Ultrathin g-C3N4 with enriched surface carbon vacancies enables highly efficient photocatalytic nitrogen fixation
[Display omitted] An ultra-thin carbon nitride with loose structure and more carbon defects on the surface was achieved through high-temperature peeling methods. Its composition, morphological characteristics, surface defect types and electrochemical properties have been measured. After atomic scale...
Saved in:
Published in | Journal of colloid and interface science Vol. 553; pp. 530 - 539 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
An ultra-thin carbon nitride with loose structure and more carbon defects on the surface was achieved through high-temperature peeling methods. Its composition, morphological characteristics, surface defect types and electrochemical properties have been measured. After atomic scale structure control and surface defects construction, the photocatalytic activity of prepared g-C3N4-V for ammonia conversion from dinitrogen can be greatly improved in contrast with bulk g-C3N4. Under visible light irradiation, the defective g-C3N4-V can produce 54 µmol/L NH3 within 100 min without any cocatalyst and sacrificial agent. The relationship between morphology characteristics and activity of defective ultrathin g-C3N4 materials was analyzed in detail. Benefiting from thin layer structure and more surface carbon vacancies, the effective charge separation from both bulk and surface can be achieved. Notably, the engineered carbon vacancies greatly facilitate the adsorption and activation of dinitrogen molecule, extremely improving the nitrogen fixation activity for the defective ultrathin g-C3N4-V materials. This work affords novel insights into the design of photocatalyst with defective ultrathin structure towards nitrogen fixation. |
---|---|
AbstractList | An ultra-thin carbon nitride with loose structure and more carbon defects on the surface was achieved through high-temperature peeling methods. Its composition, morphological characteristics, surface defect types and electrochemical properties have been measured. After atomic scale structure control and surface defects construction, the photocatalytic activity of prepared g-C₃N₄-V for ammonia conversion from dinitrogen can be greatly improved in contrast with bulk g-C₃N₄. Under visible light irradiation, the defective g-C₃N₄-V can produce 54 µmol/L NH₃ within 100 min without any cocatalyst and sacrificial agent. The relationship between morphology characteristics and activity of defective ultrathin g-C₃N₄ materials was analyzed in detail. Benefiting from thin layer structure and more surface carbon vacancies, the effective charge separation from both bulk and surface can be achieved. Notably, the engineered carbon vacancies greatly facilitate the adsorption and activation of dinitrogen molecule, extremely improving the nitrogen fixation activity for the defective ultrathin g-C₃N₄-V materials. This work affords novel insights into the design of photocatalyst with defective ultrathin structure towards nitrogen fixation. [Display omitted] An ultra-thin carbon nitride with loose structure and more carbon defects on the surface was achieved through high-temperature peeling methods. Its composition, morphological characteristics, surface defect types and electrochemical properties have been measured. After atomic scale structure control and surface defects construction, the photocatalytic activity of prepared g-C3N4-V for ammonia conversion from dinitrogen can be greatly improved in contrast with bulk g-C3N4. Under visible light irradiation, the defective g-C3N4-V can produce 54 µmol/L NH3 within 100 min without any cocatalyst and sacrificial agent. The relationship between morphology characteristics and activity of defective ultrathin g-C3N4 materials was analyzed in detail. Benefiting from thin layer structure and more surface carbon vacancies, the effective charge separation from both bulk and surface can be achieved. Notably, the engineered carbon vacancies greatly facilitate the adsorption and activation of dinitrogen molecule, extremely improving the nitrogen fixation activity for the defective ultrathin g-C3N4-V materials. This work affords novel insights into the design of photocatalyst with defective ultrathin structure towards nitrogen fixation. An ultra-thin carbon nitride with loose structure and more carbon defects on the surface was achieved through high-temperature peeling methods. Its composition, morphological characteristics, surface defect types and electrochemical properties have been measured. After atomic scale structure control and surface defects construction, the photocatalytic activity of prepared g-C3N4-V for ammonia conversion from dinitrogen can be greatly improved in contrast with bulk g-C3N4. Under visible light irradiation, the defective g-C3N4-V can produce 54 µmol/L NH3 within 100 min without any cocatalyst and sacrificial agent. The relationship between morphology characteristics and activity of defective ultrathin g-C3N4 materials was analyzed in detail. Benefiting from thin layer structure and more surface carbon vacancies, the effective charge separation from both bulk and surface can be achieved. Notably, the engineered carbon vacancies greatly facilitate the adsorption and activation of dinitrogen molecule, extremely improving the nitrogen fixation activity for the defective ultrathin g-C3N4-V materials. This work affords novel insights into the design of photocatalyst with defective ultrathin structure towards nitrogen fixation.An ultra-thin carbon nitride with loose structure and more carbon defects on the surface was achieved through high-temperature peeling methods. Its composition, morphological characteristics, surface defect types and electrochemical properties have been measured. After atomic scale structure control and surface defects construction, the photocatalytic activity of prepared g-C3N4-V for ammonia conversion from dinitrogen can be greatly improved in contrast with bulk g-C3N4. Under visible light irradiation, the defective g-C3N4-V can produce 54 µmol/L NH3 within 100 min without any cocatalyst and sacrificial agent. The relationship between morphology characteristics and activity of defective ultrathin g-C3N4 materials was analyzed in detail. Benefiting from thin layer structure and more surface carbon vacancies, the effective charge separation from both bulk and surface can be achieved. Notably, the engineered carbon vacancies greatly facilitate the adsorption and activation of dinitrogen molecule, extremely improving the nitrogen fixation activity for the defective ultrathin g-C3N4-V materials. This work affords novel insights into the design of photocatalyst with defective ultrathin structure towards nitrogen fixation. |
Author | Xia, Jiexiang Ding, Penghui Chen, Xiaoliu Li, Huaming Zhang, Yi Di, Jun Zhao, Junze Yan, Cheng Yin, Sheng Gu, Kaizhi |
Author_xml | – sequence: 1 givenname: Yi surname: Zhang fullname: Zhang, Yi organization: School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China – sequence: 2 givenname: Jun orcidid: 0000-0001-7890-9319 surname: Di fullname: Di, Jun organization: Center for Programmable Materials, School of Materials Science & Engineering, Nanyang Technological University, Singapore 639798, Singapore – sequence: 3 givenname: Penghui surname: Ding fullname: Ding, Penghui organization: School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China – sequence: 4 givenname: Junze surname: Zhao fullname: Zhao, Junze organization: School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China – sequence: 5 givenname: Kaizhi surname: Gu fullname: Gu, Kaizhi organization: School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China – sequence: 6 givenname: Xiaoliu surname: Chen fullname: Chen, Xiaoliu organization: School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China – sequence: 7 givenname: Cheng orcidid: 0000-0002-6232-6466 surname: Yan fullname: Yan, Cheng organization: Center for Programmable Materials, School of Materials Science & Engineering, Nanyang Technological University, Singapore 639798, Singapore – sequence: 8 givenname: Sheng surname: Yin fullname: Yin, Sheng organization: School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China – sequence: 9 givenname: Jiexiang orcidid: 0000-0002-7394-1130 surname: Xia fullname: Xia, Jiexiang email: xjx@ujs.edu.cn organization: School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China – sequence: 10 givenname: Huaming orcidid: 0000-0002-7875-4318 surname: Li fullname: Li, Huaming email: lhm@ujs.edu.cn organization: School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China |
BookMark | eNqFkcFuEzEQhi1UJNLCC3DykcsuY2-8u5a4oAgKUgUXerYc7zg70dZObaeQt8chnDgUydJI9vdZmv-_ZlchBmTsrYBWgOjf79u9o9xKELqFvgUhX7CVAK2aQUB3xVYAUjR60MMrdp3zHkAIpfSKPd4vJdkyU-C7ZtN9W_OfVGaOIZGbceL5mLx1yJ1N2xj4k3U2OMJcCbtd6pxpNy8njt5TvQ-FH-ZYorPFLqdCjgcqKe4wcE-_bKEYXrOX3i4Z3_ydN-z-86cfmy_N3ffbr5uPd41bQ1eaUXmYYPLdYDtrJ_TopFJgO7XV6MUosatHr3V9Hb0b5YRWo9P9dlCd9L67Ye8u_x5SfDxiLuaBssNlsQHjMRspx35UWlX8_-i61zAMg67oeEFdijkn9MZR-bNXjZEWI8CcCzF7cy7EnAsx0JtaSFXlP-oh0YNNp-elDxcJa1RPhMnkc8wOJ0roipkiPaf_Bu2EqXo |
CitedBy_id | crossref_primary_10_1016_j_jece_2024_114113 crossref_primary_10_1021_acs_langmuir_4c03264 crossref_primary_10_1016_j_rser_2022_113110 crossref_primary_10_1002_adsu_202400903 crossref_primary_10_1016_j_apsusc_2020_145413 crossref_primary_10_1002_aesr_202000097 crossref_primary_10_1021_acsami_4c03370 crossref_primary_10_1039_D0TA08384D crossref_primary_10_3390_catal10101119 crossref_primary_10_1016_j_apsusc_2024_162286 crossref_primary_10_1016_j_cej_2024_155117 crossref_primary_10_1016_j_jclepro_2023_138912 crossref_primary_10_1039_D3TC04630C crossref_primary_10_1002_cptc_202100084 crossref_primary_10_1016_j_optmat_2021_111222 crossref_primary_10_1007_s11082_024_07798_2 crossref_primary_10_1016_j_apmt_2024_102253 crossref_primary_10_1016_j_apsusc_2024_159378 crossref_primary_10_1016_j_mssp_2023_107459 crossref_primary_10_1016_j_ijhydene_2024_12_181 crossref_primary_10_1021_acs_energyfuels_1c03697 crossref_primary_10_1007_s12274_021_3725_0 crossref_primary_10_1007_s10562_021_03625_5 crossref_primary_10_1016_j_diamond_2021_108557 crossref_primary_10_1039_D4SE00565A crossref_primary_10_1002_asia_202000850 crossref_primary_10_1002_cphc_202100418 crossref_primary_10_1016_j_apsusc_2019_143994 crossref_primary_10_1016_j_jcis_2024_09_052 crossref_primary_10_1016_j_jallcom_2024_174004 crossref_primary_10_1002_advs_202406329 crossref_primary_10_1002_smll_202202252 crossref_primary_10_1016_j_seppur_2022_121771 crossref_primary_10_1021_acssuschemeng_4c08183 crossref_primary_10_1016_j_colsurfa_2021_126744 crossref_primary_10_1021_acsnano_1c06454 crossref_primary_10_1016_j_jpcs_2021_110270 crossref_primary_10_1016_j_cej_2022_138592 crossref_primary_10_1016_j_jcis_2019_10_116 crossref_primary_10_1016_j_gee_2023_02_012 crossref_primary_10_1016_j_ceramint_2021_09_130 crossref_primary_10_1016_j_cjche_2023_11_005 crossref_primary_10_1016_j_cej_2024_152228 crossref_primary_10_1016_j_jcis_2019_11_035 crossref_primary_10_1016_j_ccr_2024_215839 crossref_primary_10_1016_j_jcis_2022_05_064 crossref_primary_10_1039_D1TA03895H crossref_primary_10_1039_D3NR01982A crossref_primary_10_2139_ssrn_4176334 crossref_primary_10_1039_D0NH00046A crossref_primary_10_1016_j_seppur_2021_120097 crossref_primary_10_1016_j_cej_2020_127729 crossref_primary_10_1016_j_cej_2021_130991 crossref_primary_10_1016_j_colsurfa_2019_123804 crossref_primary_10_1016_j_jwpe_2025_107157 crossref_primary_10_1016_j_apcatb_2021_120272 crossref_primary_10_1002_adfm_202302267 crossref_primary_10_1002_cey2_545 crossref_primary_10_1016_j_cej_2021_128551 crossref_primary_10_1016_j_cej_2024_148762 crossref_primary_10_1007_s10853_020_05120_5 crossref_primary_10_1016_j_ijhydene_2024_08_482 crossref_primary_10_1016_j_jphotochem_2022_114102 crossref_primary_10_1016_j_psep_2022_06_055 crossref_primary_10_1016_j_cattod_2023_02_011 crossref_primary_10_1016_j_cej_2021_130801 crossref_primary_10_1039_D2CY01801B crossref_primary_10_1039_D1NR00697E crossref_primary_10_1021_acs_langmuir_4c01283 crossref_primary_10_1002_smll_202205388 crossref_primary_10_1016_j_colsurfa_2021_127732 crossref_primary_10_1021_acscatal_2c05129 crossref_primary_10_1016_j_jece_2023_111323 crossref_primary_10_1021_acs_energyfuels_2c01390 crossref_primary_10_1039_C9TA09201C crossref_primary_10_1039_D2CS00806H crossref_primary_10_1142_S1793292022500655 crossref_primary_10_1016_j_apsusc_2021_150369 crossref_primary_10_1016_j_cej_2024_152441 crossref_primary_10_2139_ssrn_4064604 crossref_primary_10_1016_j_inoche_2021_108786 crossref_primary_10_1016_j_apsusc_2022_155898 crossref_primary_10_1016_j_jpcs_2023_111421 crossref_primary_10_3390_polym17030334 crossref_primary_10_1002_adfm_202210837 crossref_primary_10_1016_j_apsusc_2023_158808 crossref_primary_10_1016_j_jallcom_2021_159298 crossref_primary_10_1007_s11237_021_09678_2 crossref_primary_10_3390_nano12152701 crossref_primary_10_1039_D4QI03182B crossref_primary_10_2139_ssrn_4064603 crossref_primary_10_1016_j_fuel_2024_132903 crossref_primary_10_1016_j_mtsust_2020_100037 crossref_primary_10_3390_nano12121981 crossref_primary_10_1021_acssuschemeng_3c07070 crossref_primary_10_1039_D4DT02334J crossref_primary_10_1007_s40820_023_01297_x crossref_primary_10_1016_j_jece_2022_108782 crossref_primary_10_1016_j_diamond_2020_108214 crossref_primary_10_1016_j_cej_2024_149830 crossref_primary_10_1016_j_mssp_2023_107807 crossref_primary_10_1021_acsaem_3c00581 crossref_primary_10_1016_j_jcis_2020_06_023 crossref_primary_10_1016_j_jwpe_2024_105941 crossref_primary_10_1016_j_apcatb_2022_121749 crossref_primary_10_1016_j_scitotenv_2024_177326 crossref_primary_10_1016_j_jece_2024_112276 crossref_primary_10_1016_j_cej_2020_126208 crossref_primary_10_1021_acsanm_2c01639 crossref_primary_10_1016_j_apt_2022_103573 crossref_primary_10_1016_j_jcis_2022_10_049 crossref_primary_10_1016_j_apcatb_2023_123259 crossref_primary_10_1016_j_jmat_2021_01_008 crossref_primary_10_1016_j_cis_2021_102523 crossref_primary_10_26599_NR_2025_94907125 crossref_primary_10_2139_ssrn_4098293 crossref_primary_10_1016_j_apcatb_2022_122042 crossref_primary_10_1002_adfm_202009807 crossref_primary_10_1016_j_apsusc_2022_153337 crossref_primary_10_1039_D2QM00604A crossref_primary_10_1016_j_jallcom_2024_176772 crossref_primary_10_3390_nano15010065 crossref_primary_10_1016_j_jece_2024_112142 crossref_primary_10_1016_S1872_2067_21_63985_2 crossref_primary_10_1039_D0RA10439F crossref_primary_10_1016_j_scitotenv_2022_155920 crossref_primary_10_1016_j_ccr_2022_214743 crossref_primary_10_1016_j_nanoms_2024_04_002 crossref_primary_10_1021_acs_energyfuels_2c01083 crossref_primary_10_1039_D3CC01511D crossref_primary_10_1039_D0TA11201A crossref_primary_10_1016_j_carbon_2022_10_074 crossref_primary_10_1016_j_jcis_2021_10_153 crossref_primary_10_1016_j_jece_2023_109511 crossref_primary_10_1002_smll_202006851 crossref_primary_10_1002_smll_202303980 crossref_primary_10_1016_S1872_2067_22_64110_X crossref_primary_10_1002_adfm_202314686 crossref_primary_10_1039_D2TA03977J crossref_primary_10_1016_j_apsusc_2022_155989 |
Cites_doi | 10.1016/j.mattod.2018.01.034 10.1039/C5TA06540B 10.1021/cr8003696 10.1002/adma.201602280 10.1016/j.apcatb.2017.09.010 10.1126/sciadv.aar3208 10.1002/adma.201303611 10.1002/adma.201701774 10.1002/anie.201809492 10.1002/adfm.201502253 10.1016/j.apcatb.2018.08.012 10.1016/j.apcatb.2019.04.068 10.1021/acs.est.5b03758 10.1016/j.joule.2018.04.014 10.1126/science.1186120 10.1126/science.1200448 10.1016/j.apcatb.2018.06.066 10.1039/C7MH00557A 10.1021/acsnano.6b06472 10.1021/acscatal.8b02459 10.1002/adma.201807576 10.1016/j.apcatb.2017.07.013 10.1021/jacs.7b06634 10.1039/C4NR07645A 10.1021/jp0225774 10.1016/j.cej.2016.08.102 10.1002/anie.201206534 10.1002/anie.201406811 10.1039/C6EE01432A 10.1016/j.apcatb.2018.09.078 10.1002/adma.201400573 10.1016/j.cattod.2016.05.008 10.1002/adfm.201503221 10.1126/science.aaf2091 10.1038/22672 10.1021/cr60316a001 10.1002/ange.201700286 10.1016/j.apcatb.2018.08.019 10.1021/ja709992s 10.1016/j.carbon.2016.05.028 10.1021/acs.accounts.6b00033 10.1016/j.apcatb.2016.08.002 10.1038/nmat3696 10.1002/adma.201704548 10.1021/acssuschemeng.8b02236 10.1021/jacs.8b03537 10.1016/j.apcatb.2016.03.004 10.1016/j.diamond.2019.03.004 10.1021/jacs.8b02076 10.1021/acsami.7b17503 10.1016/j.cattod.2013.04.005 10.1016/j.apsusc.2015.04.034 10.1016/j.apcatb.2015.04.022 10.1021/acscatal.7b00439 10.1039/C5TA02388B 10.1016/j.apcatb.2016.10.046 10.1021/ja1067178 10.1021/ja501866r 10.1021/ja103798k 10.1021/es503073z 10.1021/cr9500545 10.1002/adma.201204453 10.1007/s11426-018-9273-1 10.1016/j.cej.2019.03.037 10.1016/j.cattod.2016.06.014 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2019.06.012 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 539 |
ExternalDocumentID | 10_1016_j_jcis_2019_06_012 S0021979719306848 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- SCB SCE SEW SSH VH1 WUQ ZGI ZXP 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c403t-85f0d0df37a3aadefec2550a35b9ef182e32e39493aa8fc82dea9ec96b7532ff3 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Jul 11 06:16:02 EDT 2025 Thu Jul 10 23:06:39 EDT 2025 Tue Jul 01 01:18:44 EDT 2025 Thu Apr 24 23:06:12 EDT 2025 Fri Feb 23 02:49:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | g-C3N4 Nitrogen fixation Photocatalytic Carbon vacancies |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-85f0d0df37a3aadefec2550a35b9ef182e32e39493aa8fc82dea9ec96b7532ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7394-1130 0000-0001-7890-9319 0000-0002-7875-4318 0000-0002-6232-6466 |
PQID | 2246907779 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2286859575 proquest_miscellaneous_2246907779 crossref_citationtrail_10_1016_j_jcis_2019_06_012 crossref_primary_10_1016_j_jcis_2019_06_012 elsevier_sciencedirect_doi_10_1016_j_jcis_2019_06_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of colloid and interface science |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Chen, Li, Kong, Ong, Zhao (b0025) 2018; 5 Chen, Wang, Liu, Ni, Li, Zhou, Dong (b0165) 2019; 242 Wang, Hai, Ding, Chang, Xiang, Meng, Yang, Chen, Ye (b0095) 2017; 29 Rosca, Duca, de Groot, Koper (b0075) 2009; 109 Wang, Di, Lu, Yan, Liu, Ye, Li, Zhu, Li, Xia (b0135) 2019; 254 Wang, Gu, Hu, Zhang, Sun, Wang, Li, Zhao, Fan, Zou (b0305) 2019; 368 Wang, Jiang, Liu, Wei, Zhu (b0140) 2015; 176 Hessela, Anastasopoulou, Wang, Kolb, Lang (b0100) 2013; 211 Zhang, Zhang, Ye, Qiu, Lin, Wang (b0205) 2014; 26 Shipman, Symes (b0070) 2017; 286 Di, Yan, Handoko, Seh, Li, Liu (b0215) 2018; 21 Li, Dong, Hailili, Yang, Li, Wang, Zeng, Wang (b0270) 2016; 190 Liu, Zhu, You, Liang, Zheng, Zhou, Fu, He, Zeng, Fan, Ang, Wang, Liu (b0125) 2016; 28 Lei, Sun, Liu, Gao, Liang, Pan, Xie (b0150) 2014; 136 Dong, Ho, Wang (b0005) 2015; 3 Ye, Han, Ma, Leng, Li, Ji, Bi, Xie, Huang (b0330) 2017; 307 Di, Zhu, Ji, Duan, Long, Yan, Gu, Xiong, She, Xia, Li, Liu (b0115) 2018; 57 Liu, Niu, Sun, Smith, Chen, Gao, Cheng (b0200) 2010; 132 Deng, Iniguez, Liu (b0015) 2018; 2 Hu, Chen, Li, Li, Fan, Wang, Wang, Zheng, Wu (b0110) 2017; 201 Zhan, Nichols, Dixon (b0040) 2003; 107 Huang, Liu, He, Xiao, Yao, Zou, Wang, Qi, Tong, Pan, Wei, Xie (b0255) 2018; 61 Yang, Guo, Jiang, Qin, Zhang, Lu, Wang, Yu (b0325) 2018; 140 Cao, Zhou, Gao, Chen, Jiang (b0185) 2017; 218 Smil (b0045) 1999; 400 Danyal, Inglet, Vincent, Barney, Hoffman, Armstrong, Dean, Seefeldt (b0060) 2010; 132 Di, Xia, Ji, Yin, Li, Xu, Zhang, Li (b0120) 2015; 3 Cui, Ding, Fu, Wang (b0220) 2012; 51 Zhao, Wang, Jin (b0300) 2019; 94 Dong, Hob, Wang (b0235) 2015; 3 Liang, Li, Huang, Kang, Yang (b0250) 2015; 25 Brown, Harris, Wilker, Rasmussen, Khadka, Hamby, Keable, Dukovic, Peters, Seefeldt, King (b0035) 2016; 352 Holst, Gillan (b0260) 2008; 130 Di, Xia, Li, Ji, Xu, Chen, Li (b0245) 2016; 107 Hirakawa, Hashimoto, Shiraishi, Hirai (b0320) 2017; 139 Zhang, Zhang, Yang, Wang (b0280) 2014; 26 Zhang, Jalil, Wu, Chen, Liu, Gao, Ye, Qi, Ju, Wang, Wu, Song, Zhu, Xiong (b0030) 2018; 140 Liu, Ye, Wang, Yang, Zhang, Guan, Tian, Chen (b0180) 2018; 10 Kyriakou, Garagounis, Vasileiou, Vourros, Stoukides (b0080) 2017; 286 Xiao, Zhang, Wang, Wang, Zhou, Wang (b0225) 2018; 239 Yang, Gong, Zhang, Zhan, Ma, Fang, Ma, Fang, Vajtai, Wang, Ajayan (b0240) 2013; 25 Deng, Tang, Zeng, Zhu, Yan, Zhou, Wang, Liu, Wang (b0160) 2017; 203 Lee, Koh, Lee, Liu, Phang, Han, Tsung, Ling (b0085) 2018; 4 Medford, Hatzell (b0020) 2017; 7 Qiu, Xu, Zhou, Chen, Jiang (b0230) 2018; 221 Li, Dong, Sun, Jiang, Chu, Lee (b0170) 2018; 239 Di, Xiong, Li, Liu (b0265) 2018; 30 Zhu, Zhang, Ruther, Hamers (b0105) 2013; 12 Wang, Su, Zhao, Yu, Chen, Zhang, Quan (b0290) 2014; 48 Lu, Yang, Zhang, Ge, Chang, Xiao, Xie, Hua, Li, Li, Ma, Guan, Ma, Chen (b0335) 2016; 10 Caputo, Gross, Lau, Cavazza, Lotsch, Reisner (b0275) 2014; 53 Xiao, Zhang, Wang, Wang, Zhou, Wang (b0310) 2018; 239 Yang, Ou, Fang, Wang (b0210) 2017; 129 Li, Zhang, Cui, Wang, Cen, Johnson, Jiang, Zhang, Dong (b0175) 2018; 8 Zhang, Chen, Lv, Yao, Xu, Jin, Meng (b0315) 2018; 6 Milton, Abdellaoui, Khadka, Dean, Leech, Seefeldt, Minteer (b0055) 2016; 9 Dong, Zhao, Sun, Zhang, Yan, Wu (b0190) 2015; 49 Chatt, Dilworth, Richards (b0010) 1978; 78 Howard, Rees (b0050) 1996; 96 Tanaka, Nishibayashi, Yoshizawa (b0065) 2016; 49 Canfield, Glazer, Falkowski (b0090) 2010; 330 Chen, Liu, Yu, Mao (b0145) 2011; 331 Shi, Wang, Zhang, Chang, Ye (b0195) 2015; 25 Di, Chen, Zhu, Ji, Xia, Yan, Hao, Li, Li, Liu (b0130) 2018; 238 Dong, Li, Wang, Ho (b0285) 2015; 358 Di, Xia, Chisholm, Zhong, Chen, Cao, Dong, Chi, Chen, Weng, Xiong, Yang, Li, Liu, Dai (b0295) 2019; 31 Wang, Zhang, Xie, Zhang, Ma, Pan, Xie (b0155) 2015; 7 Holst (10.1016/j.jcis.2019.06.012_b0260) 2008; 130 Hu (10.1016/j.jcis.2019.06.012_b0110) 2017; 201 Li (10.1016/j.jcis.2019.06.012_b0170) 2018; 239 Ye (10.1016/j.jcis.2019.06.012_b0330) 2017; 307 Zhang (10.1016/j.jcis.2019.06.012_b0205) 2014; 26 Shipman (10.1016/j.jcis.2019.06.012_b0070) 2017; 286 Qiu (10.1016/j.jcis.2019.06.012_b0230) 2018; 221 Kyriakou (10.1016/j.jcis.2019.06.012_b0080) 2017; 286 Wang (10.1016/j.jcis.2019.06.012_b0155) 2015; 7 Di (10.1016/j.jcis.2019.06.012_b0115) 2018; 57 Canfield (10.1016/j.jcis.2019.06.012_b0090) 2010; 330 Zhan (10.1016/j.jcis.2019.06.012_b0040) 2003; 107 Dong (10.1016/j.jcis.2019.06.012_b0190) 2015; 49 Wang (10.1016/j.jcis.2019.06.012_b0140) 2015; 176 Hirakawa (10.1016/j.jcis.2019.06.012_b0320) 2017; 139 Lei (10.1016/j.jcis.2019.06.012_b0150) 2014; 136 Zhu (10.1016/j.jcis.2019.06.012_b0105) 2013; 12 Li (10.1016/j.jcis.2019.06.012_b0270) 2016; 190 Zhang (10.1016/j.jcis.2019.06.012_b0280) 2014; 26 Chen (10.1016/j.jcis.2019.06.012_b0165) 2019; 242 Dong (10.1016/j.jcis.2019.06.012_b0005) 2015; 3 Medford (10.1016/j.jcis.2019.06.012_b0020) 2017; 7 Yang (10.1016/j.jcis.2019.06.012_b0325) 2018; 140 Wang (10.1016/j.jcis.2019.06.012_b0305) 2019; 368 Chen (10.1016/j.jcis.2019.06.012_b0025) 2018; 5 Wang (10.1016/j.jcis.2019.06.012_b0095) 2017; 29 Danyal (10.1016/j.jcis.2019.06.012_b0060) 2010; 132 Li (10.1016/j.jcis.2019.06.012_b0175) 2018; 8 Liu (10.1016/j.jcis.2019.06.012_b0200) 2010; 132 Di (10.1016/j.jcis.2019.06.012_b0215) 2018; 21 Smil (10.1016/j.jcis.2019.06.012_b0045) 1999; 400 Di (10.1016/j.jcis.2019.06.012_b0130) 2018; 238 Deng (10.1016/j.jcis.2019.06.012_b0015) 2018; 2 Deng (10.1016/j.jcis.2019.06.012_b0160) 2017; 203 Di (10.1016/j.jcis.2019.06.012_b0120) 2015; 3 Chen (10.1016/j.jcis.2019.06.012_b0145) 2011; 331 Liang (10.1016/j.jcis.2019.06.012_b0250) 2015; 25 Di (10.1016/j.jcis.2019.06.012_b0265) 2018; 30 Hessela (10.1016/j.jcis.2019.06.012_b0100) 2013; 211 Di (10.1016/j.jcis.2019.06.012_b0245) 2016; 107 Brown (10.1016/j.jcis.2019.06.012_b0035) 2016; 352 Shi (10.1016/j.jcis.2019.06.012_b0195) 2015; 25 Liu (10.1016/j.jcis.2019.06.012_b0180) 2018; 10 Cui (10.1016/j.jcis.2019.06.012_b0220) 2012; 51 Yang (10.1016/j.jcis.2019.06.012_b0240) 2013; 25 Rosca (10.1016/j.jcis.2019.06.012_b0075) 2009; 109 Huang (10.1016/j.jcis.2019.06.012_b0255) 2018; 61 Zhang (10.1016/j.jcis.2019.06.012_b0030) 2018; 140 Tanaka (10.1016/j.jcis.2019.06.012_b0065) 2016; 49 Liu (10.1016/j.jcis.2019.06.012_b0125) 2016; 28 Caputo (10.1016/j.jcis.2019.06.012_b0275) 2014; 53 Milton (10.1016/j.jcis.2019.06.012_b0055) 2016; 9 Cao (10.1016/j.jcis.2019.06.012_b0185) 2017; 218 Dong (10.1016/j.jcis.2019.06.012_b0235) 2015; 3 Xiao (10.1016/j.jcis.2019.06.012_b0310) 2018; 239 Wang (10.1016/j.jcis.2019.06.012_b0290) 2014; 48 Di (10.1016/j.jcis.2019.06.012_b0295) 2019; 31 Zhang (10.1016/j.jcis.2019.06.012_b0315) 2018; 6 Zhao (10.1016/j.jcis.2019.06.012_b0300) 2019; 94 Lee (10.1016/j.jcis.2019.06.012_b0085) 2018; 4 Yang (10.1016/j.jcis.2019.06.012_b0210) 2017; 129 Chatt (10.1016/j.jcis.2019.06.012_b0010) 1978; 78 Xiao (10.1016/j.jcis.2019.06.012_b0225) 2018; 239 Wang (10.1016/j.jcis.2019.06.012_b0135) 2019; 254 Lu (10.1016/j.jcis.2019.06.012_b0335) 2016; 10 Dong (10.1016/j.jcis.2019.06.012_b0285) 2015; 358 Howard (10.1016/j.jcis.2019.06.012_b0050) 1996; 96 |
References_xml | – volume: 3 start-page: 23435 year: 2015 end-page: 23441 ident: b0235 article-title: Selective photocatalytic N publication-title: J. Mater. Chem. A – volume: 94 start-page: 146 year: 2019 end-page: 154 ident: b0300 article-title: The effect of oxygen on the N publication-title: Diam. Relat. Mater. – volume: 400 start-page: 415 year: 1999 ident: b0045 article-title: Detonator of the population explosion publication-title: Nature – volume: 140 start-page: 9434 year: 2018 end-page: 9443 ident: b0030 article-title: Refining defect states in W publication-title: J. Am. Chem. Soc. – volume: 242 start-page: 19 year: 2019 end-page: 30 ident: b0165 article-title: Directional electron delivery and enhanced reactants activation enable efficient photocatalytic air purification on amorphous carbon nitride co-functionalized with O/La publication-title: Appl. Catal. B: Environ. – volume: 31 start-page: 1807576 year: 2019 ident: b0295 article-title: Defect-tailoring mediated electron-hole separation in single unit cell Bi publication-title: Adv. Mater. – volume: 6 start-page: 11190 year: 2018 end-page: 11195 ident: b0315 article-title: Enabling nitrogen fixation on Bi publication-title: ACS Sustain. Chem. Eng. – volume: 107 start-page: 4184 year: 2003 end-page: 4195 ident: b0040 article-title: Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies publication-title: J. Phys. Chem. A – volume: 4 start-page: eaar3208 year: 2018 ident: b0085 article-title: Favoring the unfavored: selective electrochemical nitrogen fixation using a reticular chemistry approach publication-title: Sci. Adv. – volume: 286 start-page: 2 year: 2017 end-page: 13 ident: b0080 article-title: Progress in the electrochemical synthesis of ammonia publication-title: Catal. Today – volume: 352 start-page: 448 year: 2016 end-page: 450 ident: b0035 article-title: Light-driven dinitrogen reduction catalyzed by a CdS: nitrogenase MoFe protein biohybrid publication-title: Science – volume: 57 start-page: 14847 year: 2018 end-page: 14851 ident: b0115 article-title: Defect-rich Bi publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 4001 year: 2018 end-page: 4009 ident: b0180 article-title: Phosphorus-doped graphitic carbon nitride nanotubes with amino-rich surface for efficient CO publication-title: ACS Appl. Mater. Interfaces – volume: 254 start-page: 551 year: 2019 end-page: 559 ident: b0135 article-title: Sacrificing ionic liquid-assisted anchoring of carbonized polymer dots on perovskite-like PbBiO publication-title: Appl. Catal. B – volume: 238 start-page: 119 year: 2018 end-page: 125 ident: b0130 article-title: Bismuth vacancy mediated single unit cell Bi publication-title: Appl. Catal. B – volume: 140 start-page: 8497 year: 2018 end-page: 8508 ident: b0325 article-title: High-efficiency “Working-in-Tandem” nitrogen photofixation achieved by assembling plasmonic gold nanocrystals on ultrathin titania nanosheets publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 15108 year: 2015 end-page: 15118 ident: b0120 article-title: Controllable synthesis of Bi publication-title: J. Mater. Chem. A – volume: 107 start-page: 1 year: 2016 end-page: 10 ident: b0245 article-title: Constructing confined surface carbon defects in ultrathin graphitic carbon nitride for photocatalytic free radical manipulation publication-title: Carbon – volume: 12 start-page: 836 year: 2013 end-page: 841 ident: b0105 article-title: Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction publication-title: Nat. Mater. – volume: 203 start-page: 343 year: 2017 end-page: 354 ident: b0160 article-title: Insight into highly efficient simultaneous photocatalytic removal of Cr (VI) and 2, 4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C publication-title: Appl. Catal. B: Environ. – volume: 7 start-page: 2624 year: 2017 end-page: 2643 ident: b0020 article-title: Photon-driven nitrogen fixation: Current progress, thermodynamic considerations, and future outlook publication-title: ACS Catal. – volume: 286 start-page: 57 year: 2017 end-page: 68 ident: b0070 article-title: Recent progress towards the electrosynthesis of ammonia from sustainable resources publication-title: Catal. Today – volume: 129 start-page: 4050 year: 2017 end-page: 4054 ident: b0210 article-title: A facile steam reforming strategy to delaminate layered carbon nitride semiconductors for photoredox catalysis publication-title: Angew. Chem. – volume: 358 start-page: 393 year: 2015 end-page: 403 ident: b0285 article-title: Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C publication-title: Appl. Surf. Sci. – volume: 218 start-page: 600 year: 2017 end-page: 610 ident: b0185 article-title: All-solid-state Z-scheme 3, 4-dihydroxybenzaldehyde-functionalized Ga publication-title: Appl. Catal. B: Environ. – volume: 307 start-page: 311 year: 2017 end-page: 318 ident: b0330 article-title: Ni publication-title: Chem. Eng. J. – volume: 28 start-page: 7768 year: 2016 end-page: 7773 ident: b0125 article-title: 2D Black phosphorus/SrTiO publication-title: Adv. Mater. – volume: 130 start-page: 7373 year: 2008 end-page: 7379 ident: b0260 article-title: From triazines to heptazines: deciphering the local structure of amorphous nitrogen-rich carbon nitride materials publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 11538 year: 2014 end-page: 11542 ident: b0275 article-title: Photocatalytic hydrogen production using polymeric carbon nitride with a hydrogenase and a bioinspired synthetic Ni catalyst publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 10507 year: 2016 end-page: 10515 ident: b0335 article-title: Photoprompted hot electrons from bulk cross-linked graphene materials and their efficient catalysis for atmospheric ammonia synthesis publication-title: ACS Nano – volume: 2 start-page: 846 year: 2018 end-page: 856 ident: b0015 article-title: Electrocatalytic nitrogen reduction at low temperature publication-title: Joule – volume: 25 start-page: 6885 year: 2015 end-page: 6892 ident: b0250 article-title: Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production publication-title: Adv. Funct. Mater. – volume: 139 start-page: 10929 year: 2017 end-page: 10936 ident: b0320 article-title: Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide publication-title: J. Am. Chem. Soc. – volume: 201 start-page: 58 year: 2017 end-page: 69 ident: b0110 article-title: Fe publication-title: Appl. Catal. B: Environ. – volume: 221 start-page: 27 year: 2018 end-page: 35 ident: b0230 article-title: Metal-free black phosphorus nanosheets-decorated graphitic carbon nitride nanosheets with CP bonds for excellent photocatalytic nitrogen fixation publication-title: Appl. Catal. B: Environ. – volume: 190 start-page: 26 year: 2016 end-page: 35 ident: b0270 article-title: Effective photocatalytic H publication-title: Appl. Catal. B: Environ. – volume: 5 start-page: 9 year: 2018 end-page: 27 ident: b0025 article-title: Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects publication-title: Mater. Horiz. – volume: 132 start-page: 13197 year: 2010 end-page: 13199 ident: b0060 article-title: Uncoupling nitrogenase: catalytic reduction of hydrazine to ammonia by a MoFe protein in the absence of Fe protein-ATP publication-title: J. Am. Chem. Soc. – volume: 96 start-page: 2965 year: 1996 end-page: 2982 ident: b0050 article-title: Structural basis of biological nitrogen fixation publication-title: Chem. Rev. – volume: 136 start-page: 6826 year: 2014 end-page: 6829 ident: b0150 article-title: Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting publication-title: J. Am. Chem. Soc. – volume: 330 start-page: 192 year: 2010 end-page: 196 ident: b0090 article-title: The evolution and future of earth's nitrogen cycle publication-title: Science – volume: 25 start-page: 2452 year: 2013 end-page: 2456 ident: b0240 article-title: Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light publication-title: Adv. Mater. – volume: 109 start-page: 2209 year: 2009 end-page: 2244 ident: b0075 article-title: Nitrogen cycle electrocatalysis publication-title: Chem. Rev. – volume: 30 start-page: 1704548 year: 2018 ident: b0265 article-title: Ultrathin 2D photocatalysts: electronic-structure tailoring, hybridization, and applications publication-title: Adv. Mater. – volume: 49 start-page: 12432 year: 2015 end-page: 12440 ident: b0190 article-title: An advanced semimetal-organic Bi spheres-g-C publication-title: Environ. Sci. Technol. – volume: 61 start-page: 1187 year: 2018 end-page: 1196 ident: b0255 article-title: Single atom accelerates ammonia photosynthesis publication-title: Sci. China Chem. – volume: 331 start-page: 746 year: 2011 end-page: 750 ident: b0145 article-title: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals publication-title: Science – volume: 25 start-page: 5360 year: 2015 end-page: 5367 ident: b0195 article-title: Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO publication-title: Adv. Funct. Mater. – volume: 26 start-page: 4121 year: 2014 end-page: 4126 ident: b0280 article-title: Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface publication-title: Adv. Mater. – volume: 21 start-page: 749 year: 2018 end-page: 770 ident: b0215 article-title: Ultrathin two-dimensional materials for photo- and electrocatalytic hydrogen evolution publication-title: Mater. Today – volume: 49 start-page: 987 year: 2016 end-page: 995 ident: b0065 article-title: Interplay between theory and experiment for ammonia synthesis catalyzed by transition metal complexes publication-title: Acc. Chem. Res. – volume: 78 start-page: 589 year: 1978 end-page: 625 ident: b0010 article-title: Recent advances in chemistry of nitrogen-fixation publication-title: Chem. Rev. – volume: 211 start-page: 9 year: 2013 end-page: 28 ident: b0100 article-title: Energy, catalyst and reactor considerations for (near)-industrial plasma processing and learning for nitrogen-fixation reactions publication-title: Catal. Today – volume: 26 start-page: 805 year: 2014 end-page: 809 ident: b0205 article-title: Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution publication-title: Adv. Mater. – volume: 51 start-page: 11814 year: 2012 end-page: 11818 ident: b0220 article-title: Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis publication-title: Angew. Chem. Int. Ed. – volume: 29 start-page: 1701774 year: 2017 ident: b0095 article-title: Light-switchable oxygen vacancies in ultrafine Bi publication-title: Adv. Mater. – volume: 239 start-page: 187 year: 2018 end-page: 195 ident: b0170 article-title: Fan Dong, Tailoring the rate-determining step in photocatalysis via localized excess electrons for efficient and safe air cleaning publication-title: Appl. Catal. B: Environ. – volume: 8 start-page: 8376 year: 2018 end-page: 8385 ident: b0175 article-title: The spatially oriented charge flow and photocatalysis mechanism on internal van der Waals heterostructures enhanced g-C publication-title: ACS Catal. – volume: 368 start-page: 896 year: 2019 end-page: 904 ident: b0305 article-title: Molten salt assistant synthesis of three-dimensional cobalt doped graphitic carbon nitride for photocatalytic N publication-title: Chem. Eng. J. – volume: 48 start-page: 11984 year: 2014 end-page: 11990 ident: b0290 article-title: Photocatalytic oxidation of aqueous ammonia using atomic single layer graphitic-C publication-title: Environ. Sci. Technol. – volume: 176 start-page: 306 year: 2015 end-page: 314 ident: b0140 article-title: Photocatalytic performance enhanced via surface bismuth vacancy of Bi publication-title: Appl. Catal. B – volume: 9 start-page: 2550 year: 2016 end-page: 2554 ident: b0055 article-title: Nitrogenase bioelectrocatalysis: heterogeneous ammonia and hydrogen production by MoFe protein publication-title: Energy Environ. Sci. – volume: 132 start-page: 11642 year: 2010 end-page: 11648 ident: b0200 article-title: Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C publication-title: J. Am. Chem. Soc. – volume: 239 start-page: 260 year: 2018 end-page: 267 ident: b0225 article-title: A new approach to enhance photocatalytic nitrogen fixation performance via phosphate-bridge: a case study of SiW publication-title: Appl. Catal. B: Environ. – volume: 239 start-page: 260 year: 2018 end-page: 267 ident: b0310 article-title: A new approach to enhance photocatalytic nitrogen fixation performance via phosphate-bridge: a case study of SiW publication-title: Appl. Catal. B: Environ. – volume: 7 start-page: 5152 year: 2015 end-page: 5156 ident: b0155 article-title: Structural distortion in graphitic-C publication-title: Nanoscale – volume: 3 start-page: 23435 year: 2015 end-page: 23441 ident: b0005 article-title: Selective photocatalytic N publication-title: J. Mater. Chem. A – volume: 21 start-page: 749 year: 2018 ident: 10.1016/j.jcis.2019.06.012_b0215 article-title: Ultrathin two-dimensional materials for photo- and electrocatalytic hydrogen evolution publication-title: Mater. Today doi: 10.1016/j.mattod.2018.01.034 – volume: 3 start-page: 23435 year: 2015 ident: 10.1016/j.jcis.2019.06.012_b0005 article-title: Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies publication-title: J. Mater. Chem. A doi: 10.1039/C5TA06540B – volume: 109 start-page: 2209 year: 2009 ident: 10.1016/j.jcis.2019.06.012_b0075 article-title: Nitrogen cycle electrocatalysis publication-title: Chem. Rev. doi: 10.1021/cr8003696 – volume: 28 start-page: 7768 year: 2016 ident: 10.1016/j.jcis.2019.06.012_b0125 article-title: 2D Black phosphorus/SrTiO3-based programmable photoconductive switch publication-title: Adv. Mater. doi: 10.1002/adma.201602280 – volume: 221 start-page: 27 year: 2018 ident: 10.1016/j.jcis.2019.06.012_b0230 article-title: Metal-free black phosphorus nanosheets-decorated graphitic carbon nitride nanosheets with CP bonds for excellent photocatalytic nitrogen fixation publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.09.010 – volume: 4 start-page: eaar3208 year: 2018 ident: 10.1016/j.jcis.2019.06.012_b0085 article-title: Favoring the unfavored: selective electrochemical nitrogen fixation using a reticular chemistry approach publication-title: Sci. Adv. doi: 10.1126/sciadv.aar3208 – volume: 26 start-page: 805 year: 2014 ident: 10.1016/j.jcis.2019.06.012_b0205 article-title: Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution publication-title: Adv. Mater. doi: 10.1002/adma.201303611 – volume: 29 start-page: 1701774 year: 2017 ident: 10.1016/j.jcis.2019.06.012_b0095 article-title: Light-switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar-Driven nitrogen fixation in pure water publication-title: Adv. Mater. doi: 10.1002/adma.201701774 – volume: 57 start-page: 14847 year: 2018 ident: 10.1016/j.jcis.2019.06.012_b0115 article-title: Defect-rich Bi12O17Cl2 nanotubes self-accelerating charge publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201809492 – volume: 25 start-page: 5360 year: 2015 ident: 10.1016/j.jcis.2019.06.012_b0195 article-title: Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201502253 – volume: 239 start-page: 260 year: 2018 ident: 10.1016/j.jcis.2019.06.012_b0310 article-title: A new approach to enhance photocatalytic nitrogen fixation performance via phosphate-bridge: a case study of SiW12/K-C3N4 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.08.012 – volume: 254 start-page: 551 year: 2019 ident: 10.1016/j.jcis.2019.06.012_b0135 article-title: Sacrificing ionic liquid-assisted anchoring of carbonized polymer dots on perovskite-like PbBiO2Br for robust CO2 photoreduction publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.04.068 – volume: 49 start-page: 12432 year: 2015 ident: 10.1016/j.jcis.2019.06.012_b0190 article-title: An advanced semimetal-organic Bi spheres-g-C3N4 nanohybrid with SPR-enhanced visiblelight photocatalytic performance for NO purification publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b03758 – volume: 2 start-page: 846 year: 2018 ident: 10.1016/j.jcis.2019.06.012_b0015 article-title: Electrocatalytic nitrogen reduction at low temperature publication-title: Joule doi: 10.1016/j.joule.2018.04.014 – volume: 330 start-page: 192 year: 2010 ident: 10.1016/j.jcis.2019.06.012_b0090 article-title: The evolution and future of earth's nitrogen cycle publication-title: Science doi: 10.1126/science.1186120 – volume: 331 start-page: 746 year: 2011 ident: 10.1016/j.jcis.2019.06.012_b0145 article-title: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals publication-title: Science doi: 10.1126/science.1200448 – volume: 238 start-page: 119 year: 2018 ident: 10.1016/j.jcis.2019.06.012_b0130 article-title: Bismuth vacancy mediated single unit cell Bi2WO6 nanosheets for boosting photocatalytic oxygen evolution publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.06.066 – volume: 5 start-page: 9 year: 2018 ident: 10.1016/j.jcis.2019.06.012_b0025 article-title: Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects publication-title: Mater. Horiz. doi: 10.1039/C7MH00557A – volume: 10 start-page: 10507 year: 2016 ident: 10.1016/j.jcis.2019.06.012_b0335 article-title: Photoprompted hot electrons from bulk cross-linked graphene materials and their efficient catalysis for atmospheric ammonia synthesis publication-title: ACS Nano doi: 10.1021/acsnano.6b06472 – volume: 8 start-page: 8376 year: 2018 ident: 10.1016/j.jcis.2019.06.012_b0175 article-title: The spatially oriented charge flow and photocatalysis mechanism on internal van der Waals heterostructures enhanced g-C3N4 publication-title: ACS Catal. doi: 10.1021/acscatal.8b02459 – volume: 31 start-page: 1807576 year: 2019 ident: 10.1016/j.jcis.2019.06.012_b0295 article-title: Defect-tailoring mediated electron-hole separation in single unit cell Bi3O4Br nanosheets for boosting photocatalytic hydrogen evolution and nitrogen fixation publication-title: Adv. Mater. doi: 10.1002/adma.201807576 – volume: 3 start-page: 23435 year: 2015 ident: 10.1016/j.jcis.2019.06.012_b0235 article-title: Selective photocatalytic N2 fixation dependent on the g-C3N4 induced by nitrogen vacancies publication-title: J. Mater. Chem. A doi: 10.1039/C5TA06540B – volume: 218 start-page: 600 year: 2017 ident: 10.1016/j.jcis.2019.06.012_b0185 article-title: All-solid-state Z-scheme 3, 4-dihydroxybenzaldehyde-functionalized Ga2O3/graphitic carbon nitride photocatalyst with aromatic rings as electron mediators for visible-light photocatalytic nitrogen fixation publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.07.013 – volume: 139 start-page: 10929 year: 2017 ident: 10.1016/j.jcis.2019.06.012_b0320 article-title: Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06634 – volume: 7 start-page: 5152 year: 2015 ident: 10.1016/j.jcis.2019.06.012_b0155 article-title: Structural distortion in graphitic-C3N4 realizing an efficient photoreactivity publication-title: Nanoscale doi: 10.1039/C4NR07645A – volume: 107 start-page: 4184 year: 2003 ident: 10.1016/j.jcis.2019.06.012_b0040 article-title: Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies publication-title: J. Phys. Chem. A doi: 10.1021/jp0225774 – volume: 307 start-page: 311 year: 2017 ident: 10.1016/j.jcis.2019.06.012_b0330 article-title: Ni2P loading on Cd0.5Zn0.5S solid solution for exceptional photocatalytic nitrogen fixation under visible light publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.08.102 – volume: 51 start-page: 11814 year: 2012 ident: 10.1016/j.jcis.2019.06.012_b0220 article-title: Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201206534 – volume: 53 start-page: 11538 year: 2014 ident: 10.1016/j.jcis.2019.06.012_b0275 article-title: Photocatalytic hydrogen production using polymeric carbon nitride with a hydrogenase and a bioinspired synthetic Ni catalyst publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201406811 – volume: 9 start-page: 2550 year: 2016 ident: 10.1016/j.jcis.2019.06.012_b0055 article-title: Nitrogenase bioelectrocatalysis: heterogeneous ammonia and hydrogen production by MoFe protein publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01432A – volume: 242 start-page: 19 year: 2019 ident: 10.1016/j.jcis.2019.06.012_b0165 article-title: Directional electron delivery and enhanced reactants activation enable efficient photocatalytic air purification on amorphous carbon nitride co-functionalized with O/La publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.09.078 – volume: 26 start-page: 4121 year: 2014 ident: 10.1016/j.jcis.2019.06.012_b0280 article-title: Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface publication-title: Adv. Mater. doi: 10.1002/adma.201400573 – volume: 286 start-page: 57 year: 2017 ident: 10.1016/j.jcis.2019.06.012_b0070 article-title: Recent progress towards the electrosynthesis of ammonia from sustainable resources publication-title: Catal. Today doi: 10.1016/j.cattod.2016.05.008 – volume: 25 start-page: 6885 year: 2015 ident: 10.1016/j.jcis.2019.06.012_b0250 article-title: Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201503221 – volume: 352 start-page: 448 year: 2016 ident: 10.1016/j.jcis.2019.06.012_b0035 article-title: Light-driven dinitrogen reduction catalyzed by a CdS: nitrogenase MoFe protein biohybrid publication-title: Science doi: 10.1126/science.aaf2091 – volume: 400 start-page: 415 year: 1999 ident: 10.1016/j.jcis.2019.06.012_b0045 article-title: Detonator of the population explosion publication-title: Nature doi: 10.1038/22672 – volume: 78 start-page: 589 year: 1978 ident: 10.1016/j.jcis.2019.06.012_b0010 article-title: Recent advances in chemistry of nitrogen-fixation publication-title: Chem. Rev. doi: 10.1021/cr60316a001 – volume: 129 start-page: 4050 year: 2017 ident: 10.1016/j.jcis.2019.06.012_b0210 article-title: A facile steam reforming strategy to delaminate layered carbon nitride semiconductors for photoredox catalysis publication-title: Angew. Chem. doi: 10.1002/ange.201700286 – volume: 239 start-page: 187 year: 2018 ident: 10.1016/j.jcis.2019.06.012_b0170 article-title: Fan Dong, Tailoring the rate-determining step in photocatalysis via localized excess electrons for efficient and safe air cleaning publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.08.019 – volume: 130 start-page: 7373 year: 2008 ident: 10.1016/j.jcis.2019.06.012_b0260 article-title: From triazines to heptazines: deciphering the local structure of amorphous nitrogen-rich carbon nitride materials publication-title: J. Am. Chem. Soc. doi: 10.1021/ja709992s – volume: 107 start-page: 1 year: 2016 ident: 10.1016/j.jcis.2019.06.012_b0245 article-title: Constructing confined surface carbon defects in ultrathin graphitic carbon nitride for photocatalytic free radical manipulation publication-title: Carbon doi: 10.1016/j.carbon.2016.05.028 – volume: 49 start-page: 987 year: 2016 ident: 10.1016/j.jcis.2019.06.012_b0065 article-title: Interplay between theory and experiment for ammonia synthesis catalyzed by transition metal complexes publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00033 – volume: 201 start-page: 58 year: 2017 ident: 10.1016/j.jcis.2019.06.012_b0110 article-title: Fe3+ doping promoted N2 photofixation ability of honeycombed graphitic carbon nitride: the experimental and density functional theory simulation analysis publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2016.08.002 – volume: 12 start-page: 836 year: 2013 ident: 10.1016/j.jcis.2019.06.012_b0105 article-title: Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction publication-title: Nat. Mater. doi: 10.1038/nmat3696 – volume: 30 start-page: 1704548 year: 2018 ident: 10.1016/j.jcis.2019.06.012_b0265 article-title: Ultrathin 2D photocatalysts: electronic-structure tailoring, hybridization, and applications publication-title: Adv. Mater. doi: 10.1002/adma.201704548 – volume: 6 start-page: 11190 year: 2018 ident: 10.1016/j.jcis.2019.06.012_b0315 article-title: Enabling nitrogen fixation on Bi2WO6 photocatalyst by c-PAN surface decoration publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b02236 – volume: 140 start-page: 8497 year: 2018 ident: 10.1016/j.jcis.2019.06.012_b0325 article-title: High-efficiency “Working-in-Tandem” nitrogen photofixation achieved by assembling plasmonic gold nanocrystals on ultrathin titania nanosheets publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b03537 – volume: 190 start-page: 26 year: 2016 ident: 10.1016/j.jcis.2019.06.012_b0270 article-title: Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2016.03.004 – volume: 94 start-page: 146 year: 2019 ident: 10.1016/j.jcis.2019.06.012_b0300 article-title: The effect of oxygen on the N2 photofixation ability over N vacancies embedded g-C3N4 prepared by dielectric barrier discharge plasma treatment publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2019.03.004 – volume: 140 start-page: 9434 year: 2018 ident: 10.1016/j.jcis.2019.06.012_b0030 article-title: Refining defect states in W18O49 by Mo doping: a strategy for tuning N2 activation towards solar-driven nitrogen fixation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02076 – volume: 10 start-page: 4001 year: 2018 ident: 10.1016/j.jcis.2019.06.012_b0180 article-title: Phosphorus-doped graphitic carbon nitride nanotubes with amino-rich surface for efficient CO2 capture, enhanced photocatalytic activity, and product selectivity publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b17503 – volume: 211 start-page: 9 year: 2013 ident: 10.1016/j.jcis.2019.06.012_b0100 article-title: Energy, catalyst and reactor considerations for (near)-industrial plasma processing and learning for nitrogen-fixation reactions publication-title: Catal. Today doi: 10.1016/j.cattod.2013.04.005 – volume: 358 start-page: 393 year: 2015 ident: 10.1016/j.jcis.2019.06.012_b0285 article-title: Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.04.034 – volume: 176 start-page: 306 year: 2015 ident: 10.1016/j.jcis.2019.06.012_b0140 article-title: Photocatalytic performance enhanced via surface bismuth vacancy of Bi6S2O15 core/shell nanowires publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2015.04.022 – volume: 7 start-page: 2624 year: 2017 ident: 10.1016/j.jcis.2019.06.012_b0020 article-title: Photon-driven nitrogen fixation: Current progress, thermodynamic considerations, and future outlook publication-title: ACS Catal. doi: 10.1021/acscatal.7b00439 – volume: 3 start-page: 15108 year: 2015 ident: 10.1016/j.jcis.2019.06.012_b0120 article-title: Controllable synthesis of Bi4O5Br2 ultrathin nanosheets for photocatalytic removal of ciprofloxacin and mechanism insight publication-title: J. Mater. Chem. A doi: 10.1039/C5TA02388B – volume: 203 start-page: 343 year: 2017 ident: 10.1016/j.jcis.2019.06.012_b0160 article-title: Insight into highly efficient simultaneous photocatalytic removal of Cr (VI) and 2, 4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media: performance and reaction mechanism publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2016.10.046 – volume: 239 start-page: 260 year: 2018 ident: 10.1016/j.jcis.2019.06.012_b0225 article-title: A new approach to enhance photocatalytic nitrogen fixation performance via phosphate-bridge: a case study of SiW12/K-C3N4 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.08.012 – volume: 132 start-page: 13197 year: 2010 ident: 10.1016/j.jcis.2019.06.012_b0060 article-title: Uncoupling nitrogenase: catalytic reduction of hydrazine to ammonia by a MoFe protein in the absence of Fe protein-ATP publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1067178 – volume: 136 start-page: 6826 year: 2014 ident: 10.1016/j.jcis.2019.06.012_b0150 article-title: Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting publication-title: J. Am. Chem. Soc. doi: 10.1021/ja501866r – volume: 132 start-page: 11642 year: 2010 ident: 10.1016/j.jcis.2019.06.012_b0200 article-title: Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja103798k – volume: 48 start-page: 11984 year: 2014 ident: 10.1016/j.jcis.2019.06.012_b0290 article-title: Photocatalytic oxidation of aqueous ammonia using atomic single layer graphitic-C3N4 publication-title: Environ. Sci. Technol. doi: 10.1021/es503073z – volume: 96 start-page: 2965 year: 1996 ident: 10.1016/j.jcis.2019.06.012_b0050 article-title: Structural basis of biological nitrogen fixation publication-title: Chem. Rev. doi: 10.1021/cr9500545 – volume: 25 start-page: 2452 year: 2013 ident: 10.1016/j.jcis.2019.06.012_b0240 article-title: Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light publication-title: Adv. Mater. doi: 10.1002/adma.201204453 – volume: 61 start-page: 1187 year: 2018 ident: 10.1016/j.jcis.2019.06.012_b0255 article-title: Single atom accelerates ammonia photosynthesis publication-title: Sci. China Chem. doi: 10.1007/s11426-018-9273-1 – volume: 368 start-page: 896 year: 2019 ident: 10.1016/j.jcis.2019.06.012_b0305 article-title: Molten salt assistant synthesis of three-dimensional cobalt doped graphitic carbon nitride for photocatalytic N2 fixation: Experiment and DFT simulation analysis publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.03.037 – volume: 286 start-page: 2 year: 2017 ident: 10.1016/j.jcis.2019.06.012_b0080 article-title: Progress in the electrochemical synthesis of ammonia publication-title: Catal. Today doi: 10.1016/j.cattod.2016.06.014 |
SSID | ssj0011559 |
Score | 2.6266599 |
Snippet | [Display omitted]
An ultra-thin carbon nitride with loose structure and more carbon defects on the surface was achieved through high-temperature peeling... An ultra-thin carbon nitride with loose structure and more carbon defects on the surface was achieved through high-temperature peeling methods. Its... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 530 |
SubjectTerms | adsorption ammonia carbon carbon nitride Carbon vacancies electrochemistry g-C3N4 irradiation light nitrogen Nitrogen fixation peeling photocatalysis photocatalysts Photocatalytic |
Title | Ultrathin g-C3N4 with enriched surface carbon vacancies enables highly efficient photocatalytic nitrogen fixation |
URI | https://dx.doi.org/10.1016/j.jcis.2019.06.012 https://www.proquest.com/docview/2246907779 https://www.proquest.com/docview/2286859575 |
Volume | 553 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHGgPFY8iFigyUm8o3Th24vi4WoGWVuyJlbhFjmN3g1bJso-KvfDbmXES1FbqHirlkmScWJ7xzNie-YaQr7m0YGRcEkiEARCMFYEGxyNI8txILrmNFWYj34-T0UR8f4wfd8iwy4XBsMpW9zc63Wvr9km_Hc3-vCwxxxdmm1QSXJAwSQUm_AohUcq_vb6HeTA8dmvCPFiA1G3iTBPj9WRKhOxmymN4suhfxukvNe1tz-0B-dQ6jXTQ9OuQ7NjqiOwPu1ptR-Tjb7CCx-R5MkPM2WlZ0Z_BkI8Fxd1WCpKCcZ8FXa4XThtLjV7kdUV_aeNL9C6BAhOplhQxjGcbaj28BFglOp_Wq9rv9GygCxTUwKIGyaOufPGc_UwmtzcPw1HQllYIjAj5KkhjFxZh4bjUXOvCOmtgbRFqHufKOlhzWA6XEgreps6kUWG1skYlOSxvIuf4Cdmt6sqeEhqbXIOPoCU8FU4xDXNcO5MkroDvpa5HWDemmWlxx7H8xSzrAsyeMuRDhnzIMMqORT1y_d5m3qBubKWOO1Zlf8hOBmZha7urjq8Z8AtPSnRl6zUQRX7XQEq1jSZNEBxOxmf_-f9z8gHvmtDAC7K7WqztF3BxVvmll-FLsje4-zEavwEpFv3K |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcoAeEKVFUF6u1FsVkcRJHB9XK9Dy2hMrcbMcx4agVbLdR1X-fWfyWLVI7AEpJ2ecWJ7xzNie-QbgRyYsGhmXeIJgAKIgyD2NjoeXZJkRXHAbS8pGvh8lw3F08xg_bsCgy4WhsMpW9zc6vdbWbctFO5sX06KgHF9cbUIKdEH8JI3STdgidKq4B1v969vhaHWZQDdvTaRH4FGHNnemCfN6MQWhdgeyhvEMwvfs0xtNXZufqz3Ybf1G1m-G9hk2bLkP24OuXNs-fPoHWfAL_BpPCHb2uSjZkzfgo4jRgStDYaHQz5zNlzOnjWVGz7KqZL-1qav0zpGCcqnmjGCMJ6_M1ggTaJjY9LlaVPVhzysOgaEmmFUofMwVf2rmfoXx1eXDYOi11RU8E_l84aWx83M_d1xornVunTW4vfA1jzNpHW47LMdHRhLfps6kYW61tEYmGe5wQuf4AfTKqrSHwGKTaXQTtMDWyMlA4zLXziSJy_F7qTuCoJtTZVrocaqAMVFdjNmLIj4o4oOiQLsgPIKfqz7TBnhjLXXcsUr9Jz4KLcPaft87virkF12W6NJWSyQK64MDIeQ6mjQhfDgRf_vg_89he_hwf6furke3x7BDb5pIwRPoLWZLe4oezyI7ayX6L9A1AIo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrathin+g-C3N4+with+enriched+surface+carbon+vacancies+enables+highly+efficient+photocatalytic+nitrogen+fixation&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Zhang%2C+Yi&rft.au=Di%2C+Jun&rft.au=Ding%2C+Penghui&rft.au=Zhao%2C+Junze&rft.date=2019-10-01&rft.issn=0021-9797&rft.volume=553+p.530-539&rft.spage=530&rft.epage=539&rft_id=info:doi/10.1016%2Fj.jcis.2019.06.012&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |