Semi-supervised learning for early detection and diagnosis of various air handling unit faults
•The work introduces a novel semi-supervised approach to detect and diagnose faults for AHUs.•80% accuracy rate is reached using a training set with 8000 normal samples and only around 30 samples for each fault type.•This work addresses the tradeoff between the initial number of faulty samples and t...
Saved in:
Published in | Energy and buildings Vol. 181; pp. 75 - 83 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.12.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The work introduces a novel semi-supervised approach to detect and diagnose faults for AHUs.•80% accuracy rate is reached using a training set with 8000 normal samples and only around 30 samples for each fault type.•This work addresses the tradeoff between the initial number of faulty samples and the final classification accuracy.•This work addresses the tradeoff between the initial number of faulty samples and the computational cost.•This work addresses the tradeoff between the threshold of confidently levels and the final classification accuracy.
Modern data-driven fault detection and diagnosis (FDD) techniques show impressive high diagnostic accuracy in recognizing various air handling units (AHUs) faults. Most existing data-driven FDD approaches simply adopt supervised machine learning techniques that presume the availability of a sufficient number of faulty training data samples. However, in real-world AHU FDD scenarios, the number of faulty training samples is not enough to support supervised learning methods, since faults are usually fixed within short periods of time. In this study, a semi-supervised learning FDD framework is proposed to deal with the above problem. By using the proposed framework, the training pool can be enriched by iteratively inserting confidently labeled testing samples, which mimics the scenario of detecting faults the earliest possible. Furthermore, the proposed framework can be easily extended with various kinds of state-of-art classifiers. Three important tradeoffs are observed through a series of experiments. With a reasonably small number of faulty training data samples available, the performance of the proposed semi-supervised learning technique is comparable to the classic supervised FDD methods. |
---|---|
AbstractList | •The work introduces a novel semi-supervised approach to detect and diagnose faults for AHUs.•80% accuracy rate is reached using a training set with 8000 normal samples and only around 30 samples for each fault type.•This work addresses the tradeoff between the initial number of faulty samples and the final classification accuracy.•This work addresses the tradeoff between the initial number of faulty samples and the computational cost.•This work addresses the tradeoff between the threshold of confidently levels and the final classification accuracy.
Modern data-driven fault detection and diagnosis (FDD) techniques show impressive high diagnostic accuracy in recognizing various air handling units (AHUs) faults. Most existing data-driven FDD approaches simply adopt supervised machine learning techniques that presume the availability of a sufficient number of faulty training data samples. However, in real-world AHU FDD scenarios, the number of faulty training samples is not enough to support supervised learning methods, since faults are usually fixed within short periods of time. In this study, a semi-supervised learning FDD framework is proposed to deal with the above problem. By using the proposed framework, the training pool can be enriched by iteratively inserting confidently labeled testing samples, which mimics the scenario of detecting faults the earliest possible. Furthermore, the proposed framework can be easily extended with various kinds of state-of-art classifiers. Three important tradeoffs are observed through a series of experiments. With a reasonably small number of faulty training data samples available, the performance of the proposed semi-supervised learning technique is comparable to the classic supervised FDD methods. Modern data-driven fault detection and diagnosis (FDD) techniques show impressive high diagnostic accuracy in recognizing various air handling units (AHUs) faults. Most existing data-driven FDD approaches simply adopt supervised machine learning techniques that presume the availability of a sufficient number of faulty training data samples. However, in real-world AHU FDD scenarios, the number of faulty training samples is not enough to support supervised learning methods, since faults are usually fixed within short periods of time. In this study, a semi-supervised learning FDD framework is proposed to deal with the above problem. By using the proposed framework, the training pool can be enriched by iteratively inserting confidently labeled testing samples, which mimics the scenario of detecting faults the earliest possible. Furthermore, the proposed framework can be easily extended with various kinds of state-of-art classifiers. Three important tradeoffs are observed through a series of experiments. With a reasonably small number of faulty training data samples available, the performance of the proposed semi-supervised learning technique is comparable to the classic supervised FDD methods. |
Author | Ji, Zhiwei Huang, Jing Yan, Ke Zhong, Chaowen |
Author_xml | – sequence: 1 givenname: Ke surname: Yan fullname: Yan, Ke organization: College of Information Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, 310018, China – sequence: 2 givenname: Chaowen surname: Zhong fullname: Zhong, Chaowen organization: College of Information Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, 310018, China – sequence: 3 givenname: Zhiwei orcidid: 0000-0001-5781-3465 surname: Ji fullname: Ji, Zhiwei organization: School of Information & Electronic Engineering, Zhejiang Gongshang University, 18 Xuezheng Road, Hangzhou, 311300, China – sequence: 4 givenname: Jing orcidid: 0000-0001-8704-154X surname: Huang fullname: Huang, Jing email: gabriel.jing.huang@gmail.com organization: School of Information & Electronic Engineering, Zhejiang Gongshang University, 18 Xuezheng Road, Hangzhou, 311300, China |
BookMark | eNqFkE1LAzEQhoNUsFZ_ghDwvDXZj2yKBxHxCwoe1Kshm8zWKdukJruF_nuztCcvnmZ4M88Mec7JxHkHhFxxNueMi5v1HFwzYGfnOeMyZfOUnpApl3WeCV7LCZmyopZZXUt5Rs5jXDPGRFXzKfl6hw1mcdhC2GEESzvQwaFb0dYHmvpuTy30YHr0jmpnqUW9cj5ipL6lOx3QD5FqDPQ7vXYjOTjsaauHro8X5LTVXYTLY52Rz6fHj4eXbPn2_Ppwv8xMyYo-Wwhb5NzoSvOqES0YXrZNmxfc5naxKGQD2miQC8sLK0RT1CWIEqyuclbmVkIxI9eHvdvgfwaIvVr7Ibh0UuW84skLZyJN3R6mTPAxBmiVwV6PP-uDxk5xpkahaq2OQtUodIxTmujqD70NuNFh_y93d-AgCdghBBUNgjNgMSSvynr8Z8MvKwuXEw |
CitedBy_id | crossref_primary_10_1016_j_jobe_2024_109028 crossref_primary_10_1016_j_enbuild_2023_112949 crossref_primary_10_1016_j_adapen_2023_100123 crossref_primary_10_1016_j_autcon_2022_104174 crossref_primary_10_1016_j_enbuild_2020_110369 crossref_primary_10_3390_su12010232 crossref_primary_10_3390_info11010032 crossref_primary_10_1016_j_buildenv_2024_111568 crossref_primary_10_1016_j_applthermaleng_2020_114957 crossref_primary_10_1016_j_buildenv_2025_112529 crossref_primary_10_3390_buildings12081229 crossref_primary_10_3390_pr8010105 crossref_primary_10_1109_ACCESS_2019_2933262 crossref_primary_10_1016_j_apenergy_2023_121731 crossref_primary_10_1007_s42979_023_02236_8 crossref_primary_10_1016_j_rser_2021_110929 crossref_primary_10_3934_mbe_2022534 crossref_primary_10_3390_land14010083 crossref_primary_10_3390_pr8091068 crossref_primary_10_1111_jiec_13174 crossref_primary_10_1016_j_buildenv_2021_107982 crossref_primary_10_1016_j_jobe_2025_112048 crossref_primary_10_1016_j_rser_2025_115387 crossref_primary_10_3390_en15155534 crossref_primary_10_1016_j_engappai_2025_110233 crossref_primary_10_1007_s11280_019_00705_w crossref_primary_10_1016_j_jobe_2020_102111 crossref_primary_10_1016_j_jobe_2020_102110 crossref_primary_10_1007_s12273_023_1041_1 crossref_primary_10_1016_j_buildenv_2024_112265 crossref_primary_10_1080_09613218_2023_2206989 crossref_primary_10_1109_TCBB_2019_2951146 crossref_primary_10_1016_j_enbuild_2021_111044 crossref_primary_10_1016_j_isatra_2023_09_027 crossref_primary_10_3390_aerospace10010055 crossref_primary_10_1016_j_enbuild_2020_110492 crossref_primary_10_1109_TCYB_2020_3032707 crossref_primary_10_1016_j_enbuild_2022_112207 crossref_primary_10_1016_j_enbuild_2022_111995 crossref_primary_10_1016_j_enbuild_2022_112204 crossref_primary_10_1109_TII_2021_3120686 crossref_primary_10_1016_j_rser_2023_113612 crossref_primary_10_1109_ACCESS_2020_2966399 crossref_primary_10_3390_s21185994 crossref_primary_10_1016_j_apenergy_2023_121591 crossref_primary_10_1016_j_enbuild_2024_114540 crossref_primary_10_1016_j_ijrefrig_2022_08_017 crossref_primary_10_3389_fenrg_2021_652801 crossref_primary_10_3390_en15051691 crossref_primary_10_1016_j_enbuild_2021_110781 crossref_primary_10_3390_civileng2040053 crossref_primary_10_1109_ACCESS_2020_2989428 crossref_primary_10_1016_j_buildenv_2020_106698 crossref_primary_10_1002_prs_12239 crossref_primary_10_1016_j_enbuild_2021_111467 crossref_primary_10_1109_ACCESS_2020_3040980 crossref_primary_10_1016_j_enbuild_2019_109689 crossref_primary_10_1016_j_ress_2022_108921 crossref_primary_10_12677_csa_2024_145118 crossref_primary_10_3390_en14175362 crossref_primary_10_1016_j_scs_2021_102874 crossref_primary_10_1016_j_apenergy_2021_116459 crossref_primary_10_1016_j_apenergy_2022_120279 crossref_primary_10_3390_aerospace10020164 crossref_primary_10_1016_j_engappai_2024_108469 crossref_primary_10_1016_j_autcon_2024_105500 crossref_primary_10_1109_ACCESS_2020_3024964 crossref_primary_10_1109_TIM_2023_3318686 crossref_primary_10_1016_j_enbuild_2024_114368 crossref_primary_10_1088_1755_1315_897_1_012009 crossref_primary_10_1049_rpg2_12458 crossref_primary_10_1016_j_adapen_2021_100055 crossref_primary_10_3390_app12178837 crossref_primary_10_1360_nso_20230068 crossref_primary_10_3390_pr11020535 crossref_primary_10_26599_BDMA_2022_9020015 crossref_primary_10_1016_j_apenergy_2023_122356 crossref_primary_10_1016_j_buildenv_2023_110264 crossref_primary_10_1109_TASE_2020_3035620 crossref_primary_10_1080_19401493_2025_2459714 crossref_primary_10_3390_en12030527 crossref_primary_10_3390_en17030700 crossref_primary_10_1016_j_enbuild_2024_114901 crossref_primary_10_1007_s40684_023_00537_0 crossref_primary_10_1080_23744731_2024_2433388 crossref_primary_10_3390_en13153948 crossref_primary_10_1016_j_buildenv_2025_112678 crossref_primary_10_1016_j_aei_2024_102810 crossref_primary_10_1016_j_enbuild_2024_114343 crossref_primary_10_1016_j_apenergy_2024_123016 crossref_primary_10_1080_23744731_2022_2058262 crossref_primary_10_1007_s10462_022_10260_y crossref_primary_10_1016_j_buildenv_2021_108057 crossref_primary_10_1109_TCBB_2019_2952102 crossref_primary_10_3390_en16207094 crossref_primary_10_1016_j_energy_2023_127972 crossref_primary_10_1016_j_eswa_2023_122545 crossref_primary_10_1016_j_enbuild_2022_112243 crossref_primary_10_1016_j_enbuild_2022_112241 crossref_primary_10_1016_j_compag_2019_01_004 crossref_primary_10_1016_j_engappai_2023_106316 crossref_primary_10_1016_j_enbuild_2021_110733 crossref_primary_10_1016_j_rser_2022_112395 crossref_primary_10_1016_j_enbuild_2021_111423 crossref_primary_10_1109_TCBB_2019_2903804 crossref_primary_10_1111_exsy_13360 crossref_primary_10_1016_j_engappai_2025_110331 crossref_primary_10_1016_j_energy_2023_128019 crossref_primary_10_1109_ACCESS_2019_2943667 crossref_primary_10_3390_sym13112040 crossref_primary_10_1109_TIM_2025_3545878 |
Cites_doi | 10.1016/S0167-8655(03)00008-4 10.1016/j.enbuild.2016.06.013 10.1016/S0306-2619(03)00107-7 10.1016/j.enbuild.2017.01.052 10.1016/j.enbuild.2016.08.017 10.1016/j.applthermaleng.2015.07.001 10.1016/j.enbuild.2014.06.042 10.1016/j.egypro.2014.12.432 10.1016/j.enbuild.2016.09.039 10.1080/10789669.2005.10391123 10.1016/j.compchemeng.2009.12.008 10.4249/scholarpedia.1883 10.1016/j.ins.2011.08.030 10.1080/23744731.2017.1318008 10.1016/j.neucom.2005.12.126 10.1016/S0378-7788(00)00121-3 10.1016/j.enbuild.2014.10.069 10.1016/j.enbuild.2006.04.014 10.1038/nbt1206-1565 10.1016/j.ijrefrig.2017.11.003 10.1016/j.enbuild.2017.05.053 10.1016/j.ipm.2009.03.002 10.1016/j.applthermaleng.2015.09.121 10.1016/S0031-3203(96)00142-2 10.1109/TSMCA.2007.904745 10.1016/j.ins.2013.12.060 10.1007/s11548-014-0992-1 10.1016/j.enbuild.2013.12.038 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright Elsevier BV Dec 15, 2018 |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier BV Dec 15, 2018 |
DBID | AAYXX CITATION 7ST 8FD C1K F28 FR3 KR7 SOI |
DOI | 10.1016/j.enbuild.2018.10.016 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-6178 |
EndPage | 83 |
ExternalDocumentID | 10_1016_j_enbuild_2018_10_016 S0378778818320255 |
GroupedDBID | --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL SDF SDG SES SPC SPCBC SSJ SSR SST SSZ T5K ~02 ~G- --K 29G AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- RPZ SAC SET SEW SSH WUQ ZMT ZY4 7ST 8FD C1K EFKBS F28 FR3 KR7 SOI |
ID | FETCH-LOGICAL-c403t-96d321ca5a15b6fec14fbf231d2d9938beacae89d13d66b374e64eda52042d8e3 |
IEDL.DBID | .~1 |
ISSN | 0378-7788 |
IngestDate | Wed Aug 13 04:50:18 EDT 2025 Thu Apr 24 23:01:57 EDT 2025 Tue Jul 01 01:12:54 EDT 2025 Fri Feb 23 02:27:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Support vector machine Semi-supervised learning Fault detection and diagnosis Air handling unit |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-96d321ca5a15b6fec14fbf231d2d9938beacae89d13d66b374e64eda52042d8e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5781-3465 0000-0001-8704-154X |
PQID | 2151201106 |
PQPubID | 2045483 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2151201106 crossref_citationtrail_10_1016_j_enbuild_2018_10_016 crossref_primary_10_1016_j_enbuild_2018_10_016 elsevier_sciencedirect_doi_10_1016_j_enbuild_2018_10_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-15 |
PublicationDateYYYYMMDD | 2018-12-15 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Energy and buildings |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Lee, House, Kyong (bib0015) 2004; 77 Yu, Woradechjumroen, Yu (bib0009) 2014; 82 Katipamula, Brambley (bib0001) 2005; 11 Sterling, Provan, Febres, O’Sullivan, Struss, Keane (bib0010) 2014; 62 Chen, Wang, Dong (bib0025) 2003; 24 Yan, Ji, Lu, Huang, Shen, Xue (bib0020) 2018 Tan, Pu, Zheng (bib0035) 2014; 9 Dey, Dong (bib0011) 2016; 130 Ben-Hur, Weston (bib0036) 2010 Monroy, Benitez, Escudero, Graells (bib0028) 2010; 34 Schein, Bushby, Castro, House (bib0016) 2006; 38 Afshari, Liu (bib0018) 2017; 157 Huang, Zhu, Siew (bib0039) 2006; 70 Bickel, Brückner, Scheffer (bib0023) 2007 Milgram, Cheriet, Sabourin (bib0037) 2006 Sokolova, Lapalme (bib0038) 2009; 45 House, Lee, Shin (bib0014) 1999; 105 House, Vaezi-Nejad, Whitcomb (bib0002) 2001; 107 Noble (bib0033) 2006; 24 Wen, Li (bib0032) 2011 Yan, Ma, Zhao, Kokogiannakis (bib0005) 2016; 133 Kotsiantis, Zaharakis, Pintelas (bib0021) 2007 Liaw, Wiener (bib0042) 2002; 2 Du, Fan, Chi, Jin (bib0003) 2014; 72 Li, Wen, Zhou, Klaassen (bib0031) 2010; 116 Li, Zhou (bib0029) 2007; 37 Peterson (bib0041) 2009; 4 Kim, Katipamula (bib0007) 2018; 24 Mulumba, Afshari, Yan, Shen, Norford (bib0004) 2015; 86 Van Every, Rodriguez, Jones, Mammoli, Martínez-Ramón (bib0008) 2017; 149 Yan, Ma, Dai, Shen, Ji, Xie (bib0034) 2018; 86 Dauphin, Glorot, Rifai, Bengio, Goodfellow, Lavoie, Muller, Desjardins, Warde-Farley, Vincent (bib0022) 2012 Lee, House, Park, Kelly (bib0013) 1996; 102 Lemos, Caminhas, Gomide (bib0027) 2013; 220 Li, Wen (bib0030) 2010; 116 Bradley (bib0026) 1997; 30 Zhao, Wen, Xiao, Yang, Wang (bib0006) 2017; 111 Wang, Chen (bib0012) 2016; 127 Yoshida, Kumar, Morita (bib0017) 2001; 33 Zhao, Wen, Wang (bib0019) 2015; 90 Blum, Mitchell (bib0024) 1998 Rutkowski, Jaworski, Pietruczuk, Duda (bib0040) 2014; 266 Li (10.1016/j.enbuild.2018.10.016_bib0029) 2007; 37 Lee (10.1016/j.enbuild.2018.10.016_bib0013) 1996; 102 Dey (10.1016/j.enbuild.2018.10.016_bib0011) 2016; 130 Zhao (10.1016/j.enbuild.2018.10.016_bib0019) 2015; 90 Kim (10.1016/j.enbuild.2018.10.016_bib0007) 2018; 24 Afshari (10.1016/j.enbuild.2018.10.016_bib0018) 2017; 157 Yu (10.1016/j.enbuild.2018.10.016_bib0009) 2014; 82 Milgram (10.1016/j.enbuild.2018.10.016_bib0037) 2006 Kotsiantis (10.1016/j.enbuild.2018.10.016_bib0021) 2007 Dauphin (10.1016/j.enbuild.2018.10.016_bib0022) 2012 Chen (10.1016/j.enbuild.2018.10.016_bib0025) 2003; 24 Tan (10.1016/j.enbuild.2018.10.016_bib0035) 2014; 9 Yan (10.1016/j.enbuild.2018.10.016_bib0020) 2018 Bradley (10.1016/j.enbuild.2018.10.016_bib0026) 1997; 30 Sterling (10.1016/j.enbuild.2018.10.016_bib0010) 2014; 62 Li (10.1016/j.enbuild.2018.10.016_bib0030) 2010; 116 Yan (10.1016/j.enbuild.2018.10.016_bib0034) 2018; 86 Katipamula (10.1016/j.enbuild.2018.10.016_bib0001) 2005; 11 Yan (10.1016/j.enbuild.2018.10.016_bib0005) 2016; 133 Zhao (10.1016/j.enbuild.2018.10.016_bib0006) 2017; 111 Huang (10.1016/j.enbuild.2018.10.016_bib0039) 2006; 70 Schein (10.1016/j.enbuild.2018.10.016_bib0016) 2006; 38 Monroy (10.1016/j.enbuild.2018.10.016_bib0028) 2010; 34 Li (10.1016/j.enbuild.2018.10.016_bib0031) 2010; 116 House (10.1016/j.enbuild.2018.10.016_bib0014) 1999; 105 Lee (10.1016/j.enbuild.2018.10.016_bib0015) 2004; 77 Liaw (10.1016/j.enbuild.2018.10.016_bib0042) 2002; 2 Ben-Hur (10.1016/j.enbuild.2018.10.016_bib0036) 2010 Sokolova (10.1016/j.enbuild.2018.10.016_bib0038) 2009; 45 House (10.1016/j.enbuild.2018.10.016_bib0002) 2001; 107 Noble (10.1016/j.enbuild.2018.10.016_bib0033) 2006; 24 Du (10.1016/j.enbuild.2018.10.016_bib0003) 2014; 72 Mulumba (10.1016/j.enbuild.2018.10.016_bib0004) 2015; 86 Wang (10.1016/j.enbuild.2018.10.016_bib0012) 2016; 127 Van Every (10.1016/j.enbuild.2018.10.016_bib0008) 2017; 149 Bickel (10.1016/j.enbuild.2018.10.016_bib0023) 2007 Wen (10.1016/j.enbuild.2018.10.016_bib0032) 2011 Yoshida (10.1016/j.enbuild.2018.10.016_bib0017) 2001; 33 Blum (10.1016/j.enbuild.2018.10.016_bib0024) 1998 Rutkowski (10.1016/j.enbuild.2018.10.016_bib0040) 2014; 266 Peterson (10.1016/j.enbuild.2018.10.016_bib0041) 2009; 4 Lemos (10.1016/j.enbuild.2018.10.016_bib0027) 2013; 220 |
References_xml | – volume: 62 start-page: 686 year: 2014 end-page: 693 ident: bib0010 article-title: Model-based fault detection and diagnosis of air handling units: a comparison of methodologies publication-title: Energy Procedia – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: bib0042 article-title: Classification and regression by random forest publication-title: R News – volume: 86 start-page: 698 year: 2015 end-page: 707 ident: bib0004 article-title: Robust model-based fault diagnosis for air handling units publication-title: Energy Build. – start-page: 97 year: 2012 end-page: 110 ident: bib0022 article-title: Unsupervised and transfer learning challenge: a deep learning approach publication-title: Proceedings of ICML Workshop on Unsupervised and Transfer Learning – volume: 11 start-page: 3 year: 2005 end-page: 25 ident: bib0001 article-title: Methods for fault detection, diagnostics, and prognostics for building systems–a review, part II publication-title: HVAC&R Res. – volume: 116 start-page: 45 year: 2010 end-page: 56 ident: bib0030 article-title: Development and validation of a dynamic air handling unit model - part I publication-title: ASHRAE Trans. – volume: 105 start-page: 1087 year: 1999 ident: bib0014 article-title: Classification techniques for fault detection and diagnosis of an air-handling unit publication-title: ASHRAE Trans. – start-page: 81 year: 2007 end-page: 88 ident: bib0023 article-title: Discriminative learning for differing training and test distributions publication-title: Proceedings of the 24th international conference on Machine learning – volume: 111 start-page: 1272 year: 2017 end-page: 1286 ident: bib0006 article-title: Diagnostic bayesian networks for diagnosing air handling units faults–part I: faults in dampers, fans, filters and sensors publication-title: Appl. Therm. Eng. – volume: 37 start-page: 1088 year: 2007 end-page: 1098 ident: bib0029 article-title: Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples publication-title: IEEE Trans. Syst. Man Cybern. Part A – volume: 24 start-page: 3 year: 2018 end-page: 21 ident: bib0007 article-title: A review of fault detection and diagnostics methods for building systems publication-title: Sci. Technol. Built Environ. – start-page: 1 year: 2018 end-page: 8 ident: bib0020 article-title: Fast and accurate classification of time series data using extended ELM: application in fault diagnosis of air handling units publication-title: IEEE Trans. Syst., Man Cybern.: Syst. – volume: 127 start-page: 442 year: 2016 end-page: 451 ident: bib0012 article-title: A robust fault detection and diagnosis strategy for multiple faults of VAV air handling units publication-title: Energy Build. – volume: 45 start-page: 427 year: 2009 end-page: 437 ident: bib0038 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inf. Process. Manage. – volume: 130 start-page: 177 year: 2016 end-page: 187 ident: bib0011 article-title: A probabilistic approach to diagnose faults of air handling units in buildings publication-title: Energy Build. – volume: 107 start-page: 858 year: 2001 ident: bib0002 article-title: An expert rule set for fault detection in air-handling units/discussion publication-title: ASHRAE Trans. – volume: 38 start-page: 1485 year: 2006 end-page: 1492 ident: bib0016 article-title: A rule-based fault detection method for air handling units publication-title: Energy Build. – volume: 116 start-page: 57 year: 2010 end-page: 73 ident: bib0031 article-title: Development and validation of a dynamic air fandling unit model - part II publication-title: ASHRAE Trans. – volume: 266 start-page: 1 year: 2014 end-page: 15 ident: bib0040 article-title: The cart decision tree for mining data streams publication-title: Inf. Sci. (Ny) – start-page: 223 year: 2010 end-page: 239 ident: bib0036 article-title: A users guide to support vector machines publication-title: Data mining techniques for the life sciences – volume: 90 start-page: 145 year: 2015 end-page: 157 ident: bib0019 article-title: Diagnostic bayesian networks for diagnosing air handling units faults–part ii: faults in coils and sensors publication-title: Appl. Therm. Eng. – volume: 77 start-page: 153 year: 2004 end-page: 170 ident: bib0015 article-title: Subsystem level fault diagnosis of a building’s air-handling unit using general regression neural networks publication-title: Appl. Energy – volume: 149 start-page: 216 year: 2017 end-page: 224 ident: bib0008 article-title: Advanced detection of HVAC faults using unsupervised SVM novelty detection and gaussian process models publication-title: Energy Build. – volume: 34 start-page: 631 year: 2010 end-page: 642 ident: bib0028 article-title: A semi-supervised approach to fault diagnosis for chemical processes publication-title: Comput. Chem. Eng. – year: 2011 ident: bib0032 article-title: Tools for evaluating fault detection and diagnostic methods for air-handling units publication-title: ASHRAE RP-1312 Final Report – volume: 24 start-page: 1565 year: 2006 ident: bib0033 article-title: What is a support vector machine? publication-title: Nat. Biotechnol. – volume: 9 start-page: 1005 year: 2014 end-page: 1020 ident: bib0035 article-title: Optimization of breast mass classification using sequential forward floating selection (SFFS) and a support vector machine (SVM) model publication-title: Int. J. Comput. Assist. Radiol. Surg. – volume: 157 start-page: 139 year: 2017 end-page: 156 ident: bib0018 article-title: Inverse modeling of the urban energy system using hourly electricity demand and weather measurements, part 2: gray-box model publication-title: Energy Build. – volume: 24 start-page: 1845 year: 2003 end-page: 1855 ident: bib0025 article-title: Learning with progressive transductive support vector machine publication-title: Pattern Recognit. Lett. – start-page: 3 year: 2007 end-page: 24 ident: bib0021 article-title: Supervised machine learning: a review of classification techniques publication-title: Conference on Emerging Artificial Intelligence Applications in Computer Engineering: Real Word Ai Systems with Applications in Ehealth, Hci, Information Retrieval and Pervasive Technologies – year: 2006 ident: bib0037 article-title: One against one or one against all: Which one is better for handwriting recognition with svms? publication-title: Tenth International Workshop on Frontiers in Handwriting Recognition – start-page: 92 year: 1998 end-page: 100 ident: bib0024 article-title: Combining labeled and unlabeled data with co-training publication-title: Proceedings of the eleventh annual conference on Computational learning theory – volume: 220 start-page: 64 year: 2013 end-page: 85 ident: bib0027 article-title: Adaptive fault detection and diagnosis using an evolving fuzzy classifier publication-title: Inf. Sci. (Ny) – volume: 86 start-page: 401 year: 2018 end-page: 409 ident: bib0034 article-title: Cost-sensitive and sequential feature selection for chiller fault detection and diagnosis publication-title: Int. J. Refrig. – volume: 30 start-page: 1145 year: 1997 end-page: 1159 ident: bib0026 article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms publication-title: Pattern Recognit. – volume: 72 start-page: 157 year: 2014 end-page: 166 ident: bib0003 article-title: Sensor fault detection and its efficiency analysis in air handling unit using the combined neural networks publication-title: Energy Build. – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: bib0039 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing – volume: 133 start-page: 37 year: 2016 end-page: 45 ident: bib0005 article-title: A decision tree based data-driven diagnostic strategy for air handling units publication-title: Energy Build. – volume: 82 start-page: 550 year: 2014 end-page: 562 ident: bib0009 article-title: A review of fault detection and diagnosis methodologies on air-handling units publication-title: Energy Build. – volume: 102 start-page: 540 year: 1996 end-page: 549 ident: bib0013 article-title: Fault diagnosis of an air-handling unit using artificial neural networks publication-title: ASHRAE Trans. – volume: 33 start-page: 391 year: 2001 end-page: 401 ident: bib0017 article-title: Online fault detection and diagnosis in VAV air handling unit by RARX modeling publication-title: Energy Build. – volume: 4 start-page: 1883 year: 2009 ident: bib0041 article-title: K-nearest neighbor publication-title: Scholarpedia – volume: 2 start-page: 18 issue: 3 year: 2002 ident: 10.1016/j.enbuild.2018.10.016_bib0042 article-title: Classification and regression by random forest publication-title: R News – volume: 24 start-page: 1845 issue: 12 year: 2003 ident: 10.1016/j.enbuild.2018.10.016_bib0025 article-title: Learning with progressive transductive support vector machine publication-title: Pattern Recognit. Lett. doi: 10.1016/S0167-8655(03)00008-4 – volume: 127 start-page: 442 year: 2016 ident: 10.1016/j.enbuild.2018.10.016_bib0012 article-title: A robust fault detection and diagnosis strategy for multiple faults of VAV air handling units publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.06.013 – volume: 77 start-page: 153 issue: 2 year: 2004 ident: 10.1016/j.enbuild.2018.10.016_bib0015 article-title: Subsystem level fault diagnosis of a building’s air-handling unit using general regression neural networks publication-title: Appl. Energy doi: 10.1016/S0306-2619(03)00107-7 – volume: 157 start-page: 139 year: 2017 ident: 10.1016/j.enbuild.2018.10.016_bib0018 article-title: Inverse modeling of the urban energy system using hourly electricity demand and weather measurements, part 2: gray-box model publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.01.052 – volume: 130 start-page: 177 year: 2016 ident: 10.1016/j.enbuild.2018.10.016_bib0011 article-title: A probabilistic approach to diagnose faults of air handling units in buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.08.017 – volume: 90 start-page: 145 year: 2015 ident: 10.1016/j.enbuild.2018.10.016_bib0019 article-title: Diagnostic bayesian networks for diagnosing air handling units faults–part ii: faults in coils and sensors publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.07.001 – volume: 82 start-page: 550 year: 2014 ident: 10.1016/j.enbuild.2018.10.016_bib0009 article-title: A review of fault detection and diagnosis methodologies on air-handling units publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.06.042 – volume: 62 start-page: 686 year: 2014 ident: 10.1016/j.enbuild.2018.10.016_bib0010 article-title: Model-based fault detection and diagnosis of air handling units: a comparison of methodologies publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.12.432 – volume: 133 start-page: 37 year: 2016 ident: 10.1016/j.enbuild.2018.10.016_bib0005 article-title: A decision tree based data-driven diagnostic strategy for air handling units publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.09.039 – start-page: 3 year: 2007 ident: 10.1016/j.enbuild.2018.10.016_bib0021 article-title: Supervised machine learning: a review of classification techniques – start-page: 92 year: 1998 ident: 10.1016/j.enbuild.2018.10.016_bib0024 article-title: Combining labeled and unlabeled data with co-training – year: 2011 ident: 10.1016/j.enbuild.2018.10.016_bib0032 article-title: Tools for evaluating fault detection and diagnostic methods for air-handling units – volume: 11 start-page: 3 issue: 1 year: 2005 ident: 10.1016/j.enbuild.2018.10.016_bib0001 article-title: Methods for fault detection, diagnostics, and prognostics for building systems–a review, part II publication-title: HVAC&R Res. doi: 10.1080/10789669.2005.10391123 – volume: 116 start-page: 57 issue: 1 year: 2010 ident: 10.1016/j.enbuild.2018.10.016_bib0031 article-title: Development and validation of a dynamic air fandling unit model - part II publication-title: ASHRAE Trans. – volume: 34 start-page: 631 issue: 5 year: 2010 ident: 10.1016/j.enbuild.2018.10.016_bib0028 article-title: A semi-supervised approach to fault diagnosis for chemical processes publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2009.12.008 – volume: 4 start-page: 1883 issue: 2 year: 2009 ident: 10.1016/j.enbuild.2018.10.016_bib0041 article-title: K-nearest neighbor publication-title: Scholarpedia doi: 10.4249/scholarpedia.1883 – start-page: 223 year: 2010 ident: 10.1016/j.enbuild.2018.10.016_bib0036 article-title: A users guide to support vector machines – volume: 105 start-page: 1087 year: 1999 ident: 10.1016/j.enbuild.2018.10.016_bib0014 article-title: Classification techniques for fault detection and diagnosis of an air-handling unit publication-title: ASHRAE Trans. – volume: 220 start-page: 64 year: 2013 ident: 10.1016/j.enbuild.2018.10.016_bib0027 article-title: Adaptive fault detection and diagnosis using an evolving fuzzy classifier publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2011.08.030 – volume: 116 start-page: 45 issue: 1 year: 2010 ident: 10.1016/j.enbuild.2018.10.016_bib0030 article-title: Development and validation of a dynamic air handling unit model - part I publication-title: ASHRAE Trans. – year: 2006 ident: 10.1016/j.enbuild.2018.10.016_bib0037 article-title: One against one or one against all: Which one is better for handwriting recognition with svms? – volume: 24 start-page: 3 issue: 1 year: 2018 ident: 10.1016/j.enbuild.2018.10.016_bib0007 article-title: A review of fault detection and diagnostics methods for building systems publication-title: Sci. Technol. Built Environ. doi: 10.1080/23744731.2017.1318008 – start-page: 97 year: 2012 ident: 10.1016/j.enbuild.2018.10.016_bib0022 article-title: Unsupervised and transfer learning challenge: a deep learning approach – volume: 70 start-page: 489 issue: 1–3 year: 2006 ident: 10.1016/j.enbuild.2018.10.016_bib0039 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 33 start-page: 391 issue: 4 year: 2001 ident: 10.1016/j.enbuild.2018.10.016_bib0017 article-title: Online fault detection and diagnosis in VAV air handling unit by RARX modeling publication-title: Energy Build. doi: 10.1016/S0378-7788(00)00121-3 – start-page: 1 year: 2018 ident: 10.1016/j.enbuild.2018.10.016_bib0020 article-title: Fast and accurate classification of time series data using extended ELM: application in fault diagnosis of air handling units publication-title: IEEE Trans. Syst., Man Cybern.: Syst. – volume: 86 start-page: 698 year: 2015 ident: 10.1016/j.enbuild.2018.10.016_bib0004 article-title: Robust model-based fault diagnosis for air handling units publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.10.069 – volume: 38 start-page: 1485 issue: 12 year: 2006 ident: 10.1016/j.enbuild.2018.10.016_bib0016 article-title: A rule-based fault detection method for air handling units publication-title: Energy Build. doi: 10.1016/j.enbuild.2006.04.014 – volume: 24 start-page: 1565 issue: 12 year: 2006 ident: 10.1016/j.enbuild.2018.10.016_bib0033 article-title: What is a support vector machine? publication-title: Nat. Biotechnol. doi: 10.1038/nbt1206-1565 – volume: 107 start-page: 858 year: 2001 ident: 10.1016/j.enbuild.2018.10.016_bib0002 article-title: An expert rule set for fault detection in air-handling units/discussion publication-title: ASHRAE Trans. – volume: 86 start-page: 401 year: 2018 ident: 10.1016/j.enbuild.2018.10.016_bib0034 article-title: Cost-sensitive and sequential feature selection for chiller fault detection and diagnosis publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2017.11.003 – volume: 149 start-page: 216 year: 2017 ident: 10.1016/j.enbuild.2018.10.016_bib0008 article-title: Advanced detection of HVAC faults using unsupervised SVM novelty detection and gaussian process models publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.05.053 – volume: 102 start-page: 540 year: 1996 ident: 10.1016/j.enbuild.2018.10.016_bib0013 article-title: Fault diagnosis of an air-handling unit using artificial neural networks publication-title: ASHRAE Trans. – volume: 45 start-page: 427 issue: 4 year: 2009 ident: 10.1016/j.enbuild.2018.10.016_bib0038 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2009.03.002 – volume: 111 start-page: 1272 year: 2017 ident: 10.1016/j.enbuild.2018.10.016_bib0006 article-title: Diagnostic bayesian networks for diagnosing air handling units faults–part I: faults in dampers, fans, filters and sensors publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.09.121 – volume: 30 start-page: 1145 issue: 7 year: 1997 ident: 10.1016/j.enbuild.2018.10.016_bib0026 article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(96)00142-2 – volume: 37 start-page: 1088 issue: 6 year: 2007 ident: 10.1016/j.enbuild.2018.10.016_bib0029 article-title: Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples publication-title: IEEE Trans. Syst. Man Cybern. Part A doi: 10.1109/TSMCA.2007.904745 – volume: 266 start-page: 1 year: 2014 ident: 10.1016/j.enbuild.2018.10.016_bib0040 article-title: The cart decision tree for mining data streams publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2013.12.060 – volume: 9 start-page: 1005 issue: 6 year: 2014 ident: 10.1016/j.enbuild.2018.10.016_bib0035 article-title: Optimization of breast mass classification using sequential forward floating selection (SFFS) and a support vector machine (SVM) model publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-014-0992-1 – volume: 72 start-page: 157 year: 2014 ident: 10.1016/j.enbuild.2018.10.016_bib0003 article-title: Sensor fault detection and its efficiency analysis in air handling unit using the combined neural networks publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.12.038 – start-page: 81 year: 2007 ident: 10.1016/j.enbuild.2018.10.016_bib0023 article-title: Discriminative learning for differing training and test distributions |
SSID | ssj0006571 |
Score | 2.5718899 |
Snippet | •The work introduces a novel semi-supervised approach to detect and diagnose faults for AHUs.•80% accuracy rate is reached using a training set with 8000... Modern data-driven fault detection and diagnosis (FDD) techniques show impressive high diagnostic accuracy in recognizing various air handling units (AHUs)... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 75 |
SubjectTerms | Air handling unit Artificial intelligence Diagnosis Diagnostic systems Fault detection Fault detection and diagnosis Fault diagnosis HVAC Learning algorithms Machine learning Semi-supervised learning Support vector machine Training |
Title | Semi-supervised learning for early detection and diagnosis of various air handling unit faults |
URI | https://dx.doi.org/10.1016/j.enbuild.2018.10.016 https://www.proquest.com/docview/2151201106 |
Volume | 181 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuJ0jhy8ZlvXJG2PYzjm1xCn4MmSNol0zG6srUf_dvO61KkIA6FQGvJKeXkfv9CX30PoIggipmLZJSYsUkIDVxIRa0aCQCrPiyjzyh_td2M-eqLXz-y5hgbVWRgoq7SxfxXTy2htRzpWm51FknQmXdcYG7Ch-9ADnMFBc0o9sPL2x7rMg7Ny0wWTCcxen-LpTNtAL5DMgDDU8dtQ5AVtz__OT78idZl-hnto1-JG3F992j6qqfQA7XxjEzxELxP1lpCsWID7Z0pi2xHiFRtgihUwGWOp8rL2KsUilViu6uySDM81fje75nmRYZEsccm9AJKF8XisRTHLsyP0NLx8HIyIbZ9AYtp1cxJw6facWDDhsIhrFTtUR9rgOdmTBpX4kYm5QvmBdFzJeeR6VHGqpGA948jSV-4xqqfzVJ0gzLg2l2CO9AOzo4IU5vOu0Eo4SrMobiBaKS2MLbc4tLiYhVUR2TS0ug5B1zBsRhuo_SW2WJFrbBLwqxUJf1hJaBLAJtFmtYKhddMsLPEOICB--v83n6FteIIaF4c1UT1fFurcIJU8apWm2EJb_cHD7T3cr25G40946uvz |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BOQAHxCp2fODqtmlsNzmiClS2XgCJE5YT2yiopBVJ-H48qVMWISEh5TTJRNHYfvOsjN8AnMZxwk2qu9TBIqMsDjVVqeU0jrXp9xPG-_WP9tuRGD6wq0f-uACD5iwMllV67J9heo3W3tLx0exMs6xz1w3dZEM19Ah7gHO-CEuoTsVbsHR2eT0czQFZ8Hrfhc9TdPg8yNN5aaPCQDZGzdAgamOdF3Y-_z1F_QDrOgNdrMOap47kbPZ1G7Bg8k1Y_SIouAVPd-Y1o0U1RQQojCa-KcQzcdyUGBQzJtqUdflVTlSuiZ6V2mUFmVjy7jbOk6ogKnsjtfwCelZu0ROrqnFZbMPDxfn9YEh9BwWasm5Y0ljosBekiquAJ8KaNGA2sY7S6Z52xCRKHOwqE8U6CLUQSdhnRjCjFe-5tawjE-5AK5_kZhcIF9Zdigc6it2mCrNYJLrKGhUYy5N0D1gTNJl6eXHscjGWTR3Zi_SxlhhrNDvrHrTnbtOZvsZfDlEzIvLbRJEuB_zletiMoPQrtZA15UESJPb__-YTWB7e397Im8vR9QGs4B0seQn4IbTKt8ocOeJSJsd-Yn4AJ3vtDw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-supervised+learning+for+early+detection+and+diagnosis+of+various+air+handling+unit+faults&rft.jtitle=Energy+and+buildings&rft.au=Yan%2C+Ke&rft.au=Zhong%2C+Chaowen&rft.au=Ji%2C+Zhiwei&rft.au=Huang%2C+Jing&rft.date=2018-12-15&rft.issn=0378-7788&rft.volume=181&rft.spage=75&rft.epage=83&rft_id=info:doi/10.1016%2Fj.enbuild.2018.10.016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enbuild_2018_10_016 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon |