Demonstration of the Blood-Stage Plasmodium falciparum Controlled Human Malaria Infection Model to Assess Efficacy of the P. falciparum Apical Membrane Antigen 1 Vaccine, FMP2.1/AS01
Background. Models of controlled human malaria infection (CHMI) initiated by mosquito bite have been widely used to assess efficacy of preerythrocytic vaccine candidates in small proof-of-concept phase 2a clinical trials. Efficacy testing of blood-stage malaria parasite vaccines, however, has genera...
Saved in:
Published in | The Journal of infectious diseases Vol. 213; no. 11; pp. 1743 - 1751 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
01.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background. Models of controlled human malaria infection (CHMI) initiated by mosquito bite have been widely used to assess efficacy of preerythrocytic vaccine candidates in small proof-of-concept phase 2a clinical trials. Efficacy testing of blood-stage malaria parasite vaccines, however, has generally relied on larger-scale phase 2b field trials in malaria-endemic populations. We report the use of a blood-stage P. falciparum CHMI model to assess blood-stage vaccine candidates, using their impact on the parasite multiplication rate (PMR) as the primary efficacy end point. Methods. Fifteen healthy United Kingdom adult volunteers were vaccinated with FMP2.1, a protein vaccine that is based on the 3D7 clone sequence of apical membrane antigen 1 (AMA1) and formulated in Adjuvant System 01 (AS01). Twelve vaccinees and 15 infectivity controls subsequently underwent blood-stage CHMI. Parasitemia was monitored by quantitative real-time polymerase chain reaction (PCR) analysis, and PMR was modeled from these data. Results. FMP2.1/AS01 elicited anti-AMA1 T-cell and serum antibody responses. Analysis of purified immunoglobulin G showed functional growth inhibitory activity against P. falciparum in vitro. There were no vaccine- or CHMI-related safety concerns. All volunteers developed blood-stage parasitemia, with no impact of the vaccine on PMR. Conclusions. FMP2.1/AS01 demonstrated no efficacy after blood-stage CHMI. However, the model induced highly reproducible infection in all volunteers and will accelerate proof-of-concept testing of future blood-stage vaccine candidates. Clinical Trials Registration. NCT02044198. |
---|---|
AbstractList | BACKGROUNDModels of controlled human malaria infection (CHMI) initiated by mosquito bite have been widely used to assess efficacy of preerythrocytic vaccine candidates in small proof-of-concept phase 2a clinical trials. Efficacy testing of blood-stage malaria parasite vaccines, however, has generally relied on larger-scale phase 2b field trials in malaria-endemic populations. We report the use of a blood-stage P. falciparum CHMI model to assess blood-stage vaccine candidates, using their impact on the parasite multiplication rate (PMR) as the primary efficacy end point. METHODSFifteen healthy United Kingdom adult volunteers were vaccinated with FMP2.1, a protein vaccine that is based on the 3D7 clone sequence of apical membrane antigen 1 (AMA1) and formulated in Adjuvant System 01 (AS01). Twelve vaccinees and 15 infectivity controls subsequently underwent blood-stage CHMI. Parasitemia was monitored by quantitative real-time polymerase chain reaction (PCR) analysis, and PMR was modeled from these data. RESULTSFMP2.1/AS01 elicited anti-AMA1 T-cell and serum antibody responses. Analysis of purified immunoglobulin G showed functional growth inhibitory activity against P. falciparum in vitro. There were no vaccine- or CHMI-related safety concerns. All volunteers developed blood-stage parasitemia, with no impact of the vaccine on PMR. CONCLUSIONSFMP2.1/AS01 demonstrated no efficacy after blood-stage CHMI. However, the model induced highly reproducible infection in all volunteers and will accelerate proof-of-concept testing of future blood-stage vaccine candidates. CLINICAL TRIALS REGISTRATIONNCT02044198. Background. Models of controlled human malaria infection (CHMI) initiated by mosquito bite have been widely used to assess efficacy of preerythrocytic vaccine candidates in small proof-of-concept phase 2a clinical trials. Efficacy testing of blood-stage malaria parasite vaccines, however, has generally relied on larger-scale phase 2b field trials in malaria-endemic populations. We report the use of a blood-stage P. falciparum CHMI model to assess blood-stage vaccine candidates, using their impact on the parasite multiplication rate (PMR) as the primary efficacy end point. Methods. Fifteen healthy United Kingdom adult volunteers were vaccinated with FMP2.1, a protein vaccine that is based on the 3D7 clone sequence of apical membrane antigen 1 (AMA1) and formulated in Adjuvant System 01 (AS01). Twelve vaccinees and 15 infectivity controls subsequently underwent blood-stage CHMI. Parasitemia was monitored by quantitative real-time polymerase chain reaction (PCR) analysis, and PMR was modeled from these data. Results. FMP2.1/AS01 elicited anti-AMA1 T-cell and serum antibody responses. Analysis of purified immunoglobulin G showed functional growth inhibitory activity against P. falciparum in vitro. There were no vaccine- or CHMI-related safety concerns. All volunteers developed blood-stage parasitemia, with no impact of the vaccine on PMR. Conclusions. FMP2.1/AS01 demonstrated no efficacy after blood-stage CHMI. However, the model induced highly reproducible infection in all volunteers and will accelerate proof-of-concept testing of future blood-stage vaccine candidates. Clinical Trials Registration. NCT02044198. Models of controlled human malaria infection (CHMI) initiated by mosquito bite have been widely used to assess efficacy of preerythrocytic vaccine candidates in small proof-of-concept phase 2a clinical trials. Efficacy testing of blood-stage malaria parasite vaccines, however, has generally relied on larger-scale phase 2b field trials in malaria-endemic populations. We report the use of a blood-stage P. falciparum CHMI model to assess blood-stage vaccine candidates, using their impact on the parasite multiplication rate (PMR) as the primary efficacy end point. Fifteen healthy United Kingdom adult volunteers were vaccinated with FMP2.1, a protein vaccine that is based on the 3D7 clone sequence of apical membrane antigen 1 (AMA1) and formulated in Adjuvant System 01 (AS01). Twelve vaccinees and 15 infectivity controls subsequently underwent blood-stage CHMI. Parasitemia was monitored by quantitative real-time polymerase chain reaction (PCR) analysis, and PMR was modeled from these data. FMP2.1/AS01 elicited anti-AMA1 T-cell and serum antibody responses. Analysis of purified immunoglobulin G showed functional growth inhibitory activity against P. falciparum in vitro. There were no vaccine- or CHMI-related safety concerns. All volunteers developed blood-stage parasitemia, with no impact of the vaccine on PMR. FMP2.1/AS01 demonstrated no efficacy after blood-stage CHMI. However, the model induced highly reproducible infection in all volunteers and will accelerate proof-of-concept testing of future blood-stage vaccine candidates. NCT02044198. Background.Models of controlled human malaria infection (CHMI) initiated by mosquito bite have been widely used to assess efficacy of preerythrocytic vaccine candidates in small proof-of-concept phase 2a clinical trials. Efficacy testing of blood-stage malaria parasite vaccines, however, has generally relied on larger-scale phase 2b field trials in malaria-endemic populations. We report the use of a blood-stage P. falciparum CHMI model to assess blood-stage vaccine candidates, using their impact on the parasite multiplication rate (PMR) as the primary efficacy end point. Methods.Fifteen healthy United Kingdom adult volunteers were vaccinated with FMP2.1, a protein vaccine that is based on the 3D7 clone sequence of apical membrane antigen 1 (AMA1) and formulated in Adjuvant System 01 (AS01). Twelve vaccinees and 15 infectivity controls subsequently underwent blood-stage CHMI. Parasitemia was monitored by quantitative real-time polymerase chain reaction (PCR) analysis, and PMR was modeled from these data. Results.FMP2.1/AS01 elicited anti-AMA1 T-cell and serum antibody responses. Analysis of purified immunoglobulin G showed functional growth inhibitory activity against P. falciparum in vitro. There were no vaccine- or CHMI-related safety concerns. All volunteers developed blood-stage parasitemia, with no impact of the vaccine on PMR. Conclusions.FMP2.1/AS01 demonstrated no efficacy after blood-stage CHMI. However, the model induced highly reproducible infection in all volunteers and will accelerate proof-of-concept testing of future blood-stage vaccine candidates. Background. Models of controlled human malaria infection (CHMI) initiated by mosquito bite have been widely used to assess efficacy of preerythrocytic vaccine candidates in small proof-of-concept phase 2a clinical trials. Efficacy testing of blood-stage malaria parasite vaccines, however, has generally relied on larger-scale phase 2b field trials in malaria-endemic populations. We report the use of a blood-stage P. falciparum CHMI model to assess blood-stage vaccine candidates, using their impact on the parasite multiplication rate (PMR) as the primary efficacy end point. Methods. Fifteen healthy United Kingdom adult volunteers were vaccinated with FMP2.1, a protein vaccine that is based on the 3D7 clone sequence of apical membrane antigen 1 (AMA1) and formulated in Adjuvant System 01 (AS01). Twelve vaccinees and 15 infectivity controls subsequently underwent blood-stage CHMI. Parasitemia was monitored by quantitative real-time polymerase chain reaction (PCR) analysis, and PMR was modeled from these data. Results. FMP2.1/AS01 elicited anti-AMA1 T-cell and serum antibody responses. Analysis of purified immunoglobulin G showed functional growth inhibitory activity against P. falciparum in vitro. There were no vaccine- or CHMI-related safety concerns. All volunteers developed blood-stage parasitemia, with no impact of the vaccine on PMR. Conclusions. FMP2.1/AS01 demonstrated no efficacy after blood-stage CHMI. However, the model induced highly reproducible infection in all volunteers and will accelerate proof-of-concept testing of future blood-stage vaccine candidates. Clinical Trials Registration. NCT02044198. |
Author | Diggs, Carter L. Ockenhouse, Christian F. Qabar, Aziz N. Soisson, Lorraine A. Elias, Sean C. Halstead, Fenella D. Edwards, Nick J. Draper, Simon J. Miura, Kazutoyo Woods, Colleen Birkett, Ashley J. Rampling, Thomas W. Douglas, Alexander D. Sukhtankar, Priya Lawrie, Alison M. Dutta, Sheetij Williams, Nicola C. Faust, Saul N. Roberts, Rachel Vekemans, Johan Payne, Ruth O. Poulton, Ian D. Cooke, Graham S. Milne, Kathryn H. Hodgson, Susanne H. Venkatraman, Navin Kathcart, April K. Waters, Norman C. Biswas, Sumi Brown, Rebecca E. de Graaf, Hans Silk, Sarah E. Hill, Adrian V. S. Nugent, Fay L. Long, Carole A. Ivinson, Karen Labbé, Geneviève M. McCarthy, James S. |
Author_xml | – sequence: 1 givenname: Ruth O. surname: Payne fullname: Payne, Ruth O. – sequence: 2 givenname: Kathryn H. surname: Milne fullname: Milne, Kathryn H. – sequence: 3 givenname: Sean C. surname: Elias fullname: Elias, Sean C. – sequence: 4 givenname: Nick J. surname: Edwards fullname: Edwards, Nick J. – sequence: 5 givenname: Alexander D. surname: Douglas fullname: Douglas, Alexander D. – sequence: 6 givenname: Rebecca E. surname: Brown fullname: Brown, Rebecca E. – sequence: 7 givenname: Sarah E. surname: Silk fullname: Silk, Sarah E. – sequence: 8 givenname: Sumi surname: Biswas fullname: Biswas, Sumi – sequence: 9 givenname: Kazutoyo surname: Miura fullname: Miura, Kazutoyo – sequence: 10 givenname: Rachel surname: Roberts fullname: Roberts, Rachel – sequence: 11 givenname: Thomas W. surname: Rampling fullname: Rampling, Thomas W. – sequence: 12 givenname: Navin surname: Venkatraman fullname: Venkatraman, Navin – sequence: 13 givenname: Susanne H. surname: Hodgson fullname: Hodgson, Susanne H. – sequence: 14 givenname: Geneviève M. surname: Labbé fullname: Labbé, Geneviève M. – sequence: 15 givenname: Fenella D. surname: Halstead fullname: Halstead, Fenella D. – sequence: 16 givenname: Ian D. surname: Poulton fullname: Poulton, Ian D. – sequence: 17 givenname: Fay L. surname: Nugent fullname: Nugent, Fay L. – sequence: 18 givenname: Hans surname: de Graaf fullname: de Graaf, Hans – sequence: 19 givenname: Priya surname: Sukhtankar fullname: Sukhtankar, Priya – sequence: 20 givenname: Nicola C. surname: Williams fullname: Williams, Nicola C. – sequence: 21 givenname: Christian F. surname: Ockenhouse fullname: Ockenhouse, Christian F. – sequence: 22 givenname: April K. surname: Kathcart fullname: Kathcart, April K. – sequence: 23 givenname: Aziz N. surname: Qabar fullname: Qabar, Aziz N. – sequence: 24 givenname: Norman C. surname: Waters fullname: Waters, Norman C. – sequence: 25 givenname: Lorraine A. surname: Soisson fullname: Soisson, Lorraine A. – sequence: 26 givenname: Ashley J. surname: Birkett fullname: Birkett, Ashley J. – sequence: 27 givenname: Graham S. surname: Cooke fullname: Cooke, Graham S. – sequence: 28 givenname: Saul N. surname: Faust fullname: Faust, Saul N. – sequence: 29 givenname: Colleen surname: Woods fullname: Woods, Colleen – sequence: 30 givenname: Karen surname: Ivinson fullname: Ivinson, Karen – sequence: 31 givenname: James S. surname: McCarthy fullname: McCarthy, James S. – sequence: 32 givenname: Carter L. surname: Diggs fullname: Diggs, Carter L. – sequence: 33 givenname: Johan surname: Vekemans fullname: Vekemans, Johan – sequence: 34 givenname: Carole A. surname: Long fullname: Long, Carole A. – sequence: 35 givenname: Adrian V. S. surname: Hill fullname: Hill, Adrian V. S. – sequence: 36 givenname: Alison M. surname: Lawrie fullname: Lawrie, Alison M. – sequence: 37 givenname: Sheetij surname: Dutta fullname: Dutta, Sheetij – sequence: 38 givenname: Simon J. surname: Draper fullname: Draper, Simon J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26908756$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkkFv1DAQhS1URLeFI0eQjxzIrh3HdnxBCktLK3XFSgWukeNMtl459mInoP4xfh-BtKXcOI2l9_nNPOmdoCMfPCD0kpIlJYqtrO9am1Z7-4Mw9QQtKGcyE4KyI7QgJM8zWip1jE5S2hNCCibkM3ScC0VKycUC_fwAffBpiHqwwePQ4eEG8HsXQptdD3oHeOt06kNrxx532hl70HF6roMfYnAOWnwx9trjjXY6Wo0vfQfmj9cmtODwEHCVEqSEz7rOGm1u75dsl48Nq8MkOryBvonaA678YHfgMcVftTHWw1t8vtnmS7qqrgl9jp5OfxO8uJun6Mv52ef1RXb16ePlurrKTEHYkJUsZ2XLqDYdqNzQMleCCi407aBhDeQt51Bw0UqmADg3FEqpKemkMQ0rFDtF72bfw9j00BqYUmtXH6Ltdbytg7b1v4q3N_UufK-LkstC8sngzZ1BDN9GSEPd22TAuSljGFNNpSKqEJKr_0JJTsq8nNBsRk0MKUXoHi6ipP5di3quRT3XYuJfP47xQN_3YAJezcA-DSH-1QtJpSgY-wUmScK_ |
CitedBy_id | crossref_primary_10_1038_s41598_020_67877_8 crossref_primary_10_1038_srep30357 crossref_primary_10_1172_JCI98012 crossref_primary_10_1186_s43141_021_00199_y crossref_primary_10_1186_s12936_021_03900_1 crossref_primary_10_24267_23897325_428 crossref_primary_10_1038_s41541_023_00796_7 crossref_primary_10_7554_eLife_62800 crossref_primary_10_1038_s41541_021_00319_2 crossref_primary_10_1016_j_molimm_2023_09_013 crossref_primary_10_1080_14760584_2018_1435278 crossref_primary_10_3389_fimmu_2022_1005332 crossref_primary_10_3389_fimmu_2022_984323 crossref_primary_10_1016_j_pt_2016_11_001 crossref_primary_10_1172_jci_insight_93683 crossref_primary_10_3389_fimmu_2018_02550 crossref_primary_10_1080_14760584_2021_1882309 crossref_primary_10_1080_14789450_2024_2336994 crossref_primary_10_24267_23897325_353 crossref_primary_10_1371_journal_pone_0164053 crossref_primary_10_1186_s12936_019_2935_3 crossref_primary_10_1172_jci_insight_96381 crossref_primary_10_1007_s40259_023_00623_4 crossref_primary_10_1016_j_vaccine_2024_03_072 crossref_primary_10_3389_fmicb_2019_02712 crossref_primary_10_1101_cshperspect_a025627 crossref_primary_10_1038_s41541_020_0196_3 crossref_primary_10_1080_14760584_2017_1341317 crossref_primary_10_3389_fimmu_2018_00524 crossref_primary_10_1172_jci_insight_152465 crossref_primary_10_1016_j_vaccine_2017_01_001 crossref_primary_10_1016_j_vaccine_2021_03_093 crossref_primary_10_3390_vaccines12060586 crossref_primary_10_1016_j_smim_2018_08_002 crossref_primary_10_1038_s41541_017_0035_3 crossref_primary_10_3347_kjp_2018_56_2_153 crossref_primary_10_3389_fimmu_2021_720550 crossref_primary_10_1128_cmr_00071_23 crossref_primary_10_1016_j_medj_2023_07_003 crossref_primary_10_1186_s12936_017_1841_9 crossref_primary_10_1016_S1473_3099_23_00294_3 crossref_primary_10_1126_scitranslmed_adf1782 crossref_primary_10_3390_tropicalmed7110350 crossref_primary_10_1128_cmr_00008_21 crossref_primary_10_1371_journal_ppat_1007599 crossref_primary_10_3390_microorganisms8111748 crossref_primary_10_1186_s12936_017_1999_1 crossref_primary_10_1038_s41467_023_41636_5 crossref_primary_10_1080_14760584_2019_1561289 crossref_primary_10_1093_cid_ciy1087 crossref_primary_10_3389_fimmu_2017_00743 crossref_primary_10_1186_s12936_022_04199_2 crossref_primary_10_1016_j_medj_2021_03_014 crossref_primary_10_1016_j_ijpara_2021_01_006 crossref_primary_10_2147_RMHP_S219294 crossref_primary_10_1016_j_vaccine_2024_02_029 crossref_primary_10_1016_j_gene_2023_147956 crossref_primary_10_1016_j_mib_2016_04_006 crossref_primary_10_1080_14760584_2019_1580577 crossref_primary_10_1186_s12879_017_2686_0 crossref_primary_10_1111_imr_12828 crossref_primary_10_1016_j_immuni_2024_05_001 crossref_primary_10_1016_j_pt_2020_04_003 crossref_primary_10_1128_IAI_00479_17 crossref_primary_10_1126_scitranslmed_aau1458 crossref_primary_10_1038_s41467_023_40878_7 crossref_primary_10_3389_fimmu_2022_926680 crossref_primary_10_3389_fmicb_2016_01604 crossref_primary_10_1038_s41541_017_0015_7 crossref_primary_10_3389_fimmu_2022_1006954 crossref_primary_10_1038_s41598_017_17505_9 crossref_primary_10_1016_j_chom_2018_06_008 crossref_primary_10_1038_s41541_018_0071_7 |
Cites_doi | 10.1093/infdis/jir033 10.1056/NEJMoa1008115 10.1038/mt.2014.157 10.1016/j.vaccine.2013.08.007 10.4269/ajtmh.2012.11-0504 10.1016/j.immuni.2015.02.012 10.1016/j.vaccine.2007.03.012 10.1038/nature14411 10.1038/mt.2012.223 10.1093/infdis/jit394 10.1016/j.pt.2012.09.001 10.1016/j.chom.2014.11.017 10.4269/ajtmh.2008.78.878 10.1016/j.pt.2007.12.002 10.1016/S0140-6736(13)62238-2 10.4161/hv.25383 10.1093/infdis/jit156 10.1016/S0264-410X(99)00444-2 10.1371/journal.pone.0001465 10.1371/journal.pone.0106241 10.1038/nri2902 10.1128/IAI.70.6.3101-3110.2002 10.1093/infdis/jiu579 10.1371/journal.pone.0107903 10.1371/journal.pone.0055571 10.1371/journal.pone.0008138 10.1016/bs.apar.2015.03.001 10.4269/ajtmh.14-0119 10.1371/journal.pone.0022271 10.1093/infdis/jis725 10.1371/journal.pone.0009041 10.1038/ncomms3836 10.1128/CVI.00042-09 10.3389/fmicb.2014.00686 10.1093/infdis/jis709 10.1371/journal.pone.0021914 10.1371/journal.pone.0065960 10.1371/journal.pone.0079323 10.1016/S0140-6736(15)60721-8 10.1371/journal.pone.0005254 10.1186/s12936-015-0663-x 10.1371/journal.pone.0038434 10.1179/136485910X12647085215534 10.1038/srep14081 |
ContentType | Journal Article |
Copyright | Copyright © 2016 Oxford University Press on behalf of the Infectious Diseases Society of America The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com. The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail . 2016 |
Copyright_xml | – notice: Copyright © 2016 Oxford University Press on behalf of the Infectious Diseases Society of America – notice: The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com. – notice: The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail . 2016 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7T2 7T5 7U2 C1K F1W H94 H95 H97 L.G M7N 5PM |
DOI | 10.1093/infdis/jiw039 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Health and Safety Science Abstracts (Full archive) Immunology Abstracts Safety Science and Risk Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Health & Safety Science Abstracts Immunology Abstracts Safety Science and Risk Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE - Academic MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1537-6613 |
EndPage | 1751 |
ExternalDocumentID | 10_1093_infdis_jiw039 26908756 24717643 |
Genre | Clinical Trial Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust – fundername: Medical Research Council grantid: G1000527 – fundername: the Intramural Program – fundername: A. D. D. grantid: 097940/Z/11/Z – fundername: National Institute of Allergy and Infectious Diseases – fundername: National Institutes of Health – fundername: Infectious Disease Division, Bureau for Global Health, US Agency for International Development ( grantid: GHS-A-00-04-00016-00) – fundername: United Kingdom National Institute of Health Research (NIHR) infrastructure – fundername: MRC career development fellowship grantid: G1000527 – fundername: PATH Malaria Vaccine Initiative (MVI) – fundername: research training fellowships grantid: 089455/2/09/Z |
GroupedDBID | --- -DZ -~X ..I .2P .I3 .XZ .ZR 08P 0R~ 123 1KJ 1TH 29K 2AX 2WC 36B 4.4 48X 53G 5GY 5RE 5VS 5WD 70D 85S AABZA AACGO AACZT AAHBH AAHTB AAJKP AAJQQ AAMVS AANCE AAOGV AAPNW AAPQZ AAPXW AAQQT AARHZ AAUAY AAUQX AAVAP AAWTL ABBHK ABEJV ABEUO ABIXL ABJNI ABKDP ABLJU ABNHQ ABNKS ABOCM ABPEJ ABPLY ABPPZ ABPTD ABQLI ABQNK ABTLG ABWST ABXSQ ABXVV ABZBJ ACGFO ACGFS ACGOD ACPRK ACUFI ACUTO ACYHN ADACV ADBBV ADEYI ADGZP ADHKW ADHZD ADIPN ADJQC ADOCK ADQBN ADRIX ADRTK ADULT ADVEK ADYVW ADZXQ AEGPL AEGXH AEJOX AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEUPB AEWNT AEXZC AFFZL AFIYH AFOFC AFXAL AFXEN AGINJ AGKEF AGQXC AGSYK AGUTN AHMBA AHMMS AHXPO AIAGR AIJHB AJEEA ALMA_UNASSIGNED_HOLDINGS ALUQC APIBT APWMN AQVQM ATGXG AXUDD BAWUL BAYMD BCRHZ BEYMZ BHONS BR6 BTRTY BVRKM C45 CDBKE CS3 CZ4 D-I DAKXR DCCCD DIK DILTD DOOOF DU5 D~K EBS ECGQY EE~ EJD EMOBN ENERS ESX F5P F9B FECEO FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IH2 IOX IPSME J21 JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KAQDR KBUDW KOP KQ8 KSI KSN L7B LSO LU7 M49 MHKGH MJL ML0 N9A NGC NOMLY NOYVH NU- NVLIB O9- OAUYM OAWHX OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y QBD RD5 ROX ROZ RUSNO RW1 RXO SA0 SJN TCURE TEORI TJX TR2 W2D W8F WH7 X7H YAYTL YKOAZ YXANX ~91 CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7T2 7T5 7U2 C1K F1W H94 H95 H97 L.G M7N 5PM AASNB JSODD |
ID | FETCH-LOGICAL-c403t-83238d31acfe92c182961656a1feb3be2d55e456d739ee55c1e87a10f7ccb3493 |
ISSN | 0022-1899 |
IngestDate | Tue Sep 17 21:06:02 EDT 2024 Wed Dec 04 06:51:18 EST 2024 Wed Dec 04 10:07:30 EST 2024 Fri Dec 06 03:30:56 EST 2024 Wed Oct 16 00:41:50 EDT 2024 Tue Dec 10 23:55:33 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | AMA1 vaccine blood stage malaria CHMI |
Language | English |
License | The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c403t-83238d31acfe92c182961656a1feb3be2d55e456d739ee55c1e87a10f7ccb3493 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Presented in part: American Society of Tropical Medicine and Hygiene, New Orleans, Louisiana, November 2014. Abstract 3994; 9th European Congress on Tropical Medicine and International Health, Basel, Switzerland, September 2015. Abstract A-744-0011-00577. |
PMID | 26908756 |
PQID | 1790020828 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4857475 proquest_miscellaneous_1790946759 proquest_miscellaneous_1790020828 crossref_primary_10_1093_infdis_jiw039 pubmed_primary_26908756 jstor_primary_24717643 |
PublicationCentury | 2000 |
PublicationDate | 2016-06-01 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of infectious diseases |
PublicationTitleAlternate | J Infect Dis |
PublicationYear | 2016 |
Publisher | Oxford University Press |
Publisher_xml | – sequence: 0 name: Oxford University Press – name: Oxford University Press |
References | 27357343 - J Infect Dis. 2016 Sep 15;214(6):978 2016072005571605000_213.11.1743.23 2016072005571605000_213.11.1743.24 2016072005571605000_213.11.1743.43 2016072005571605000_213.11.1743.22 2016072005571605000_213.11.1743.44 2016072005571605000_213.11.1743.41 2016072005571605000_213.11.1743.20 2016072005571605000_213.11.1743.42 2016072005571605000_213.11.1743.40 Moorthy (2016072005571605000_213.11.1743.1) 2013; 382 2016072005571605000_213.11.1743.19 2016072005571605000_213.11.1743.16 2016072005571605000_213.11.1743.38 2016072005571605000_213.11.1743.17 2016072005571605000_213.11.1743.39 2016072005571605000_213.11.1743.14 2016072005571605000_213.11.1743.36 2016072005571605000_213.11.1743.15 2016072005571605000_213.11.1743.37 2016072005571605000_213.11.1743.12 2016072005571605000_213.11.1743.34 2016072005571605000_213.11.1743.13 2016072005571605000_213.11.1743.35 2016072005571605000_213.11.1743.10 2016072005571605000_213.11.1743.32 2016072005571605000_213.11.1743.9 2016072005571605000_213.11.1743.11 2016072005571605000_213.11.1743.33 2016072005571605000_213.11.1743.8 2016072005571605000_213.11.1743.30 2016072005571605000_213.11.1743.7 2016072005571605000_213.11.1743.31 2016072005571605000_213.11.1743.6 2016072005571605000_213.11.1743.5 Hodgson (2016072005571605000_213.11.1743.18) 2014; 5 2016072005571605000_213.11.1743.4 2016072005571605000_213.11.1743.3 2016072005571605000_213.11.1743.2 Sanderson (2016072005571605000_213.11.1743.21) 2008; 78 2016072005571605000_213.11.1743.29 2016072005571605000_213.11.1743.27 2016072005571605000_213.11.1743.28 2016072005571605000_213.11.1743.25 2016072005571605000_213.11.1743.26 |
References_xml | – ident: 2016072005571605000_213.11.1743.23 doi: 10.1093/infdis/jir033 – ident: 2016072005571605000_213.11.1743.30 doi: 10.1056/NEJMoa1008115 – ident: 2016072005571605000_213.11.1743.33 doi: 10.1038/mt.2014.157 – ident: 2016072005571605000_213.11.1743.17 doi: 10.1016/j.vaccine.2013.08.007 – ident: 2016072005571605000_213.11.1743.13 doi: 10.4269/ajtmh.2012.11-0504 – ident: 2016072005571605000_213.11.1743.42 doi: 10.1016/j.immuni.2015.02.012 – ident: 2016072005571605000_213.11.1743.29 doi: 10.1016/j.vaccine.2007.03.012 – ident: 2016072005571605000_213.11.1743.44 doi: 10.1038/nature14411 – ident: 2016072005571605000_213.11.1743.9 doi: 10.1038/mt.2012.223 – ident: 2016072005571605000_213.11.1743.20 doi: 10.1093/infdis/jit394 – ident: 2016072005571605000_213.11.1743.12 doi: 10.1016/j.pt.2012.09.001 – ident: 2016072005571605000_213.11.1743.36 doi: 10.1016/j.chom.2014.11.017 – volume: 78 start-page: 878 year: 2008 ident: 2016072005571605000_213.11.1743.21 article-title: Blood-stage challenge for malaria vaccine efficacy trials: a pilot study with discussion of safety and potential value publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.2008.78.878 contributor: fullname: Sanderson – ident: 2016072005571605000_213.11.1743.25 doi: 10.1016/j.pt.2007.12.002 – volume: 382 start-page: 1700 year: 2013 ident: 2016072005571605000_213.11.1743.1 article-title: Malaria vaccine technology roadmap publication-title: Lancet doi: 10.1016/S0140-6736(13)62238-2 contributor: fullname: Moorthy – ident: 2016072005571605000_213.11.1743.5 doi: 10.4161/hv.25383 – ident: 2016072005571605000_213.11.1743.24 doi: 10.1093/infdis/jit156 – ident: 2016072005571605000_213.11.1743.22 doi: 10.1016/S0264-410X(99)00444-2 – ident: 2016072005571605000_213.11.1743.27 doi: 10.1371/journal.pone.0001465 – ident: 2016072005571605000_213.11.1743.38 doi: 10.1371/journal.pone.0106241 – ident: 2016072005571605000_213.11.1743.6 doi: 10.1038/nri2902 – ident: 2016072005571605000_213.11.1743.26 doi: 10.1128/IAI.70.6.3101-3110.2002 – ident: 2016072005571605000_213.11.1743.32 doi: 10.1093/infdis/jiu579 – ident: 2016072005571605000_213.11.1743.35 doi: 10.1371/journal.pone.0107903 – ident: 2016072005571605000_213.11.1743.37 doi: 10.1371/journal.pone.0055571 – ident: 2016072005571605000_213.11.1743.41 doi: 10.1371/journal.pone.0008138 – ident: 2016072005571605000_213.11.1743.3 doi: 10.1016/bs.apar.2015.03.001 – ident: 2016072005571605000_213.11.1743.19 doi: 10.4269/ajtmh.14-0119 – ident: 2016072005571605000_213.11.1743.14 doi: 10.1371/journal.pone.0022271 – ident: 2016072005571605000_213.11.1743.16 doi: 10.1093/infdis/jis725 – ident: 2016072005571605000_213.11.1743.28 doi: 10.1371/journal.pone.0009041 – ident: 2016072005571605000_213.11.1743.31 doi: 10.1038/ncomms3836 – ident: 2016072005571605000_213.11.1743.34 doi: 10.1128/CVI.00042-09 – volume: 5 start-page: 686 year: 2014 ident: 2016072005571605000_213.11.1743.18 article-title: Evaluating controlled human malaria infection in Kenyan adults with varying degrees of prior exposure to Plasmodium falciparum using sporozoites administered by intramuscular injection publication-title: Front Microbiol doi: 10.3389/fmicb.2014.00686 contributor: fullname: Hodgson – ident: 2016072005571605000_213.11.1743.39 doi: 10.1093/infdis/jis709 – ident: 2016072005571605000_213.11.1743.10 doi: 10.1371/journal.pone.0021914 – ident: 2016072005571605000_213.11.1743.11 doi: 10.1371/journal.pone.0065960 – ident: 2016072005571605000_213.11.1743.40 doi: 10.1371/journal.pone.0079323 – ident: 2016072005571605000_213.11.1743.2 doi: 10.1016/S0140-6736(15)60721-8 – ident: 2016072005571605000_213.11.1743.8 doi: 10.1371/journal.pone.0005254 – ident: 2016072005571605000_213.11.1743.15 doi: 10.1186/s12936-015-0663-x – ident: 2016072005571605000_213.11.1743.7 doi: 10.1371/journal.pone.0038434 – ident: 2016072005571605000_213.11.1743.4 doi: 10.1179/136485910X12647085215534 – ident: 2016072005571605000_213.11.1743.43 doi: 10.1038/srep14081 |
SSID | ssj0004367 |
Score | 2.5358534 |
Snippet | Background. Models of controlled human malaria infection (CHMI) initiated by mosquito bite have been widely used to assess efficacy of preerythrocytic vaccine... Models of controlled human malaria infection (CHMI) initiated by mosquito bite have been widely used to assess efficacy of preerythrocytic vaccine candidates... BACKGROUNDModels of controlled human malaria infection (CHMI) initiated by mosquito bite have been widely used to assess efficacy of preerythrocytic vaccine... Background.Models of controlled human malaria infection (CHMI) initiated by mosquito bite have been widely used to assess efficacy of preerythrocytic vaccine... Background. Models of controlled human malaria infection (CHMI) initiated by mosquito bite have been widely used to assess efficacy of preerythrocytic vaccine... |
SourceID | pubmedcentral proquest crossref pubmed jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1743 |
SubjectTerms | Adult Antigens, Protozoan - immunology Enzyme-Linked Immunospot Assay Erythrocytes - parasitology Female Humans Immunogenicity, Vaccine Life Cycle Stages Major and Brief Reports Malaria Vaccines - immunology Malaria, Falciparum - parasitology Malaria, Falciparum - prevention & control Male Membrane Proteins - immunology Middle Aged Models, Biological PARASITES Plasmodium falciparum Plasmodium falciparum - immunology Plasmodium falciparum - physiology Protozoan Proteins - immunology Young Adult |
Title | Demonstration of the Blood-Stage Plasmodium falciparum Controlled Human Malaria Infection Model to Assess Efficacy of the P. falciparum Apical Membrane Antigen 1 Vaccine, FMP2.1/AS01 |
URI | https://www.jstor.org/stable/24717643 https://www.ncbi.nlm.nih.gov/pubmed/26908756 https://search.proquest.com/docview/1790020828 https://search.proquest.com/docview/1790946759 https://pubmed.ncbi.nlm.nih.gov/PMC4857475 |
Volume | 213 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEIgXBINBuclIiJeQtM49j1W3qQwVKm1De4sSxxEZbTp1qVD5Yfw4njjHdi6dKjR4qVInsROdz_Z34s_nEPIu524umGCm4KlnuinzTfBDMlPYmRs5zM1SmQ5o-tmfnLsnF95Fr_e7o1paV6nFf-7cV_I_VoUysCvukv0HyzaVQgEcg33hFywMv7ey8aFYIL1bNbRPrvZLKTqQSBTjADdeLLNivTDyZI7y6RUcjpU8fQ5cU33Dnybg3xYJDBZKmVXKFGlz5KVqURgTMIM1-aZuZGZ1KxxdSVNPxQJ87xIjnVQY5NNgxteE80JLiKcz28Jxc3SqPyxctkg96QawUA-xvq5XjxraP0s2qi7U5RtfrAYtxVyVozZktSmNSXPqaF6oLWunuOQwbstlsupr3Rm-GydW9_sHYKnRaXX2I7BQpVmyRD2MByYwD6c7ztv6rwY06wzb6JZ1KABQKrZzelGht6AowwAQx5fFj6ETtTNprR64McE2ske14O_EqoJY3X6H3MUgjpj34fDjp3ZPr-MHdaR7fDsdHxZuH6jbB-r2LT6lJLW7nKWbmt8OiTp7RB5qK9ORgvJj0hPlPrmn8qFu9sn9qVZ6PCG_trBNlzkF2NEOtmmLbdpCkbbYphLbVGObNtimEtu0WlKFbVpju25kZnUrVNimNbapxjZlVGP7A1XIHiCun5Lz46Oz8cTUOUZM7g6dyoQJzQkzhyU8F5HNwduOfAxIlbBcpE4KQ5bnCXAyssCJhPA8zkQYJGyYB5ynDgxnB2SvXJbiOaGpn0YwoyVe5PpuCDwPuGFmuyLivvCHwu-T97Wl4isVSibeiYg-OZB2bK6ygUEG4Dr0ydvasDHMAri0By8O_THGOHuYbtcO_34NPFrgQQPPFBjaFvwIU1vAMwZbMGkuwCj022fK4puMRu-GXuAG3ovbvt1L8qDtxq_IXrVai9dA7Kv0jewBfwAdRP6e |
link.rule.ids | 230,314,780,784,885,27924,27925 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Demonstration+of+the+Blood-Stage+Plasmodium+falciparum+Controlled+Human+Malaria+Infection+Model+to+Assess+Efficacy+of+the+P.+falciparum+Apical+Membrane+Antigen+1+Vaccine%2C+FMP2.1%2FAS01&rft.jtitle=The+Journal+of+infectious+diseases&rft.au=Payne%2C+Ruth+O.&rft.au=Milne%2C+Kathryn+H.&rft.au=Elias%2C+Sean+C.&rft.au=Edwards%2C+Nick+J.&rft.date=2016-06-01&rft.issn=0022-1899&rft.eissn=1537-6613&rft.volume=213&rft.issue=11&rft.spage=1743&rft.epage=1751&rft_id=info:doi/10.1093%2Finfdis%2Fjiw039&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_infdis_jiw039 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1899&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1899&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1899&client=summon |