Multimodal Fusion with Dual-Attention Based on Textual Double-Embedding Networks for Rumor Detection
Rumors may bring a negative impact on social life, and compared with pure textual rumors, online rumors with multiple modalities at the same time are more likely to mislead users and spread, so multimodal rumor detection cannot be ignored. Current detection methods for multimodal rumors do not focus...
Saved in:
Published in | Applied sciences Vol. 13; no. 8; p. 4886 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rumors may bring a negative impact on social life, and compared with pure textual rumors, online rumors with multiple modalities at the same time are more likely to mislead users and spread, so multimodal rumor detection cannot be ignored. Current detection methods for multimodal rumors do not focus on the fusion of text and picture-region object features, so we propose a multimodal fusion neural network TDEDA (dual-attention based on textual double embedding) applied to rumor detection, which performs a high-level information interaction at the text–image object level and captures visual features associated with keywords using an attention mechanism. In this way, we explored the ability to enhance feature representation with assistance from different modalities in rumor detection, as well as to capture the correlations of the dense interaction between images and text. We conducted comparative experiments on two multimodal rumor detection datasets. The experimental results showed that TDEDA could reasonably handle multimodal information and thus improve the accuracy of rumor detection compared with currently relevant multimodal rumor detection methods. |
---|---|
AbstractList | Rumors may bring a negative impact on social life, and compared with pure textual rumors, online rumors with multiple modalities at the same time are more likely to mislead users and spread, so multimodal rumor detection cannot be ignored. Current detection methods for multimodal rumors do not focus on the fusion of text and picture-region object features, so we propose a multimodal fusion neural network TDEDA (dual-attention based on textual double embedding) applied to rumor detection, which performs a high-level information interaction at the text–image object level and captures visual features associated with keywords using an attention mechanism. In this way, we explored the ability to enhance feature representation with assistance from different modalities in rumor detection, as well as to capture the correlations of the dense interaction between images and text. We conducted comparative experiments on two multimodal rumor detection datasets. The experimental results showed that TDEDA could reasonably handle multimodal information and thus improve the accuracy of rumor detection compared with currently relevant multimodal rumor detection methods. |
Audience | Academic |
Author | Ke, Zunwang Han, Huawei Dai, Li Nie, Xiangyang Slamu, Wushour |
Author_xml | – sequence: 1 givenname: Huawei surname: Han fullname: Han, Huawei – sequence: 2 givenname: Zunwang orcidid: 0000-0002-2589-8377 surname: Ke fullname: Ke, Zunwang – sequence: 3 givenname: Xiangyang surname: Nie fullname: Nie, Xiangyang – sequence: 4 givenname: Li surname: Dai fullname: Dai, Li – sequence: 5 givenname: Wushour surname: Slamu fullname: Slamu, Wushour |
BookMark | eNptUV1rFDEUDVLBWvvkHxjwUabefEySeVy7rRaqgtTnkMnHmnVmsiYZav-9GddCERO493JyziHJeYlO5jg7hF5juKC0h3f6cMAUJJOSP0OnBARvKcPi5Mn8Ap3nvIe6ekwlhlNkPy1jCVO0emyulxzi3NyH8r3ZLnpsN6W4uazYe52dbepw536VetRs4zKMrr2aBmdtmHfNZ1fuY_qRGx9T83WZat264swqf4Weez1md_63n6Fv11d3lx_b2y8fbi43t61hQEvba08lwYO1gvBeDJQx7LkgkgttqAHTeYwxDNxp34HUzEgre-yt4UBo7-gZujn62qj36pDCpNODijqoP0BMO6VTCWZ0ihhBqRlMLZ4BYYMBGDzzAlvnCV293hy9Din-XFwuah-XNNfrKyKBMyGAd5V1cWTtdDUNs48laVO3dVMwNR8fKr4RHe576IBVAT4KTIo5J-eVCUWvn1SFYVQY1BqmehJm1bz9R_P4tP-xfwMMb6F_ |
CitedBy_id | crossref_primary_10_1108_DTA_06_2023_0230 crossref_primary_10_3390_bdcc8100134 crossref_primary_10_1007_s41870_024_01984_x crossref_primary_10_4018_IJITSA_348659 crossref_primary_10_3390_electronics13183757 crossref_primary_10_3390_app13137901 crossref_primary_10_3390_s23104666 crossref_primary_10_3390_app14198589 |
Cites_doi | 10.1109/ICDE.2015.7113322 10.1007/978-3-030-47436-2_27 10.1145/2806416.2806607 10.1609/aaai.v32i1.11268 10.18653/v1/D17-1115 10.1145/3123266.3123454 10.1016/j.ipm.2020.102437 10.18653/v1/W16-0802 10.18653/v1/P18-1184 10.1109/TMM.2016.2617078 10.1109/CVPR.2016.10 10.1145/3269206.3271765 10.1109/CVPR.2019.00680 10.1145/3308558.3313552 10.1007/978-3-030-04503-6_4 10.24963/ijcai.2017/545 10.1109/ICDM.2013.61 10.1109/BigData47090.2019.9005556 10.1561/2200000006 10.1145/3485447.3511968 10.1109/CVPR.2016.90 10.1145/3219819.3219903 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
DOI | 10.3390/app13084886 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_2c733cbc33cf4024bc00bf4f71def23e A751990504 10_3390_app13084886 |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c403t-9af3821bdd72697b3441f672867ac3c0c5f1110b6eaf508a4c8d891fdc60239e3 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:29:12 EDT 2025 Mon Jun 30 11:19:09 EDT 2025 Tue Jun 10 20:25:52 EDT 2025 Tue Jul 01 04:33:07 EDT 2025 Thu Apr 24 22:52:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-9af3821bdd72697b3441f672867ac3c0c5f1110b6eaf508a4c8d891fdc60239e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2589-8377 |
OpenAccessLink | https://doaj.org/article/2c733cbc33cf4024bc00bf4f71def23e |
PQID | 2806477065 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2c733cbc33cf4024bc00bf4f71def23e proquest_journals_2806477065 gale_infotracacademiconefile_A751990504 crossref_citationtrail_10_3390_app13084886 crossref_primary_10_3390_app13084886 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Bengio (ref_27) 2009; 2 ref_14 ref_36 ref_13 ref_35 ref_12 ref_34 ref_11 ref_10 ref_32 ref_31 ref_30 ref_19 ref_18 Jin (ref_22) 2016; 19 ref_17 ref_16 Hou (ref_24) 2019; 32 ref_15 Song (ref_7) 2021; 58 ref_25 ref_23 ref_21 ref_20 ref_1 ref_3 ref_2 ref_29 Boididou (ref_33) 2015; 3 ref_28 ref_26 ref_9 ref_8 ref_5 ref_4 ref_6 |
References_xml | – ident: ref_1 doi: 10.1109/ICDE.2015.7113322 – ident: ref_6 doi: 10.1007/978-3-030-47436-2_27 – ident: ref_9 – ident: ref_30 – ident: ref_34 doi: 10.1145/2806416.2806607 – ident: ref_32 – ident: ref_3 – volume: 32 start-page: 12136 year: 2019 ident: ref_24 article-title: Deep multimodal multilinear fusion with high-order polynomial pooling publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_21 doi: 10.1609/aaai.v32i1.11268 – ident: ref_23 doi: 10.18653/v1/D17-1115 – ident: ref_2 doi: 10.1145/3123266.3123454 – ident: ref_11 – volume: 58 start-page: 102437 year: 2021 ident: ref_7 article-title: A multimodal fake news detection model based on crossmodal attention residual and multichannel convolutional neural networks publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2020.102437 – ident: ref_12 doi: 10.18653/v1/W16-0802 – ident: ref_16 – ident: ref_19 doi: 10.18653/v1/P18-1184 – volume: 19 start-page: 598 year: 2016 ident: ref_22 article-title: Novel visual and statistical image features for microblogs news verification publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2016.2617078 – ident: ref_28 doi: 10.1109/CVPR.2016.10 – ident: ref_14 – ident: ref_29 doi: 10.1145/3269206.3271765 – volume: 3 start-page: 7 year: 2015 ident: ref_33 article-title: Verifying multimedia use at mediaeval 2015 publication-title: MediaEval – ident: ref_35 – ident: ref_26 doi: 10.1109/CVPR.2019.00680 – ident: ref_5 doi: 10.1145/3308558.3313552 – ident: ref_17 doi: 10.1007/978-3-030-04503-6_4 – ident: ref_25 – ident: ref_31 – ident: ref_18 doi: 10.24963/ijcai.2017/545 – ident: ref_15 doi: 10.1109/ICDM.2013.61 – ident: ref_20 doi: 10.1109/BigData47090.2019.9005556 – ident: ref_13 – ident: ref_36 – volume: 2 start-page: 1 year: 2009 ident: ref_27 article-title: Learning deep architectures for AI publication-title: Found. Trends® Mach. Learn. doi: 10.1561/2200000006 – ident: ref_8 doi: 10.1145/3485447.3511968 – ident: ref_10 doi: 10.1109/CVPR.2016.90 – ident: ref_4 doi: 10.1145/3219819.3219903 |
SSID | ssj0000913810 |
Score | 2.2967296 |
Snippet | Rumors may bring a negative impact on social life, and compared with pure textual rumors, online rumors with multiple modalities at the same time are more... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 4886 |
SubjectTerms | attention mechanism Deep learning False information Gossip Multimedia multimodal fusion Neural networks Research methodology rumor detection Social networks |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQw0IL2AgfUFhALBflQiYdk4dhOnJyqXbqrisMKVa3UW2SPbS77aLvZ_2cm8S5FAi5WFE-ixOMZz3sYOytDKJUtSuGdlsIolYSTCkTpbQPeW--hD5CdV5c35vtteZsNbpscVrnjiT2jDmsgG_lX8gAaS06587t7QV2jyLuaW2g8ZYfIgmtUvg4n0_mPq72Vhape1oUcEvM06vfkF0a2XeO-rf44ivqK_f_iy_1hMztiL7KUyMcDWo_Zk7g6Yc8f1Q48YceZKjf8Uy4d_fklC30-7XId8OHZlgxhnAyt_GLrFmLcdUNsI5_g0RU4Xlwja8YpjmK0X0QxXfoY6DDj8yE6fMNRpuVX2yWOF7Hrw7ZWr9jNbHr97VLkPgoCjNSdaFzStSp8CFZVjfUaRaBUWVVX1oEGCWVCjid9FV1Cec0ZqEPdFClARamvUb9mB6v1Kr5hvK51UYF3KQK-pFLO-UJFg_CmTAB-xL7slrSFXGScel0sWlQ2aP3bR-s_Ymd74LuhtsbfwSaEmz0IFcTub6wffraZvloFVmvwgENCldh4kNInk2wRYlI6jthHwmxLZIsfBC5nH-BvUQGsdmxRlG1kKc2Ine6Q32Z63rS_d9_b_0-_Y8-oIf0Q23PKDrqHbXyPYkvnP-S9-QsnD-4k priority: 102 providerName: ProQuest |
Title | Multimodal Fusion with Dual-Attention Based on Textual Double-Embedding Networks for Rumor Detection |
URI | https://www.proquest.com/docview/2806477065 https://doaj.org/article/2c733cbc33cf4024bc00bf4f71def23e |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXOCAaAGxUFY-VOIhWTi2YyfHXbpLxWGFqlbqzfKM7dPutmKz_59xklaLBOLCxYqSSeSMx_OwZz4zdlbHWCtX1QKClsIolUWQCkUNrkUAB4B9guzKXlyb7zf1zcFRXyUnbIAHHhj3RaHTGgGpyRTrGEApIZvsqpiy0qloX7J5B8FUr4PbqkBXDQV5muL6sh9M6rohebW_maAeqf9v-rg3MssX7PnoHfLZ0Ktj9ihtT9izA8zAE3Y8zsYd_zhCRn96yWJfR7u5jfTycl8WwHhZYOXn-7AWs64bchr5nExW5HRxRSqZHnFyn2GdxGIDKRYjxldDVviOky_LL_cbas9T16drbV-x6-Xi6uuFGM9PEGik7kQbsm5UBTE6ZVsHmlyfbJ1qrAuoUWKdSdNJsClk8tOCwSY2bZUj2lLymvRrdrS93aY3jDeNrixCyAnpI1aFAJVKhuhNnRFhwj7fs9TjCC5ezrhYewoyCv_9Af8n7OyB-G7A1Pgz2byMzQNJAcLub5B4-FE8_L_EY8I-lJH1ZbpShzCMVQf0WwX4ys8cubCtrKWZsNP7wffjPN75su9sXNkKfvs_evOOPS3H1Q-ZP6fsqPu5T-_Jqelgyh43y29T9mS-WP24nPbS_AuMbfjD |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CrlABwQLSAWCvhQxEOycGwnTg4IbdkuW1r2gLZSb66fXPZRulkhfopvZCbJLkUCbr1YUexEyYzn4XkSsp-HkAud5cxZyZkSIjHLhWe505V3TjvnmwDZcTE6VZ_O8rMt8nOdC4NhlWue2DDqsPBoI3-LHkCl0Sn3_uIbw65R6F1dt9Bot8Vx_PEdjmzLd0cDwO8LIYaHkw8j1nUVYF5xWbPKJlmKzIWgRVFpJ0EhSIUWZaGtl577PAH9c1dEm0B7scqXoayyFHyBiaBRwntvkJtKygopqhx-3Nh0sMZmmfE2DRDmOXqhQUiUQCXFH4Kv6Q_wLynQiLbhPXK300lpv91EO2QrznfJnSuVCnfJTscDlvRVV6j69X0Smuzd2SLAw8MVmt0omnXpYGWnrF_XbSQlPQBBGShcTEAQwBQFpd1NIzucuRhQdNJxG4u-pKBB0y-rGYyDWDdBYvMH5PRa4PuQbM8X8_iI0LKUWeGdTdHDSwphrctEVLBe5cl71yNv1iA1vitpjp01pgaONgh_cwX-PbK_WXzRVvL4-7IDxM1mCZbfbm4sLr-ajpqN8FpK7zwMCQ7gynnOXVJJZyEmIWOPvETMGmQS8EHedrkO8FtYbsv0NSjOFc-56pG9NfJNxz2W5vdef_z_6efk1mjy-cScHI2Pn5DbAgDYRhXtke36chWfgsJUu2fNLqXk_LrJ4hcbmikT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2EoIDogXUhQI-FPGQrDp2EicHhHbZXbUUraqqlXozfnLZR-lmhfg1vo5xHkuRgFsvVhRPomRmPDP2vAAOMucyLpOMGi0YTTkPVDNuaWZkaY2Rxtg6QHaaH12kny6zyy342eXCxLDKTibWgtotbTwjP4wewFRGp9xhaMMiTkeTD1ffaOwgFT2tXTuNhkVO_I_vuH1bvT8eIa1fcT4Zn388om2HAWpTJipa6iAKnhjnJM9LaQQaByGXvMiltsIymwWUBczkXge0ZHRqC1eUSXA2j0mhXuB778C2xF0R68H2cDw9Pduc8MSKm0XCmqRAIUoWfdKoMgpcM_kfarDuFvAvnVAruslDeNBaqGTQsNQObPnFLty_UbdwF3ZaibAib9qy1W8fgatzeedLhw9P1vEQjsRDXjJa6xkdVFUTV0mGqDYdwYtzxC1OETThzczT8dx4FxUpmTaR6SuC9jQ5W89xHPmqDhlbPIaLW8HwE-gtlgu_B6QoRJJbo4O3-JKca20S7lOET7NgrenDuw6lyrYFzmOfjZnCjU7Ev7qB_z4cbICvmroefwcbRtpsQGIx7vrG8vqrate24lYKYY3FIeB2PDWWMRPSIBPnAxe-D68jZVUUGfhBVreZD_hbsfiWGkg0o0uWsbQP-x3xVStLVuo35z_9__RLuItLQn0-np48g3sc8deEGO1Dr7pe--doPVXmRcumBL7c9sr4BcUELqU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+Fusion+with+Dual-Attention+Based+on+Textual+Double-Embedding+Networks+for+Rumor+Detection&rft.jtitle=Applied+sciences&rft.au=Huawei+Han&rft.au=Zunwang+Ke&rft.au=Xiangyang+Nie&rft.au=Li+Dai&rft.date=2023-04-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=8&rft.spage=4886&rft_id=info:doi/10.3390%2Fapp13084886&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2c733cbc33cf4024bc00bf4f71def23e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |