A Deep Learning Technique for Optical Inspection of Color Contact Lenses

Colored contact lenses have gained popularity in recent years. However, their production process is plagued by low efficiency, which is attributed to the complex nature of the lens color patterns. The manufacturing process involves multiple complex steps that can introduce defects or inconsistencies...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 13; no. 10; p. 5966
Main Authors Kim, Tae-yun, Park, Dabin, Moon, Heewon, Hwang, Suk-seung
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Colored contact lenses have gained popularity in recent years. However, their production process is plagued by low efficiency, which is attributed to the complex nature of the lens color patterns. The manufacturing process involves multiple complex steps that can introduce defects or inconsistencies into the contact lenses. Moreover, manual inspection of a considerable number of contact lenses that are produced inefficiently in terms of consistency and quality by humans is prevalent. Alternatively, automatic optical inspection (AOI) systems have been developed to perform quality-control checks on colored contact lenses. However, their accuracy is limited due to the increasing complexity of the lens color patterns. To address these issues, convolutional neural networks have been used to detect and classify defects in colored contact lenses. This study aims to provide a comprehensive guide for AOI systems using artificial intelligence in the colored contact lens manufacturing process, including the benefits and challenges of using these systems. Further, future research directions to achieve a classification accuracy of >95%, which is the human recognition rate, are explored.
AbstractList Colored contact lenses have gained popularity in recent years. However, their production process is plagued by low efficiency, which is attributed to the complex nature of the lens color patterns. The manufacturing process involves multiple complex steps that can introduce defects or inconsistencies into the contact lenses. Moreover, manual inspection of a considerable number of contact lenses that are produced inefficiently in terms of consistency and quality by humans is prevalent. Alternatively, automatic optical inspection (AOI) systems have been developed to perform quality-control checks on colored contact lenses. However, their accuracy is limited due to the increasing complexity of the lens color patterns. To address these issues, convolutional neural networks have been used to detect and classify defects in colored contact lenses. This study aims to provide a comprehensive guide for AOI systems using artificial intelligence in the colored contact lens manufacturing process, including the benefits and challenges of using these systems. Further, future research directions to achieve a classification accuracy of >95%, which is the human recognition rate, are explored.
Audience Academic
Author Hwang, Suk-seung
Moon, Heewon
Kim, Tae-yun
Park, Dabin
Author_xml – sequence: 1
  givenname: Tae-yun
  orcidid: 0000-0003-1696-8967
  surname: Kim
  fullname: Kim, Tae-yun
– sequence: 2
  givenname: Dabin
  surname: Park
  fullname: Park, Dabin
– sequence: 3
  givenname: Heewon
  surname: Moon
  fullname: Moon, Heewon
– sequence: 4
  givenname: Suk-seung
  orcidid: 0000-0002-0482-6868
  surname: Hwang
  fullname: Hwang, Suk-seung
BookMark eNpNUU1PAyEQJUYTtXryD2zi0VSHZVnYY1O_mjTxomfCx1BpKqywHvz3ojXG4TCTx7yXB--UHMYUkZALCteMDXCjx5EyCnzo-wNy0oLo56yj4vDffEzOS9lCrYEySeGEPC6aW8SxWaPOMcRN84z2NYb3D2x8ys3TOAWrd80qlhHtFFJskm-WaVfvlilO2k6VGguWM3Lk9a7g-W-fkZf7u-fl43z99LBaLtZz2wGb5hqokwzBWOStlJx20kiHjg8WpEXjBO25FC0YJ3vfMsM4CC560_GuRe_ZjKz2ui7prRpzeNP5UyUd1A-Q8kbpXE3vUBlHuRXQMdr5zjLUsndaDmbgYLijompd7rXGnOqLy6S26SPHal-1kg4MxADfW9f7rY2uoiH6NGVt63H4FmzNwIeKLwRv6-9L0VfC1Z5gcyolo_-zSUF9R6X-RcW-AKxahWU
CitedBy_id crossref_primary_10_3390_s23146533
crossref_primary_10_3390_horticulturae9111213
Cites_doi 10.1002/col.20635
10.1002/adhm.201900368
10.1109/WACV.2017.134
10.1109/CVPRW.2019.00287
10.1109/CVPR.2015.7298594
10.5220/0008983904280434
10.1080/02713683.2018.1563702
10.1080/15599612.2020.1859657
10.1016/j.jconrel.2018.05.020
10.1016/j.future.2019.07.003
10.5392/JKCA.2022.22.12.160
10.1002/admt.201900728
10.3390/app11020724
10.1109/IJCNN.2018.8489590
10.1109/CVPR.2017.243
10.3390/ijms24032361
10.3390/ma12020261
10.1109/ICB45273.2019.8987261
10.1109/ICB.2013.6612954
10.23919/BIOSIG.2018.8553003
10.1109/ISBA.2018.8311471
10.1145/3065386
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PIMPY
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app13105966
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_bd15c704314f4c3ea86da89b950b5d17
A752310876
10_3390_app13105966
GeographicLocations South Korea
Japan
GeographicLocations_xml – name: South Korea
– name: Japan
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARAPS
ARCSS
ATCPS
BBNVY
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6-
K6V
K7-
KB.
KC.
KQ8
L6V
LK5
LK8
M0K
M7P
M7R
M7S
MODMG
M~E
N95
OK1
P62
PATMY
PCBAR
PDBOC
PIMPY
PROAC
PYCSY
RIG
TUS
BGLVJ
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c403t-a01d83e0bce52885148b8ded59c08cebd71658720bd86f23b3507576b4542eff3
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Tue Oct 22 15:11:45 EDT 2024
Wed Oct 30 15:53:27 EDT 2024
Fri Feb 02 04:17:36 EST 2024
Fri Aug 23 02:00:39 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-a01d83e0bce52885148b8ded59c08cebd71658720bd86f23b3507576b4542eff3
ORCID 0000-0002-0482-6868
0000-0003-1696-8967
OpenAccessLink https://doaj.org/article/bd15c704314f4c3ea86da89b950b5d17
PQID 2819307907
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_bd15c704314f4c3ea86da89b950b5d17
proquest_journals_2819307907
gale_infotracacademiconefile_A752310876
crossref_primary_10_3390_app13105966
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Herrera (ref_6) 2011; 36
Kim (ref_20) 2022; 22
ref_14
ref_13
Chang (ref_9) 2015; 9524
Xu (ref_3) 2018; 281
ref_11
ref_10
Choudhary (ref_12) 2019; 101
Kim (ref_5) 2020; 5
ref_19
ref_18
ref_17
ref_16
Hsu (ref_7) 2020; 14
ref_15
Krizhevsky (ref_22) 2017; 60
Choi (ref_26) 2019; 44
Elliott (ref_8) 1986; 654
ref_25
ref_24
ref_23
ref_21
ref_2
ref_27
Moreddu (ref_1) 2019; 8
ref_4
References_xml – volume: 36
  start-page: 373
  year: 2011
  ident: ref_6
  article-title: Iris color and texture: A comparative analysis of real irises, ocular prostheses, and colored contact lenses
  publication-title: Color Res. Appl.
  doi: 10.1002/col.20635
  contributor:
    fullname: Herrera
– volume: 8
  start-page: 1900368
  year: 2019
  ident: ref_1
  article-title: Contact lens technology: From fundamentals to applications
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201900368
  contributor:
    fullname: Moreddu
– volume: 654
  start-page: 125
  year: 1986
  ident: ref_8
  article-title: Automatic optical measurement of contact lenses
  publication-title: Proc. SPIE Auto. Opt. Inspec.
  contributor:
    fullname: Elliott
– ident: ref_11
  doi: 10.1109/WACV.2017.134
– ident: ref_13
  doi: 10.1109/CVPRW.2019.00287
– ident: ref_24
  doi: 10.1109/CVPR.2015.7298594
– ident: ref_15
  doi: 10.5220/0008983904280434
– volume: 9524
  start-page: 17
  year: 2015
  ident: ref_9
  article-title: Automatic optical inspection method for soft contact lenses
  publication-title: Proc. SPIE Int. Conf. Opt. Photonic Eng.
  contributor:
    fullname: Chang
– ident: ref_21
– volume: 44
  start-page: 486
  year: 2019
  ident: ref_26
  article-title: The efficiency of cyclosporine A-eluting contact lenses for the treatment of dry eye
  publication-title: Curr. Eye Res.
  doi: 10.1080/02713683.2018.1563702
  contributor:
    fullname: Choi
– volume: 14
  start-page: 119
  year: 2020
  ident: ref_7
  article-title: Assessment of ocular surface response to tinted soft contact lenses with different characteristics and pigment location
  publication-title: Int. J. Optomechatronics
  doi: 10.1080/15599612.2020.1859657
  contributor:
    fullname: Hsu
– volume: 281
  start-page: 97
  year: 2018
  ident: ref_3
  article-title: A comprehensive review on contact lens for ophthalmic drug delivery
  publication-title: J. Control Release
  doi: 10.1016/j.jconrel.2018.05.020
  contributor:
    fullname: Xu
– volume: 101
  start-page: 1259
  year: 2019
  ident: ref_12
  article-title: An approach for iris contact lens detection and classification using ensemble of customized DenseNet and SVM
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.07.003
  contributor:
    fullname: Choudhary
– ident: ref_25
– ident: ref_10
– volume: 22
  start-page: 160
  year: 2022
  ident: ref_20
  article-title: Detection of Color Contact Lens Defects using Various CNN Models
  publication-title: J. Korea Contents Assoc.
  doi: 10.5392/JKCA.2022.22.12.160
  contributor:
    fullname: Kim
– volume: 5
  start-page: 1900728
  year: 2020
  ident: ref_5
  article-title: Recent advances in smart contact lenses
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201900728
  contributor:
    fullname: Kim
– ident: ref_4
  doi: 10.3390/app11020724
– ident: ref_17
  doi: 10.1109/IJCNN.2018.8489590
– ident: ref_23
  doi: 10.1109/CVPR.2017.243
– ident: ref_27
  doi: 10.3390/ijms24032361
– ident: ref_2
  doi: 10.3390/ma12020261
– ident: ref_19
  doi: 10.1109/ICB45273.2019.8987261
– ident: ref_16
  doi: 10.1109/ICB.2013.6612954
– ident: ref_18
  doi: 10.23919/BIOSIG.2018.8553003
– ident: ref_14
  doi: 10.1109/ISBA.2018.8311471
– volume: 60
  start-page: 84
  year: 2017
  ident: ref_22
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
  contributor:
    fullname: Krizhevsky
SSID ssj0000913810
Score 2.3075824
Snippet Colored contact lenses have gained popularity in recent years. However, their production process is plagued by low efficiency, which is attributed to the...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 5966
SubjectTerms Accuracy
Artificial intelligence
automatic optical inspection
Cameras
Color
colored contact lens
Complexity
Contact lenses
convolutional neural network
Deep learning
Defects
Equilibrium
hydrogel
Hydrogels
Inspection
Manufacturing
Manufacturing industry
Methods
Neural networks
Polymerization
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB0VeoEDYimILbTyAQl6iHBiO_Ge0Hbb7bYHuIDEzYq_uCXLJv3_nUm8wKVck1iKxjPjN-OZNwAXAY-cGHmVuYq7TCIozerSuoxzb32UUno_VPnelqsH-edRPaaEW5fKKrc-cXDUvnWUI7-mCx_UR4zlbtbPGU2NotvVNEJjBz7mRVVRSZde_nrJsRDnpc752JYnMLqnW-FcEKQYWBFfD6KBr_9_Xnk4apaHcJAwIpuPmzqBD6E5gv03zIFHMEk22bGrRBz97ROs5uxHCGuWOFOf2P2WoJUhNGV36yFvzX43Y3tl27A2sgV6vw0jkqra9bi06UJ3DA_Ln_eLVZYmJWROctFnNc-9FoFbF1ShEURJbbUPXs0c1y5Yj1GR0lXBrddlLIQVCAMx0rBSySLEKE5gt2mbcAoM8UTEqMZW3moiB7Q1UXSVs1A474XSU7jYis2sR0IMg4EESde8ke4UvpNIXz4hFuvhQbt5MskojPW5Qh1BDCOjdCLUuvS1ntmZ4lb5vJrCJW2IIVvrN7WrU8sA_imxVpl5pQieokOfwvl2z0wyws68qszn91-fwR5NkR_rGM9ht9_8DV8Qa_T266BQ_wDcgdGO
  priority: 102
  providerName: ProQuest
Title A Deep Learning Technique for Optical Inspection of Color Contact Lenses
URI https://www.proquest.com/docview/2819307907
https://doaj.org/article/bd15c704314f4c3ea86da89b950b5d17
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwEMdPUBYYEOUhyqPygAQMEU5sJ85YSkthAIRA6mbFL7a0asP355yk0AWxsEZJZN3Fd_-LfT8DXDhMOd7TLDIZNRFHURoVqTYRpVZbzzm3tt7l-5RO3vnjVEzXjvoKe8IaPHBjuBttY4HvwTzHPTfMFTK1hcx1LqgWNm76yGm-VkzVMTiPA7qqachjWNeH9eCYBTFR8xB_UlBN6v8tHtdJZrwHu606JINmVF3YcOU-7KwxA_eh287GJblqkdHXBzAZkDvn5qSlpX6QtxWalaAoJc_z-o81eSibxspZSWaeDDHuLUjAUxWmwkfLpVsewvt49DacRO0ZCZHhlFVRQWMrmaPaOJFIlE9cammdFbmh0jhtsR4SMkuotjL1CdMMBSDWGJoLnjjv2RF0ylnpjoGgkvBYz-jMahmwgLoIcK40d4mxlgnZg4uV2dS8QWEoLCGCddWadXtwG0z6fUvgV9cX0Kuq9ar6y6s9uAwOUWGWVYvCFG2zAI408KrUIBNBmGIo78HZymeqnX5LFVYHMXhh4X_yH6M5he1wynyzz_EMOtXi052jFql0Hzbl-L4PW7ejp5fXfv0RfgFzpdyW
link.rule.ids 315,783,787,867,2109,12778,21401,27937,27938,33386,33757,43613,43818,74370,74637
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ1Nb9QwEIZHsD0AB0QLqEtb8KEScIhwYjvxntC2tNpCWRDaSr1Z8VdvybIJ_78zibftpVyzibQaz4zfGduPAY4DTjkx8ipzFXeZRFGa1aV1Gefe-iil9H7Y5bssF1fy-7W6Tg23Lm2r3ObEIVH71lGP_Ast-KA_Yi33df03o1ujaHU1XaHxFHYIVaUnsHNytvz9567LQtRLnfPxYJ7A-p7WhXNBomLgIt5PRQOx_7G8PEw256_gZVKJbD4O6y48Cc0evHjADtyD3RSVHfuU0NGfX8Nizr6FsGaJmnrDVltEK0Nxyn6th841u2jGA5Ztw9rITjH_bRhhqmrX46dNF7o3cHV-tjpdZOmuhMxJLvqs5rnXInDrgio0yiiprfbBq5nj2gXrsS5Suiq49bqMhbAChSDWGlYqWYQYxVuYNG0T9oGhoohY19jKW014QFsTpKuchcJ5L5SewvHWbGY9IjEMlhJkXfPAulM4IZPevUIc6-FBu7kxKSyM9blCL0EVI6N0ItS69LWe2ZniVvm8msJHGhBD0dZvalenQwP4T4lbZeaVIoGKKX0Kh9sxMykMO3PvNO_-__MHeLZY_bw0lxfLHwfwnO6UH3c1HsKk3_wLR6g8evs-udctcBrV3w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BKyF6QLSA2FJaHyoBh6hObCfeE9p-rLaAlgq1Um9W_NVbsmzS_9-ZxNv2AtcklqLxzPg9e_wG4DjgkhMjrzJXcZdJBKVZXVqXce6tj1JK74cq32W5uJE_btVtqn_qUlnlJicOidq3jvbIT-jAB_0RudxJTGURV-fz76u_GXWQopPW1E7jJWxXshRIxLZPL5ZXfx53XEgBU-d8vKQnkOvTGXEuCGAMGolPy9Kg3v-vHD0sPPO38CYhRjYbp3gXXoRmD3ae6QjuwW6K0I59TTLS397BYsbOQ1ixpKB6x643cq0MgSr7vRp2sdllM162bBvWRnaGuXDNSLKqdj0ObbrQvYeb-cX12SJLfRMyJ7nos5rnXovArQuq0AippLbaB6-mjmsXrEeOpHRVcOt1GQthBYJC5B1WKlmEGMUH2GraJnwEhugiIsexlbeapAJtTYJd5TQUznuh9ASON2Yzq1EewyCtIOuaZ9adwCmZ9PET0rQeHrTrO5NCxFifK_QYRDQySidCrUtf66mdKm6Vz6sJfKEJMRR5_bp2dbpAgH9KGlZmVikCq5jeJ3CwmTOTQrIzTw60___XR_AKPcv8ulz-_ASvqb38WOB4AFv9-j58RhDS28PkXQ9uMdoT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Technique+for+Optical+Inspection+of+Color+Contact+Lenses&rft.jtitle=Applied+sciences&rft.au=Tae-yun+Kim&rft.au=Dabin+Park&rft.au=Heewon+Moon&rft.au=Suk-seung+Hwang&rft.date=2023-05-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=10&rft.spage=5966&rft_id=info:doi/10.3390%2Fapp13105966&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bd15c704314f4c3ea86da89b950b5d17
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon