Feasibility Research on Fish Pose Estimation Based on Rotating Box Object Detection
A video-based method to quantify animal posture movement is a powerful way to analyze animal behavior. Both humans and fish can judge the physiological state through the skeleton framework. However, it is challenging for farmers to judge the breeding state in the complex underwater environment. Ther...
Saved in:
Published in | Fishes Vol. 6; no. 4; p. 65 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A video-based method to quantify animal posture movement is a powerful way to analyze animal behavior. Both humans and fish can judge the physiological state through the skeleton framework. However, it is challenging for farmers to judge the breeding state in the complex underwater environment. Therefore, images can be transmitted by the underwater camera and monitored by a computer vision model. However, it lacks datasets in artificial intelligence and is unable to train deep neural networks. The main contributions of this paper include: (1) the world’s first fish posture database is established. 10 key points of each fish are manually marked. The fish flock images were taken in the experimental tank and 1000 single fish images were separated from the fish flock. (2) A two-stage attitude estimation model is used to detect fish key points. The evaluation of the algorithm performance indicates the precision of detection reaches 90.61%, F1-score reaches 90%, and Fps also reaches 23.26. We made a preliminary exploration on the pose estimation of fish and provided a feasible idea for fish pose estimation. |
---|---|
AbstractList | A video-based method to quantify animal posture movement is a powerful way to analyze animal behavior. Both humans and fish can judge the physiological state through the skeleton framework. However, it is challenging for farmers to judge the breeding state in the complex underwater environment. Therefore, images can be transmitted by the underwater camera and monitored by a computer vision model. However, it lacks datasets in artificial intelligence and is unable to train deep neural networks. The main contributions of this paper include: (1) the world’s first fish posture database is established. 10 key points of each fish are manually marked. The fish flock images were taken in the experimental tank and 1000 single fish images were separated from the fish flock. (2) A two-stage attitude estimation model is used to detect fish key points. The evaluation of the algorithm performance indicates the precision of detection reaches 90.61%, F1-score reaches 90%, and Fps also reaches 23.26. We made a preliminary exploration on the pose estimation of fish and provided a feasible idea for fish pose estimation. |
Author | Xu, Zhiqi Duan, Xuliang Jiang, Kailin Mou, Chaoli Gong, Xinyao Lin, Bin Li, Feiyi Li, Jiao |
Author_xml | – sequence: 1 givenname: Bin surname: Lin fullname: Lin, Bin – sequence: 2 givenname: Kailin surname: Jiang fullname: Jiang, Kailin – sequence: 3 givenname: Zhiqi surname: Xu fullname: Xu, Zhiqi – sequence: 4 givenname: Feiyi surname: Li fullname: Li, Feiyi – sequence: 5 givenname: Jiao surname: Li fullname: Li, Jiao – sequence: 6 givenname: Chaoli surname: Mou fullname: Mou, Chaoli – sequence: 7 givenname: Xinyao surname: Gong fullname: Gong, Xinyao – sequence: 8 givenname: Xuliang orcidid: 0000-0001-7559-346X surname: Duan fullname: Duan, Xuliang |
BookMark | eNp1kdtLHTEQxkNRqLfHvi_0xZe1M5tssnmsl2MFQdH2OSQ5s5rDutEkB-p_3-gpYoU-zfDNbz7mssu25jgTY18QjjjX8G0M-Z6yBAEg-09spxMILR-GYetd_pkd5LwCANRa94PeYbcLsjm4MIXy3NxQJpv8fRPnZlH9muuYqTnLJTzYEqp4bDMtX6o3sVRlvmuO4-_myq3Il-aUSg0V22fbo50yHfyNe-zX4uznyY_28ur84uT7ZesF8NIOQlpcchwdIirntRg0cux657yXGr3V2uFooSM_oJZOK_DcutFL0JpbvscuNr7LaFfmMdUp07OJNphXIaY7Y1MJfiKD6FFy4OjIi7EXTinqdb_0jktyJKrX4cbrMcWnNeViHkL2NE12prjOppNcqg45qIp-_YCu4jrNddNKYaeUUAiVajeUTzHnROPbgAjm5WPmn49Vnn_gfSivVy_Jhuk_XX8A1Aqbcw |
CitedBy_id | crossref_primary_10_1002_aff2_70036 crossref_primary_10_3390_ani12192653 crossref_primary_10_1016_j_aquaeng_2023_102367 crossref_primary_10_3390_fishes7060335 crossref_primary_10_1007_s44295_023_00002_3 crossref_primary_10_7717_peerj_cs_1262 |
Cites_doi | 10.1109/ICCV.2015.133 10.1109/CSCI46756.2018.00067 10.1109/CTISC52352.2021.00024 10.1007/s11263-017-0998-6 10.1109/CVPR.2016.91 10.2174/1876503300902010105 10.1109/ICAIE53562.2021.00064 10.5244/C.16.50 10.1109/CVPR.2017.690 10.23919/OCEANS.2015.7404464 10.1109/CVPRW50498.2020.00203 10.1109/CVPR.2017.357 10.1007/s10489-020-02154-9 10.1109/ICCV.2015.169 10.1007/978-3-319-46448-0_2 10.1145/3358528.3358574 10.1109/ITSC.2016.7795760 10.1109/WACVW.2015.11 10.1109/TPAMI.2016.2577031 10.1016/j.ecoinf.2013.10.002 10.1093/icesjms/fsz025 10.5121/sipij.2015.6206 10.1117/12.2611630 10.1109/CVPR.2014.214 10.1109/CVPR.2017.174 10.1109/TPAMI.2020.2981890 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI BKSAR CCPQU DWQXO F1W GNUQQ H95 HCIFZ L.G LK8 M7P PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 DOA |
DOI | 10.3390/fishes6040065 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Biological Science Collection Biological Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Oceanography |
EISSN | 2410-3888 |
ExternalDocumentID | oai_doaj_org_article_11c163031bec4f54b77e595dcb36ebe4 10_3390_fishes6040065 |
GroupedDBID | 8CJ 8FE 8FH AADQD AAFWJ AAHBH AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BHPHI BKSAR CCPQU CITATION D1J GROUPED_DOAJ HCIFZ IAO LK8 M7P MODMG M~E OK1 PCBAR PHGZM PHGZT PIMPY PROAC ABUWG AZQEC DWQXO F1W GNUQQ H95 L.G PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c403t-846a1d31fb1117bc948913125bbcc691ca99b1fa02ec8196b970c3abfc60993a3 |
IEDL.DBID | BENPR |
ISSN | 2410-3888 |
IngestDate | Wed Aug 27 01:30:32 EDT 2025 Fri Jul 11 08:00:16 EDT 2025 Fri Jul 25 11:48:14 EDT 2025 Thu Apr 24 22:57:30 EDT 2025 Tue Jul 01 00:28:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-846a1d31fb1117bc948913125bbcc691ca99b1fa02ec8196b970c3abfc60993a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7559-346X |
OpenAccessLink | https://www.proquest.com/docview/2612774710?pq-origsite=%requestingapplication% |
PQID | 2612774710 |
PQPubID | 2055413 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_11c163031bec4f54b77e595dcb36ebe4 proquest_miscellaneous_2636721307 proquest_journals_2612774710 crossref_primary_10_3390_fishes6040065 crossref_citationtrail_10_3390_fishes6040065 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Fishes |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Ren (ref_10) 2017; 39 ref_14 ref_13 ref_35 ref_12 ref_34 ref_11 ref_32 ref_31 Salman (ref_28) 2019; 77 Oksuz (ref_6) 2020; 43 ref_19 Xu (ref_21) 2016; 123 ref_18 ref_17 ref_16 ref_15 Hsiao (ref_33) 2014; 23 Boyat (ref_30) 2015; 6 ref_25 ref_24 ref_23 ref_22 ref_20 ref_1 ref_3 ref_29 Vimala (ref_2) 2009; 2 ref_27 ref_26 ref_9 ref_8 ref_5 ref_4 ref_7 |
References_xml | – ident: ref_27 doi: 10.1109/ICCV.2015.133 – ident: ref_5 – ident: ref_3 – ident: ref_22 doi: 10.1109/CSCI46756.2018.00067 – ident: ref_8 doi: 10.1109/CTISC52352.2021.00024 – volume: 123 start-page: 454 year: 2016 ident: ref_21 article-title: Lie-X: Depth Image Based Articulated Object Pose Estimation, Tracking, and Action Recognition on Lie Groups publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-017-0998-6 – ident: ref_12 doi: 10.1109/CVPR.2016.91 – volume: 2 start-page: 105 year: 2009 ident: ref_2 article-title: Corrosion and Protection of Electronic Components in Different Environmental Conditions—An Overview publication-title: Open Corros. J. doi: 10.2174/1876503300902010105 – ident: ref_25 doi: 10.1109/ICAIE53562.2021.00064 – ident: ref_18 doi: 10.5244/C.16.50 – ident: ref_13 doi: 10.1109/CVPR.2017.690 – ident: ref_16 – ident: ref_20 doi: 10.23919/OCEANS.2015.7404464 – ident: ref_19 doi: 10.1109/CVPRW50498.2020.00203 – ident: ref_26 doi: 10.1109/CVPR.2017.357 – ident: ref_23 doi: 10.1007/s10489-020-02154-9 – ident: ref_9 doi: 10.1109/ICCV.2015.169 – ident: ref_14 – ident: ref_1 – ident: ref_35 – ident: ref_15 doi: 10.1007/978-3-319-46448-0_2 – ident: ref_7 doi: 10.1145/3358528.3358574 – ident: ref_11 doi: 10.1109/ITSC.2016.7795760 – ident: ref_34 doi: 10.1109/WACVW.2015.11 – volume: 39 start-page: 1137 year: 2017 ident: ref_10 article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – volume: 23 start-page: 13 year: 2014 ident: ref_33 article-title: Real-world underwater fish recognition and identification, using sparse representation publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2013.10.002 – volume: 77 start-page: 1295 year: 2019 ident: ref_28 article-title: Automatic fish detection in underwater videos by a deep neural network-based hybrid motion learning system publication-title: ICES J. Mar. Sci. doi: 10.1093/icesjms/fsz025 – ident: ref_31 – ident: ref_29 – volume: 6 start-page: 63 year: 2015 ident: ref_30 article-title: A Review Paper: Noise Models in Digital Image Processing publication-title: Signal Image Process. Int. J. doi: 10.5121/sipij.2015.6206 – ident: ref_24 doi: 10.1117/12.2611630 – ident: ref_32 doi: 10.1109/CVPR.2014.214 – ident: ref_4 doi: 10.1109/CVPR.2017.174 – ident: ref_17 – volume: 43 start-page: 3388 year: 2020 ident: ref_6 article-title: Imbalance Problems in Object Detection: A Review publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.2981890 |
SSID | ssj0001999589 |
Score | 2.2147512 |
Snippet | A video-based method to quantify animal posture movement is a powerful way to analyze animal behavior. Both humans and fish can judge the physiological state... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 65 |
SubjectTerms | algorithms Animal behavior Animals Aquaculture aquaculture automation Artificial intelligence Attitudes Behaviour Breeding cameras Carp computer vision data collection Datasets Deep learning Detection Feasibility studies Fish fish detection fish pose Fisheries Fishing flocks Neural networks physiological state Physiology Posture rotating box skeleton Teaching methods Underwater cameras |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA-yJxHET5xOiSA-WdY0Tds8Op0MQSfqYG8lX_VFWnEd6H_vXdqNiYgvvjYHDXfJ3e-Sy-8IOStUaAHGqoCHkQliFYIfFNoFNlYWwltqtcUHznf3yWgS307FdKXVF9aENfTAjeL6jBmADLD04GdxIWKdpk5IYY3mCUzAM4FCzFtJpvzpCuAekcmGVJNDXt8vsMR8luCaxUCyEoQ8V_8PV-zjy80W2WyBIb1sJrRN1ly5QzbGxqmyZZXeJU8A2Npy1k-6qJmjVUmxgTl9qGaODmHLNq8R6QAClMXRxwrv28sXOqg-6FjjyQu9drUvwir3yORm-Hw1CtquCIGJQ14HABgUs5wVGtxUqo2M8aYRcIrWxiSSGSWlZmCDyBkI94mWaWi40oVJAA1yxfdJp6xKd0AogC2XORtZZ6LYiUxB8mIzkTppHWNKdMnFQk25aSnDsXPFaw6pA2o1_6bVLjlfir81XBm_CQ5Q50shpLj2H8DweWv4_C_Dd0lvYbG83XezHAnRUsyzwy45XQ7DjsFrEFW6ao4yPIG8F5zb4X_M44isR1jn4ktceqRTv8_dMQCVWp_4NfkFjtTnww priority: 102 providerName: Directory of Open Access Journals |
Title | Feasibility Research on Fish Pose Estimation Based on Rotating Box Object Detection |
URI | https://www.proquest.com/docview/2612774710 https://www.proquest.com/docview/2636721307 https://doaj.org/article/11c163031bec4f54b77e595dcb36ebe4 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS8NAEB7UvoggnliPsoL4ZDDJ7uZ4EqMtInjgAb6FveKLJGor6L93Jt1WRfQ1O-Rhdo5vjp0B2KtUaBHGqoCHsQmECtEOSu0CK5RF95ZabemB88VlcnYvzh_kg0-4DX1b5cQmtobaNoZy5Ic06iqlCCo8en4JaGsUVVf9Co1Z6KAJzjD46hT9y-ubrywL4h-Z5ePhmhzj-8OKWs2HCckuOZRvzqid2f_LJLd-ZrAEix4gsuPxjS7DjKtXYOHKOFX76dKrcIvAzbe1frBJ7xxrakaLzNl1M3Ssj6o7fpXICnRUlk5vGqq714-saN7ZlaYMDDt1o7YZq16D-0H_7uQs8NsRAiNCPgoQOKjI8qjSaK5SbXJBFUfEK1obk-SRUXmuI7yL2Bl0-4nO09BwpSuTICrkiq_DXN3UbgMYgi6XORtbZ2LhZKYwiLGZTF1uXRQp2YWDCZtK40eH0waLpxJDCOJq-YOrXdifkj-PZ2b8RVgQz6dENOq6_dC8PpZeczBEMYgZ0fagtIlKCp2mTubSGs0TlEDRhe3JjZVe_4bll7R0YXd6jJpD5RBVu-aNaHiC8S8auc3_f7EF8zF1srRNLNswN3p9czsIRUa6B53j4rQY9Lzc9dqQ_hMFAuKd |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLbK9gBCQjzFlgKDBJyImmRmkp0DQizdakvbbVVaqbcwD6cXlLTdraB_it-InccWhODWa8YaKR7bnz322ACvSxsHcmNtJOPUR8rGZAe1wygoGwje8uACP3Dem2XTY_X5RJ-swM_-LQyXVfY2sTHUofZ8R77Bra5yjqDiD2fnEU-N4uxqP0KjFYsdvPpOIdv8_fYmne-bNN2aHH2aRt1UgcirWC4iAlybBJmUjtQ8d94oztQRzjvnfWYSb41xCf1Dip7gMnMmj720rvQZeVPSStr3FqwqSaHMAFbHk9nB4fWtDvlbemTaZp5Smnij5NL2eca6wgD2G_g1MwL-goAG17buw73OIRUfWwl6ACtYPYS7-x5t1XWzfgRfyFHsymivRF-rJ-pK8OB0cVDPUUzIVLSvIMWYgDHw6mHNef7qVIzrH2Lf8Y2P2MRFU_xVPYbjG-HbExhUdYVPQZCThyMMaUCfKtQjS0FTGOkcTcAksXoI73o2Fb5rVc4TM74VFLIwV4s_uDqEt0vys7ZHx78Ix8zzJRG31m4-1BenRaepFBJ58lHJ1pF0q1Irl-eojQ7eyYwkXg1hvT-xotP3eXEtnUN4tVwmTeX0i62wvmQamVG8TUZ17f9bvITb06O93WJ3e7bzDO6kXEXTFNCsw2BxcYnPyQ1auBed7An4etPi_guThxzG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLbKVkKoEqI81IVCB6lwImqSmUl2Dgix7K76gO2qUKm3dF7pBSWluxX0r_HrsJPJtqiCW6-JNUo8tj977LEBtksdO3RjdcTj1EZCx2gHpfGRE9ohvOXOOLrg_GWa7R6L_RN5sgK_u7swVFbZ2cTGULva0hn5DrW6yimCinfKUBYxG00-nP-IaIIUZVq7cRqtiBz4q58Yvs3f741wr9-k6WT87dNuFCYMRFbEfBEh-OrE8aQ0qPK5sUpQ1g4x3xhrM5VYrZRJ8H9SbxE6M6Py2HJtSpuhZ8U1x3XvwWqOUVHcg9XheDo7uj7hQd9LDlTb2JNzhR9OZe7zjPSGwOwGEDbzAm7BQYNxk0fwMDin7GMrTeuw4qvHsHZova5CZ-sn8BWdxlBSe8W6uj1WV4yGqLNZPfdsjGajvRHJhgiSjt4e1ZTzr87YsP7FDg2d_rCRXzSFYNVTOL4Tvj2DXlVXfgMYOnx-4F3qvE2FlwONAZQbyNwr55NEyz6869hU2NC2nKZnfC8wfCGuFn9xtQ9vl-Tnbb-OfxEOiedLImqz3TyoL86KoLUYHln0V9HuoaSLUgqT514q6azhGUq_6MNmt2NF0P15cS2pfXi9fI1aS6kYXfn6kmh4hrE3Gtjn_19iC-6jmBef96YHL-BBSgU1TS3NJvQWF5f-JXpEC_MqiB6D07uW9j-RPCD7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feasibility+Research+on+Fish+Pose+Estimation+Based+on+Rotating+Box+Object+Detection&rft.jtitle=Fishes&rft.au=Lin%2C+Bin&rft.au=Jiang%2C+Kailin&rft.au=Xu%2C+Zhiqi&rft.au=Li%2C+Feiyi&rft.date=2021-12-01&rft.issn=2410-3888&rft.eissn=2410-3888&rft.volume=6&rft.issue=4&rft_id=info:doi/10.3390%2Ffishes6040065&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2410-3888&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2410-3888&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2410-3888&client=summon |