Single vs. Multi-Label: The Issues, Challenges and Insights of Contemporary Classification Schemes
Over the decades, a tremendous increase has been witnessed in the production of documents available in digital form. The increased production of documents has gained so much momentum that their rate of production jumps two-fold every five years. These articles are searched over the internet via sear...
Saved in:
Published in | Applied sciences Vol. 13; no. 11; p. 6804 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Over the decades, a tremendous increase has been witnessed in the production of documents available in digital form. The increased production of documents has gained so much momentum that their rate of production jumps two-fold every five years. These articles are searched over the internet via search engines, digital libraries, and citation indexes. However, the retrieval of relevant research papers for user queries is still a pipedream. This is because scientific documents are not indexed based on some subject classification hierarchies. Hence, the classification of these documents becomes a challenging task for the researchers. Classification of the documents can be two-fold: one way is to assign a single label to each document and the other is to assign multi-labels to each document based on its belonging domains. Classification of the documents can be performed by using either the available metadata or the whole content of the documents. While performing classification, there are many challenges which may belong to the dataset, feature selection technique, preprocessing methodology, and which classification model is suitable for the classification of the documents. This paper highlights the issues for single-label and multi-label classification by using either metadata or content of the documents and why metadata-based approaches are better than content-based approaches in terms of feasibility. |
---|---|
AbstractList | Over the decades, a tremendous increase has been witnessed in the production of documents available in digital form. The increased production of documents has gained so much momentum that their rate of production jumps two-fold every five years. These articles are searched over the internet via search engines, digital libraries, and citation indexes. However, the retrieval of relevant research papers for user queries is still a pipedream. This is because scientific documents are not indexed based on some subject classification hierarchies. Hence, the classification of these documents becomes a challenging task for the researchers. Classification of the documents can be two-fold: one way is to assign a single label to each document and the other is to assign multi-labels to each document based on its belonging domains. Classification of the documents can be performed by using either the available metadata or the whole content of the documents. While performing classification, there are many challenges which may belong to the dataset, feature selection technique, preprocessing methodology, and which classification model is suitable for the classification of the documents. This paper highlights the issues for single-label and multi-label classification by using either metadata or content of the documents and why metadata-based approaches are better than content-based approaches in terms of feasibility. |
Audience | Academic |
Author | Basheer Ahmed, Mohammed Imran Chabani, Sghaier Sajid, Naseer Ahmed Salam, Asiya Abdus Musleh, Dhiaa Ahmed, Mohammed Salih Rahman, Atta AlKhulaifi, Dania Alassaf, Reem Ahmad, Munir |
Author_xml | – sequence: 1 givenname: Naseer Ahmed surname: Sajid fullname: Sajid, Naseer Ahmed – sequence: 2 givenname: Atta orcidid: 0000-0001-6696-277X surname: Rahman fullname: Rahman, Atta – sequence: 3 givenname: Munir surname: Ahmad fullname: Ahmad, Munir – sequence: 4 givenname: Dhiaa surname: Musleh fullname: Musleh, Dhiaa – sequence: 5 givenname: Mohammed Imran orcidid: 0000-0002-4318-2022 surname: Basheer Ahmed fullname: Basheer Ahmed, Mohammed Imran – sequence: 6 givenname: Reem surname: Alassaf fullname: Alassaf, Reem – sequence: 7 givenname: Sghaier surname: Chabani fullname: Chabani, Sghaier – sequence: 8 givenname: Mohammed Salih orcidid: 0000-0003-3449-3125 surname: Ahmed fullname: Ahmed, Mohammed Salih – sequence: 9 givenname: Asiya Abdus surname: Salam fullname: Salam, Asiya Abdus – sequence: 10 givenname: Dania surname: AlKhulaifi fullname: AlKhulaifi, Dania |
BookMark | eNptkV9vFCEUxSemJtbaJ78AiY86K3-HGd-aidpN1vjQ-kzgDsyymYURWBO_vbRbk8YID8DN-Z1c7nndXIQYbNO8JXjD2IA_6nUljJCux_xFc0mx7FrGibx4dn_VXOd8wHUNhPUEXzbmzod5sehX3qBvp6X4dqeNXT6h-71F25xPNn9A414viw2zzUiHCW1D9vO-ZBQdGmMo9rjGpNNvNC46Z-886OJjQHewt0eb3zQvnV6yvX46r5ofXz7fj7ft7vvX7Xiza4FjVlppKaXQg2R4ooMRuJNmYtxYoOAAmOAMCPD6GDoh9ECnDiYLDLh0HIRhV8327DtFfVBr8sfak4raq8dCTLPSqXhYrBoE0dJgOTAuuDODMR042eHOYkK1nKrXu7PXmuLPOoOiDvGUQm1f0Z6yoWeciqranFWzrqY-uFiShrone_RQ03G-1m-koJJy2j0A5AxAijkn6xT48jisCvpFEaweolTPoqzM-3-Yv1_7n_oPvBCgMg |
CitedBy_id | crossref_primary_10_1016_j_patcog_2025_111567 crossref_primary_10_3390_app132413276 crossref_primary_10_1007_s10278_025_01446_1 crossref_primary_10_32604_cmc_2024_055106 crossref_primary_10_4103_TPSY_TPSY_23_24 crossref_primary_10_3390_ai5030052 crossref_primary_10_3390_ani14142021 crossref_primary_10_1021_acs_jcim_4c01061 crossref_primary_10_2478_amns_2025_0391 crossref_primary_10_1007_s13042_024_02349_3 crossref_primary_10_1088_2631_8695_ada7c3 crossref_primary_10_3390_su151411138 crossref_primary_10_3390_app13137377 |
Cites_doi | 10.1016/j.procs.2018.04.321 10.1007/s00500-020-05410-9 10.3938/jkps.76.368 10.1109/TKDE.2016.2563436 10.1002/leap.1084 10.1126/science.253.5023.974 10.1108/LHT-03-2013-0030 10.18280/mmep.090617 10.1109/TKDE.2016.2522427 10.1109/CCECE.2007.203 10.1007/11846406_20 10.1142/S0219649221500040 10.1109/EISIC.2013.61 10.1109/ACCESS.2020.3009217 10.1145/1031171.1031204 10.1186/s13677-019-0144-9 10.1145/3592626.3592665 10.1007/s10844-006-0019-7 10.1007/s13042-020-01260-x 10.1145/3148011.3148039 10.1109/ACCESS.2021.3063181 10.3390/bdcc7010016 10.1016/j.ijpe.2014.12.035 10.1186/1471-2105-14-113 10.1109/EBISS.2009.5137967 10.1007/s11227-019-03009-y 10.1145/2077489.2077531 10.18280/mmep.090315 10.1002/asi.23329 10.1002/int.22508 10.18653/v1/W17-2339 10.1145/505282.505283 10.3390/educsci13030293 10.1007/s11063-017-9636-0 10.32604/csse.2023.033844 10.3390/su15108057 10.1145/1031171.1031186 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app13116804 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_951a7b0793454fb9bb6cf7606e012a7d A752724265 10_3390_app13116804 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PMFND ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c403t-7e222c8c730d29b5067bd34bec2cfcc3543c1c42cf9655a92d6cdec3c47f4c5b3 |
IEDL.DBID | BENPR |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:28:06 EDT 2025 Mon Jun 30 07:31:33 EDT 2025 Tue Jun 10 20:15:14 EDT 2025 Tue Jul 01 04:33:19 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-7e222c8c730d29b5067bd34bec2cfcc3543c1c42cf9655a92d6cdec3c47f4c5b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4318-2022 0000-0003-3449-3125 0000-0001-6696-277X |
OpenAccessLink | https://www.proquest.com/docview/2823983425?pq-origsite=%requestingapplication% |
PQID | 2823983425 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_951a7b0793454fb9bb6cf7606e012a7d proquest_journals_2823983425 gale_infotracacademiconefile_A752724265 crossref_citationtrail_10_3390_app13116804 crossref_primary_10_3390_app13116804 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Huang (ref_68) 2021; 12 Gerstl (ref_15) 2001; 38 ref_13 Almuzaini (ref_66) 2020; 8 ref_12 ref_10 ref_52 Shin (ref_11) 2008; Volume 4188 ref_19 Senthamarai (ref_40) 2008; 3 ref_18 ref_17 ref_16 ref_59 Yan (ref_46) 2018; 47 Li (ref_24) 2007; 29 Bornmann (ref_1) 2015; 66 Wang (ref_48) 2018; 131 Rahman (ref_70) 2022; 9 ref_60 Tang (ref_21) 2016; 28 ref_69 Sebastiani (ref_7) 2002; 34 ref_20 ref_64 Kim (ref_67) 2020; 76 Sajid (ref_58) 2021; 20 Zaman (ref_55) 2020; 14 ref_27 ref_26 Shahid (ref_51) 2020; 76 Zong (ref_23) 2015; 165 Rahman (ref_53) 2019; 8 Yaguinuma (ref_29) 2014; 6 ref_36 ref_35 ref_34 ref_32 ref_39 Shedbale (ref_22) 2016; 10 Afonso (ref_28) 2014; 11 ref_38 ref_37 Duwairi (ref_33) 2011; 8 Alamoudi (ref_56) 2021; 12 Apte (ref_9) 1994; 12 Zhao (ref_61) 2021; 36 Blei (ref_31) 2003; 3 Arash (ref_30) 2013; 31 Behera (ref_65) 2021; 25 ref_47 Sajid (ref_50) 2023; 46 ref_45 ref_44 ref_43 Larsen (ref_2) 2010; 84 ref_42 Tang (ref_25) 2016; 28 ref_41 Hodgson (ref_4) 2017; 30 ref_3 Belherazem (ref_62) 2022; 12 Musleh (ref_49) 2019; 10 Rahman (ref_54) 2019; 20 Alotaibi (ref_63) 2022; 9 Zaman (ref_57) 2021; 9 ref_8 ref_5 Salton (ref_14) 1990; 253 ref_6 |
References_xml | – volume: 131 start-page: 756 year: 2018 ident: ref_48 article-title: Multi-label text classification method based on co-occurrence latent semantic vector space publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.04.321 – volume: 25 start-page: 9915 year: 2021 ident: ref_65 article-title: Text document classification using fuzzy rough set based on robust nearest neighbor (FRS-RNN) publication-title: Soft Comput. doi: 10.1007/s00500-020-05410-9 – ident: ref_5 – ident: ref_26 – volume: 76 start-page: 368 year: 2020 ident: ref_67 article-title: Multi-Label Classification of Historical Documents by Using Hierarchical Attention Networks publication-title: J. Korean Phys. Soc. doi: 10.3938/jkps.76.368 – volume: 14 start-page: 593 year: 2020 ident: ref_55 article-title: Information Extraction from Semi and Unstructured Data Sources: A Systematic Literature Review publication-title: ICIC Express Lett. – ident: ref_16 – volume: 28 start-page: 2508 year: 2016 ident: ref_21 article-title: Toward Optimal Feature Selection in Naive Bayes for Text Categorization publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2016.2563436 – volume: 30 start-page: 65 year: 2017 ident: ref_4 article-title: Closing the PDF Gap: ReadCube’s Experiments in Reader Focused Design publication-title: Learn. Publ. doi: 10.1002/leap.1084 – volume: 253 start-page: 974 year: 1990 ident: ref_14 article-title: Developments in Automatic Text Retrieval publication-title: Science doi: 10.1126/science.253.5023.974 – volume: 12 start-page: 121 year: 2021 ident: ref_56 article-title: A Rule-Based Information Extraction Approach for Extracting Metadata from PDF Books publication-title: ICIC Express Lett. Part B Appl. – volume: 12 start-page: 1 year: 2022 ident: ref_62 article-title: Boosting Convolutional Neural Networks Using a Bidirectional Fast Gated Recurrent Unit for Text Categorization publication-title: Int. J. Artif. Intell. Mach. Learn. – ident: ref_42 – ident: ref_35 – volume: 31 start-page: 725 year: 2013 ident: ref_30 article-title: Classification of Scientific Publications According to Library Controlled Vocabularies: A new concept matching-based Approach publication-title: Libr. Hi Tech doi: 10.1108/LHT-03-2013-0030 – volume: 9 start-page: 1574 year: 2022 ident: ref_63 article-title: Spam and sentiment detection in Arabic tweets using MARBERT model publication-title: Math. Model. Eng. Probl. doi: 10.18280/mmep.090617 – volume: 28 start-page: 1602 year: 2016 ident: ref_25 article-title: A Bayesian Classification Approach using Class-specific Features for Text Categorization publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2016.2522427 – ident: ref_8 – ident: ref_38 doi: 10.1109/CCECE.2007.203 – volume: Volume 4188 start-page: 159 year: 2008 ident: ref_11 article-title: Enhanced Centroid-Based Classification Technique by Filtering Outliers publication-title: Text, Speech and Dialogue doi: 10.1007/11846406_20 – volume: 12 start-page: 233 year: 1994 ident: ref_9 article-title: Automated Learning of Decision Rules for Text Categorization publication-title: Inf. Syst. – ident: ref_27 – ident: ref_52 – ident: ref_10 – volume: 84 start-page: 575 year: 2010 ident: ref_2 article-title: The Rate of Growth in Scientific Publication and the Decline in Coverage Provided by Science Citation Index publication-title: Sci. Metr. – volume: 6 start-page: 89 year: 2014 ident: ref_29 article-title: A Meta-Ontology for Modeling Fuzzy Ontologies and its Use in Classification Tasks based on Fuzzy Rules publication-title: Int. J. Comput. Inf. Syst. Ind. Manag. Appl. – volume: 20 start-page: 2150004 year: 2021 ident: ref_58 article-title: Exploiting Papers’ Reference’s Section for Multi-Label Computer Science Research Papers’ Classification publication-title: J. Inf. Knowl. Manag. doi: 10.1142/S0219649221500040 – ident: ref_41 – ident: ref_20 doi: 10.1109/EISIC.2013.61 – volume: 8 start-page: 127913 year: 2020 ident: ref_66 article-title: Impact of Stemming and Word Embedding on Deep Learning-Based Arabic Text Categorization publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3009217 – ident: ref_13 – volume: 3 start-page: 58 year: 2008 ident: ref_40 article-title: Similarity based Technique for Text Document Classification publication-title: Int. J. Soft Comput. – ident: ref_43 doi: 10.1145/1031171.1031204 – ident: ref_17 – volume: 8 start-page: 17 year: 2019 ident: ref_53 article-title: A Neuro-Fuzzy Approach for User Behavior Classification and Prediction publication-title: J. Cloud Comput. doi: 10.1186/s13677-019-0144-9 – ident: ref_3 doi: 10.1145/3592626.3592665 – volume: 29 start-page: 211 year: 2007 ident: ref_24 article-title: Hierarchical Document Classification Using Automatically Generated Hierarchy publication-title: J. Intell. Inf. Syst. doi: 10.1007/s10844-006-0019-7 – volume: 8 start-page: 251 year: 2011 ident: ref_33 article-title: A Hierarchical K-NN Classifier for Textual Data publication-title: Int. Arab. J. Inf. Technol. – volume: 12 start-page: 1639 year: 2021 ident: ref_68 article-title: Hierarchical multi-attention networks for document classification publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-020-01260-x – ident: ref_45 doi: 10.1145/3148011.3148039 – ident: ref_34 – volume: 9 start-page: 42111 year: 2021 ident: ref_57 article-title: An Ontological Framework for Information Extraction from Diverse Scientific Sources publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3063181 – ident: ref_60 doi: 10.3390/bdcc7010016 – volume: 165 start-page: 215 year: 2015 ident: ref_23 article-title: A Discriminative and Semantic Feature Selection Method for Text Categorization publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2014.12.035 – ident: ref_32 doi: 10.1186/1471-2105-14-113 – ident: ref_44 doi: 10.1109/EBISS.2009.5137967 – volume: 76 start-page: 1695 year: 2020 ident: ref_51 article-title: Insights into relevant knowledge extraction techniques: A comprehensive review publication-title: J. Supercomput. doi: 10.1007/s11227-019-03009-y – ident: ref_19 doi: 10.1145/2077489.2077531 – ident: ref_37 – ident: ref_18 – volume: 9 start-page: 683 year: 2022 ident: ref_70 article-title: Assessment of information extraction techniques, models and systems publication-title: Math. Model. Eng. Probl. doi: 10.18280/mmep.090315 – volume: 66 start-page: 2215 year: 2015 ident: ref_1 article-title: Growth rates of Modern Science: A Bibliometric Analysis based on the Number of publications and Cited References publication-title: J. Assoc. Inf. Sci. Technol. doi: 10.1002/asi.23329 – volume: 36 start-page: 5161 year: 2021 ident: ref_61 article-title: An effective framework for semistructured document classification via hierarchical attention model publication-title: Int. J. Intell. Syst. doi: 10.1002/int.22508 – volume: 10 start-page: 763 year: 2016 ident: ref_22 article-title: Filter Feature Selection Approaches for Automated Text Categorization publication-title: Int. J. Control Theory Appl. – ident: ref_47 doi: 10.18653/v1/W17-2339 – volume: 11 start-page: 415 year: 2014 ident: ref_28 article-title: Automated Text Clustering of Newspaper and Scientific Texts in Brazilian Portuguese: Analysis and Comparison of Methods publication-title: J. Inf. Syst. Technol. Manag. – ident: ref_6 – volume: 38 start-page: 38 year: 2001 ident: ref_15 article-title: Text Mining: Grundlagen, Verfahren und Anwendungen publication-title: HMD-Prax. Wirtsch. – volume: 10 start-page: 875 year: 2019 ident: ref_49 article-title: A Novel Approach to Arabic Keyphrase Extraction publication-title: ICIC Express Lett. B – volume: 34 start-page: 1 year: 2002 ident: ref_7 article-title: Machine Learning in Automated Text Categorization publication-title: ACM Comput. Surv. doi: 10.1145/505282.505283 – volume: 3 start-page: 993 year: 2003 ident: ref_31 article-title: Latent Dirichlet Allocation publication-title: J. Mach. Learn. Res. – ident: ref_12 – ident: ref_59 doi: 10.3390/educsci13030293 – volume: 47 start-page: 117 year: 2018 ident: ref_46 article-title: Lstm2: Multi-label ranking for document classification publication-title: Neural Process. Lett. doi: 10.1007/s11063-017-9636-0 – volume: 20 start-page: 94 year: 2019 ident: ref_54 article-title: The Digital Library and the Archiving System for Educational Institutes publication-title: Pak. J. Inf. Manag. Libr. (PJIML) – ident: ref_64 – volume: 46 start-page: 2195 year: 2023 ident: ref_50 article-title: A novel metadata based multi-label document classification technique publication-title: Comput. Syst. Sci. Eng. doi: 10.32604/csse.2023.033844 – ident: ref_36 – ident: ref_69 doi: 10.3390/su15108057 – ident: ref_39 doi: 10.1145/1031171.1031186 |
SSID | ssj0000913810 |
Score | 2.3300064 |
SecondaryResourceType | review_article |
Snippet | Over the decades, a tremendous increase has been witnessed in the production of documents available in digital form. The increased production of documents has... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 6804 |
SubjectTerms | Accuracy Algorithms Analysis Citation indexes Classification Classification schemes data mining and ML Digital libraries Feature selection Internet/Web search services Machine learning Metadata multi-label Open access single label Text categorization |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV25TsQwELUQFRSIUyyXXCBxiECI7XhDBwgECGgAic6yJ3a1BEQWvp8Zx4tSgGgoN-vCmevNKPZ7jG2rIgcE6jIrQMpM2mAzC1Bl0te5QzgvQpRkubsvr57kzbN67kl90Zmwjh64M9wRdgBWO6Jxk0oGVzlXQtDYdnssrVbXVH0R83rDVKzB1TFRV3UX8gTO9fQ9mJhlymGSZJtAUGTq_60eR5C5nGdzqTvkp92uFtiUbxbZbI8zcJEtpGxs-W6ijN5bYu4B_xt5_tke8nilNru1zo9OOEYB7wT2Dvj5RDel5bap-XXT0mDe8tfA-xxVPOpk0gmi6DT-gG598e0ye7q8eDy_ypJ6QgYyF-NMe4R-GAKmcF1UTiEsuVpI9FkBAUAoKeAYJP6oSqVsVdQl1B4ESB0kKCdW2HTz2vhVxlVpsc8IyiO6S507Z530ug5FXjqhvRiw_YlBDSRqcVK4GBkcMcj6pmf9Adv-XvzWMWr8vOyMPPO9hGiw4wMMDpOCw_wVHAO2Q341lKy4IbDpzgG-FtFemVOtCk1NihqwjYnrTcri1uA4KqqhwLK29h-7WWczJFbfHTTbYNPj9w-_iS3N2G3F6P0CKAvyvg priority: 102 providerName: Directory of Open Access Journals |
Title | Single vs. Multi-Label: The Issues, Challenges and Insights of Contemporary Classification Schemes |
URI | https://www.proquest.com/docview/2823983425 https://doaj.org/article/951a7b0793454fb9bb6cf7606e012a7d |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoe4FDRQuIhbLyoRIPEUhjO064oLbqUhBUiFKpN8se270s2bZZ-P3MOM6yB-CYeA6J5-3H9zG2r6oSMFHXRQVSFtJGW1iAtpDBlw7TeRUTJcuXs_r0Qn66VJd5wa3PxyrHmJgCtV8ArZG_xdZAtI1AE3t_fVMQaxTtrmYKjQ22hSG4weZr6-jk7Ou31SoLoV42B-VwMU9gf0_7woQwUzeZmm1MRQmx_19xOSWb2X22natEfjiodYfdCd0uu7eGHbjLdrJX9vxFho5--YC5cxybB_6rf8PT1dris3Vh_o6jNfCBaO81Px75U3puO88_dj016D1fRL6OVcUTXyadJErK4-eo3h-hf8guZiffj0-LzKJQgCzFstABSwBoAF3ZV61TmJ6cFxJ1V0EEEEoKOACJD22tlG0rX4MPIEDqKEE58YhtdosuPGZc1RbrjagCZnmpS-esk0H7WJW1EzqICXs1TqiBDDFOTBdzg60Gzb5Zm_0J218JXw_IGn8XOyLNrEQIDju9WNxemexdBstEqx1h_Uklo2udqyFq7M0C5l-r_YQ9J70aclr8ILD57gH-FsFfmUOtKk3FipqwvVH1Jntzb_7Y3pP_Dz9ld4mOfjhKtsc2l7c_wzMsWpZuyjaa2Ydpts9pav1_A6ag7co |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiBYQCwV8KOIhAqkfcYKEUCksu3TbS1upN2NPHC7LbmkWEH-K38hMHssegFuPia0oHn-eGb--D2DbyBQpUGeJRK0T7SufeMQi0bFMA4VzWTWSLAeH2ehEfzw1p2vwq78Lw8cqe5_YOOpyjrxG_pKmBqrIFUHszdnXhFWjeHe1l9BoYbEff_6gKVv9evyO-veRlMP3x3ujpFMVSFCnapHYSCERcyRol7IIhtx1KJWmtkisEJXRCndQ00ORGeMLWWZYRlSobaXRBEXfvQSXtVIFj6h8-GG5psMcm_lO2l4DpPKUd6GZzybLOyG4PvA1-gD_igJNaBvegOtdTip2WxBtwFqcbcK1FabCTdjofEAtnnRE1U9vQjiismkU3-sXornIm0x8iNNXgrAnWlm_52KvV2uphZ-VYjyreTmgFvNKrDJjiUadk88tNVARRwSmL7G-BScXYt3bsD6bz-IdECbzlN1UJlJOoW0agg862rKSaRaUjWoAz3qDOuwIzVlXY-poYsPWdyvWH8D2svJZy-Px92pvuWeWVZh8u3kxP__surHsKCn1NjCzoDa6CkUIGVaWZoKRor235QAec786dhH0Q-i7mw7ULCbbcrvWSMupkRnAVt_1rvMdtfuD9Lv_L34IV0bHBxM3GR_u34OrktKv9hDbFqwvzr_F-5QuLcKDBqMCPl30oPgNH6koqg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0qUwnBAtECYkoBL4p4iNDUj3iChFBfow4to4q2UnfGvnG6GTKlGUD8Gl_HdeIMswB2XSa2otg-vg8_zgHYUDxFctRZwlHKRNrSJhYxT6QvUkfunJeNJMvHcXZwJj-cq_Ml-NXdhQnHKjub2BjqYophjXyTUgORDwRBbLOMxyKO94bvL78mQUEq7LR2chotRA79zx-UvtXvRns01s84H-6f7h4kUWEgQZmKWaI9uUccIMG84LlTZLpdISS1i2OJKJQUuIWSHvJMKZvzIsPCo0CpS4nKCfruDVjWlBWlPVje2R8ff5qv8ATGzcFW2l4KFCJPw550YLfJBlEWrnODjVrAv3xC4-iGd-FOjFDZdgupFVjy1SrcXuAtXIWVaBFq9iLSVr-8B-6Eyiaefa_fsOZab3JknZ-8ZYRE1or8vWa7nXZLzWxVsFFVh8WBmk1LtsiTxRqtznCKqQEOOyFoffH1fTi7lv59AL1qWvmHwFRmKdYplacIQ-rUOeuk10XJ08wJ7UUfXnUdajDSmweVjYmhNCf0vlno_T5szCtftqwef6-2E0ZmXiVQcTcvplcXJs5sQyGq1S7wDEolS5c7l2GpKS_05PutLvrwPIyrCQaDfghtvPdAzQrUW2ZbK65DoKT6sN4NvYmWpDZ_cL_2_-KncJMmhDkajQ8fwS1OsVh7om0derOrb_4xxU4z9ySClMHn654XvwG5-i48 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+vs.+Multi-Label%3A+The+Issues%2C+Challenges+and+Insights+of+Contemporary+Classification+Schemes&rft.jtitle=Applied+sciences&rft.au=Sajid%2C+Naseer+Ahmed&rft.au=Rahman%2C+Atta&rft.au=Ahmad%2C+Munir&rft.au=Musleh%2C+Dhiaa&rft.date=2023-06-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=13&rft.issue=11&rft.spage=6804&rft_id=info:doi/10.3390%2Fapp13116804&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app13116804 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |