
  ident: ref_16
  article-title: The state-of-the-art in expert recommendation systems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.03.020
– ident: ref_14
  doi: 10.1007/978-3-319-55705-2_11
– volume: 124
  start-page: 1811
  year: 2020
  ident: ref_7
  article-title: An algorithm for automatic assignment of reviewers to papers
  publication-title: Scientometrics
  doi: 10.1007/s11192-020-03519-0
– volume: 3
  start-page: 18
  year: 2017
  ident: ref_1
  article-title: Big scholarly data: A survey
  publication-title: IEEE Trans. Big Data
  doi: 10.1109/TBDATA.2016.2641460
– volume: 105
  start-page: 114
  year: 2018
  ident: ref_6
  article-title: A decision support tool using Order Weighted Averaging for conference review assignment
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2017.09.020
– volume: 56
  start-page: 1067
  year: 2019
  ident: ref_26
  article-title: Temporal expert profiling: With an application to t-shaped expert finding
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2019.02.017
– volume: 122
  start-page: 249
  year: 2020
  ident: ref_21
  article-title: An efficient ontology-based topic-specific article recommendation model for best-fit reviewers
  publication-title: Scientometrics
  doi: 10.1007/s11192-019-03261-2
– ident: ref_35
– volume: 24
  start-page: 175
  year: 2021
  ident: ref_11
  article-title: Improved reviewer assignment based on both word and semantic features
  publication-title: Inf. Retr. J.
  doi: 10.1007/s10791-021-09390-8
– volume: 6
  start-page: 74003
  year: 2018
  ident: ref_17
  article-title: Evaluating collaborative filtering recommender algorithms: A survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2883742
– volume: 76
  start-page: 1
  year: 2016
  ident: ref_13
  article-title: An intelligent decision support approach for reviewer assignment in R&D project selection
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2015.11.001
– volume: 110
  start-page: 191
  year: 2018
  ident: ref_19
  article-title: Deep hybrid collaborative filtering for web service recommendation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.05.039
– volume: 43
  start-page: 3977
  year: 2010
  ident: ref_34
  article-title: A hybrid SVM based decision tree
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2010.06.010
– volume: 106
  start-page: 164
  year: 2016
  ident: ref_10
  article-title: A recommender system of reviewers and experts in reviewing problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.05.041
– ident: ref_31
  doi: 10.1109/ICIS46139.2019.8940293
– volume: 115
  start-page: 1293
  year: 2018
  ident: ref_5
  article-title: A novel classification method for paper-reviewer recommendation
  publication-title: Scientometrics
  doi: 10.1007/s11192-018-2726-6
– ident: ref_33
– volume: 9
  start-page: 329
  year: 2018
  ident: ref_12
  article-title: Additional reviewer assignment by means of weighted association rules
  publication-title: IEEE Trans. Emerg. Top. Comput.
  doi: 10.1109/TETC.2018.2861214
– ident: ref_4
  doi: 10.1109/HICSS.2007.17
– volume: 14
  start-page: 101022
  year: 2020
  ident: ref_27
  article-title: An automated conflict of interest based greedy approach for conference paper assignment system
  publication-title: J. Informetr.
  doi: 10.1016/j.joi.2020.101022
– volume: 43
  start-page: 147
  year: 2017
  ident: ref_24
  article-title: Proposal reviewer recommendation system based on big data for a national research management institute
  publication-title: J. Inf. Sci.
  doi: 10.1177/0165551516644168
– volume: 76
  start-page: 175
  year: 2000
  ident: ref_15
  article-title: A clustering algorithm based on graph connectivity
  publication-title: Inf. Process. Lett.
  doi: 10.1016/S0020-0190(00)00142-3
– volume: 9
  start-page: 31638
  year: 2021
  ident: ref_18
  article-title: A review of text-based recommendation systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3059312
– ident: ref_25
  doi: 10.1145/1150402.1150521
– volume: 157
  start-page: 1
  year: 2018
  ident: ref_2
  article-title: A content-based recommender system for computer science publications
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.05.001
– volume: 5
  start-page: 1
  year: 2009
  ident: ref_29
  article-title: Researcher Clustering Technique based on Weighted Researcher Network
  publication-title: J. Korea Soc. Digit. Ind. Inf. Manag.
– volume: 57
  start-page: 2421
  year: 2008
  ident: ref_32
  article-title: Chilean wine classification using volatile organic compounds data obtained with a fast GC analyzer
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2008.925015
– volume: 169
  start-page: 114331
  year: 2021
  ident: ref_8
  article-title: A proactive decision support system for reviewer recommendation in academia
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114331
– volume: 56
  start-page: 858
  year: 2019
  ident: ref_22
  article-title: Multi-aspect review-team assignment using latent research areas
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2019.01.007
SSID ssj0000913810
Score 2.2659822
Snippet Academic societies and funding bodies that conduct peer reviews need to select the best reviewers in each field to ensure publication quality. Conventional...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2214
SubjectTerms Algorithms
Bias
Computational linguistics
conflict of interest
Data mining
Ethical aspects
expert recommendation
highly connected subgraph
Keywords
Language processing
Learned societies
Machine learning
Methods
Natural language interfaces
Natural language processing
Peer review
Productivity
Proposals
R&D
Rankings
Recommender systems
Research & development
Researchers
scholarly big data
Semantics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EVsVqlRwKPmCxzWPTHFuxFKHioUJvS54i2FZs_f_O7KalguLF4y5hNzuZZOabnfmGkLYCRfBBxsxGbzPBrMjAruvMaaEiuMBKGixOHj_mo2fxMJXTrVZfmBNW0QNXgrtlymsuIlc9GQQXzipvjHTGGi7BGfB4-oLN2wJT5Rmsu0hdVRXkccD1-D-4i9CddcU3E1Qy9f92HpdGZnhA9pN3SPvVrOpkJ8wbZG-LM7BB6mk3LulVooy-PiT2CfNTXjE4QO9SoQddRFrG--A9tGQ0Xi0pos3ZLKROSrTiK6cDMGWewrWh4zK5MtDEu_pC-4l0_IhMhveTu1GWuidkTnT4KjPcW-SmZ708CI04TRumjNFSKSM7UXY8NyJ32trILAdD5myP-dx7E8Et4MekNl_Mwwmh0TNnNNxSygrHQ0_nXc86HmMhLI-xSW7W8ixcYhbHBhdvBSAMFH6xJfwmaW8Gv1eEGj8PG-DCbIYgC3Z5A3SjSLpR_KUbTXKJy1rgXoUJOZNKDuCzkPWq6CuJMRfA6E3SWq98kTbxEh6vNJLFCn76H7M5I7vYq75K-W6R2urjM5yDR7OyF6XyfgFx9_MJ
  priority: 102
  providerName: Directory of Open Access Journals
Title Perceiving Conflict of Interest Experts Recommendation System Based on a Machine Learning Approach
URI https://www.proquest.com/docview/2779525743
https://doaj.org/article/27d934f3785e434cb7daa5caba35324d
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEB4a59IeQpK21GlqdAj0AUvXeqxWp2CHuKGQEEoKuQk9Q6Gxk9j5_53Zld0U2h5XK1itRvPUzDcARxoPQkwqVz5HX0nuZYV63VTBSJ3RBNbKUXHy-UVz9l1-vVbXJeC2LGmVa5nYCeq4CBQj_8y1NoTcKcXx3X1FXaPodrW00NiCbRTBbTuA7enpxeW3TZSFUC_bcd0X5gn07-leeEwuPB_LP1RRh9j_L7ncKZvZLuwUK5FNerLuwbM034cXT7AD92GvcOWSfSjQ0R9fgr-kPJUfFCRgJ6Xggy0y6-J--B3WIRuvloy8ztvbVDoqsR63nE1RpUWGz46dd0mWiRX81Rs2KeDjr-Bqdnp1claVLgpVkLVYVU5ETxj1vG2SNOSvGce1c0Zp7VSdVR2Fk00w3mfuBSq04FsemxhdRvNAvIbBfDFPb4DlyIMzOKS1l0Gk1jTjyOtIMRHe5DyET-v9tKEgjFOji58WPQ3afPtk84dwtJl81wNr_H3alAizmUJo2N3A4uHGFuayXOMaZBa6VUkKGbyOzqngvBMKDcY4hPdEVks8iwsKrpQe4G8R-pWdaEWxF_TVh3C4prwtzLy0v4_ewf9fv4Xn1I2-T-o-hMHq4TG9Q5tl5Uew1c6-jMrxHHWe_y_6Ke1u
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOiBYQKQV8KOIhrbrxY717QCgthJQ2FYcg9Wb5WSHRpG2CED-K_8jMrhOKBNx6XNva9c6MZ8ZjzzcAOxoFIUSVCpeCKyR3skC73hS-kTqhC6yVpeTk8XE1-iw_nqiTNfi5zIWha5VLndgq6jDzFCPf5Vo3hNwpxdvzi4KqRtHp6rKERicWh_HHd9yyzd8cvEP-Pud8-H6yPypyVYHCy1IsCiuCI8x2XldRNrR_aSzX1jZKa6vKpMogrKx841ziTqCC967moQrBJjSXAl97A25KgYacEtOHH1YhHYLYrPtllwWI_SUdQvcpXsD78g-715YH-JcRaC3b8B7czS4pG3QytAFrcboJd64AFW7CRlYBc_Yy41S_ug_uE12K-UIRCbafs0vYLLE2yIjfYS2M8mLOaIt7dhZz-SbWgaSzPbSfgeGzZeP2RmdkGez1lA0y0vkDmFwHcR_C-nQ2jY-ApcC9bbBJaye9iHVT9QMvAwVgeJVSD14v6Wl8hjOnqhpfDW5riPjmCvF7sLMafN6hePx92B4xZjWEoLfbhtnlqckr2XCNc5BJ6FpFKaR3OlirvHVWKPROQw9eEFsNKQickLc5zwF_i6C2zEArCvTUQvdge8l5kzXH3PyW863_dz-DW6PJ-MgcHRwfPobbHJ2v7jb5NqwvLr_FJ-gsLdzTVkQZmGteEr8A8XMl9g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC7iBkQPYqKS1ah9iPiAIbP9mJ4-iOwmWRJjlkUi5Nb0MwhmN2ZXxJ_mv7NrpmeNoN5ynJ5mHtXV9eqqrwB2ZGIEH0QsbPS24NTyIul1VTjFZUwmsBQGi5NPJtXhJ_7-TJytwc-uFgbTKjuZ2AhqP3cYI9-lUipE7uRsN-a0iOn--N3l1wI7SOFJa9dOo2WR4_Dje3LfFm-P9tNav6B0fHC6d1jkDgOF4yVbFoZ5i_jttK4CV-jLKEOlMUpIaUQZRemZ4ZVT1kZqWRL2ztbUV96bmFQnS4-9BesSnaIerI8OJtOPqwAPAm7Wg7KtCWRMlXgkPcDoAR3wP7Rg0yzgXyqh0XPj-3AvG6hk2HLUBqyF2SbcvQZbuAkbWSAsyKuMWv36Adgppsh8xvgE2cu1JmQeSRNyTO8hDajyckHQ4b24CLmZE2kh08koaVNP0rUhJ01-ZyAZ-vWcDDPu-UM4vQnyPoLebD4LW0Cip86oNCSl5Y6FWlUDT0uP4RhaxdiHNx09tcvg5thj44tOTg4SX18jfh92VpMvW0yPv08b4cKspiAQdzMwvzrXeV9rKtM38MhkLQJn3FnpjRHOWMNEslV9H17ismoUF-mDnMlVD-m3EHhLD6XAsE_NZB-2u5XXWY4s9G-uf_z_28_hdtoO-sPR5PgJ3KHJEmtTy7eht7z6Fp4my2lpn2UeJaBveFf8AnoiK4g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perceiving+Conflict+of+Interest+Experts+Recommendation+System+Based+on+a+Machine+Learning+Approach&rft.jtitle=Applied+sciences&rft.au=Im%2C+Yunjeong&rft.au=Song%2C+Gyuwon&rft.au=Cho%2C+Minsang&rft.date=2023-02-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=13&rft.issue=4&rft.spage=2214&rft_id=info:doi/10.3390%2Fapp13042214&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app13042214
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon