Temporal Convolutional Network for Carbon Tax Projection: A Data-Driven Approach

This study introduces a novel application of a temporal convolutional network (TCN) for projecting carbon tax prices, addressing the critical need for accurate forecasting in climate policy. Utilizing data from the World Carbon Pricing Database, we demonstrate that the TCN significantly outperformed...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 14; no. 20; p. 9213
Main Authors Chen, Jiaying, Cui, Yiwen, Zhang, Xinguang, Yang, Jingyun, Zhou, Mengjie
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study introduces a novel application of a temporal convolutional network (TCN) for projecting carbon tax prices, addressing the critical need for accurate forecasting in climate policy. Utilizing data from the World Carbon Pricing Database, we demonstrate that the TCN significantly outperformed traditional time series models in capturing the complex dynamics of carbon pricing. Our model achieved a 31.4% improvement in mean absolute error over ARIMA baselines, with an MAE of 2.43 compared to 3.54 for ARIMA. The TCN model also showed superior performance across different time horizons, demonstrating a 30.0% lower MAE for 1-year projections, and enhanced adaptability to policy changes, with only a 39.8% increase in prediction error after major shifts, compared to ARIMA’s 95.6%. These results underscore the potential of deep learning for enhancing the precision of carbon price projections, thereby supporting more informed and effective climate policy decisions. Our findings have significant implications for policymakers and stakeholders in the realm of carbon pricing and climate change mitigation strategies, offering a powerful tool for navigating the complex landscape of environmental economics.
AbstractList This study introduces a novel application of a temporal convolutional network (TCN) for projecting carbon tax prices, addressing the critical need for accurate forecasting in climate policy. Utilizing data from the World Carbon Pricing Database, we demonstrate that the TCN significantly outperformed traditional time series models in capturing the complex dynamics of carbon pricing. Our model achieved a 31.4% improvement in mean absolute error over ARIMA baselines, with an MAE of 2.43 compared to 3.54 for ARIMA. The TCN model also showed superior performance across different time horizons, demonstrating a 30.0% lower MAE for 1-year projections, and enhanced adaptability to policy changes, with only a 39.8% increase in prediction error after major shifts, compared to ARIMA’s 95.6%. These results underscore the potential of deep learning for enhancing the precision of carbon price projections, thereby supporting more informed and effective climate policy decisions. Our findings have significant implications for policymakers and stakeholders in the realm of carbon pricing and climate change mitigation strategies, offering a powerful tool for navigating the complex landscape of environmental economics.
Audience Academic
Author Chen, Jiaying
Cui, Yiwen
Zhang, Xinguang
Yang, Jingyun
Zhou, Mengjie
Author_xml – sequence: 1
  givenname: Jiaying
  orcidid: 0009-0004-7890-6627
  surname: Chen
  fullname: Chen, Jiaying
– sequence: 2
  givenname: Yiwen
  surname: Cui
  fullname: Cui, Yiwen
– sequence: 3
  givenname: Xinguang
  surname: Zhang
  fullname: Zhang, Xinguang
– sequence: 4
  givenname: Jingyun
  surname: Yang
  fullname: Yang, Jingyun
– sequence: 5
  givenname: Mengjie
  surname: Zhou
  fullname: Zhou, Mengjie
BookMark eNptUU1P3DAQtRCVoJRT_0CkHquAP-LY7m21UEBCLYft2ZrYY_CSjVMnC_Tf4-1WFarqOXg8eu_NeN57cjikAQn5yOiZEIaewziyhlPDmTggx5yqthYNU4dv8iNyOk1rWo5hQjN6TO5WuBlThr5apuEp9ds5pqG8vuH8nPJjFVKulpC7NFQreKnuclqj22G-VIvqAmaoL3J8wqFajGNO4B4-kHcB-glP_9wn5MfXy9Xyur79fnWzXNzWrqFiroGh4tK1EhslSwLBecU6yVtoEVvtPXCjeVvCtErqoH3gDUoavAENUpyQm72uT7C2Y44byL9sgmh_F1K-t5Dn6Hq0vjMI4I3jwBsF0nQd74SiRknUXYtF69Neq3zh5xan2a7TNpc1TFYwTstQ1DQFdbZH3UMRjUNIcwZXwuMmuuJFiKW-0KwRmgqlC-HznuBymqaM4e-YjNqdZfaNZQXN_kG7OMNu1aVN7P_LeQVzuZnb
CitedBy_id crossref_primary_10_54097_1zqt8w89
crossref_primary_10_1016_j_rineng_2025_104158
crossref_primary_10_54097_0my1t737
crossref_primary_10_54097_sbh1pg04
crossref_primary_10_3390_app142411637
Cites_doi 10.1016/j.energy.2019.01.075
10.1016/j.apenergy.2021.117117
10.1016/j.euroecorev.2024.104819
10.1016/j.eneco.2021.105284
10.1073/pnas.1609244114
10.1016/j.energy.2012.01.037
10.1002/wcc.462
10.1016/j.apenergy.2022.119792
10.1002/wcc.531
10.1016/j.landusepol.2021.105320
10.1016/j.jeem.2018.11.004
10.1016/j.jclepro.2023.136694
10.3390/en15155718
10.1016/j.jpubeco.2014.04.016
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app14209213
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_db9eaad9c2a247a59bb2b370975e8b6e
A814380378
10_3390_app14209213
GeographicLocations Canada
Trinidad and Tobago
Sweden
GeographicLocations_xml – name: Trinidad and Tobago
– name: Canada
– name: Sweden
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c403t-a1e725c65e47525cafcd71b526a6ee68dda2982626296758f8df24e50fd9a8a53
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:11:10 EDT 2025
Mon Jun 30 15:08:37 EDT 2025
Tue Jun 10 21:11:00 EDT 2025
Tue Jul 01 01:31:35 EDT 2025
Thu Apr 24 22:58:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-a1e725c65e47525cafcd71b526a6ee68dda2982626296758f8df24e50fd9a8a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-7890-6627
OpenAccessLink https://doaj.org/article/db9eaad9c2a247a59bb2b370975e8b6e
PQID 3120526094
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_db9eaad9c2a247a59bb2b370975e8b6e
proquest_journals_3120526094
gale_infotracacademiconefile_A814380378
crossref_primary_10_3390_app14209213
crossref_citationtrail_10_3390_app14209213
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Cao (ref_10) 2021; 99
Zhu (ref_14) 2018; 37
Baranzini (ref_7) 2017; 8
Naegele (ref_9) 2019; 93
ref_19
ref_17
ref_16
Wen (ref_18) 2019; 171
Wang (ref_22) 2020; 264
Aldy (ref_5) 2020; 29
Zhang (ref_21) 2019; 82
Nasirov (ref_13) 2023; 403
Martin (ref_6) 2014; 117
ref_24
ref_20
ref_1
ref_3
ref_2
Carattini (ref_8) 2018; 9
Ratanakuakangwan (ref_25) 2022; 325
Atherton (ref_12) 2021; 298
Pao (ref_15) 2018; 40
Kotlikoff (ref_23) 2024; 168
Nordhaus (ref_4) 2017; 114
Dumortier (ref_11) 2021; 103
References_xml – volume: 171
  start-page: 1053
  year: 2019
  ident: ref_18
  article-title: Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2019.01.075
– volume: 82
  start-page: 80
  year: 2019
  ident: ref_21
  article-title: Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology
  publication-title: Omega
– ident: ref_3
– volume: 298
  start-page: 117117
  year: 2021
  ident: ref_12
  article-title: How does a carbon tax affect Britain’s power generation composition?
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117117
– ident: ref_16
– volume: 168
  start-page: 104819
  year: 2024
  ident: ref_23
  article-title: Can today’s and tomorrow’s world uniformly gain from carbon taxation?
  publication-title: Eur. Econ. Rev.
  doi: 10.1016/j.euroecorev.2024.104819
– volume: 99
  start-page: 105284
  year: 2021
  ident: ref_10
  article-title: The general equilibrium impacts of carbon tax policy in China: A multi-model comparison
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2021.105284
– ident: ref_1
– volume: 114
  start-page: 1518
  year: 2017
  ident: ref_4
  article-title: Revisiting the social cost of carbon
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1609244114
– volume: 40
  start-page: 400
  year: 2018
  ident: ref_15
  article-title: Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model
  publication-title: Energy
  doi: 10.1016/j.energy.2012.01.037
– volume: 264
  start-page: 121498
  year: 2020
  ident: ref_22
  article-title: Carbon price prediction based on improved empirical mode decomposition and long short-term memory
  publication-title: J. Clean. Prod.
– volume: 8
  start-page: e462
  year: 2017
  ident: ref_7
  article-title: Carbon pricing in climate policy: Seven reasons, complementary instruments, and political economy considerations
  publication-title: Wiley Interdiscip. Rev. Clim. Chang.
  doi: 10.1002/wcc.462
– ident: ref_2
– volume: 325
  start-page: 119792
  year: 2022
  ident: ref_25
  article-title: An efficient energy planning model optimizing cost, emission, and social impact with different carbon tax scenarios
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.119792
– volume: 9
  start-page: e531
  year: 2018
  ident: ref_8
  article-title: Overcoming public resistance to carbon taxes
  publication-title: Wiley Interdiscip. Rev. Clim. Chang.
  doi: 10.1002/wcc.531
– volume: 37
  start-page: 793
  year: 2018
  ident: ref_14
  article-title: Exchange rate prediction using machine learning techniques: An empirical study on the European carbon market
  publication-title: J. Forecast.
– volume: 103
  start-page: 105320
  year: 2021
  ident: ref_11
  article-title: Effects of a carbon tax in the United States on agricultural markets and carbon emissions from land-use change
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2021.105320
– volume: 93
  start-page: 125
  year: 2019
  ident: ref_9
  article-title: Does the EU ETS cause carbon leakage in European manufacturing?
  publication-title: J. Environ. Econ. Manag.
  doi: 10.1016/j.jeem.2018.11.004
– ident: ref_17
– volume: 29
  start-page: 109
  year: 2020
  ident: ref_5
  article-title: The promise and problems of pricing carbon: Theory and experience
  publication-title: J. Environ. Dev.
– ident: ref_19
– ident: ref_20
– volume: 403
  start-page: 136694
  year: 2023
  ident: ref_13
  article-title: Assessment of the potential impacts of a carbon tax in Chile using dynamic CGE model
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2023.136694
– ident: ref_24
  doi: 10.3390/en15155718
– volume: 117
  start-page: 1
  year: 2014
  ident: ref_6
  article-title: The impact of a carbon tax on manufacturing: Evidence from microdata
  publication-title: J. Public Econ.
  doi: 10.1016/j.jpubeco.2014.04.016
SSID ssj0000913810
Score 2.3237283
Snippet This study introduces a novel application of a temporal convolutional network (TCN) for projecting carbon tax prices, addressing the critical need for accurate...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 9213
SubjectTerms carbon pricing
Carbon taxes
Climate policy
Climatic changes
Comparative analysis
data analytics
Environmental economics
Environmental tax
Forecasts and trends
Neural networks
Tax rates
temporal convolutional network
time series forecasting
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcABtQXEQot8qMRDikgcO7Z7qbbbVhUSqxXaSr1ZEz96qZKyuyB-PjMb71IkQLnkMYd4xvO0_Q1jxwDGgtSyCBBTIRMmKKBI8ZJF7xHQITR0wPnLtLm6lp9v1E0uuC3ztsqNTVwb6tB7qpF_qitB0CSYjZzefyuoaxStruYWGo_ZLppgg8nX7tnFdPZ1W2Uh1EtTlcPBvBrze1oXrqQorajqP1zRGrH_X3Z57Wwu99izHCXy8SDWffYodgfs6QPswAO2n7Vyyd9n6OgPz9lsPiBN3fFJ3_3IswqfpsNmb44RKp_Aou07PoeffDaUYZDmhI_5OaygOF-Q-ePjDDX-gl1fXswnV0XumVB4WdarAqqohfKNilIrvIHkg65a5Bw0MTYmBBAWUwq8LOUKyYQkZFRlChYMqPol2-n6Lr5ivEE_1tTJyxCoIQe0qYw2Gp-U0qFKYcQ-btjnfAYUp74Wdw4TC-K1e8DrETveEt8POBp_JzsjOWxJCPx6_aJf3LqsSy60NgIE6wUIqUHZthVtrUurVTRtE0fsHUnRkYriD3nIJw1wWAR25caGer6XtTYjdrgRtMu6u3S_Z9rr_39-w54IDHGGrX2HbGe1-B6PMERZtW_zPPwF_Brl_Q
  priority: 102
  providerName: ProQuest
Title Temporal Convolutional Network for Carbon Tax Projection: A Data-Driven Approach
URI https://www.proquest.com/docview/3120526094
https://doaj.org/article/db9eaad9c2a247a59bb2b370975e8b6e
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFH9ovehBbFVcrUsOBT9gcCaTTBJv223XIrgssoXewsskOZVZ2a7in-_LJC0rKF5kLjPDO2Re3tcvk_wewAmiNiiUqDyGWIlIAAVlcrxoKHt4SghdOuD8ZdldXIrPV_Jqr9VX2hOW6YGz4j54ZwKiNz1HLhRK4xx3raqNkkG7LqToSzlvD0yNMdg0iboqH8hrCden_8GNIEnetL-loJGp_2_xeEwyiyfwuFSHbJZHdQj3wnAEj_Y4A4_gsHjjDXtbKKPfPYXVOjNMXbP5ZvhRrImelnmTN6PKlM1x6zYDW-NPtsrLLyTzkc3YGe6wOtumsMdmhWL8GVwuztfzi6r0Sqh6Ube7CpuguOw7GYSSdIOx96pxknfYhdBp75EbghJ0mYQRovaRiyDr6A1qlO1zOBg2Q3gBrKP81bWxF96nRhzoYh1M0H2UUvkm-gm8v1Wf7QuReOpncW0JUCRd2z1dT-DkTvhb5s_4s9hpmoc7kUR6Pb4gU7DFFOy_TGECb9Is2uSaNKAeywkD-qxEcmVnOvV6r1ulJ3B8O9G2-OyNbRueyG8I7778H6N5BQ85FUB5498xHOy238NrKmB2bgr39eLTFB6cni9XX6ej5f4CvdTw7A
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOqC0gFgr4UMRDikgcO7GREFp2Wba0XfWwlXpzJ7HNpUra3eX1p_iNzOSxFAm4VbnkYUXJvMf2fMPYHoA2IHMZOfAhkgETFFCkeMGg93DoEDIqcD6aZdMT-elUnW6wn30tDG2r7G1iY6hdXdIc-es0EQRNgtnIu4vLiLpG0epq30KjFYsD_-MbpmzLt_tj5O8zISYf5qNp1HUViEoZp6sIEp8LVWbKy1zhCYTS5UmB74bM-0w7B8Jg0I2HoWg6aBeE9CoOzoAG6hKBJv-GTFNDGqUnH9dzOoSxqZO4LQPE5zGtQidSxEYk6R-Or-kP8C8v0Li2yRa708WkfNgK0Tbb8NUOu30FqXCHbXc2YMlfdEDVL--y43mLa3XOR3X1tZNhvJq1W8s5xsN8BIuirvgcvvPjdtIHx7zhQz6GFUTjBRlbPuyAze-xk2uh5X22WdWVf8B4hl4zS0MpnaP2H1CE2Buvy6BU7pLgBuxVTz5bdvDl1EXj3GIaQ7S2V2g9YHvrwRctasffh70nPqyHENR2c6NefLad5lpXGA_gTClAyByUKQpRpHlscuV1kfkBe05ctGQQ8INK6Ooa8LcIWssONXWYj9NcD9huz2jbWYql_S3XD___-Cm7OZ0fHdrD_dnBI3ZLYHDVbircZZurxRf_GIOjVfGkkUjOzq5bBX4B4ichgA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTkLwgLYBojDAD0N8SNESJ45jJIS6dtXGoKpQJ-3Nu8Q2L1OyteXrX-Ov465xypCAtykv-Tgpyd35Pmzf7xjbAyg0ZCqLLDgfZR4TFJA08LxG72HRIeRU4Pxxkh-dZu_P5NkG-9nVwtC2ys4mrgy1bSqaI99PE0HQJJiN7PuwLWI6Gr-7vIqogxSttHbtNFoVOXE_vmH6tnh7PEJZPxdifDgbHkWhw0BUZXG6jCBxSsgqly5TEk_AV1YlJb4HcufywloQGgNwPDRF1r6wXmROxt5qKIA6RqD531SYFcU9tnlwOJl-Ws_wEOJmkcRtUWCa6pjWpJNMxFok6R9ucNUt4F8-YeXoxlvsbohQ-aBVqW224eodducabuEO2w4WYcFfBtjqV_fYdNaiXF3wYVN_DRqNV5N2oznH6JgPYV42NZ_Bdz5tp4CQ5g0f8BEsIRrNyfTyQYA5v89Ob4SbD1ivbmr3kPEcfWie-iqzlpqBQOljp11ReSmVTbzts9cd-0wVwMypp8aFwaSGeG2u8brP9tbEly2Gx9_JDkgOaxIC3l7daOafTRjHxpbaAVhdCRCZAqnLUpSpirWSrihz12cvSIqGzAN-UAWhygF_i4C2zKCgfvNxqoo-2-0EbYLdWJjfWv7o_4-fsVuo_ubD8eTkMbstMNJqdxjust5y_sU9wUhpWT4NKsnZ-U2Pgl8WtycS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+Convolutional+Network+for+Carbon+Tax+Projection%3A+A+Data-Driven+Approach&rft.jtitle=Applied+sciences&rft.au=Chen%2C+Jiaying&rft.au=Cui%2C+Yiwen&rft.au=Zhang%2C+Xinguang&rft.au=Yang%2C+Jingyun&rft.date=2024-10-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=14&rft.issue=20&rft_id=info:doi/10.3390%2Fapp14209213&rft.externalDocID=A814380378
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon