Temporal Convolutional Network for Carbon Tax Projection: A Data-Driven Approach
This study introduces a novel application of a temporal convolutional network (TCN) for projecting carbon tax prices, addressing the critical need for accurate forecasting in climate policy. Utilizing data from the World Carbon Pricing Database, we demonstrate that the TCN significantly outperformed...
Saved in:
Published in | Applied sciences Vol. 14; no. 20; p. 9213 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study introduces a novel application of a temporal convolutional network (TCN) for projecting carbon tax prices, addressing the critical need for accurate forecasting in climate policy. Utilizing data from the World Carbon Pricing Database, we demonstrate that the TCN significantly outperformed traditional time series models in capturing the complex dynamics of carbon pricing. Our model achieved a 31.4% improvement in mean absolute error over ARIMA baselines, with an MAE of 2.43 compared to 3.54 for ARIMA. The TCN model also showed superior performance across different time horizons, demonstrating a 30.0% lower MAE for 1-year projections, and enhanced adaptability to policy changes, with only a 39.8% increase in prediction error after major shifts, compared to ARIMA’s 95.6%. These results underscore the potential of deep learning for enhancing the precision of carbon price projections, thereby supporting more informed and effective climate policy decisions. Our findings have significant implications for policymakers and stakeholders in the realm of carbon pricing and climate change mitigation strategies, offering a powerful tool for navigating the complex landscape of environmental economics. |
---|---|
AbstractList | This study introduces a novel application of a temporal convolutional network (TCN) for projecting carbon tax prices, addressing the critical need for accurate forecasting in climate policy. Utilizing data from the World Carbon Pricing Database, we demonstrate that the TCN significantly outperformed traditional time series models in capturing the complex dynamics of carbon pricing. Our model achieved a 31.4% improvement in mean absolute error over ARIMA baselines, with an MAE of 2.43 compared to 3.54 for ARIMA. The TCN model also showed superior performance across different time horizons, demonstrating a 30.0% lower MAE for 1-year projections, and enhanced adaptability to policy changes, with only a 39.8% increase in prediction error after major shifts, compared to ARIMA’s 95.6%. These results underscore the potential of deep learning for enhancing the precision of carbon price projections, thereby supporting more informed and effective climate policy decisions. Our findings have significant implications for policymakers and stakeholders in the realm of carbon pricing and climate change mitigation strategies, offering a powerful tool for navigating the complex landscape of environmental economics. |
Audience | Academic |
Author | Chen, Jiaying Cui, Yiwen Zhang, Xinguang Yang, Jingyun Zhou, Mengjie |
Author_xml | – sequence: 1 givenname: Jiaying orcidid: 0009-0004-7890-6627 surname: Chen fullname: Chen, Jiaying – sequence: 2 givenname: Yiwen surname: Cui fullname: Cui, Yiwen – sequence: 3 givenname: Xinguang surname: Zhang fullname: Zhang, Xinguang – sequence: 4 givenname: Jingyun surname: Yang fullname: Yang, Jingyun – sequence: 5 givenname: Mengjie surname: Zhou fullname: Zhou, Mengjie |
BookMark | eNptUU1P3DAQtRCVoJRT_0CkHquAP-LY7m21UEBCLYft2ZrYY_CSjVMnC_Tf4-1WFarqOXg8eu_NeN57cjikAQn5yOiZEIaewziyhlPDmTggx5yqthYNU4dv8iNyOk1rWo5hQjN6TO5WuBlThr5apuEp9ds5pqG8vuH8nPJjFVKulpC7NFQreKnuclqj22G-VIvqAmaoL3J8wqFajGNO4B4-kHcB-glP_9wn5MfXy9Xyur79fnWzXNzWrqFiroGh4tK1EhslSwLBecU6yVtoEVvtPXCjeVvCtErqoH3gDUoavAENUpyQm72uT7C2Y44byL9sgmh_F1K-t5Dn6Hq0vjMI4I3jwBsF0nQd74SiRknUXYtF69Neq3zh5xan2a7TNpc1TFYwTstQ1DQFdbZH3UMRjUNIcwZXwuMmuuJFiKW-0KwRmgqlC-HznuBymqaM4e-YjNqdZfaNZQXN_kG7OMNu1aVN7P_LeQVzuZnb |
CitedBy_id | crossref_primary_10_54097_1zqt8w89 crossref_primary_10_1016_j_rineng_2025_104158 crossref_primary_10_54097_0my1t737 crossref_primary_10_54097_sbh1pg04 crossref_primary_10_3390_app142411637 |
Cites_doi | 10.1016/j.energy.2019.01.075 10.1016/j.apenergy.2021.117117 10.1016/j.euroecorev.2024.104819 10.1016/j.eneco.2021.105284 10.1073/pnas.1609244114 10.1016/j.energy.2012.01.037 10.1002/wcc.462 10.1016/j.apenergy.2022.119792 10.1002/wcc.531 10.1016/j.landusepol.2021.105320 10.1016/j.jeem.2018.11.004 10.1016/j.jclepro.2023.136694 10.3390/en15155718 10.1016/j.jpubeco.2014.04.016 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app14209213 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_db9eaad9c2a247a59bb2b370975e8b6e A814380378 10_3390_app14209213 |
GeographicLocations | Canada Trinidad and Tobago Sweden |
GeographicLocations_xml | – name: Trinidad and Tobago – name: Canada – name: Sweden |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c403t-a1e725c65e47525cafcd71b526a6ee68dda2982626296758f8df24e50fd9a8a53 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:11:10 EDT 2025 Mon Jun 30 15:08:37 EDT 2025 Tue Jun 10 21:11:00 EDT 2025 Tue Jul 01 01:31:35 EDT 2025 Thu Apr 24 22:58:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-a1e725c65e47525cafcd71b526a6ee68dda2982626296758f8df24e50fd9a8a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0004-7890-6627 |
OpenAccessLink | https://doaj.org/article/db9eaad9c2a247a59bb2b370975e8b6e |
PQID | 3120526094 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_db9eaad9c2a247a59bb2b370975e8b6e proquest_journals_3120526094 gale_infotracacademiconefile_A814380378 crossref_primary_10_3390_app14209213 crossref_citationtrail_10_3390_app14209213 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Cao (ref_10) 2021; 99 Zhu (ref_14) 2018; 37 Baranzini (ref_7) 2017; 8 Naegele (ref_9) 2019; 93 ref_19 ref_17 ref_16 Wen (ref_18) 2019; 171 Wang (ref_22) 2020; 264 Aldy (ref_5) 2020; 29 Zhang (ref_21) 2019; 82 Nasirov (ref_13) 2023; 403 Martin (ref_6) 2014; 117 ref_24 ref_20 ref_1 ref_3 ref_2 Carattini (ref_8) 2018; 9 Ratanakuakangwan (ref_25) 2022; 325 Atherton (ref_12) 2021; 298 Pao (ref_15) 2018; 40 Kotlikoff (ref_23) 2024; 168 Nordhaus (ref_4) 2017; 114 Dumortier (ref_11) 2021; 103 |
References_xml | – volume: 171 start-page: 1053 year: 2019 ident: ref_18 article-title: Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting publication-title: Energy doi: 10.1016/j.energy.2019.01.075 – volume: 82 start-page: 80 year: 2019 ident: ref_21 article-title: Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology publication-title: Omega – ident: ref_3 – volume: 298 start-page: 117117 year: 2021 ident: ref_12 article-title: How does a carbon tax affect Britain’s power generation composition? publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117117 – ident: ref_16 – volume: 168 start-page: 104819 year: 2024 ident: ref_23 article-title: Can today’s and tomorrow’s world uniformly gain from carbon taxation? publication-title: Eur. Econ. Rev. doi: 10.1016/j.euroecorev.2024.104819 – volume: 99 start-page: 105284 year: 2021 ident: ref_10 article-title: The general equilibrium impacts of carbon tax policy in China: A multi-model comparison publication-title: Energy Econ. doi: 10.1016/j.eneco.2021.105284 – ident: ref_1 – volume: 114 start-page: 1518 year: 2017 ident: ref_4 article-title: Revisiting the social cost of carbon publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1609244114 – volume: 40 start-page: 400 year: 2018 ident: ref_15 article-title: Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model publication-title: Energy doi: 10.1016/j.energy.2012.01.037 – volume: 264 start-page: 121498 year: 2020 ident: ref_22 article-title: Carbon price prediction based on improved empirical mode decomposition and long short-term memory publication-title: J. Clean. Prod. – volume: 8 start-page: e462 year: 2017 ident: ref_7 article-title: Carbon pricing in climate policy: Seven reasons, complementary instruments, and political economy considerations publication-title: Wiley Interdiscip. Rev. Clim. Chang. doi: 10.1002/wcc.462 – ident: ref_2 – volume: 325 start-page: 119792 year: 2022 ident: ref_25 article-title: An efficient energy planning model optimizing cost, emission, and social impact with different carbon tax scenarios publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.119792 – volume: 9 start-page: e531 year: 2018 ident: ref_8 article-title: Overcoming public resistance to carbon taxes publication-title: Wiley Interdiscip. Rev. Clim. Chang. doi: 10.1002/wcc.531 – volume: 37 start-page: 793 year: 2018 ident: ref_14 article-title: Exchange rate prediction using machine learning techniques: An empirical study on the European carbon market publication-title: J. Forecast. – volume: 103 start-page: 105320 year: 2021 ident: ref_11 article-title: Effects of a carbon tax in the United States on agricultural markets and carbon emissions from land-use change publication-title: Land Use Policy doi: 10.1016/j.landusepol.2021.105320 – volume: 93 start-page: 125 year: 2019 ident: ref_9 article-title: Does the EU ETS cause carbon leakage in European manufacturing? publication-title: J. Environ. Econ. Manag. doi: 10.1016/j.jeem.2018.11.004 – ident: ref_17 – volume: 29 start-page: 109 year: 2020 ident: ref_5 article-title: The promise and problems of pricing carbon: Theory and experience publication-title: J. Environ. Dev. – ident: ref_19 – ident: ref_20 – volume: 403 start-page: 136694 year: 2023 ident: ref_13 article-title: Assessment of the potential impacts of a carbon tax in Chile using dynamic CGE model publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2023.136694 – ident: ref_24 doi: 10.3390/en15155718 – volume: 117 start-page: 1 year: 2014 ident: ref_6 article-title: The impact of a carbon tax on manufacturing: Evidence from microdata publication-title: J. Public Econ. doi: 10.1016/j.jpubeco.2014.04.016 |
SSID | ssj0000913810 |
Score | 2.3237283 |
Snippet | This study introduces a novel application of a temporal convolutional network (TCN) for projecting carbon tax prices, addressing the critical need for accurate... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 9213 |
SubjectTerms | carbon pricing Carbon taxes Climate policy Climatic changes Comparative analysis data analytics Environmental economics Environmental tax Forecasts and trends Neural networks Tax rates temporal convolutional network time series forecasting |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcABtQXEQot8qMRDikgcO7Z7qbbbVhUSqxXaSr1ZEz96qZKyuyB-PjMb71IkQLnkMYd4xvO0_Q1jxwDGgtSyCBBTIRMmKKBI8ZJF7xHQITR0wPnLtLm6lp9v1E0uuC3ztsqNTVwb6tB7qpF_qitB0CSYjZzefyuoaxStruYWGo_ZLppgg8nX7tnFdPZ1W2Uh1EtTlcPBvBrze1oXrqQorajqP1zRGrH_X3Z57Wwu99izHCXy8SDWffYodgfs6QPswAO2n7Vyyd9n6OgPz9lsPiBN3fFJ3_3IswqfpsNmb44RKp_Aou07PoeffDaUYZDmhI_5OaygOF-Q-ePjDDX-gl1fXswnV0XumVB4WdarAqqohfKNilIrvIHkg65a5Bw0MTYmBBAWUwq8LOUKyYQkZFRlChYMqPol2-n6Lr5ivEE_1tTJyxCoIQe0qYw2Gp-U0qFKYcQ-btjnfAYUp74Wdw4TC-K1e8DrETveEt8POBp_JzsjOWxJCPx6_aJf3LqsSy60NgIE6wUIqUHZthVtrUurVTRtE0fsHUnRkYriD3nIJw1wWAR25caGer6XtTYjdrgRtMu6u3S_Z9rr_39-w54IDHGGrX2HbGe1-B6PMERZtW_zPPwF_Brl_Q priority: 102 providerName: ProQuest |
Title | Temporal Convolutional Network for Carbon Tax Projection: A Data-Driven Approach |
URI | https://www.proquest.com/docview/3120526094 https://doaj.org/article/db9eaad9c2a247a59bb2b370975e8b6e |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFH9ovehBbFVcrUsOBT9gcCaTTBJv223XIrgssoXewsskOZVZ2a7in-_LJC0rKF5kLjPDO2Re3tcvk_wewAmiNiiUqDyGWIlIAAVlcrxoKHt4SghdOuD8ZdldXIrPV_Jqr9VX2hOW6YGz4j54ZwKiNz1HLhRK4xx3raqNkkG7LqToSzlvD0yNMdg0iboqH8hrCden_8GNIEnetL-loJGp_2_xeEwyiyfwuFSHbJZHdQj3wnAEj_Y4A4_gsHjjDXtbKKPfPYXVOjNMXbP5ZvhRrImelnmTN6PKlM1x6zYDW-NPtsrLLyTzkc3YGe6wOtumsMdmhWL8GVwuztfzi6r0Sqh6Ube7CpuguOw7GYSSdIOx96pxknfYhdBp75EbghJ0mYQRovaRiyDr6A1qlO1zOBg2Q3gBrKP81bWxF96nRhzoYh1M0H2UUvkm-gm8v1Wf7QuReOpncW0JUCRd2z1dT-DkTvhb5s_4s9hpmoc7kUR6Pb4gU7DFFOy_TGECb9Is2uSaNKAeywkD-qxEcmVnOvV6r1ulJ3B8O9G2-OyNbRueyG8I7778H6N5BQ85FUB5498xHOy238NrKmB2bgr39eLTFB6cni9XX6ej5f4CvdTw7A |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOqC0gFgr4UMRDikgcO7GREFp2Wba0XfWwlXpzJ7HNpUra3eX1p_iNzOSxFAm4VbnkYUXJvMf2fMPYHoA2IHMZOfAhkgETFFCkeMGg93DoEDIqcD6aZdMT-elUnW6wn30tDG2r7G1iY6hdXdIc-es0EQRNgtnIu4vLiLpG0epq30KjFYsD_-MbpmzLt_tj5O8zISYf5qNp1HUViEoZp6sIEp8LVWbKy1zhCYTS5UmB74bM-0w7B8Jg0I2HoWg6aBeE9CoOzoAG6hKBJv-GTFNDGqUnH9dzOoSxqZO4LQPE5zGtQidSxEYk6R-Or-kP8C8v0Li2yRa708WkfNgK0Tbb8NUOu30FqXCHbXc2YMlfdEDVL--y43mLa3XOR3X1tZNhvJq1W8s5xsN8BIuirvgcvvPjdtIHx7zhQz6GFUTjBRlbPuyAze-xk2uh5X22WdWVf8B4hl4zS0MpnaP2H1CE2Buvy6BU7pLgBuxVTz5bdvDl1EXj3GIaQ7S2V2g9YHvrwRctasffh70nPqyHENR2c6NefLad5lpXGA_gTClAyByUKQpRpHlscuV1kfkBe05ctGQQ8INK6Ooa8LcIWssONXWYj9NcD9huz2jbWYql_S3XD___-Cm7OZ0fHdrD_dnBI3ZLYHDVbircZZurxRf_GIOjVfGkkUjOzq5bBX4B4ichgA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTkLwgLYBojDAD0N8SNESJ45jJIS6dtXGoKpQJ-3Nu8Q2L1OyteXrX-Ov465xypCAtykv-Tgpyd35Pmzf7xjbAyg0ZCqLLDgfZR4TFJA08LxG72HRIeRU4Pxxkh-dZu_P5NkG-9nVwtC2ys4mrgy1bSqaI99PE0HQJJiN7PuwLWI6Gr-7vIqogxSttHbtNFoVOXE_vmH6tnh7PEJZPxdifDgbHkWhw0BUZXG6jCBxSsgqly5TEk_AV1YlJb4HcufywloQGgNwPDRF1r6wXmROxt5qKIA6RqD531SYFcU9tnlwOJl-Ws_wEOJmkcRtUWCa6pjWpJNMxFok6R9ucNUt4F8-YeXoxlvsbohQ-aBVqW224eodducabuEO2w4WYcFfBtjqV_fYdNaiXF3wYVN_DRqNV5N2oznH6JgPYV42NZ_Bdz5tp4CQ5g0f8BEsIRrNyfTyQYA5v89Ob4SbD1ivbmr3kPEcfWie-iqzlpqBQOljp11ReSmVTbzts9cd-0wVwMypp8aFwaSGeG2u8brP9tbEly2Gx9_JDkgOaxIC3l7daOafTRjHxpbaAVhdCRCZAqnLUpSpirWSrihz12cvSIqGzAN-UAWhygF_i4C2zKCgfvNxqoo-2-0EbYLdWJjfWv7o_4-fsVuo_ubD8eTkMbstMNJqdxjust5y_sU9wUhpWT4NKsnZ-U2Pgl8WtycS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+Convolutional+Network+for+Carbon+Tax+Projection%3A+A+Data-Driven+Approach&rft.jtitle=Applied+sciences&rft.au=Chen%2C+Jiaying&rft.au=Cui%2C+Yiwen&rft.au=Zhang%2C+Xinguang&rft.au=Yang%2C+Jingyun&rft.date=2024-10-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=14&rft.issue=20&rft_id=info:doi/10.3390%2Fapp14209213&rft.externalDocID=A814380378 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |