Amylin Selectively Signals Onto POMC Neurons in the Arcuate Nucleus of the Hypothalamus
Amylin phosphorylates ERK (p-ERK) in the area postrema to reduce eating and synergizes with leptin to phosphorylate STAT3 in the arcuate (ARC) and ventromedial (VMN) hypothalamic nuclei to reduce food intake and body weight. The current studies assessed potential amylin and amylin-leptin ARC/VMN int...
Saved in:
Published in | Diabetes (New York, N.Y.) Vol. 67; no. 5; pp. 805 - 817 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Diabetes Association
01.05.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0012-1797 1939-327X 1939-327X |
DOI | 10.2337/db17-1347 |
Cover
Loading…
Abstract | Amylin phosphorylates ERK (p-ERK) in the area postrema to reduce eating and synergizes with leptin to phosphorylate STAT3 in the arcuate (ARC) and ventromedial (VMN) hypothalamic nuclei to reduce food intake and body weight. The current studies assessed potential amylin and amylin-leptin ARC/VMN interactions on ERK signaling and their roles in postnatal hypothalamic pathway development. In amylin knockout mice, the density of agouti-related protein (AgRP)-immunoreactive (IR) fibers in the hypothalamic paraventricular nucleus (PVN) was increased, while the density of α-melanocyte–stimulating hormone (αMSH) fibers was decreased. In mice deficient of the amylin receptor components RAMP1/3, both AgRP and αMSH-IR fiber densities were decreased, while only αMSH-IR fiber density was decreased in rats injected neonatally in the ARC/VMN with an adeno-associated virus short hairpin RNA against the amylin core receptor. Amylin induced p-ERK in ARC neurons, 60% of which was present in POMC-expressing neurons, with none in NPY neurons. An amylin-leptin interaction was shown by an additive effect on ARC ERK signaling in neonatal rats and a 44% decrease in amylin-induced p-ERK in the ARC of leptin receptor–deficient and of ob/ob mice. Together, these results suggest that amylin directly acts, through a p-ERK–mediated process, on POMC neurons to enhance ARC-PVN αMSH pathway development. |
---|---|
AbstractList | Amylin phosphorylates ERK (p-ERK) in the area postrema to reduce eating and synergizes with leptin to phosphorylate STAT3 in the arcuate (ARC) and ventromedial (VMN) hypothalamic nuclei to reduce food intake and body weight. The current studies assessed potential amylin and amylin-leptin ARC/VMN interactions on ERK signaling and their roles in postnatal hypothalamic pathway development. In amylin knockout mice, the density of agouti-related protein (AgRP)-immunoreactive (IR) fibers in the hypothalamic paraventricular nucleus (PVN) was increased, while the density of α-melanocyte–stimulating hormone (αMSH) fibers was decreased. In mice deficient of the amylin receptor components RAMP1/3, both AgRP and αMSH-IR fiber densities were decreased, while only αMSH-IR fiber density was decreased in rats injected neonatally in the ARC/VMN with an adeno-associated virus short hairpin RNA against the amylin core receptor. Amylin induced p-ERK in ARC neurons, 60% of which was present in POMC-expressing neurons, with none in NPY neurons. An amylin-leptin interaction was shown by an additive effect on ARC ERK signaling in neonatal rats and a 44% decrease in amylin-induced p-ERK in the ARC of leptin receptor–deficient and of ob/ob mice. Together, these results suggest that amylin directly acts, through a p-ERK–mediated process, on POMC neurons to enhance ARC-PVN αMSH pathway development. Amylin phosphorylates ERK (p-ERK) in the area postrema to reduce eating and synergizes with leptin to phosphorylate STAT3 in the arcuate (ARC) and ventromedial (VMN) hypothalamic nuclei to reduce food intake and body weight. The current studies assessed potential amylin and amylin-leptin ARC/VMN interactions on ERK signaling and their roles in postnatal hypothalamic pathway development. In amylin knockout mice, the density of agouti-related protein (AgRP)-immunoreactive (IR) fibers in the hypothalamic paraventricular nucleus (PVN) was increased, while the density of α-melanocyte-stimulating hormone (αMSH) fibers was decreased. In mice deficient of the amylin receptor components RAMP1/3, both AgRP and αMSH-IR fiber densities were decreased, while only αMSH-IR fiber density was decreased in rats injected neonatally in the ARC/VMN with an adeno-associated virus short hairpin RNA against the amylin core receptor. Amylin induced p-ERK in ARC neurons, 60% of which was present in POMC-expressing neurons, with none in NPY neurons. An amylin-leptin interaction was shown by an additive effect on ARC ERK signaling in neonatal rats and a 44% decrease in amylin-induced p-ERK in the ARC of leptin receptor-deficient and of ob/ob mice. Together, these results suggest that amylin directly acts, through a p-ERK-mediated process, on POMC neurons to enhance ARC-PVN αMSH pathway development.Amylin phosphorylates ERK (p-ERK) in the area postrema to reduce eating and synergizes with leptin to phosphorylate STAT3 in the arcuate (ARC) and ventromedial (VMN) hypothalamic nuclei to reduce food intake and body weight. The current studies assessed potential amylin and amylin-leptin ARC/VMN interactions on ERK signaling and their roles in postnatal hypothalamic pathway development. In amylin knockout mice, the density of agouti-related protein (AgRP)-immunoreactive (IR) fibers in the hypothalamic paraventricular nucleus (PVN) was increased, while the density of α-melanocyte-stimulating hormone (αMSH) fibers was decreased. In mice deficient of the amylin receptor components RAMP1/3, both AgRP and αMSH-IR fiber densities were decreased, while only αMSH-IR fiber density was decreased in rats injected neonatally in the ARC/VMN with an adeno-associated virus short hairpin RNA against the amylin core receptor. Amylin induced p-ERK in ARC neurons, 60% of which was present in POMC-expressing neurons, with none in NPY neurons. An amylin-leptin interaction was shown by an additive effect on ARC ERK signaling in neonatal rats and a 44% decrease in amylin-induced p-ERK in the ARC of leptin receptor-deficient and of ob/ob mice. Together, these results suggest that amylin directly acts, through a p-ERK-mediated process, on POMC neurons to enhance ARC-PVN αMSH pathway development. |
Author | Coester, Bernd Lutz, Thomas A. Le Foll, Christelle Whiting, Lynda Boyle, Christina N. Dunn-Meynell, Ambrose A. Levin, Barry E. Bouret, Sebastien G. |
Author_xml | – sequence: 1 givenname: Thomas A. surname: Lutz fullname: Lutz, Thomas A. organization: Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland – sequence: 2 givenname: Bernd surname: Coester fullname: Coester, Bernd organization: Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland – sequence: 3 givenname: Lynda surname: Whiting fullname: Whiting, Lynda organization: Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland – sequence: 4 givenname: Ambrose A. surname: Dunn-Meynell fullname: Dunn-Meynell, Ambrose A. organization: Veterans Affairs Medical Center, East Orange, NJ – sequence: 5 givenname: Christina N. surname: Boyle fullname: Boyle, Christina N. organization: Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland – sequence: 6 givenname: Sebastien G. surname: Bouret fullname: Bouret, Sebastien G. organization: Developmental Neuroscience Program, The Saban Research Institute, Children’s Hospital Los Angeles, Department of Pediatrics, University of Southern California, Los Angeles, CA, INSERM U1172, Jean-Pierre Aubert Research Center, Lille, France – sequence: 7 givenname: Barry E. surname: Levin fullname: Levin, Barry E. organization: Department of Neurology, Rutgers New Jersey Medical School, Newark, NJ – sequence: 8 givenname: Christelle orcidid: 0000-0002-6677-5488 surname: Le Foll fullname: Le Foll, Christelle organization: Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29467172$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1r3DAQhkVJaDZpD_0DxdBLe3Ay8pekS2FZ2qSQZAtpaW9ClsdZBdnaWFJg_33k5oM2FB0GRo9ezbzvIdkb3YiEvKNwXJQlO-laynJaVuwVWVBRirws2O89sgCgRU6ZYAfk0PsbAGjSeU0OClE1jLJiQX4th501Y3aFFnUwd2h32ZW5HpX12XoMLvu-vlhllxgnN_osgWGD2XLSUQXMLqO2GH3m-j_ts93WhY2yaoj-Ddnvkwa-faxH5OfXLz9WZ_n5-vTbanme6wrKkPO2rpRqAFXD206JvuBaFK1umk53AsuWo-4Z1cCbGnjF-xqApYZA4F1Vq_KIfH7Q3cZ2wE7jGCZl5XYyg5p20ikj_70ZzUZeuztZC5r8gCTw8VFgcrcRfZCD8RqtVSO66GWRPqwKoMAT-uEFeuPiNFuVKAEVB8FEot7_PdHzKE-eJ-DTA6An5_2E_TNCQc55yjlPOeeZ2JMXrDZBBePmZYz9z4t7PYqh8Q |
CitedBy_id | crossref_primary_10_1152_ajpregu_00179_2018 crossref_primary_10_1016_j_jchemneu_2022_102117 crossref_primary_10_1016_j_metabol_2023_155677 crossref_primary_10_1016_j_molmet_2020_101135 crossref_primary_10_1016_j_yfrne_2019_100748 crossref_primary_10_1016_j_yhbeh_2020_104885 crossref_primary_10_1056_NEJMra2020927 crossref_primary_10_1002_dmrr_3149 crossref_primary_10_1016_j_neuroscience_2019_11_034 crossref_primary_10_1016_j_appet_2022_105965 crossref_primary_10_1016_j_molmet_2019_04_010 crossref_primary_10_1016_j_neuropharm_2020_107987 crossref_primary_10_1152_ajpregu_00004_2019 crossref_primary_10_1016_j_peptides_2020_170366 crossref_primary_10_3233_JAD_221057 crossref_primary_10_1111_ejn_15254 crossref_primary_10_1210_endrev_bnad031 crossref_primary_10_1530_JOE_18_0606 crossref_primary_10_1016_j_neuroscience_2019_11_036 crossref_primary_10_1016_j_cbpa_2021_111079 crossref_primary_10_1016_j_physbeh_2020_112958 crossref_primary_10_1016_j_jnutbio_2022_108958 crossref_primary_10_1016_j_molmet_2020_101109 crossref_primary_10_1016_j_jchemneu_2024_102403 crossref_primary_10_3390_jcm11082207 crossref_primary_10_1111_bcpt_13427 crossref_primary_10_2337_db19_0849 crossref_primary_10_1016_j_celrep_2025_115409 crossref_primary_10_1016_j_physbeh_2020_112992 crossref_primary_10_3390_cells12131801 crossref_primary_10_1016_j_biochi_2024_10_012 crossref_primary_10_3390_ijms23084348 crossref_primary_10_7570_jomes21071 crossref_primary_10_1111_ahe_13074 crossref_primary_10_2174_1573399816666191230111838 crossref_primary_10_3390_metabo12010051 crossref_primary_10_1152_ajpregu_00337_2020 crossref_primary_10_1124_pharmrev_120_000180 crossref_primary_10_1016_j_biopha_2024_116808 crossref_primary_10_1016_j_molmet_2024_102036 crossref_primary_10_2174_1570159X19666211201093147 crossref_primary_10_1038_s12276_021_00625_8 crossref_primary_10_1039_D3MD00107E crossref_primary_10_3390_cells12141822 crossref_primary_10_1126_scisignal_abj8204 crossref_primary_10_3390_ijms22126445 |
Cites_doi | 10.1074/jbc.M703544200 10.1016/S0167-0115(00)00142-7 10.1038/sj.embor.7400755 10.1152/ajpregu.00380.2011 10.1210/en.2009-0546 10.1523/JNEUROSCI.22-12-04860.2002 10.3389/fnins.2013.00019 10.1152/ajpregu.00333.2003 10.1210/en.2010-0401 10.1152/ajpregu.00791.2009 10.1016/S0196-9781(97)00292-1 10.1172/JCI1176 10.1523/JNEUROSCI.2277-11.2012 10.1038/35065000 10.1074/jbc.M115.713628 10.1210/en.2004-0231 10.1161/HYPERTENSIONAHA.116.07191 10.1016/j.molmet.2017.02.007 10.1172/JCI114528 10.1152/ajpregu.90859.2008 10.1152/ajpregu.2001.281.6.R1833 10.1152/ajpregu.00367.2014 10.2337/db14-0645 10.1038/sj.ijo.0801664 10.2337/db08-0822 10.1016/S0031-9384(03)00104-5 10.1152/ajpregu.00258.2016 10.1523/JNEUROSCI.5369-03.2004 10.1093/jb/mvh159 10.1124/mol.108.047142 10.1152/ajpendo.00446.2006 10.1016/j.cmet.2016.04.014 10.1124/pr.115.010629 10.1073/pnas.0706473105 10.1210/en.2012-1328 10.1016/0012-1606(72)90084-X 10.1152/ajpregu.00326.2016 10.1152/ajpregu.00462.2015 10.1038/nm.2126 10.1126/science.1095004 10.1016/j.tem.2016.11.004 10.1016/0306-4522(95)00322-A 10.1016/j.cmet.2007.12.001 10.1016/0006-8993(88)90710-X 10.2337/db12-1689 10.3389/fendo.2017.00324 10.1172/JCI59816 10.1023/A:1020884312053 10.1111/ejn.12672 10.1016/S0306-4522(02)00668-1 10.1038/30666 10.1016/j.brainres.2010.03.114 |
ContentType | Journal Article |
Copyright | 2018 by the American Diabetes Association. Copyright American Diabetes Association May 1, 2018 2018 by the American Diabetes Association. 2018 |
Copyright_xml | – notice: 2018 by the American Diabetes Association. – notice: Copyright American Diabetes Association May 1, 2018 – notice: 2018 by the American Diabetes Association. 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. NAPCQ 7X8 5PM |
DOI | 10.2337/db17-1347 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Health & Medical Complete (Alumni) CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1939-327X |
EndPage | 817 |
ExternalDocumentID | PMC5910000 29467172 10_2337_db17_1347 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK102780 – fundername: NIDDK NIH HHS grantid: R37 DK030066 – fundername: NIDDK NIH HHS grantid: R01 DK030066 – fundername: NIDDK NIH HHS grantid: R01 DK084142 – fundername: NIDDK NIH HHS grantid: R01 DK118401 – fundername: Swiss National Science Foundation grantid: SNF 31003A_156935 – fundername: ; grantid: DK-102780; DK-030066 |
GroupedDBID | --- .55 .XZ 08P 0R~ 18M 29F 2WC 354 4.4 53G 5GY 5RE 5RS 5VS 6PF 8R4 8R5 AAFWJ AAQQT AAWTL AAYEP AAYOK AAYXX ABOCM ACGFO ACGOD ACPRK ADBBV AEGXH AENEX AERZD AHMBA AIAGR AIZAD ALIPV ALMA_UNASSIGNED_HOLDINGS BAWUL BES BTFSW CITATION CS3 DIK DU5 E3Z EBS EDB EJD EMOBN EX3 F5P FRP GX1 H13 HZ~ IAO IEA IHR INH INR IOF IPO K2M KQ8 L7B M5~ O5R O5S O9- OHH OK1 OVD P2P PCD Q2X RHI RPM SJN SV3 TDI TEORI TR2 VVN W8F WH7 WOQ WOW X7M YFH YHG YOC ZY1 ~KM .GJ 1CY 7RV 7X7 88E 88I 8AF 8AO 8C1 8F7 8FE 8FH 8FI 8FJ 8G5 8GL AAKAS AAYJJ ABUWG ADGHP ADZCM AFFNX AFKRA AI. AZQEC BBNVY BCR BCU BEC BENPR BHPHI BKEYQ BKNYI BLC BPHCQ BVXVI C1A CCPQU CGR CUY CVF DWQXO ECM EIF FYUFA GICCO GNUQQ GUQSH HCIFZ HMCUK H~9 IAG ITC J5H K-O K9- LK8 M0R M1P M2O M2P M2Q M7P MVM N4W NAPCQ NPM OB3 PEA PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO S0X SJFOW UKHRP VH1 XOL YQJ ZGI ZXP K9. 7X8 5PM |
ID | FETCH-LOGICAL-c403t-8b54aa60ea68bda9f28c92bc66dcd9e3b8ecf71c08650848f5007f719e08d45a3 |
ISSN | 0012-1797 1939-327X |
IngestDate | Thu Aug 21 17:55:15 EDT 2025 Fri Sep 05 12:55:57 EDT 2025 Fri Jul 25 19:37:30 EDT 2025 Mon Jul 21 05:58:23 EDT 2025 Thu Apr 24 23:02:09 EDT 2025 Tue Jul 01 03:11:02 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | 2018 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c403t-8b54aa60ea68bda9f28c92bc66dcd9e3b8ecf71c08650848f5007f719e08d45a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6677-5488 |
OpenAccessLink | https://diabetes.diabetesjournals.org/content/diabetes/67/5/805.full.pdf |
PMID | 29467172 |
PQID | 2090480979 |
PQPubID | 34443 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5910000 proquest_miscellaneous_2007420108 proquest_journals_2090480979 pubmed_primary_29467172 crossref_primary_10_2337_db17_1347 crossref_citationtrail_10_2337_db17_1347 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-01 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Diabetes (New York, N.Y.) |
PublicationTitleAlternate | Diabetes |
PublicationYear | 2018 |
Publisher | American Diabetes Association |
Publisher_xml | – name: American Diabetes Association |
References | Bouret (2022031303433751500_B18) 2004; 304 Bouret (2022031303433751500_B19) 2012; 32 2022031303433751500_B2 Chang (2022031303433751500_B24) 2001; 410 Larsen (2022031303433751500_B14) 2016; 311 Bouret (2022031303433751500_B40) Le Foll (2022031303433751500_B33) 2007; 292 Berglund (2022031303433751500_B29) 2012; 122 Ahima (2022031303433751500_B54) 2000; 92 Potes (2022031303433751500_B41) 2010; 1334 Lam (2022031303433751500_B53) 2017; 6 Grove (2022031303433751500_B45) 2003; 79 Roth (2022031303433751500_B11) 2008; 105 Le Foll (2022031303433751500_B13) 2015; 64 Rahmouni (2022031303433751500_B28) 2009; 58 Abegg (2022031303433751500_B51) 2017; 8 2022031303433751500_B36 Potes (2022031303433751500_B42) 2010; 299 Braegger (2022031303433751500_B34) 2014; 40 Hilton (2022031303433751500_B5) 1995; 69 Bouret (2022031303433751500_B21) 2008; 7 Lutz (2022031303433751500_B35) 1998; 19 Riediger (2022031303433751500_B7) 2001; 281 Nishimoto (2022031303433751500_B25) 2006; 7 Grove (2022031303433751500_B44) 2003; 116 Hay (2022031303433751500_B47) 2015; 67 Ogawa (2022031303433751500_B1) 1990; 85 Lutz (2022031303433751500_B6) 2001; 25 Potes (2022031303433751500_B27) 2012; 302 Padilla (2022031303433751500_B15) 2010; 16 Riediger (2022031303433751500_B8) 2004; 286 Le Foll (2022031303433751500_B32) 2015; 308 Torii (2022031303433751500_B23) 2004; 136 Bachmanov (2022031303433751500_B49) 2002; 32 Ahima (2022031303433751500_B55) 1998; 101 Bouret (2022031303433751500_B17) 2004; 24 Le Foll (2022031303433751500_B31) 2013; 62 Levin (2022031303433751500_B20) 1997; 273 Patterson (2022031303433751500_B37) 2009; 296 Mercer (2022031303433751500_B43) 2013; 7 Yuan (2022031303433751500_B26) 2002; 22 Sahu (2022031303433751500_B46) 1988; 457 Patterson (2022031303433751500_B38) 2010; 151 Turek (2022031303433751500_B12) 2010; 151 Johnson (2022031303433751500_B22) 2016; 311 Dunn-Meynell (2022031303433751500_B9) 2016; 310 Bouret (2022031303433751500_B56) 2004; 145 Clark (2022031303433751500_B52) 1972; 29 Ishii (2022031303433751500_B16) 2012; 153 McLatchie (2022031303433751500_B4) 1998; 393 Lee (2022031303433751500_B39) 2016; 291 Li (2022031303433751500_B50) 2016; 23 Levin (2022031303433751500_B10) 2017; 28 Qi (2022031303433751500_B3) 2008; 74 Kechele (2022031303433751500_B48) 2016; 68 Dackor (2022031303433751500_B30) 2007; 282 |
References_xml | – volume: 282 start-page: 18094 year: 2007 ident: 2022031303433751500_B30 article-title: Receptor activity-modifying proteins 2 and 3 have distinct physiological functions from embryogenesis to old age publication-title: J Biol Chem doi: 10.1074/jbc.M703544200 – volume: 92 start-page: 1 year: 2000 ident: 2022031303433751500_B54 article-title: Postnatal regulation of hypothalamic neuropeptide expression by leptin: implications for energy balance and body weight regulation publication-title: Regul Pept doi: 10.1016/S0167-0115(00)00142-7 – volume: 7 start-page: 782 year: 2006 ident: 2022031303433751500_B25 article-title: MAPK signalling: ERK5 versus ERK1/2 publication-title: EMBO Rep doi: 10.1038/sj.embor.7400755 – volume: 302 start-page: R340 year: 2012 ident: 2022031303433751500_B27 article-title: Involvement of the extracellular signal-regulated kinase 1/2 signaling pathway in amylin’s eating inhibitory effect publication-title: Am J Physiol Regul Integr Comp Physiol doi: 10.1152/ajpregu.00380.2011 – volume: 151 start-page: 143 year: 2010 ident: 2022031303433751500_B12 article-title: Mechanisms of amylin/leptin synergy in rodent models publication-title: Endocrinology doi: 10.1210/en.2009-0546 – volume: 22 start-page: 4860 year: 2002 ident: 2022031303433751500_B26 article-title: Protein kinase modulation of dendritic K+ channels in hippocampus involves a mitogen-activated protein kinase pathway publication-title: J Neurosci doi: 10.1523/JNEUROSCI.22-12-04860.2002 – volume: 7 start-page: 19 year: 2013 ident: 2022031303433751500_B43 article-title: Unraveling the central proopiomelanocortin neural circuits publication-title: Front Neurosci doi: 10.3389/fnins.2013.00019 – volume: 286 start-page: R114 year: 2004 ident: 2022031303433751500_B8 article-title: The anorectic hormone amylin contributes to feeding-related changes of neuronal activity in key structures of the gut-brain axis publication-title: Am J Physiol Regul Integr Comp Physiol doi: 10.1152/ajpregu.00333.2003 – volume: 151 start-page: 4270 year: 2010 ident: 2022031303433751500_B38 article-title: Large litter rearing enhances leptin sensitivity and protects selectively bred diet-induced obese rats from becoming obese publication-title: Endocrinology doi: 10.1210/en.2010-0401 – volume: 299 start-page: R623 year: 2010 ident: 2022031303433751500_B42 article-title: Noradrenergic neurons of the area postrema mediate amylin’s hypophagic action publication-title: Am J Physiol Regul Integr Comp Physiol doi: 10.1152/ajpregu.00791.2009 – volume: 19 start-page: 309 year: 1998 ident: 2022031303433751500_B35 article-title: Lesion of the area postrema/nucleus of the solitary tract (AP/NTS) attenuates the anorectic effects of amylin and calcitonin gene-related peptide (CGRP) in rats publication-title: Peptides doi: 10.1016/S0196-9781(97)00292-1 – volume: 101 start-page: 1020 year: 1998 ident: 2022031303433751500_B55 article-title: Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function publication-title: J Clin Invest doi: 10.1172/JCI1176 – volume: 32 start-page: 1244 year: 2012 ident: 2022031303433751500_B19 article-title: Distinct roles for specific leptin receptor signals in the development of hypothalamic feeding circuits publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2277-11.2012 – volume: 410 start-page: 37 year: 2001 ident: 2022031303433751500_B24 article-title: Mammalian MAP kinase signalling cascades publication-title: Nature doi: 10.1038/35065000 – volume: 291 start-page: 8686 year: 2016 ident: 2022031303433751500_B39 article-title: Calcitonin and amylin receptor peptide interaction mechanisms: insights into peptide-binding modes and allosteric modulation of the calcitonin receptor by receptor activity-modifying proteins publication-title: J Biol Chem doi: 10.1074/jbc.M115.713628 – volume: 145 start-page: 2621 year: 2004 ident: 2022031303433751500_B56 article-title: Minireview: leptin and development of hypothalamic feeding circuits publication-title: Endocrinology doi: 10.1210/en.2004-0231 – volume: 68 start-page: 667 year: 2016 ident: 2022031303433751500_B48 article-title: Endothelial restoration of receptor activity-modifying protein 2 is sufficient to rescue lethality, but survivors develop dilated cardiomyopathy publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.116.07191 – volume: 6 start-page: 383 year: 2017 ident: 2022031303433751500_B53 article-title: Heterogeneity of hypothalamic pro-opiomelanocortin-expressing neurons revealed by single-cell RNA sequencing publication-title: Mol Metab doi: 10.1016/j.molmet.2017.02.007 – volume: 85 start-page: 973 year: 1990 ident: 2022031303433751500_B1 article-title: Amylin secretion from the rat pancreas and its selective loss after streptozotocin treatment publication-title: J Clin Invest doi: 10.1172/JCI114528 – volume: 273 start-page: R725 year: 1997 ident: 2022031303433751500_B20 article-title: Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats publication-title: Am J Physiol – volume: 296 start-page: R537 year: 2009 ident: 2022031303433751500_B37 article-title: Three weeks of postweaning exercise in DIO rats produces prolonged increases in central leptin sensitivity and signaling publication-title: Am J Physiol Regul Integr Comp Physiol doi: 10.1152/ajpregu.90859.2008 – volume: 281 start-page: R1833 year: 2001 ident: 2022031303433751500_B7 article-title: Amylin potently activates AP neurons possibly via formation of the excitatory second messenger cGMP publication-title: Am J Physiol Regul Integr Comp Physiol doi: 10.1152/ajpregu.2001.281.6.R1833 – volume: 308 start-page: R188 year: 2015 ident: 2022031303433751500_B32 article-title: Role of FAT/CD36 in fatty acid sensing, energy, and glucose homeostasis regulation in DIO and DR rats publication-title: Am J Physiol Regul Integr Comp Physiol doi: 10.1152/ajpregu.00367.2014 – volume: 64 start-page: 1621 year: 2015 ident: 2022031303433751500_B13 article-title: Amylin-induced central IL-6 production enhances ventromedial hypothalamic leptin signaling publication-title: Diabetes doi: 10.2337/db14-0645 – volume: 25 start-page: 1005 year: 2001 ident: 2022031303433751500_B6 article-title: The anorectic effect of a chronic peripheral infusion of amylin is abolished in area postrema/nucleus of the solitary tract (AP/NTS) lesioned rats publication-title: Int J Obes Relat Metab Disord doi: 10.1038/sj.ijo.0801664 – volume: 58 start-page: 536 year: 2009 ident: 2022031303433751500_B28 article-title: Hypothalamic ERK mediates the anorectic and thermogenic sympathetic effects of leptin publication-title: Diabetes doi: 10.2337/db08-0822 – volume: 79 start-page: 47 year: 2003 ident: 2022031303433751500_B45 article-title: Ontogeny of the hypothalamic neuropeptide Y system publication-title: Physiol Behav doi: 10.1016/S0031-9384(03)00104-5 – volume: 311 start-page: R764 year: 2016 ident: 2022031303433751500_B14 article-title: IL-6 ameliorates defective leptin sensitivity in DIO ventromedial hypothalamic nucleus neurons publication-title: Am J Physiol Regul Integr Comp Physiol doi: 10.1152/ajpregu.00258.2016 – volume: 24 start-page: 2797 year: 2004 ident: 2022031303433751500_B17 article-title: Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5369-03.2004 – volume: 136 start-page: 557 year: 2004 ident: 2022031303433751500_B23 article-title: Regulatory mechanisms and function of ERK MAP kinases publication-title: J Biochem doi: 10.1093/jb/mvh159 – volume: 74 start-page: 1059 year: 2008 ident: 2022031303433751500_B3 article-title: Identification of N-terminal receptor activity-modifying protein residues important for calcitonin gene-related peptide, adrenomedullin, and amylin receptor function publication-title: Mol Pharmacol doi: 10.1124/mol.108.047142 – volume: 292 start-page: E1223 year: 2007 ident: 2022031303433751500_B33 article-title: Long-chain n-3 polyunsaturated fatty acids dissociate phosphorylation of Akt from phosphatidylinositol 3′-kinase activity in rats publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.00446.2006 – volume: 23 start-page: 945 year: 2016 ident: 2022031303433751500_B50 article-title: Hypothalamic amylin acts in concert with leptin to regulate food intake publication-title: Cell Metab doi: 10.1016/j.cmet.2016.04.014 – volume: 67 start-page: 564 year: 2015 ident: 2022031303433751500_B47 article-title: Amylin: pharmacology, physiology, and clinical potential publication-title: Pharmacol Rev doi: 10.1124/pr.115.010629 – volume: 105 start-page: 7257 year: 2008 ident: 2022031303433751500_B11 article-title: Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical studies publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0706473105 – volume: 153 start-page: 3657 year: 2012 ident: 2022031303433751500_B16 article-title: Embryonic birthdate of hypothalamic leptin-activated neurons in mice publication-title: Endocrinology doi: 10.1210/en.2012-1328 – volume: 29 start-page: 468 year: 1972 ident: 2022031303433751500_B52 article-title: Synthesis and accumulation of insulin in the fetal rat pancreas publication-title: Dev Biol doi: 10.1016/0012-1606(72)90084-X – volume: 311 start-page: R1032 year: 2016 ident: 2022031303433751500_B22 article-title: Early postnatal amylin treatment enhances hypothalamic leptin signaling and neural development in the selectively bred diet-induced obese rat publication-title: Am J Physiol Regul Integr Comp doi: 10.1152/ajpregu.00326.2016 – volume: 310 start-page: R355 year: 2016 ident: 2022031303433751500_B9 article-title: Endogenous VMH amylin signaling is required for full leptin signaling and protection from diet-induced obesity publication-title: Am J Physiol Regul Integr Comp Physiol doi: 10.1152/ajpregu.00462.2015 – volume: 16 start-page: 403 year: 2010 ident: 2022031303433751500_B15 article-title: Pomc-expressing progenitors give rise to antagonistic neuronal populations in hypothalamic feeding circuits publication-title: Nat Med doi: 10.1038/nm.2126 – volume: 304 start-page: 108 year: 2004 ident: 2022031303433751500_B18 article-title: Trophic action of leptin on hypothalamic neurons that regulate feeding publication-title: Science doi: 10.1126/science.1095004 – volume: 28 start-page: 153 year: 2017 ident: 2022031303433751500_B10 article-title: Amylin and leptin: co-regulators of energy homeostasis and neuronal development publication-title: Trends Endocrinol Metab doi: 10.1016/j.tem.2016.11.004 – volume: 69 start-page: 1223 year: 1995 ident: 2022031303433751500_B5 article-title: In vitro autoradiographic localization of the calcitonin receptor isoforms, C1a and C1b, in rat brain publication-title: Neuroscience doi: 10.1016/0306-4522(95)00322-A – volume: 7 start-page: 179 year: 2008 ident: 2022031303433751500_B21 article-title: Hypothalamic neural projections are permanently disrupted in diet-induced obese rats publication-title: Cell Metab doi: 10.1016/j.cmet.2007.12.001 – volume: 457 start-page: 376 year: 1988 ident: 2022031303433751500_B46 article-title: Evidence that NPY-containing neurons in the brainstem project into selected hypothalamic nuclei: implication in feeding behavior publication-title: Brain Res doi: 10.1016/0006-8993(88)90710-X – volume: 62 start-page: 2709 year: 2013 ident: 2022031303433751500_B31 article-title: FAT/CD36: a major regulator of neuronal fatty acid sensing and energy homeostasis in rats and mice publication-title: Diabetes doi: 10.2337/db12-1689 – volume: 8 start-page: 324 year: 2017 ident: 2022031303433751500_B51 publication-title: Front Endocrinol (Lausanne) doi: 10.3389/fendo.2017.00324 – volume: 122 start-page: 1000 year: 2012 ident: 2022031303433751500_B29 article-title: Direct leptin action on POMC neurons regulates glucose homeostasis and hepatic insulin sensitivity in mice publication-title: J Clin Invest doi: 10.1172/JCI59816 – volume: 32 start-page: 435 year: 2002 ident: 2022031303433751500_B49 article-title: Food intake, water intake, and drinking spout side preference of 28 mouse strains publication-title: Behav Genet doi: 10.1023/A:1020884312053 – volume: 40 start-page: 3055 year: 2014 ident: 2022031303433751500_B34 article-title: The role of the area postrema in the anorectic effects of amylin and salmon calcitonin: behavioral and neuronal phenotyping publication-title: Eur J Neurosci doi: 10.1111/ejn.12672 – ident: 2022031303433751500_B36 – volume: 116 start-page: 393 year: 2003 ident: 2022031303433751500_B44 article-title: Postnatal development of the hypothalamic neuropeptide Y system publication-title: Neuroscience doi: 10.1016/S0306-4522(02)00668-1 – volume: 393 start-page: 333 year: 1998 ident: 2022031303433751500_B4 article-title: RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor publication-title: Nature doi: 10.1038/30666 – ident: 2022031303433751500_B40 – volume: 1334 start-page: 31 year: 2010 ident: 2022031303433751500_B41 article-title: Identification of central projections from amylin-activated neurons to the lateral hypothalamus publication-title: Brain Res doi: 10.1016/j.brainres.2010.03.114 – ident: 2022031303433751500_B2 |
SSID | ssj0006060 |
Score | 2.4775743 |
Snippet | Amylin phosphorylates ERK (p-ERK) in the area postrema to reduce eating and synergizes with leptin to phosphorylate STAT3 in the arcuate (ARC) and ventromedial... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 805 |
SubjectTerms | Agouti-related protein Agouti-Related Protein - metabolism alpha-MSH - metabolism Amylin Animal models Animals Animals, Newborn Arcuate nucleus Arcuate Nucleus of Hypothalamus - metabolism Area postrema Body weight Diabetes Feeding Behavior Female Fibers Food intake Health care Hypothalamus Islet Amyloid Polypeptide - genetics Islet Amyloid Polypeptide - metabolism Leptin - metabolism Male MAP Kinase Signaling System Metabolism Mice Mice, Knockout Mice, Obese Neonates Neurons Neurons - metabolism Neuropeptide Y Neuropeptide Y - metabolism Paraventricular Hypothalamic Nucleus - metabolism Paraventricular nucleus Pro-Opiomelanocortin - metabolism Proopiomelanocortin Rats, Sprague-Dawley Receptor activity modifying proteins Receptor Activity-Modifying Protein 1 - genetics Receptor Activity-Modifying Protein 1 - metabolism Receptor Activity-Modifying Protein 3 - genetics Receptor Activity-Modifying Protein 3 - metabolism Ribonucleic acid RNA RNA viruses Signal transduction Stat3 protein Ventromedial Hypothalamic Nucleus - metabolism |
Title | Amylin Selectively Signals Onto POMC Neurons in the Arcuate Nucleus of the Hypothalamus |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29467172 https://www.proquest.com/docview/2090480979 https://www.proquest.com/docview/2007420108 https://pubmed.ncbi.nlm.nih.gov/PMC5910000 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBAviG8CAxnEA9KUkThxYj-WLxVYNyQ20bfIcRyotKVTlzyUv4E_mrvYSdNuD4MXq3LsJM39fHc-3wchryNuikSLwi8kNHFuhK9AivgyDZXRguvYevkeJpOT-MuMz0ajPwOvpabO9_XvK-NK_oeq0Ad0xSjZf6Bsf1PogN9AX2iBwtBei8bjsxX6kX9va9kA2zoFRjD_2WZEPqpAqfx2NAVaY_oN6y7ehpEsdQP65d4hJjJuLjofgcnqHGimAB_OEuAU1g8D2-x21Z6BFeGgaevCOn-jvfF-f7ax6Gt_vDPLqlgLgXntyqkcrAZmAVSo_alZdd4347N8iS717o7OPhGKtTdgx3NDhklQrVg1ls3KSPoRS2dDPmzLcji88QFTFQEfymcb67nN-lnUJg8ocpC6GB67lm_dmf6W2OudEWEbhJMznJrh1BvkJktTe-j_-Wsv12GrZwOa3P-xeapw6tv-qZvazaUty7bn7UCVOb5L7rg9CB1bQN0jI1PdJ7emzsviAflhcUUHuKIOVxRxRRFX1OGKwkAAEHW4og5XdFG23UNcPSQnnz4ev5_4rgCHD0s0qn2R81ipJDAqEXmhZMmElizXSVLoQpooF0aXaahhW8yxLkPJQeOEDmkCUcRcRY_ITrWozBNCS1bGcRKXCdMSNPhAphz2xlLnKjTKsNIjb7oPl2mXnR6LpJxml8jjkVf90HObkuWqQbvd18_cir3IWCAxhYJMpUde9peBn-IhmarMosExaC0KwkB45LElVv8UJkGtAI3fI-kGGfsBmKt980o1_9XmbOeyPUh7ep13f0ZurxfSLtmpl415Dqpvnb9oEfkXc_2uTw |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amylin+Selectively+Signals+Onto+POMC+Neurons+in+the+Arcuate+Nucleus+of+the+Hypothalamus&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Lutz%2C+Thomas+A.&rft.au=Coester%2C+Bernd&rft.au=Whiting%2C+Lynda&rft.au=Dunn-Meynell%2C+Ambrose+A.&rft.date=2018-05-01&rft.issn=0012-1797&rft.eissn=1939-327X&rft.volume=67&rft.issue=5&rft.spage=805&rft.epage=817&rft_id=info:doi/10.2337%2Fdb17-1347&rft.externalDBID=n%2Fa&rft.externalDocID=10_2337_db17_1347 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon |