A Deep Learning Technique for Optical Inspection of Color Contact Lenses
Colored contact lenses have gained popularity in recent years. However, their production process is plagued by low efficiency, which is attributed to the complex nature of the lens color patterns. The manufacturing process involves multiple complex steps that can introduce defects or inconsistencies...
Saved in:
Published in | Applied sciences Vol. 13; no. 10; p. 5966 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Colored contact lenses have gained popularity in recent years. However, their production process is plagued by low efficiency, which is attributed to the complex nature of the lens color patterns. The manufacturing process involves multiple complex steps that can introduce defects or inconsistencies into the contact lenses. Moreover, manual inspection of a considerable number of contact lenses that are produced inefficiently in terms of consistency and quality by humans is prevalent. Alternatively, automatic optical inspection (AOI) systems have been developed to perform quality-control checks on colored contact lenses. However, their accuracy is limited due to the increasing complexity of the lens color patterns. To address these issues, convolutional neural networks have been used to detect and classify defects in colored contact lenses. This study aims to provide a comprehensive guide for AOI systems using artificial intelligence in the colored contact lens manufacturing process, including the benefits and challenges of using these systems. Further, future research directions to achieve a classification accuracy of >95%, which is the human recognition rate, are explored. |
---|---|
AbstractList | Colored contact lenses have gained popularity in recent years. However, their production process is plagued by low efficiency, which is attributed to the complex nature of the lens color patterns. The manufacturing process involves multiple complex steps that can introduce defects or inconsistencies into the contact lenses. Moreover, manual inspection of a considerable number of contact lenses that are produced inefficiently in terms of consistency and quality by humans is prevalent. Alternatively, automatic optical inspection (AOI) systems have been developed to perform quality-control checks on colored contact lenses. However, their accuracy is limited due to the increasing complexity of the lens color patterns. To address these issues, convolutional neural networks have been used to detect and classify defects in colored contact lenses. This study aims to provide a comprehensive guide for AOI systems using artificial intelligence in the colored contact lens manufacturing process, including the benefits and challenges of using these systems. Further, future research directions to achieve a classification accuracy of >95%, which is the human recognition rate, are explored. |
Audience | Academic |
Author | Hwang, Suk-seung Moon, Heewon Kim, Tae-yun Park, Dabin |
Author_xml | – sequence: 1 givenname: Tae-yun orcidid: 0000-0003-1696-8967 surname: Kim fullname: Kim, Tae-yun – sequence: 2 givenname: Dabin surname: Park fullname: Park, Dabin – sequence: 3 givenname: Heewon surname: Moon fullname: Moon, Heewon – sequence: 4 givenname: Suk-seung orcidid: 0000-0002-0482-6868 surname: Hwang fullname: Hwang, Suk-seung |
BookMark | eNpNUU1PAyEQJUYTtXryD2zi0VSHZVnYY1O_mjTxomfCx1BpKqywHvz3ojXG4TCTx7yXB--UHMYUkZALCteMDXCjx5EyCnzo-wNy0oLo56yj4vDffEzOS9lCrYEySeGEPC6aW8SxWaPOMcRN84z2NYb3D2x8ys3TOAWrd80qlhHtFFJskm-WaVfvlilO2k6VGguWM3Lk9a7g-W-fkZf7u-fl43z99LBaLtZz2wGb5hqokwzBWOStlJx20kiHjg8WpEXjBO25FC0YJ3vfMsM4CC560_GuRe_ZjKz2ui7prRpzeNP5UyUd1A-Q8kbpXE3vUBlHuRXQMdr5zjLUsndaDmbgYLijompd7rXGnOqLy6S26SPHal-1kg4MxADfW9f7rY2uoiH6NGVt63H4FmzNwIeKLwRv6-9L0VfC1Z5gcyolo_-zSUF9R6X-RcW-AKxahWU |
CitedBy_id | crossref_primary_10_3390_s23146533 crossref_primary_10_3390_horticulturae9111213 |
Cites_doi | 10.1002/col.20635 10.1002/adhm.201900368 10.1109/WACV.2017.134 10.1109/CVPRW.2019.00287 10.1109/CVPR.2015.7298594 10.5220/0008983904280434 10.1080/02713683.2018.1563702 10.1080/15599612.2020.1859657 10.1016/j.jconrel.2018.05.020 10.1016/j.future.2019.07.003 10.5392/JKCA.2022.22.12.160 10.1002/admt.201900728 10.3390/app11020724 10.1109/IJCNN.2018.8489590 10.1109/CVPR.2017.243 10.3390/ijms24032361 10.3390/ma12020261 10.1109/ICB45273.2019.8987261 10.1109/ICB.2013.6612954 10.23919/BIOSIG.2018.8553003 10.1109/ISBA.2018.8311471 10.1145/3065386 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PIMPY PQEST PQQKQ PQUKI DOA |
DOI | 10.3390/app13105966 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_bd15c704314f4c3ea86da89b950b5d17 A752310876 10_3390_app13105966 |
GeographicLocations | South Korea Japan |
GeographicLocations_xml | – name: South Korea – name: Japan |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARAPS ARCSS ATCPS BBNVY BCNDV BENPR BHPHI BKSAR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ HCIFZ IAO ITC K6- K6V K7- KB. KC. KQ8 L6V LK5 LK8 M0K M7P M7R M7S MODMG M~E N95 OK1 P62 PATMY PCBAR PDBOC PIMPY PROAC PYCSY RIG TUS BGLVJ ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c403t-a01d83e0bce52885148b8ded59c08cebd71658720bd86f23b3507576b4542eff3 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Tue Oct 22 15:11:45 EDT 2024 Wed Oct 30 15:53:27 EDT 2024 Fri Feb 02 04:17:36 EST 2024 Fri Aug 23 02:00:39 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-a01d83e0bce52885148b8ded59c08cebd71658720bd86f23b3507576b4542eff3 |
ORCID | 0000-0002-0482-6868 0000-0003-1696-8967 |
OpenAccessLink | https://doaj.org/article/bd15c704314f4c3ea86da89b950b5d17 |
PQID | 2819307907 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bd15c704314f4c3ea86da89b950b5d17 proquest_journals_2819307907 gale_infotracacademiconefile_A752310876 crossref_primary_10_3390_app13105966 |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Herrera (ref_6) 2011; 36 Kim (ref_20) 2022; 22 ref_14 ref_13 Chang (ref_9) 2015; 9524 Xu (ref_3) 2018; 281 ref_11 ref_10 Choudhary (ref_12) 2019; 101 Kim (ref_5) 2020; 5 ref_19 ref_18 ref_17 ref_16 Hsu (ref_7) 2020; 14 ref_15 Krizhevsky (ref_22) 2017; 60 Choi (ref_26) 2019; 44 Elliott (ref_8) 1986; 654 ref_25 ref_24 ref_23 ref_21 ref_2 ref_27 Moreddu (ref_1) 2019; 8 ref_4 |
References_xml | – volume: 36 start-page: 373 year: 2011 ident: ref_6 article-title: Iris color and texture: A comparative analysis of real irises, ocular prostheses, and colored contact lenses publication-title: Color Res. Appl. doi: 10.1002/col.20635 contributor: fullname: Herrera – volume: 8 start-page: 1900368 year: 2019 ident: ref_1 article-title: Contact lens technology: From fundamentals to applications publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201900368 contributor: fullname: Moreddu – volume: 654 start-page: 125 year: 1986 ident: ref_8 article-title: Automatic optical measurement of contact lenses publication-title: Proc. SPIE Auto. Opt. Inspec. contributor: fullname: Elliott – ident: ref_11 doi: 10.1109/WACV.2017.134 – ident: ref_13 doi: 10.1109/CVPRW.2019.00287 – ident: ref_24 doi: 10.1109/CVPR.2015.7298594 – ident: ref_15 doi: 10.5220/0008983904280434 – volume: 9524 start-page: 17 year: 2015 ident: ref_9 article-title: Automatic optical inspection method for soft contact lenses publication-title: Proc. SPIE Int. Conf. Opt. Photonic Eng. contributor: fullname: Chang – ident: ref_21 – volume: 44 start-page: 486 year: 2019 ident: ref_26 article-title: The efficiency of cyclosporine A-eluting contact lenses for the treatment of dry eye publication-title: Curr. Eye Res. doi: 10.1080/02713683.2018.1563702 contributor: fullname: Choi – volume: 14 start-page: 119 year: 2020 ident: ref_7 article-title: Assessment of ocular surface response to tinted soft contact lenses with different characteristics and pigment location publication-title: Int. J. Optomechatronics doi: 10.1080/15599612.2020.1859657 contributor: fullname: Hsu – volume: 281 start-page: 97 year: 2018 ident: ref_3 article-title: A comprehensive review on contact lens for ophthalmic drug delivery publication-title: J. Control Release doi: 10.1016/j.jconrel.2018.05.020 contributor: fullname: Xu – volume: 101 start-page: 1259 year: 2019 ident: ref_12 article-title: An approach for iris contact lens detection and classification using ensemble of customized DenseNet and SVM publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.07.003 contributor: fullname: Choudhary – ident: ref_25 – ident: ref_10 – volume: 22 start-page: 160 year: 2022 ident: ref_20 article-title: Detection of Color Contact Lens Defects using Various CNN Models publication-title: J. Korea Contents Assoc. doi: 10.5392/JKCA.2022.22.12.160 contributor: fullname: Kim – volume: 5 start-page: 1900728 year: 2020 ident: ref_5 article-title: Recent advances in smart contact lenses publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201900728 contributor: fullname: Kim – ident: ref_4 doi: 10.3390/app11020724 – ident: ref_17 doi: 10.1109/IJCNN.2018.8489590 – ident: ref_23 doi: 10.1109/CVPR.2017.243 – ident: ref_27 doi: 10.3390/ijms24032361 – ident: ref_2 doi: 10.3390/ma12020261 – ident: ref_19 doi: 10.1109/ICB45273.2019.8987261 – ident: ref_16 doi: 10.1109/ICB.2013.6612954 – ident: ref_18 doi: 10.23919/BIOSIG.2018.8553003 – ident: ref_14 doi: 10.1109/ISBA.2018.8311471 – volume: 60 start-page: 84 year: 2017 ident: ref_22 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 contributor: fullname: Krizhevsky |
SSID | ssj0000913810 |
Score | 2.3075824 |
Snippet | Colored contact lenses have gained popularity in recent years. However, their production process is plagued by low efficiency, which is attributed to the... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 5966 |
SubjectTerms | Accuracy Artificial intelligence automatic optical inspection Cameras Color colored contact lens Complexity Contact lenses convolutional neural network Deep learning Defects Equilibrium hydrogel Hydrogels Inspection Manufacturing Manufacturing industry Methods Neural networks Polymerization |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB0VeoEDYimILbTyAQl6iHBiO_Ge0Hbb7bYHuIDEzYq_uCXLJv3_nUm8wKVck1iKxjPjN-OZNwAXAY-cGHmVuYq7TCIozerSuoxzb32UUno_VPnelqsH-edRPaaEW5fKKrc-cXDUvnWUI7-mCx_UR4zlbtbPGU2NotvVNEJjBz7mRVVRSZde_nrJsRDnpc752JYnMLqnW-FcEKQYWBFfD6KBr_9_Xnk4apaHcJAwIpuPmzqBD6E5gv03zIFHMEk22bGrRBz97ROs5uxHCGuWOFOf2P2WoJUhNGV36yFvzX43Y3tl27A2sgV6vw0jkqra9bi06UJ3DA_Ln_eLVZYmJWROctFnNc-9FoFbF1ShEURJbbUPXs0c1y5Yj1GR0lXBrddlLIQVCAMx0rBSySLEKE5gt2mbcAoM8UTEqMZW3moiB7Q1UXSVs1A474XSU7jYis2sR0IMg4EESde8ke4UvpNIXz4hFuvhQbt5MskojPW5Qh1BDCOjdCLUuvS1ntmZ4lb5vJrCJW2IIVvrN7WrU8sA_imxVpl5pQieokOfwvl2z0wyws68qszn91-fwR5NkR_rGM9ht9_8DV8Qa_T266BQ_wDcgdGO priority: 102 providerName: ProQuest |
Title | A Deep Learning Technique for Optical Inspection of Color Contact Lenses |
URI | https://www.proquest.com/docview/2819307907 https://doaj.org/article/bd15c704314f4c3ea86da89b950b5d17 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwEMdPUBYYEOUhyqPygAQMEU5sJ85YSkthAIRA6mbFL7a0asP355yk0AWxsEZJZN3Fd_-LfT8DXDhMOd7TLDIZNRFHURoVqTYRpVZbzzm3tt7l-5RO3vnjVEzXjvoKe8IaPHBjuBttY4HvwTzHPTfMFTK1hcx1LqgWNm76yGm-VkzVMTiPA7qqachjWNeH9eCYBTFR8xB_UlBN6v8tHtdJZrwHu606JINmVF3YcOU-7KwxA_eh287GJblqkdHXBzAZkDvn5qSlpX6QtxWalaAoJc_z-o81eSibxspZSWaeDDHuLUjAUxWmwkfLpVsewvt49DacRO0ZCZHhlFVRQWMrmaPaOJFIlE9cammdFbmh0jhtsR4SMkuotjL1CdMMBSDWGJoLnjjv2RF0ylnpjoGgkvBYz-jMahmwgLoIcK40d4mxlgnZg4uV2dS8QWEoLCGCddWadXtwG0z6fUvgV9cX0Kuq9ar6y6s9uAwOUWGWVYvCFG2zAI408KrUIBNBmGIo78HZymeqnX5LFVYHMXhh4X_yH6M5he1wynyzz_EMOtXi052jFql0Hzbl-L4PW7ejp5fXfv0RfgFzpdyW |
link.rule.ids | 315,783,787,867,2109,12778,21401,27937,27938,33386,33757,43613,43818,74370,74637 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ1Nb9QwEIZHsD0AB0QLqEtb8KEScIhwYjvxntC2tNpCWRDaSr1Z8VdvybIJ_78zibftpVyzibQaz4zfGduPAY4DTjkx8ipzFXeZRFGa1aV1Gefe-iil9H7Y5bssF1fy-7W6Tg23Lm2r3ObEIVH71lGP_Ast-KA_Yi33df03o1ujaHU1XaHxFHYIVaUnsHNytvz9567LQtRLnfPxYJ7A-p7WhXNBomLgIt5PRQOx_7G8PEw256_gZVKJbD4O6y48Cc0evHjADtyD3RSVHfuU0NGfX8Nizr6FsGaJmnrDVltEK0Nxyn6th841u2jGA5Ztw9rITjH_bRhhqmrX46dNF7o3cHV-tjpdZOmuhMxJLvqs5rnXInDrgio0yiiprfbBq5nj2gXrsS5Suiq49bqMhbAChSDWGlYqWYQYxVuYNG0T9oGhoohY19jKW014QFsTpKuchcJ5L5SewvHWbGY9IjEMlhJkXfPAulM4IZPevUIc6-FBu7kxKSyM9blCL0EVI6N0ItS69LWe2ZniVvm8msJHGhBD0dZvalenQwP4T4lbZeaVIoGKKX0Kh9sxMykMO3PvNO_-__MHeLZY_bw0lxfLHwfwnO6UH3c1HsKk3_wLR6g8evs-udctcBrV3w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BKyF6QLSA2FJaHyoBh6hObCfeE9p-rLaAlgq1Um9W_NVbsmzS_9-ZxNv2AtcklqLxzPg9e_wG4DjgkhMjrzJXcZdJBKVZXVqXce6tj1JK74cq32W5uJE_btVtqn_qUlnlJicOidq3jvbIT-jAB_0RudxJTGURV-fz76u_GXWQopPW1E7jJWxXshRIxLZPL5ZXfx53XEgBU-d8vKQnkOvTGXEuCGAMGolPy9Kg3v-vHD0sPPO38CYhRjYbp3gXXoRmD3ae6QjuwW6K0I59TTLS397BYsbOQ1ixpKB6x643cq0MgSr7vRp2sdllM162bBvWRnaGuXDNSLKqdj0ObbrQvYeb-cX12SJLfRMyJ7nos5rnXovArQuq0AippLbaB6-mjmsXrEeOpHRVcOt1GQthBYJC5B1WKlmEGMUH2GraJnwEhugiIsexlbeapAJtTYJd5TQUznuh9ASON2Yzq1EewyCtIOuaZ9adwCmZ9PET0rQeHrTrO5NCxFifK_QYRDQySidCrUtf66mdKm6Vz6sJfKEJMRR5_bp2dbpAgH9KGlZmVikCq5jeJ3CwmTOTQrIzTw60___XR_AKPcv8ulz-_ASvqb38WOB4AFv9-j58RhDS28PkXQ9uMdoT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Technique+for+Optical+Inspection+of+Color+Contact+Lenses&rft.jtitle=Applied+sciences&rft.au=Tae-yun+Kim&rft.au=Dabin+Park&rft.au=Heewon+Moon&rft.au=Suk-seung+Hwang&rft.date=2023-05-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=10&rft.spage=5966&rft_id=info:doi/10.3390%2Fapp13105966&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bd15c704314f4c3ea86da89b950b5d17 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |