Feasibility Research on Fish Pose Estimation Based on Rotating Box Object Detection

A video-based method to quantify animal posture movement is a powerful way to analyze animal behavior. Both humans and fish can judge the physiological state through the skeleton framework. However, it is challenging for farmers to judge the breeding state in the complex underwater environment. Ther...

Full description

Saved in:
Bibliographic Details
Published inFishes Vol. 6; no. 4; p. 65
Main Authors Lin, Bin, Jiang, Kailin, Xu, Zhiqi, Li, Feiyi, Li, Jiao, Mou, Chaoli, Gong, Xinyao, Duan, Xuliang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A video-based method to quantify animal posture movement is a powerful way to analyze animal behavior. Both humans and fish can judge the physiological state through the skeleton framework. However, it is challenging for farmers to judge the breeding state in the complex underwater environment. Therefore, images can be transmitted by the underwater camera and monitored by a computer vision model. However, it lacks datasets in artificial intelligence and is unable to train deep neural networks. The main contributions of this paper include: (1) the world’s first fish posture database is established. 10 key points of each fish are manually marked. The fish flock images were taken in the experimental tank and 1000 single fish images were separated from the fish flock. (2) A two-stage attitude estimation model is used to detect fish key points. The evaluation of the algorithm performance indicates the precision of detection reaches 90.61%, F1-score reaches 90%, and Fps also reaches 23.26. We made a preliminary exploration on the pose estimation of fish and provided a feasible idea for fish pose estimation.
AbstractList A video-based method to quantify animal posture movement is a powerful way to analyze animal behavior. Both humans and fish can judge the physiological state through the skeleton framework. However, it is challenging for farmers to judge the breeding state in the complex underwater environment. Therefore, images can be transmitted by the underwater camera and monitored by a computer vision model. However, it lacks datasets in artificial intelligence and is unable to train deep neural networks. The main contributions of this paper include: (1) the world’s first fish posture database is established. 10 key points of each fish are manually marked. The fish flock images were taken in the experimental tank and 1000 single fish images were separated from the fish flock. (2) A two-stage attitude estimation model is used to detect fish key points. The evaluation of the algorithm performance indicates the precision of detection reaches 90.61%, F1-score reaches 90%, and Fps also reaches 23.26. We made a preliminary exploration on the pose estimation of fish and provided a feasible idea for fish pose estimation.
Author Xu, Zhiqi
Duan, Xuliang
Jiang, Kailin
Mou, Chaoli
Gong, Xinyao
Lin, Bin
Li, Feiyi
Li, Jiao
Author_xml – sequence: 1
  givenname: Bin
  surname: Lin
  fullname: Lin, Bin
– sequence: 2
  givenname: Kailin
  surname: Jiang
  fullname: Jiang, Kailin
– sequence: 3
  givenname: Zhiqi
  surname: Xu
  fullname: Xu, Zhiqi
– sequence: 4
  givenname: Feiyi
  surname: Li
  fullname: Li, Feiyi
– sequence: 5
  givenname: Jiao
  surname: Li
  fullname: Li, Jiao
– sequence: 6
  givenname: Chaoli
  surname: Mou
  fullname: Mou, Chaoli
– sequence: 7
  givenname: Xinyao
  surname: Gong
  fullname: Gong, Xinyao
– sequence: 8
  givenname: Xuliang
  orcidid: 0000-0001-7559-346X
  surname: Duan
  fullname: Duan, Xuliang
BookMark eNp1kdtLHTEQxkNRqLfHvi_0xZe1M5tssnmsl2MFQdH2OSQ5s5rDutEkB-p_3-gpYoU-zfDNbz7mssu25jgTY18QjjjX8G0M-Z6yBAEg-09spxMILR-GYetd_pkd5LwCANRa94PeYbcLsjm4MIXy3NxQJpv8fRPnZlH9muuYqTnLJTzYEqp4bDMtX6o3sVRlvmuO4-_myq3Il-aUSg0V22fbo50yHfyNe-zX4uznyY_28ur84uT7ZesF8NIOQlpcchwdIirntRg0cux657yXGr3V2uFooSM_oJZOK_DcutFL0JpbvscuNr7LaFfmMdUp07OJNphXIaY7Y1MJfiKD6FFy4OjIi7EXTinqdb_0jktyJKrX4cbrMcWnNeViHkL2NE12prjOppNcqg45qIp-_YCu4jrNddNKYaeUUAiVajeUTzHnROPbgAjm5WPmn49Vnn_gfSivVy_Jhuk_XX8A1Aqbcw
CitedBy_id crossref_primary_10_1002_aff2_70036
crossref_primary_10_3390_ani12192653
crossref_primary_10_1016_j_aquaeng_2023_102367
crossref_primary_10_3390_fishes7060335
crossref_primary_10_1007_s44295_023_00002_3
crossref_primary_10_7717_peerj_cs_1262
Cites_doi 10.1109/ICCV.2015.133
10.1109/CSCI46756.2018.00067
10.1109/CTISC52352.2021.00024
10.1007/s11263-017-0998-6
10.1109/CVPR.2016.91
10.2174/1876503300902010105
10.1109/ICAIE53562.2021.00064
10.5244/C.16.50
10.1109/CVPR.2017.690
10.23919/OCEANS.2015.7404464
10.1109/CVPRW50498.2020.00203
10.1109/CVPR.2017.357
10.1007/s10489-020-02154-9
10.1109/ICCV.2015.169
10.1007/978-3-319-46448-0_2
10.1145/3358528.3358574
10.1109/ITSC.2016.7795760
10.1109/WACVW.2015.11
10.1109/TPAMI.2016.2577031
10.1016/j.ecoinf.2013.10.002
10.1093/icesjms/fsz025
10.5121/sipij.2015.6206
10.1117/12.2611630
10.1109/CVPR.2014.214
10.1109/CVPR.2017.174
10.1109/TPAMI.2020.2981890
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
F1W
GNUQQ
H95
HCIFZ
L.G
LK8
M7P
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
DOA
DOI 10.3390/fishes6040065
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Biological Science Collection
Biological Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
EISSN 2410-3888
ExternalDocumentID oai_doaj_org_article_11c163031bec4f54b77e595dcb36ebe4
10_3390_fishes6040065
GroupedDBID 8CJ
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CITATION
D1J
GROUPED_DOAJ
HCIFZ
IAO
LK8
M7P
MODMG
M~E
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
ABUWG
AZQEC
DWQXO
F1W
GNUQQ
H95
L.G
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c403t-846a1d31fb1117bc948913125bbcc691ca99b1fa02ec8196b970c3abfc60993a3
IEDL.DBID BENPR
ISSN 2410-3888
IngestDate Wed Aug 27 01:30:32 EDT 2025
Fri Jul 11 08:00:16 EDT 2025
Fri Jul 25 11:48:14 EDT 2025
Thu Apr 24 22:57:30 EDT 2025
Tue Jul 01 00:28:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-846a1d31fb1117bc948913125bbcc691ca99b1fa02ec8196b970c3abfc60993a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7559-346X
OpenAccessLink https://www.proquest.com/docview/2612774710?pq-origsite=%requestingapplication%
PQID 2612774710
PQPubID 2055413
ParticipantIDs doaj_primary_oai_doaj_org_article_11c163031bec4f54b77e595dcb36ebe4
proquest_miscellaneous_2636721307
proquest_journals_2612774710
crossref_primary_10_3390_fishes6040065
crossref_citationtrail_10_3390_fishes6040065
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Fishes
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ren (ref_10) 2017; 39
ref_14
ref_13
ref_35
ref_12
ref_34
ref_11
ref_32
ref_31
Salman (ref_28) 2019; 77
Oksuz (ref_6) 2020; 43
ref_19
Xu (ref_21) 2016; 123
ref_18
ref_17
ref_16
ref_15
Hsiao (ref_33) 2014; 23
Boyat (ref_30) 2015; 6
ref_25
ref_24
ref_23
ref_22
ref_20
ref_1
ref_3
ref_29
Vimala (ref_2) 2009; 2
ref_27
ref_26
ref_9
ref_8
ref_5
ref_4
ref_7
References_xml – ident: ref_27
  doi: 10.1109/ICCV.2015.133
– ident: ref_5
– ident: ref_3
– ident: ref_22
  doi: 10.1109/CSCI46756.2018.00067
– ident: ref_8
  doi: 10.1109/CTISC52352.2021.00024
– volume: 123
  start-page: 454
  year: 2016
  ident: ref_21
  article-title: Lie-X: Depth Image Based Articulated Object Pose Estimation, Tracking, and Action Recognition on Lie Groups
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-017-0998-6
– ident: ref_12
  doi: 10.1109/CVPR.2016.91
– volume: 2
  start-page: 105
  year: 2009
  ident: ref_2
  article-title: Corrosion and Protection of Electronic Components in Different Environmental Conditions—An Overview
  publication-title: Open Corros. J.
  doi: 10.2174/1876503300902010105
– ident: ref_25
  doi: 10.1109/ICAIE53562.2021.00064
– ident: ref_18
  doi: 10.5244/C.16.50
– ident: ref_13
  doi: 10.1109/CVPR.2017.690
– ident: ref_16
– ident: ref_20
  doi: 10.23919/OCEANS.2015.7404464
– ident: ref_19
  doi: 10.1109/CVPRW50498.2020.00203
– ident: ref_26
  doi: 10.1109/CVPR.2017.357
– ident: ref_23
  doi: 10.1007/s10489-020-02154-9
– ident: ref_9
  doi: 10.1109/ICCV.2015.169
– ident: ref_14
– ident: ref_1
– ident: ref_35
– ident: ref_15
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref_7
  doi: 10.1145/3358528.3358574
– ident: ref_11
  doi: 10.1109/ITSC.2016.7795760
– ident: ref_34
  doi: 10.1109/WACVW.2015.11
– volume: 39
  start-page: 1137
  year: 2017
  ident: ref_10
  article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 23
  start-page: 13
  year: 2014
  ident: ref_33
  article-title: Real-world underwater fish recognition and identification, using sparse representation
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2013.10.002
– volume: 77
  start-page: 1295
  year: 2019
  ident: ref_28
  article-title: Automatic fish detection in underwater videos by a deep neural network-based hybrid motion learning system
  publication-title: ICES J. Mar. Sci.
  doi: 10.1093/icesjms/fsz025
– ident: ref_31
– ident: ref_29
– volume: 6
  start-page: 63
  year: 2015
  ident: ref_30
  article-title: A Review Paper: Noise Models in Digital Image Processing
  publication-title: Signal Image Process. Int. J.
  doi: 10.5121/sipij.2015.6206
– ident: ref_24
  doi: 10.1117/12.2611630
– ident: ref_32
  doi: 10.1109/CVPR.2014.214
– ident: ref_4
  doi: 10.1109/CVPR.2017.174
– ident: ref_17
– volume: 43
  start-page: 3388
  year: 2020
  ident: ref_6
  article-title: Imbalance Problems in Object Detection: A Review
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.2981890
SSID ssj0001999589
Score 2.2147512
Snippet A video-based method to quantify animal posture movement is a powerful way to analyze animal behavior. Both humans and fish can judge the physiological state...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 65
SubjectTerms algorithms
Animal behavior
Animals
Aquaculture
aquaculture automation
Artificial intelligence
Attitudes
Behaviour
Breeding
cameras
Carp
computer vision
data collection
Datasets
Deep learning
Detection
Feasibility studies
Fish
fish detection
fish pose
Fisheries
Fishing
flocks
Neural networks
physiological state
Physiology
Posture
rotating box
skeleton
Teaching methods
Underwater cameras
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA-yJxHET5xOiSA-WdY0Tds8Op0MQSfqYG8lX_VFWnEd6H_vXdqNiYgvvjYHDXfJ3e-Sy-8IOStUaAHGqoCHkQliFYIfFNoFNlYWwltqtcUHznf3yWgS307FdKXVF9aENfTAjeL6jBmADLD04GdxIWKdpk5IYY3mCUzAM4FCzFtJpvzpCuAekcmGVJNDXt8vsMR8luCaxUCyEoQ8V_8PV-zjy80W2WyBIb1sJrRN1ly5QzbGxqmyZZXeJU8A2Npy1k-6qJmjVUmxgTl9qGaODmHLNq8R6QAClMXRxwrv28sXOqg-6FjjyQu9drUvwir3yORm-Hw1CtquCIGJQ14HABgUs5wVGtxUqo2M8aYRcIrWxiSSGSWlZmCDyBkI94mWaWi40oVJAA1yxfdJp6xKd0AogC2XORtZZ6LYiUxB8mIzkTppHWNKdMnFQk25aSnDsXPFaw6pA2o1_6bVLjlfir81XBm_CQ5Q50shpLj2H8DweWv4_C_Dd0lvYbG83XezHAnRUsyzwy45XQ7DjsFrEFW6ao4yPIG8F5zb4X_M44isR1jn4ktceqRTv8_dMQCVWp_4NfkFjtTnww
  priority: 102
  providerName: Directory of Open Access Journals
Title Feasibility Research on Fish Pose Estimation Based on Rotating Box Object Detection
URI https://www.proquest.com/docview/2612774710
https://www.proquest.com/docview/2636721307
https://doaj.org/article/11c163031bec4f54b77e595dcb36ebe4
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS8NAEB7UvoggnliPsoL4ZDDJ7uZ4EqMtInjgAb6FveKLJGor6L93Jt1WRfQ1O-Rhdo5vjp0B2KtUaBHGqoCHsQmECtEOSu0CK5RF95ZabemB88VlcnYvzh_kg0-4DX1b5cQmtobaNoZy5Ic06iqlCCo8en4JaGsUVVf9Co1Z6KAJzjD46hT9y-ubrywL4h-Z5ePhmhzj-8OKWs2HCckuOZRvzqid2f_LJLd-ZrAEix4gsuPxjS7DjKtXYOHKOFX76dKrcIvAzbe1frBJ7xxrakaLzNl1M3Ssj6o7fpXICnRUlk5vGqq714-saN7ZlaYMDDt1o7YZq16D-0H_7uQs8NsRAiNCPgoQOKjI8qjSaK5SbXJBFUfEK1obk-SRUXmuI7yL2Bl0-4nO09BwpSuTICrkiq_DXN3UbgMYgi6XORtbZ2LhZKYwiLGZTF1uXRQp2YWDCZtK40eH0waLpxJDCOJq-YOrXdifkj-PZ2b8RVgQz6dENOq6_dC8PpZeczBEMYgZ0fagtIlKCp2mTubSGs0TlEDRhe3JjZVe_4bll7R0YXd6jJpD5RBVu-aNaHiC8S8auc3_f7EF8zF1srRNLNswN3p9czsIRUa6B53j4rQY9Lzc9dqQ_hMFAuKd
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLbK9gBCQjzFlgKDBJyImmRmkp0DQizdakvbbVVaqbcwD6cXlLTdraB_it-InccWhODWa8YaKR7bnz322ACvSxsHcmNtJOPUR8rGZAe1wygoGwje8uACP3Dem2XTY_X5RJ-swM_-LQyXVfY2sTHUofZ8R77Bra5yjqDiD2fnEU-N4uxqP0KjFYsdvPpOIdv8_fYmne-bNN2aHH2aRt1UgcirWC4iAlybBJmUjtQ8d94oztQRzjvnfWYSb41xCf1Dip7gMnMmj720rvQZeVPSStr3FqwqSaHMAFbHk9nB4fWtDvlbemTaZp5Smnij5NL2eca6wgD2G_g1MwL-goAG17buw73OIRUfWwl6ACtYPYS7-x5t1XWzfgRfyFHsymivRF-rJ-pK8OB0cVDPUUzIVLSvIMWYgDHw6mHNef7qVIzrH2Lf8Y2P2MRFU_xVPYbjG-HbExhUdYVPQZCThyMMaUCfKtQjS0FTGOkcTcAksXoI73o2Fb5rVc4TM74VFLIwV4s_uDqEt0vys7ZHx78Ix8zzJRG31m4-1BenRaepFBJ58lHJ1pF0q1Irl-eojQ7eyYwkXg1hvT-xotP3eXEtnUN4tVwmTeX0i62wvmQamVG8TUZ17f9bvITb06O93WJ3e7bzDO6kXEXTFNCsw2BxcYnPyQ1auBed7An4etPi_guThxzG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLbKVkKoEqI81IVCB6lwImqSmUl2Dgix7K76gO2qUKm3dF7pBSWluxX0r_HrsJPJtqiCW6-JNUo8tj977LEBtksdO3RjdcTj1EZCx2gHpfGRE9ohvOXOOLrg_GWa7R6L_RN5sgK_u7swVFbZ2cTGULva0hn5DrW6yimCinfKUBYxG00-nP-IaIIUZVq7cRqtiBz4q58Yvs3f741wr9-k6WT87dNuFCYMRFbEfBEh-OrE8aQ0qPK5sUpQ1g4x3xhrM5VYrZRJ8H9SbxE6M6Py2HJtSpuhZ8U1x3XvwWqOUVHcg9XheDo7uj7hQd9LDlTb2JNzhR9OZe7zjPSGwOwGEDbzAm7BQYNxk0fwMDin7GMrTeuw4qvHsHZova5CZ-sn8BWdxlBSe8W6uj1WV4yGqLNZPfdsjGajvRHJhgiSjt4e1ZTzr87YsP7FDg2d_rCRXzSFYNVTOL4Tvj2DXlVXfgMYOnx-4F3qvE2FlwONAZQbyNwr55NEyz6869hU2NC2nKZnfC8wfCGuFn9xtQ9vl-Tnbb-OfxEOiedLImqz3TyoL86KoLUYHln0V9HuoaSLUgqT514q6azhGUq_6MNmt2NF0P15cS2pfXi9fI1aS6kYXfn6kmh4hrE3Gtjn_19iC-6jmBef96YHL-BBSgU1TS3NJvQWF5f-JXpEC_MqiB6D07uW9j-RPCD7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feasibility+Research+on+Fish+Pose+Estimation+Based+on+Rotating+Box+Object+Detection&rft.jtitle=Fishes&rft.au=Lin%2C+Bin&rft.au=Jiang%2C+Kailin&rft.au=Xu%2C+Zhiqi&rft.au=Li%2C+Feiyi&rft.date=2021-12-01&rft.issn=2410-3888&rft.eissn=2410-3888&rft.volume=6&rft.issue=4&rft_id=info:doi/10.3390%2Ffishes6040065&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2410-3888&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2410-3888&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2410-3888&client=summon