Semi-supervised learning for early detection and diagnosis of various air handling unit faults

•The work introduces a novel semi-supervised approach to detect and diagnose faults for AHUs.•80% accuracy rate is reached using a training set with 8000 normal samples and only around 30 samples for each fault type.•This work addresses the tradeoff between the initial number of faulty samples and t...

Full description

Saved in:
Bibliographic Details
Published inEnergy and buildings Vol. 181; pp. 75 - 83
Main Authors Yan, Ke, Zhong, Chaowen, Ji, Zhiwei, Huang, Jing
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 15.12.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The work introduces a novel semi-supervised approach to detect and diagnose faults for AHUs.•80% accuracy rate is reached using a training set with 8000 normal samples and only around 30 samples for each fault type.•This work addresses the tradeoff between the initial number of faulty samples and the final classification accuracy.•This work addresses the tradeoff between the initial number of faulty samples and the computational cost.•This work addresses the tradeoff between the threshold of confidently levels and the final classification accuracy. Modern data-driven fault detection and diagnosis (FDD) techniques show impressive high diagnostic accuracy in recognizing various air handling units (AHUs) faults. Most existing data-driven FDD approaches simply adopt supervised machine learning techniques that presume the availability of a sufficient number of faulty training data samples. However, in real-world AHU FDD scenarios, the number of faulty training samples is not enough to support supervised learning methods, since faults are usually fixed within short periods of time. In this study, a semi-supervised learning FDD framework is proposed to deal with the above problem. By using the proposed framework, the training pool can be enriched by iteratively inserting confidently labeled testing samples, which mimics the scenario of detecting faults the earliest possible. Furthermore, the proposed framework can be easily extended with various kinds of state-of-art classifiers. Three important tradeoffs are observed through a series of experiments. With a reasonably small number of faulty training data samples available, the performance of the proposed semi-supervised learning technique is comparable to the classic supervised FDD methods.
AbstractList •The work introduces a novel semi-supervised approach to detect and diagnose faults for AHUs.•80% accuracy rate is reached using a training set with 8000 normal samples and only around 30 samples for each fault type.•This work addresses the tradeoff between the initial number of faulty samples and the final classification accuracy.•This work addresses the tradeoff between the initial number of faulty samples and the computational cost.•This work addresses the tradeoff between the threshold of confidently levels and the final classification accuracy. Modern data-driven fault detection and diagnosis (FDD) techniques show impressive high diagnostic accuracy in recognizing various air handling units (AHUs) faults. Most existing data-driven FDD approaches simply adopt supervised machine learning techniques that presume the availability of a sufficient number of faulty training data samples. However, in real-world AHU FDD scenarios, the number of faulty training samples is not enough to support supervised learning methods, since faults are usually fixed within short periods of time. In this study, a semi-supervised learning FDD framework is proposed to deal with the above problem. By using the proposed framework, the training pool can be enriched by iteratively inserting confidently labeled testing samples, which mimics the scenario of detecting faults the earliest possible. Furthermore, the proposed framework can be easily extended with various kinds of state-of-art classifiers. Three important tradeoffs are observed through a series of experiments. With a reasonably small number of faulty training data samples available, the performance of the proposed semi-supervised learning technique is comparable to the classic supervised FDD methods.
Modern data-driven fault detection and diagnosis (FDD) techniques show impressive high diagnostic accuracy in recognizing various air handling units (AHUs) faults. Most existing data-driven FDD approaches simply adopt supervised machine learning techniques that presume the availability of a sufficient number of faulty training data samples. However, in real-world AHU FDD scenarios, the number of faulty training samples is not enough to support supervised learning methods, since faults are usually fixed within short periods of time. In this study, a semi-supervised learning FDD framework is proposed to deal with the above problem. By using the proposed framework, the training pool can be enriched by iteratively inserting confidently labeled testing samples, which mimics the scenario of detecting faults the earliest possible. Furthermore, the proposed framework can be easily extended with various kinds of state-of-art classifiers. Three important tradeoffs are observed through a series of experiments. With a reasonably small number of faulty training data samples available, the performance of the proposed semi-supervised learning technique is comparable to the classic supervised FDD methods.
Author Ji, Zhiwei
Huang, Jing
Yan, Ke
Zhong, Chaowen
Author_xml – sequence: 1
  givenname: Ke
  surname: Yan
  fullname: Yan, Ke
  organization: College of Information Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, 310018, China
– sequence: 2
  givenname: Chaowen
  surname: Zhong
  fullname: Zhong, Chaowen
  organization: College of Information Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, 310018, China
– sequence: 3
  givenname: Zhiwei
  orcidid: 0000-0001-5781-3465
  surname: Ji
  fullname: Ji, Zhiwei
  organization: School of Information & Electronic Engineering, Zhejiang Gongshang University, 18 Xuezheng Road, Hangzhou, 311300, China
– sequence: 4
  givenname: Jing
  orcidid: 0000-0001-8704-154X
  surname: Huang
  fullname: Huang, Jing
  email: gabriel.jing.huang@gmail.com
  organization: School of Information & Electronic Engineering, Zhejiang Gongshang University, 18 Xuezheng Road, Hangzhou, 311300, China
BookMark eNqFkE1LAzEQhoNUsFZ_ghDwvDXZj2yKBxHxCwoe1Kshm8zWKdukJruF_nuztCcvnmZ4M88Mec7JxHkHhFxxNueMi5v1HFwzYGfnOeMyZfOUnpApl3WeCV7LCZmyopZZXUt5Rs5jXDPGRFXzKfl6hw1mcdhC2GEESzvQwaFb0dYHmvpuTy30YHr0jmpnqUW9cj5ipL6lOx3QD5FqDPQ7vXYjOTjsaauHro8X5LTVXYTLY52Rz6fHj4eXbPn2_Ppwv8xMyYo-Wwhb5NzoSvOqES0YXrZNmxfc5naxKGQD2miQC8sLK0RT1CWIEqyuclbmVkIxI9eHvdvgfwaIvVr7Ibh0UuW84skLZyJN3R6mTPAxBmiVwV6PP-uDxk5xpkahaq2OQtUodIxTmujqD70NuNFh_y93d-AgCdghBBUNgjNgMSSvynr8Z8MvKwuXEw
CitedBy_id crossref_primary_10_1016_j_jobe_2024_109028
crossref_primary_10_1016_j_enbuild_2023_112949
crossref_primary_10_1016_j_adapen_2023_100123
crossref_primary_10_1016_j_autcon_2022_104174
crossref_primary_10_1016_j_enbuild_2020_110369
crossref_primary_10_3390_su12010232
crossref_primary_10_3390_info11010032
crossref_primary_10_1016_j_buildenv_2024_111568
crossref_primary_10_1016_j_applthermaleng_2020_114957
crossref_primary_10_1016_j_buildenv_2025_112529
crossref_primary_10_3390_buildings12081229
crossref_primary_10_3390_pr8010105
crossref_primary_10_1109_ACCESS_2019_2933262
crossref_primary_10_1016_j_apenergy_2023_121731
crossref_primary_10_1007_s42979_023_02236_8
crossref_primary_10_1016_j_rser_2021_110929
crossref_primary_10_3934_mbe_2022534
crossref_primary_10_3390_land14010083
crossref_primary_10_3390_pr8091068
crossref_primary_10_1111_jiec_13174
crossref_primary_10_1016_j_buildenv_2021_107982
crossref_primary_10_1016_j_jobe_2025_112048
crossref_primary_10_1016_j_rser_2025_115387
crossref_primary_10_3390_en15155534
crossref_primary_10_1016_j_engappai_2025_110233
crossref_primary_10_1007_s11280_019_00705_w
crossref_primary_10_1016_j_jobe_2020_102111
crossref_primary_10_1016_j_jobe_2020_102110
crossref_primary_10_1007_s12273_023_1041_1
crossref_primary_10_1016_j_buildenv_2024_112265
crossref_primary_10_1080_09613218_2023_2206989
crossref_primary_10_1109_TCBB_2019_2951146
crossref_primary_10_1016_j_enbuild_2021_111044
crossref_primary_10_1016_j_isatra_2023_09_027
crossref_primary_10_3390_aerospace10010055
crossref_primary_10_1016_j_enbuild_2020_110492
crossref_primary_10_1109_TCYB_2020_3032707
crossref_primary_10_1016_j_enbuild_2022_112207
crossref_primary_10_1016_j_enbuild_2022_111995
crossref_primary_10_1016_j_enbuild_2022_112204
crossref_primary_10_1109_TII_2021_3120686
crossref_primary_10_1016_j_rser_2023_113612
crossref_primary_10_1109_ACCESS_2020_2966399
crossref_primary_10_3390_s21185994
crossref_primary_10_1016_j_apenergy_2023_121591
crossref_primary_10_1016_j_enbuild_2024_114540
crossref_primary_10_1016_j_ijrefrig_2022_08_017
crossref_primary_10_3389_fenrg_2021_652801
crossref_primary_10_3390_en15051691
crossref_primary_10_1016_j_enbuild_2021_110781
crossref_primary_10_3390_civileng2040053
crossref_primary_10_1109_ACCESS_2020_2989428
crossref_primary_10_1016_j_buildenv_2020_106698
crossref_primary_10_1002_prs_12239
crossref_primary_10_1016_j_enbuild_2021_111467
crossref_primary_10_1109_ACCESS_2020_3040980
crossref_primary_10_1016_j_enbuild_2019_109689
crossref_primary_10_1016_j_ress_2022_108921
crossref_primary_10_12677_csa_2024_145118
crossref_primary_10_3390_en14175362
crossref_primary_10_1016_j_scs_2021_102874
crossref_primary_10_1016_j_apenergy_2021_116459
crossref_primary_10_1016_j_apenergy_2022_120279
crossref_primary_10_3390_aerospace10020164
crossref_primary_10_1016_j_engappai_2024_108469
crossref_primary_10_1016_j_autcon_2024_105500
crossref_primary_10_1109_ACCESS_2020_3024964
crossref_primary_10_1109_TIM_2023_3318686
crossref_primary_10_1016_j_enbuild_2024_114368
crossref_primary_10_1088_1755_1315_897_1_012009
crossref_primary_10_1049_rpg2_12458
crossref_primary_10_1016_j_adapen_2021_100055
crossref_primary_10_3390_app12178837
crossref_primary_10_1360_nso_20230068
crossref_primary_10_3390_pr11020535
crossref_primary_10_26599_BDMA_2022_9020015
crossref_primary_10_1016_j_apenergy_2023_122356
crossref_primary_10_1016_j_buildenv_2023_110264
crossref_primary_10_1109_TASE_2020_3035620
crossref_primary_10_1080_19401493_2025_2459714
crossref_primary_10_3390_en12030527
crossref_primary_10_3390_en17030700
crossref_primary_10_1016_j_enbuild_2024_114901
crossref_primary_10_1007_s40684_023_00537_0
crossref_primary_10_1080_23744731_2024_2433388
crossref_primary_10_3390_en13153948
crossref_primary_10_1016_j_buildenv_2025_112678
crossref_primary_10_1016_j_aei_2024_102810
crossref_primary_10_1016_j_enbuild_2024_114343
crossref_primary_10_1016_j_apenergy_2024_123016
crossref_primary_10_1080_23744731_2022_2058262
crossref_primary_10_1007_s10462_022_10260_y
crossref_primary_10_1016_j_buildenv_2021_108057
crossref_primary_10_1109_TCBB_2019_2952102
crossref_primary_10_3390_en16207094
crossref_primary_10_1016_j_energy_2023_127972
crossref_primary_10_1016_j_eswa_2023_122545
crossref_primary_10_1016_j_enbuild_2022_112243
crossref_primary_10_1016_j_enbuild_2022_112241
crossref_primary_10_1016_j_compag_2019_01_004
crossref_primary_10_1016_j_engappai_2023_106316
crossref_primary_10_1016_j_enbuild_2021_110733
crossref_primary_10_1016_j_rser_2022_112395
crossref_primary_10_1016_j_enbuild_2021_111423
crossref_primary_10_1109_TCBB_2019_2903804
crossref_primary_10_1111_exsy_13360
crossref_primary_10_1016_j_engappai_2025_110331
crossref_primary_10_1016_j_energy_2023_128019
crossref_primary_10_1109_ACCESS_2019_2943667
crossref_primary_10_3390_sym13112040
crossref_primary_10_1109_TIM_2025_3545878
Cites_doi 10.1016/S0167-8655(03)00008-4
10.1016/j.enbuild.2016.06.013
10.1016/S0306-2619(03)00107-7
10.1016/j.enbuild.2017.01.052
10.1016/j.enbuild.2016.08.017
10.1016/j.applthermaleng.2015.07.001
10.1016/j.enbuild.2014.06.042
10.1016/j.egypro.2014.12.432
10.1016/j.enbuild.2016.09.039
10.1080/10789669.2005.10391123
10.1016/j.compchemeng.2009.12.008
10.4249/scholarpedia.1883
10.1016/j.ins.2011.08.030
10.1080/23744731.2017.1318008
10.1016/j.neucom.2005.12.126
10.1016/S0378-7788(00)00121-3
10.1016/j.enbuild.2014.10.069
10.1016/j.enbuild.2006.04.014
10.1038/nbt1206-1565
10.1016/j.ijrefrig.2017.11.003
10.1016/j.enbuild.2017.05.053
10.1016/j.ipm.2009.03.002
10.1016/j.applthermaleng.2015.09.121
10.1016/S0031-3203(96)00142-2
10.1109/TSMCA.2007.904745
10.1016/j.ins.2013.12.060
10.1007/s11548-014-0992-1
10.1016/j.enbuild.2013.12.038
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier BV Dec 15, 2018
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier BV Dec 15, 2018
DBID AAYXX
CITATION
7ST
8FD
C1K
F28
FR3
KR7
SOI
DOI 10.1016/j.enbuild.2018.10.016
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-6178
EndPage 83
ExternalDocumentID 10_1016_j_enbuild_2018_10_016
S0378778818320255
GroupedDBID --M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
SDF
SDG
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~02
~G-
--K
29G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RPZ
SAC
SET
SEW
SSH
WUQ
ZMT
ZY4
7ST
8FD
C1K
EFKBS
F28
FR3
KR7
SOI
ID FETCH-LOGICAL-c403t-96d321ca5a15b6fec14fbf231d2d9938beacae89d13d66b374e64eda52042d8e3
IEDL.DBID .~1
ISSN 0378-7788
IngestDate Wed Aug 13 04:50:18 EDT 2025
Thu Apr 24 23:01:57 EDT 2025
Tue Jul 01 01:12:54 EDT 2025
Fri Feb 23 02:27:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Support vector machine
Semi-supervised learning
Fault detection and diagnosis
Air handling unit
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-96d321ca5a15b6fec14fbf231d2d9938beacae89d13d66b374e64eda52042d8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5781-3465
0000-0001-8704-154X
PQID 2151201106
PQPubID 2045483
PageCount 9
ParticipantIDs proquest_journals_2151201106
crossref_citationtrail_10_1016_j_enbuild_2018_10_016
crossref_primary_10_1016_j_enbuild_2018_10_016
elsevier_sciencedirect_doi_10_1016_j_enbuild_2018_10_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-15
PublicationDateYYYYMMDD 2018-12-15
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-15
  day: 15
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Energy and buildings
PublicationYear 2018
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Lee, House, Kyong (bib0015) 2004; 77
Yu, Woradechjumroen, Yu (bib0009) 2014; 82
Katipamula, Brambley (bib0001) 2005; 11
Sterling, Provan, Febres, O’Sullivan, Struss, Keane (bib0010) 2014; 62
Chen, Wang, Dong (bib0025) 2003; 24
Yan, Ji, Lu, Huang, Shen, Xue (bib0020) 2018
Tan, Pu, Zheng (bib0035) 2014; 9
Dey, Dong (bib0011) 2016; 130
Ben-Hur, Weston (bib0036) 2010
Monroy, Benitez, Escudero, Graells (bib0028) 2010; 34
Schein, Bushby, Castro, House (bib0016) 2006; 38
Afshari, Liu (bib0018) 2017; 157
Huang, Zhu, Siew (bib0039) 2006; 70
Bickel, Brückner, Scheffer (bib0023) 2007
Milgram, Cheriet, Sabourin (bib0037) 2006
Sokolova, Lapalme (bib0038) 2009; 45
House, Lee, Shin (bib0014) 1999; 105
House, Vaezi-Nejad, Whitcomb (bib0002) 2001; 107
Noble (bib0033) 2006; 24
Wen, Li (bib0032) 2011
Yan, Ma, Zhao, Kokogiannakis (bib0005) 2016; 133
Kotsiantis, Zaharakis, Pintelas (bib0021) 2007
Liaw, Wiener (bib0042) 2002; 2
Du, Fan, Chi, Jin (bib0003) 2014; 72
Li, Wen, Zhou, Klaassen (bib0031) 2010; 116
Li, Zhou (bib0029) 2007; 37
Peterson (bib0041) 2009; 4
Kim, Katipamula (bib0007) 2018; 24
Mulumba, Afshari, Yan, Shen, Norford (bib0004) 2015; 86
Van Every, Rodriguez, Jones, Mammoli, Martínez-Ramón (bib0008) 2017; 149
Yan, Ma, Dai, Shen, Ji, Xie (bib0034) 2018; 86
Dauphin, Glorot, Rifai, Bengio, Goodfellow, Lavoie, Muller, Desjardins, Warde-Farley, Vincent (bib0022) 2012
Lee, House, Park, Kelly (bib0013) 1996; 102
Lemos, Caminhas, Gomide (bib0027) 2013; 220
Li, Wen (bib0030) 2010; 116
Bradley (bib0026) 1997; 30
Zhao, Wen, Xiao, Yang, Wang (bib0006) 2017; 111
Wang, Chen (bib0012) 2016; 127
Yoshida, Kumar, Morita (bib0017) 2001; 33
Zhao, Wen, Wang (bib0019) 2015; 90
Blum, Mitchell (bib0024) 1998
Rutkowski, Jaworski, Pietruczuk, Duda (bib0040) 2014; 266
Li (10.1016/j.enbuild.2018.10.016_bib0029) 2007; 37
Lee (10.1016/j.enbuild.2018.10.016_bib0013) 1996; 102
Dey (10.1016/j.enbuild.2018.10.016_bib0011) 2016; 130
Zhao (10.1016/j.enbuild.2018.10.016_bib0019) 2015; 90
Kim (10.1016/j.enbuild.2018.10.016_bib0007) 2018; 24
Afshari (10.1016/j.enbuild.2018.10.016_bib0018) 2017; 157
Yu (10.1016/j.enbuild.2018.10.016_bib0009) 2014; 82
Milgram (10.1016/j.enbuild.2018.10.016_bib0037) 2006
Kotsiantis (10.1016/j.enbuild.2018.10.016_bib0021) 2007
Dauphin (10.1016/j.enbuild.2018.10.016_bib0022) 2012
Chen (10.1016/j.enbuild.2018.10.016_bib0025) 2003; 24
Tan (10.1016/j.enbuild.2018.10.016_bib0035) 2014; 9
Yan (10.1016/j.enbuild.2018.10.016_bib0020) 2018
Bradley (10.1016/j.enbuild.2018.10.016_bib0026) 1997; 30
Sterling (10.1016/j.enbuild.2018.10.016_bib0010) 2014; 62
Li (10.1016/j.enbuild.2018.10.016_bib0030) 2010; 116
Yan (10.1016/j.enbuild.2018.10.016_bib0034) 2018; 86
Katipamula (10.1016/j.enbuild.2018.10.016_bib0001) 2005; 11
Yan (10.1016/j.enbuild.2018.10.016_bib0005) 2016; 133
Zhao (10.1016/j.enbuild.2018.10.016_bib0006) 2017; 111
Huang (10.1016/j.enbuild.2018.10.016_bib0039) 2006; 70
Schein (10.1016/j.enbuild.2018.10.016_bib0016) 2006; 38
Monroy (10.1016/j.enbuild.2018.10.016_bib0028) 2010; 34
Li (10.1016/j.enbuild.2018.10.016_bib0031) 2010; 116
House (10.1016/j.enbuild.2018.10.016_bib0014) 1999; 105
Lee (10.1016/j.enbuild.2018.10.016_bib0015) 2004; 77
Liaw (10.1016/j.enbuild.2018.10.016_bib0042) 2002; 2
Ben-Hur (10.1016/j.enbuild.2018.10.016_bib0036) 2010
Sokolova (10.1016/j.enbuild.2018.10.016_bib0038) 2009; 45
House (10.1016/j.enbuild.2018.10.016_bib0002) 2001; 107
Noble (10.1016/j.enbuild.2018.10.016_bib0033) 2006; 24
Du (10.1016/j.enbuild.2018.10.016_bib0003) 2014; 72
Mulumba (10.1016/j.enbuild.2018.10.016_bib0004) 2015; 86
Wang (10.1016/j.enbuild.2018.10.016_bib0012) 2016; 127
Van Every (10.1016/j.enbuild.2018.10.016_bib0008) 2017; 149
Bickel (10.1016/j.enbuild.2018.10.016_bib0023) 2007
Wen (10.1016/j.enbuild.2018.10.016_bib0032) 2011
Yoshida (10.1016/j.enbuild.2018.10.016_bib0017) 2001; 33
Blum (10.1016/j.enbuild.2018.10.016_bib0024) 1998
Rutkowski (10.1016/j.enbuild.2018.10.016_bib0040) 2014; 266
Peterson (10.1016/j.enbuild.2018.10.016_bib0041) 2009; 4
Lemos (10.1016/j.enbuild.2018.10.016_bib0027) 2013; 220
References_xml – volume: 62
  start-page: 686
  year: 2014
  end-page: 693
  ident: bib0010
  article-title: Model-based fault detection and diagnosis of air handling units: a comparison of methodologies
  publication-title: Energy Procedia
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bib0042
  article-title: Classification and regression by random forest
  publication-title: R News
– volume: 86
  start-page: 698
  year: 2015
  end-page: 707
  ident: bib0004
  article-title: Robust model-based fault diagnosis for air handling units
  publication-title: Energy Build.
– start-page: 97
  year: 2012
  end-page: 110
  ident: bib0022
  article-title: Unsupervised and transfer learning challenge: a deep learning approach
  publication-title: Proceedings of ICML Workshop on Unsupervised and Transfer Learning
– volume: 11
  start-page: 3
  year: 2005
  end-page: 25
  ident: bib0001
  article-title: Methods for fault detection, diagnostics, and prognostics for building systems–a review, part II
  publication-title: HVAC&R Res.
– volume: 116
  start-page: 45
  year: 2010
  end-page: 56
  ident: bib0030
  article-title: Development and validation of a dynamic air handling unit model - part I
  publication-title: ASHRAE Trans.
– volume: 105
  start-page: 1087
  year: 1999
  ident: bib0014
  article-title: Classification techniques for fault detection and diagnosis of an air-handling unit
  publication-title: ASHRAE Trans.
– start-page: 81
  year: 2007
  end-page: 88
  ident: bib0023
  article-title: Discriminative learning for differing training and test distributions
  publication-title: Proceedings of the 24th international conference on Machine learning
– volume: 111
  start-page: 1272
  year: 2017
  end-page: 1286
  ident: bib0006
  article-title: Diagnostic bayesian networks for diagnosing air handling units faults–part I: faults in dampers, fans, filters and sensors
  publication-title: Appl. Therm. Eng.
– volume: 37
  start-page: 1088
  year: 2007
  end-page: 1098
  ident: bib0029
  article-title: Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples
  publication-title: IEEE Trans. Syst. Man Cybern. Part A
– volume: 24
  start-page: 3
  year: 2018
  end-page: 21
  ident: bib0007
  article-title: A review of fault detection and diagnostics methods for building systems
  publication-title: Sci. Technol. Built Environ.
– start-page: 1
  year: 2018
  end-page: 8
  ident: bib0020
  article-title: Fast and accurate classification of time series data using extended ELM: application in fault diagnosis of air handling units
  publication-title: IEEE Trans. Syst., Man Cybern.: Syst.
– volume: 127
  start-page: 442
  year: 2016
  end-page: 451
  ident: bib0012
  article-title: A robust fault detection and diagnosis strategy for multiple faults of VAV air handling units
  publication-title: Energy Build.
– volume: 45
  start-page: 427
  year: 2009
  end-page: 437
  ident: bib0038
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf. Process. Manage.
– volume: 130
  start-page: 177
  year: 2016
  end-page: 187
  ident: bib0011
  article-title: A probabilistic approach to diagnose faults of air handling units in buildings
  publication-title: Energy Build.
– volume: 107
  start-page: 858
  year: 2001
  ident: bib0002
  article-title: An expert rule set for fault detection in air-handling units/discussion
  publication-title: ASHRAE Trans.
– volume: 38
  start-page: 1485
  year: 2006
  end-page: 1492
  ident: bib0016
  article-title: A rule-based fault detection method for air handling units
  publication-title: Energy Build.
– volume: 116
  start-page: 57
  year: 2010
  end-page: 73
  ident: bib0031
  article-title: Development and validation of a dynamic air fandling unit model - part II
  publication-title: ASHRAE Trans.
– volume: 266
  start-page: 1
  year: 2014
  end-page: 15
  ident: bib0040
  article-title: The cart decision tree for mining data streams
  publication-title: Inf. Sci. (Ny)
– start-page: 223
  year: 2010
  end-page: 239
  ident: bib0036
  article-title: A users guide to support vector machines
  publication-title: Data mining techniques for the life sciences
– volume: 90
  start-page: 145
  year: 2015
  end-page: 157
  ident: bib0019
  article-title: Diagnostic bayesian networks for diagnosing air handling units faults–part ii: faults in coils and sensors
  publication-title: Appl. Therm. Eng.
– volume: 77
  start-page: 153
  year: 2004
  end-page: 170
  ident: bib0015
  article-title: Subsystem level fault diagnosis of a building’s air-handling unit using general regression neural networks
  publication-title: Appl. Energy
– volume: 149
  start-page: 216
  year: 2017
  end-page: 224
  ident: bib0008
  article-title: Advanced detection of HVAC faults using unsupervised SVM novelty detection and gaussian process models
  publication-title: Energy Build.
– volume: 34
  start-page: 631
  year: 2010
  end-page: 642
  ident: bib0028
  article-title: A semi-supervised approach to fault diagnosis for chemical processes
  publication-title: Comput. Chem. Eng.
– year: 2011
  ident: bib0032
  article-title: Tools for evaluating fault detection and diagnostic methods for air-handling units
  publication-title: ASHRAE RP-1312 Final Report
– volume: 24
  start-page: 1565
  year: 2006
  ident: bib0033
  article-title: What is a support vector machine?
  publication-title: Nat. Biotechnol.
– volume: 9
  start-page: 1005
  year: 2014
  end-page: 1020
  ident: bib0035
  article-title: Optimization of breast mass classification using sequential forward floating selection (SFFS) and a support vector machine (SVM) model
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 157
  start-page: 139
  year: 2017
  end-page: 156
  ident: bib0018
  article-title: Inverse modeling of the urban energy system using hourly electricity demand and weather measurements, part 2: gray-box model
  publication-title: Energy Build.
– volume: 24
  start-page: 1845
  year: 2003
  end-page: 1855
  ident: bib0025
  article-title: Learning with progressive transductive support vector machine
  publication-title: Pattern Recognit. Lett.
– start-page: 3
  year: 2007
  end-page: 24
  ident: bib0021
  article-title: Supervised machine learning: a review of classification techniques
  publication-title: Conference on Emerging Artificial Intelligence Applications in Computer Engineering: Real Word Ai Systems with Applications in Ehealth, Hci, Information Retrieval and Pervasive Technologies
– year: 2006
  ident: bib0037
  article-title: One against one or one against all: Which one is better for handwriting recognition with svms?
  publication-title: Tenth International Workshop on Frontiers in Handwriting Recognition
– start-page: 92
  year: 1998
  end-page: 100
  ident: bib0024
  article-title: Combining labeled and unlabeled data with co-training
  publication-title: Proceedings of the eleventh annual conference on Computational learning theory
– volume: 220
  start-page: 64
  year: 2013
  end-page: 85
  ident: bib0027
  article-title: Adaptive fault detection and diagnosis using an evolving fuzzy classifier
  publication-title: Inf. Sci. (Ny)
– volume: 86
  start-page: 401
  year: 2018
  end-page: 409
  ident: bib0034
  article-title: Cost-sensitive and sequential feature selection for chiller fault detection and diagnosis
  publication-title: Int. J. Refrig.
– volume: 30
  start-page: 1145
  year: 1997
  end-page: 1159
  ident: bib0026
  article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms
  publication-title: Pattern Recognit.
– volume: 72
  start-page: 157
  year: 2014
  end-page: 166
  ident: bib0003
  article-title: Sensor fault detection and its efficiency analysis in air handling unit using the combined neural networks
  publication-title: Energy Build.
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: bib0039
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– volume: 133
  start-page: 37
  year: 2016
  end-page: 45
  ident: bib0005
  article-title: A decision tree based data-driven diagnostic strategy for air handling units
  publication-title: Energy Build.
– volume: 82
  start-page: 550
  year: 2014
  end-page: 562
  ident: bib0009
  article-title: A review of fault detection and diagnosis methodologies on air-handling units
  publication-title: Energy Build.
– volume: 102
  start-page: 540
  year: 1996
  end-page: 549
  ident: bib0013
  article-title: Fault diagnosis of an air-handling unit using artificial neural networks
  publication-title: ASHRAE Trans.
– volume: 33
  start-page: 391
  year: 2001
  end-page: 401
  ident: bib0017
  article-title: Online fault detection and diagnosis in VAV air handling unit by RARX modeling
  publication-title: Energy Build.
– volume: 4
  start-page: 1883
  year: 2009
  ident: bib0041
  article-title: K-nearest neighbor
  publication-title: Scholarpedia
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 10.1016/j.enbuild.2018.10.016_bib0042
  article-title: Classification and regression by random forest
  publication-title: R News
– volume: 24
  start-page: 1845
  issue: 12
  year: 2003
  ident: 10.1016/j.enbuild.2018.10.016_bib0025
  article-title: Learning with progressive transductive support vector machine
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(03)00008-4
– volume: 127
  start-page: 442
  year: 2016
  ident: 10.1016/j.enbuild.2018.10.016_bib0012
  article-title: A robust fault detection and diagnosis strategy for multiple faults of VAV air handling units
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.06.013
– volume: 77
  start-page: 153
  issue: 2
  year: 2004
  ident: 10.1016/j.enbuild.2018.10.016_bib0015
  article-title: Subsystem level fault diagnosis of a building’s air-handling unit using general regression neural networks
  publication-title: Appl. Energy
  doi: 10.1016/S0306-2619(03)00107-7
– volume: 157
  start-page: 139
  year: 2017
  ident: 10.1016/j.enbuild.2018.10.016_bib0018
  article-title: Inverse modeling of the urban energy system using hourly electricity demand and weather measurements, part 2: gray-box model
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.01.052
– volume: 130
  start-page: 177
  year: 2016
  ident: 10.1016/j.enbuild.2018.10.016_bib0011
  article-title: A probabilistic approach to diagnose faults of air handling units in buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.08.017
– volume: 90
  start-page: 145
  year: 2015
  ident: 10.1016/j.enbuild.2018.10.016_bib0019
  article-title: Diagnostic bayesian networks for diagnosing air handling units faults–part ii: faults in coils and sensors
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.07.001
– volume: 82
  start-page: 550
  year: 2014
  ident: 10.1016/j.enbuild.2018.10.016_bib0009
  article-title: A review of fault detection and diagnosis methodologies on air-handling units
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.06.042
– volume: 62
  start-page: 686
  year: 2014
  ident: 10.1016/j.enbuild.2018.10.016_bib0010
  article-title: Model-based fault detection and diagnosis of air handling units: a comparison of methodologies
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.12.432
– volume: 133
  start-page: 37
  year: 2016
  ident: 10.1016/j.enbuild.2018.10.016_bib0005
  article-title: A decision tree based data-driven diagnostic strategy for air handling units
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.09.039
– start-page: 3
  year: 2007
  ident: 10.1016/j.enbuild.2018.10.016_bib0021
  article-title: Supervised machine learning: a review of classification techniques
– start-page: 92
  year: 1998
  ident: 10.1016/j.enbuild.2018.10.016_bib0024
  article-title: Combining labeled and unlabeled data with co-training
– year: 2011
  ident: 10.1016/j.enbuild.2018.10.016_bib0032
  article-title: Tools for evaluating fault detection and diagnostic methods for air-handling units
– volume: 11
  start-page: 3
  issue: 1
  year: 2005
  ident: 10.1016/j.enbuild.2018.10.016_bib0001
  article-title: Methods for fault detection, diagnostics, and prognostics for building systems–a review, part II
  publication-title: HVAC&R Res.
  doi: 10.1080/10789669.2005.10391123
– volume: 116
  start-page: 57
  issue: 1
  year: 2010
  ident: 10.1016/j.enbuild.2018.10.016_bib0031
  article-title: Development and validation of a dynamic air fandling unit model - part II
  publication-title: ASHRAE Trans.
– volume: 34
  start-page: 631
  issue: 5
  year: 2010
  ident: 10.1016/j.enbuild.2018.10.016_bib0028
  article-title: A semi-supervised approach to fault diagnosis for chemical processes
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2009.12.008
– volume: 4
  start-page: 1883
  issue: 2
  year: 2009
  ident: 10.1016/j.enbuild.2018.10.016_bib0041
  article-title: K-nearest neighbor
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.1883
– start-page: 223
  year: 2010
  ident: 10.1016/j.enbuild.2018.10.016_bib0036
  article-title: A users guide to support vector machines
– volume: 105
  start-page: 1087
  year: 1999
  ident: 10.1016/j.enbuild.2018.10.016_bib0014
  article-title: Classification techniques for fault detection and diagnosis of an air-handling unit
  publication-title: ASHRAE Trans.
– volume: 220
  start-page: 64
  year: 2013
  ident: 10.1016/j.enbuild.2018.10.016_bib0027
  article-title: Adaptive fault detection and diagnosis using an evolving fuzzy classifier
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2011.08.030
– volume: 116
  start-page: 45
  issue: 1
  year: 2010
  ident: 10.1016/j.enbuild.2018.10.016_bib0030
  article-title: Development and validation of a dynamic air handling unit model - part I
  publication-title: ASHRAE Trans.
– year: 2006
  ident: 10.1016/j.enbuild.2018.10.016_bib0037
  article-title: One against one or one against all: Which one is better for handwriting recognition with svms?
– volume: 24
  start-page: 3
  issue: 1
  year: 2018
  ident: 10.1016/j.enbuild.2018.10.016_bib0007
  article-title: A review of fault detection and diagnostics methods for building systems
  publication-title: Sci. Technol. Built Environ.
  doi: 10.1080/23744731.2017.1318008
– start-page: 97
  year: 2012
  ident: 10.1016/j.enbuild.2018.10.016_bib0022
  article-title: Unsupervised and transfer learning challenge: a deep learning approach
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  ident: 10.1016/j.enbuild.2018.10.016_bib0039
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 33
  start-page: 391
  issue: 4
  year: 2001
  ident: 10.1016/j.enbuild.2018.10.016_bib0017
  article-title: Online fault detection and diagnosis in VAV air handling unit by RARX modeling
  publication-title: Energy Build.
  doi: 10.1016/S0378-7788(00)00121-3
– start-page: 1
  year: 2018
  ident: 10.1016/j.enbuild.2018.10.016_bib0020
  article-title: Fast and accurate classification of time series data using extended ELM: application in fault diagnosis of air handling units
  publication-title: IEEE Trans. Syst., Man Cybern.: Syst.
– volume: 86
  start-page: 698
  year: 2015
  ident: 10.1016/j.enbuild.2018.10.016_bib0004
  article-title: Robust model-based fault diagnosis for air handling units
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.10.069
– volume: 38
  start-page: 1485
  issue: 12
  year: 2006
  ident: 10.1016/j.enbuild.2018.10.016_bib0016
  article-title: A rule-based fault detection method for air handling units
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2006.04.014
– volume: 24
  start-page: 1565
  issue: 12
  year: 2006
  ident: 10.1016/j.enbuild.2018.10.016_bib0033
  article-title: What is a support vector machine?
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1206-1565
– volume: 107
  start-page: 858
  year: 2001
  ident: 10.1016/j.enbuild.2018.10.016_bib0002
  article-title: An expert rule set for fault detection in air-handling units/discussion
  publication-title: ASHRAE Trans.
– volume: 86
  start-page: 401
  year: 2018
  ident: 10.1016/j.enbuild.2018.10.016_bib0034
  article-title: Cost-sensitive and sequential feature selection for chiller fault detection and diagnosis
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2017.11.003
– volume: 149
  start-page: 216
  year: 2017
  ident: 10.1016/j.enbuild.2018.10.016_bib0008
  article-title: Advanced detection of HVAC faults using unsupervised SVM novelty detection and gaussian process models
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.05.053
– volume: 102
  start-page: 540
  year: 1996
  ident: 10.1016/j.enbuild.2018.10.016_bib0013
  article-title: Fault diagnosis of an air-handling unit using artificial neural networks
  publication-title: ASHRAE Trans.
– volume: 45
  start-page: 427
  issue: 4
  year: 2009
  ident: 10.1016/j.enbuild.2018.10.016_bib0038
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2009.03.002
– volume: 111
  start-page: 1272
  year: 2017
  ident: 10.1016/j.enbuild.2018.10.016_bib0006
  article-title: Diagnostic bayesian networks for diagnosing air handling units faults–part I: faults in dampers, fans, filters and sensors
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.09.121
– volume: 30
  start-page: 1145
  issue: 7
  year: 1997
  ident: 10.1016/j.enbuild.2018.10.016_bib0026
  article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(96)00142-2
– volume: 37
  start-page: 1088
  issue: 6
  year: 2007
  ident: 10.1016/j.enbuild.2018.10.016_bib0029
  article-title: Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples
  publication-title: IEEE Trans. Syst. Man Cybern. Part A
  doi: 10.1109/TSMCA.2007.904745
– volume: 266
  start-page: 1
  year: 2014
  ident: 10.1016/j.enbuild.2018.10.016_bib0040
  article-title: The cart decision tree for mining data streams
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2013.12.060
– volume: 9
  start-page: 1005
  issue: 6
  year: 2014
  ident: 10.1016/j.enbuild.2018.10.016_bib0035
  article-title: Optimization of breast mass classification using sequential forward floating selection (SFFS) and a support vector machine (SVM) model
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-014-0992-1
– volume: 72
  start-page: 157
  year: 2014
  ident: 10.1016/j.enbuild.2018.10.016_bib0003
  article-title: Sensor fault detection and its efficiency analysis in air handling unit using the combined neural networks
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.12.038
– start-page: 81
  year: 2007
  ident: 10.1016/j.enbuild.2018.10.016_bib0023
  article-title: Discriminative learning for differing training and test distributions
SSID ssj0006571
Score 2.5718899
Snippet •The work introduces a novel semi-supervised approach to detect and diagnose faults for AHUs.•80% accuracy rate is reached using a training set with 8000...
Modern data-driven fault detection and diagnosis (FDD) techniques show impressive high diagnostic accuracy in recognizing various air handling units (AHUs)...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 75
SubjectTerms Air handling unit
Artificial intelligence
Diagnosis
Diagnostic systems
Fault detection
Fault detection and diagnosis
Fault diagnosis
HVAC
Learning algorithms
Machine learning
Semi-supervised learning
Support vector machine
Training
Title Semi-supervised learning for early detection and diagnosis of various air handling unit faults
URI https://dx.doi.org/10.1016/j.enbuild.2018.10.016
https://www.proquest.com/docview/2151201106
Volume 181
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuJ0jhy8ZlvXJG2PYzjm1xCn4MmSNol0zG6srUf_dvO61KkIA6FQGvJKeXkfv9CX30PoIggipmLZJSYsUkIDVxIRa0aCQCrPiyjzyh_td2M-eqLXz-y5hgbVWRgoq7SxfxXTy2htRzpWm51FknQmXdcYG7Ch-9ADnMFBc0o9sPL2x7rMg7Ny0wWTCcxen-LpTNtAL5DMgDDU8dtQ5AVtz__OT78idZl-hnto1-JG3F992j6qqfQA7XxjEzxELxP1lpCsWID7Z0pi2xHiFRtgihUwGWOp8rL2KsUilViu6uySDM81fje75nmRYZEsccm9AJKF8XisRTHLsyP0NLx8HIyIbZ9AYtp1cxJw6facWDDhsIhrFTtUR9rgOdmTBpX4kYm5QvmBdFzJeeR6VHGqpGA948jSV-4xqqfzVJ0gzLg2l2CO9AOzo4IU5vOu0Eo4SrMobiBaKS2MLbc4tLiYhVUR2TS0ug5B1zBsRhuo_SW2WJFrbBLwqxUJf1hJaBLAJtFmtYKhddMsLPEOICB--v83n6FteIIaF4c1UT1fFurcIJU8apWm2EJb_cHD7T3cr25G40946uvz
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BOQAHxCp2fODqtmlsNzmiClS2XgCJE5YT2yiopBVJ-H48qVMWISEh5TTJRNHYfvOsjN8AnMZxwk2qu9TBIqMsDjVVqeU0jrXp9xPG-_WP9tuRGD6wq0f-uACD5iwMllV67J9heo3W3tLx0exMs6xz1w3dZEM19Ah7gHO-CEuoTsVbsHR2eT0czQFZ8Hrfhc9TdPg8yNN5aaPCQDZGzdAgamOdF3Y-_z1F_QDrOgNdrMOap47kbPZ1G7Bg8k1Y_SIouAVPd-Y1o0U1RQQojCa-KcQzcdyUGBQzJtqUdflVTlSuiZ6V2mUFmVjy7jbOk6ogKnsjtfwCelZu0ROrqnFZbMPDxfn9YEh9BwWasm5Y0ljosBekiquAJ8KaNGA2sY7S6Z52xCRKHOwqE8U6CLUQSdhnRjCjFe-5tawjE-5AK5_kZhcIF9Zdigc6it2mCrNYJLrKGhUYy5N0D1gTNJl6eXHscjGWTR3Zi_SxlhhrNDvrHrTnbtOZvsZfDlEzIvLbRJEuB_zletiMoPQrtZA15UESJPb__-YTWB7e397Im8vR9QGs4B0seQn4IbTKt8ocOeJSJsd-Yn4AJ3vtDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-supervised+learning+for+early+detection+and+diagnosis+of+various+air+handling+unit+faults&rft.jtitle=Energy+and+buildings&rft.au=Yan%2C+Ke&rft.au=Zhong%2C+Chaowen&rft.au=Ji%2C+Zhiwei&rft.au=Huang%2C+Jing&rft.date=2018-12-15&rft.issn=0378-7788&rft.volume=181&rft.spage=75&rft.epage=83&rft_id=info:doi/10.1016%2Fj.enbuild.2018.10.016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enbuild_2018_10_016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon