A Review on the Development of Pneumatic Artificial Muscle Actuators: Force Model and Application
Pneumatic artificial muscles (PAMs) are soft and flexible linear pneumatic actuators which produce human muscle like actuation. Due to these properties, the muscle actuators have an adaptable compliance for various robotic platforms as well as medical applications. While a variety of possible actuat...
Saved in:
Published in | Actuators Vol. 11; no. 10; p. 288 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pneumatic artificial muscles (PAMs) are soft and flexible linear pneumatic actuators which produce human muscle like actuation. Due to these properties, the muscle actuators have an adaptable compliance for various robotic platforms as well as medical applications. While a variety of possible actuation schemes are present, there is still a need for the development of a soft actuator that is very light-weight, compact, and flexible with high power-to-weight ratio. To achieve this, the development of the PAM actuators has become an interesting topic for many researchers. In this review, the development of the different kinds of PAM available to date are presented along with manufacturing process and the operating principle. The various force models for artificial muscle presented in the literature are broadly reviewed with the constraints. Furthermore, the applications of PAM are included and classified based on the fields of biorobotics, medicine, and industry, along with advanced medical instrumentation. Finally, the needful improvements in terms of the dynamics of the muscle are discussed for the precise control of the PAMs as per the requirements for the applications. This review will be helpful for researchers working in the field of robotics and for designers to develop new type of artificial muscle depending on the applications. |
---|---|
AbstractList | Pneumatic artificial muscles (PAMs) are soft and flexible linear pneumatic actuators which produce human muscle like actuation. Due to these properties, the muscle actuators have an adaptable compliance for various robotic platforms as well as medical applications. While a variety of possible actuation schemes are present, there is still a need for the development of a soft actuator that is very light-weight, compact, and flexible with high power-to-weight ratio. To achieve this, the development of the PAM actuators has become an interesting topic for many researchers. In this review, the development of the different kinds of PAM available to date are presented along with manufacturing process and the operating principle. The various force models for artificial muscle presented in the literature are broadly reviewed with the constraints. Furthermore, the applications of PAM are included and classified based on the fields of biorobotics, medicine, and industry, along with advanced medical instrumentation. Finally, the needful improvements in terms of the dynamics of the muscle are discussed for the precise control of the PAMs as per the requirements for the applications. This review will be helpful for researchers working in the field of robotics and for designers to develop new type of artificial muscle depending on the applications. |
Audience | Academic |
Author | Leonessa, Alexander Kalita, Bhaben Dwivedy, Santosha K. |
Author_xml | – sequence: 1 givenname: Bhaben orcidid: 0000-0001-8361-9308 surname: Kalita fullname: Kalita, Bhaben – sequence: 2 givenname: Alexander orcidid: 0000-0001-9317-2714 surname: Leonessa fullname: Leonessa, Alexander – sequence: 3 givenname: Santosha K. surname: Dwivedy fullname: Dwivedy, Santosha K. |
BookMark | eNptUcFq3TAQNCWFpklO_QFBj-UlK8mWpd5MmjSBhJSQns16Jad6-EmuLKf076vmlRJKtQeJZWY0u_O2OggxuKp6x-FUSgNnSJlzDiC0flUdCmjVBrRoDl6831Qny7KFcgyXGuRhhR27d0_e_WAxsPzNsU_uyU1x3rmQWRzZl-DWHWZPrEvZj548Tux2XWhyrKO8Yo5p-cguYyLHbqN1E8NgWTfPk6fCi-G4ej3itLiTP_dR9fXy4uH8anNz9_n6vLvZUA0yb1oyTnOjG6sbbqVRWvABEC24xqpGGWFQ1gNara0dpJBEDZJplSZAGGt5VF3vdW3EbT8nv8P0s4_o--dGTI89lhGK8V7VgkPbajB1KSStlGjGBqQaRkFmKFrv91pzit9Xt-R-G9cUiv1etELXoKHWBXW6Rz1iEfVhjDkhlbJu56mEM_rS79qat6BMwwvhw55AKS5LcuNfmxz63xn2LzIsaP4Pmnx-Xmn5xk__5fwCfIueQg |
CitedBy_id | crossref_primary_10_3390_act13120507 crossref_primary_10_3390_act12060221 crossref_primary_10_3390_machines11070764 crossref_primary_10_3390_math11010149 crossref_primary_10_3390_s23020776 crossref_primary_10_1016_j_birob_2024_100172 crossref_primary_10_3390_polym17020127 crossref_primary_10_1007_s11071_024_09883_3 crossref_primary_10_3390_s24217095 crossref_primary_10_3390_s24237532 crossref_primary_10_1109_TRO_2024_3443714 crossref_primary_10_3389_fbioe_2023_1251879 crossref_primary_10_1108_IR_06_2023_0122 crossref_primary_10_3390_act11110314 crossref_primary_10_3390_act12110409 crossref_primary_10_37394_232022_2023_3_26 crossref_primary_10_3390_act14030153 crossref_primary_10_1155_2023_5522710 crossref_primary_10_3390_machines11100936 crossref_primary_10_3390_act13100418 crossref_primary_10_1142_S0218127423300082 crossref_primary_10_3390_act13080286 crossref_primary_10_3390_app14125329 crossref_primary_10_3389_fnins_2023_1128332 crossref_primary_10_2478_ama_2024_0071 crossref_primary_10_1038_s41528_024_00297_0 crossref_primary_10_1080_01691864_2024_2363394 crossref_primary_10_3390_act12010035 crossref_primary_10_3390_biomimetics9030177 crossref_primary_10_3390_s23146341 crossref_primary_10_1016_j_aej_2024_07_089 crossref_primary_10_20517_ss_2023_49 crossref_primary_10_1515_bmt_2022_0262 crossref_primary_10_1177_09544119241262372 crossref_primary_10_1007_s40799_023_00686_6 crossref_primary_10_3390_app14146385 crossref_primary_10_3390_biomimetics9040236 crossref_primary_10_3390_en17143381 crossref_primary_10_3390_act13090355 crossref_primary_10_1177_1045389X241263878 crossref_primary_10_1016_j_mechmachtheory_2023_105448 crossref_primary_10_3389_frobt_2024_1449721 crossref_primary_10_3390_app122111024 crossref_primary_10_1016_j_mechatronics_2023_103053 crossref_primary_10_3390_mi14071431 crossref_primary_10_1007_s43154_023_00102_2 crossref_primary_10_1007_s42235_023_00475_2 |
Cites_doi | 10.1108/01439911311309951 10.1016/j.mechmachtheory.2017.07.016 10.1016/j.jbiomech.2011.01.030 10.1051/matecconf/201821102008 10.1089/soro.2017.0114 10.1115/1.4044539 10.1109/TRO.2008.924923 10.1115/1.3158982 10.1002/ange.201006464 10.1115/1.4035496 10.1109/37.833638 10.1177/0278364906063227 10.1016/j.gaitpost.2005.05.004 10.1115/1.4041660 10.1163/156855306777681357 10.1109/ICHR.2010.5686316 10.1123/jab.21.2.189 10.1088/0964-1726/22/1/014016 10.3389/frobt.2018.00136 10.21203/rs.3.rs-327092/v1 10.1016/j.sna.2015.08.025 10.1177/1045389X11433495 10.1109/ICCAS.2010.5669921 10.1016/j.sna.2019.07.047 10.20965/jrm.2001.p0056 10.1115/1.4033325 10.1109/SAMI.2013.6480994 10.1007/3-540-26415-9_67 10.3233/THC-2002-10203 10.1007/s10514-005-0726-x 10.20965/jrm.2004.p0008 10.3390/act9010001 10.1007/978-1-4615-6558-1_14 10.1109/ICRA.2017.7989648 10.1007/s10514-013-9374-8 10.2514/6.2008-1418 10.1109/TMECH.2019.2916783 10.1007/BF02584440 10.1109/TMECH.2011.2163415 10.5545/sv-jme.2016.4027 10.1109/5254.867911 10.1109/TMECH.2016.2585503 10.1007/BF02474672 10.1016/j.gaitpost.2006.07.002 10.1007/s41133-020-00043-x 10.1016/j.sna.2011.01.002 10.1007/978-981-13-8323-6_24 10.1016/j.ijengsci.2009.08.001 10.1016/j.mechatronics.2017.05.007 10.1177/1045389X14533430 10.1089/soro.2021.0220 10.1016/j.ijmecsci.2013.11.010 10.1109/3516.653050 10.1016/j.ijnonlinmec.2020.103544 10.1115/1.482478 10.1007/978-1-4613-9030-5_7 10.1016/j.jbiomech.2009.12.024 10.3182/20080706-5-KR-1001.00133 10.1109/IROS.2008.4651230 10.1002/adma.201704407 10.1177/1045389X11424216 10.3390/act3020041 10.3390/app8040499 10.3390/act11070194 10.1109/ROBOT.2007.363848 10.3390/act10060123 10.2514/6.2009-2140 10.1016/j.mechatronics.2012.09.010 10.1007/s12541-012-0099-y 10.1016/j.gaitpost.2009.06.002 10.1016/j.cirp.2014.05.006 10.1109/70.481753 10.1016/0928-4869(95)00010-Q 10.1007/s12369-020-00662-9 10.1080/10255840902948017 10.1007/s00170-012-4324-8 10.1080/17483107.2018.1494218 10.1109/IROS.2006.282229 10.1016/j.mechatronics.2010.05.002 10.1016/j.mechmachtheory.2018.03.010 10.1115/1.4007636 10.1111/j.1525-1594.2008.00549.x 10.1007/s12206-013-0837-9 10.3390/app10010043 10.1007/s11071-019-05122-2 10.1109/LRA.2017.2724140 10.1115/1.4040490 10.1109/ICRA.2013.6630851 10.23919/ECC.2003.7085344 10.1080/14399776.2001.10781119 10.1109/ROBOT.1998.680894 10.1080/10255840802654327 10.1016/0005-1098(93)90052-U 10.1016/j.mechatronics.2008.02.006 10.1088/0964-1726/23/12/125039 10.1089/soro.2018.0110 10.3390/act11020032 10.1007/s00419-022-02144-y 10.2514/6.1999-1742 10.1088/0964-1726/25/6/065013 10.1115/1.4046246 10.1109/ICSMC.1993.384780 10.1371/journal.pone.0204637 10.1371/journal.pone.0056137 10.1109/37.341863 10.1016/S1474-6670(17)49354-2 10.1016/j.mechmachtheory.2014.11.006 10.1109/MED.2011.5982983 10.1109/ROBOT.2007.364151 10.1016/j.isatra.2013.06.009 10.1109/ISIE.2011.5984340 10.1109/ICAR.2005.1507504 10.1016/0957-4158(93)90002-J 10.1088/0964-1726/25/6/065014 10.3390/act7040082 10.1109/ICVR.2008.4625154 10.1109/TMECH.2006.875558 10.1088/1361-665X/aa5496 10.1007/978-981-16-0550-5_160 10.3390/app12094146 10.1016/j.jbiomech.2009.09.030 10.1115/IMECE2004-60075 10.1109/ROBOT.1999.770030 10.1109/ROBOT.2007.364246 10.1016/j.mechmachtheory.2019.01.031 10.1063/1.1712836 10.1115/1.4004417 10.1115/1.1630812 10.1016/j.jbiomech.2005.05.018 10.3390/act9040118 10.1115/1.4028420 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SP 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- L6V L7M M0N M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/act11100288 |
DatabaseName | CrossRef ProQuest Central (Corporate) Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection (ProQuest) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2076-0825 |
ExternalDocumentID | oai_doaj_org_article_64210778094949ac86625f5036bf2c9b A741706951 10_3390_act11100288 |
GeographicLocations | New Jersey |
GeographicLocations_xml | – name: New Jersey |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ABUWG ACIWK ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS PMFND 3V. 7SP 7TB 7XB 8AL 8FD 8FK FR3 JQ2 L7M M0N PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c403t-7c9e81985d851d396821b0aad0e5d656929a34bad88ddb323cc5ac9768c0a0f43 |
IEDL.DBID | DOA |
ISSN | 2076-0825 |
IngestDate | Wed Aug 27 01:32:03 EDT 2025 Fri Jul 25 12:04:50 EDT 2025 Tue Jun 10 20:44:23 EDT 2025 Tue Jul 01 02:08:09 EDT 2025 Thu Apr 24 22:56:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-7c9e81985d851d396821b0aad0e5d656929a34bad88ddb323cc5ac9768c0a0f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9317-2714 0000-0001-8361-9308 |
OpenAccessLink | https://doaj.org/article/64210778094949ac86625f5036bf2c9b |
PQID | 2728408048 |
PQPubID | 2032444 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_64210778094949ac86625f5036bf2c9b proquest_journals_2728408048 gale_infotracacademiconefile_A741706951 crossref_primary_10_3390_act11100288 crossref_citationtrail_10_3390_act11100288 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Actuators |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Ashwin (ref_5) 2018; 70 ref_94 ref_137 ref_136 Kothera (ref_93) 2009; 131 ref_138 Malcolm (ref_165) 2009; 30 Kalita (ref_95) 2019; 135 Kalita (ref_39) 2018; Volume 211 Leclair (ref_162) 2018; 15 Mendizabal (ref_51) 2010; 20 ref_13 Cveticanin (ref_64) 2018; 125 ref_131 ref_133 ref_132 Prior (ref_139) 1995; 3 Kim (ref_161) 2013; 27 Oguntosin (ref_42) 2019; 297 Ferraresi (ref_79) 2001; 13 ref_135 ref_134 Isermann (ref_8) 1993; 29 ref_19 Ferris (ref_149) 2005; 21 ref_18 Ball (ref_91) 2016; 10 ref_17 Han (ref_37) 2018; 5 Andrikopoulos (ref_90) 2016; 21 Obiajulu (ref_172) 2013; Volume 55935 Pomiers (ref_174) 2003; 2003 (ref_31) 1969; 7 Daerden (ref_127) 2001; Volume 2 Hunter (ref_10) 1991; 2 Liu (ref_80) 2003; 70 Moers (ref_85) 2011; 166 ref_126 ref_125 ref_128 Fantoni (ref_109) 2014; 63 ref_129 Zhang (ref_53) 2008; 18 ref_25 Caldwell (ref_141) 2002; 10 ref_24 ref_23 ref_120 ref_22 ref_21 ref_20 ref_123 ref_29 ref_28 Chakravarthy (ref_173) 2014; 8 ref_27 Rivlin (ref_100) 1948; 241 Daerden (ref_4) 2002; 47 Caldwell (ref_11) 1993; Volume 1 Deaconescu (ref_154) 2009; Volume 2 ref_71 Ganguly (ref_52) 2012; 22 Colbrunn (ref_65) 2001; Volume 4 Herr (ref_145) 2004; Volume 5385 ref_76 Noritsugu (ref_118) 1997; 2 Kalita (ref_60) 2022; 92 Chou (ref_2) 1996; 12 Tondu (ref_3) 2000; 20 Norris (ref_159) 2007; 25 Xie (ref_75) 2018; 120 Kalita (ref_98) 2020; 15 ref_148 ref_147 ref_81 Wirekoh (ref_43) 2017; 26 ref_142 Trivedi (ref_83) 2008; 24 ref_143 ref_146 Caldwell (ref_178) 1999; Volume 1 Narayan (ref_15) 2021; 6 ref_84 Caldwell (ref_12) 1993; 3 Serres (ref_54) 2010; 13 Woods (ref_101) 2011; 22 Mooney (ref_99) 1940; 11 Kao (ref_158) 2010; 43 Daerden (ref_33) 2001; 2 Kalita (ref_97) 2020; 125 Vimieiro (ref_156) 2008; 32 Cullinan (ref_63) 2017; 9 ref_50 Palomares (ref_62) 2017; 45 Mirvakili (ref_1) 2018; 30 Ferris (ref_150) 2006; 23 Kawashima (ref_175) 2004; 16 ref_56 ref_177 ref_176 ref_179 Serres (ref_55) 2009; 12 Yang (ref_47) 2019; 5 ref_180 Terryn (ref_34) 2017; 3 Ashwin (ref_116) 2019; 24 ref_182 Wickramatunge (ref_58) 2013; 52 Li (ref_59) 2011; 18 Kao (ref_157) 2010; 43 Robinson (ref_186) 2014; 3 ref_169 Hocking (ref_88) 2012; 22 Caldwell (ref_26) 1993; 26 Verrelst (ref_117) 2006; 20 ref_67 ref_164 ref_66 ref_163 Kobayashi (ref_144) 2004; Volume 3 ref_166 Caldwell (ref_121) 1998; Volume 4 ref_168 Kothera (ref_72) 2014; 23 ref_167 Havran (ref_77) 2012; 19 Knestel (ref_153) 2008; 41 ref_170 Wickramatunge (ref_57) 2010; 48 Caldwell (ref_48) 1995; 15 Waycaster (ref_107) 2011; 5 ref_114 Biro (ref_61) 2015; 85 (ref_69) 2015; 9 ref_119 Veale (ref_78) 2016; 25 ref_36 ref_35 Ilievski (ref_112) 2011; 123 ref_32 ref_111 ref_30 Liu (ref_74) 2017; 63 ref_113 Gupta (ref_152) 2006; 11 Kalita (ref_14) 2021; 13 Klute (ref_92) 2000; 122 Wu (ref_108) 2012; 6 ref_38 Kim (ref_102) 2012; 13 (ref_73) 2018; 10 Chen (ref_86) 2014; 78 Verrelst (ref_130) 2005; 18 ref_104 ref_103 ref_106 ref_105 Carneiro (ref_68) 2013; 66 Kalita (ref_96) 2019; 97 Tjahyono (ref_171) 2013; 40 Hannaford (ref_122) 1995; 23 ref_184 ref_46 ref_183 ref_45 Kawamura (ref_124) 2000; 15 ref_185 Ashwin (ref_115) 2019; 11 ref_188 ref_187 ref_40 Radojicic (ref_181) 2009; 60 ref_189 Veale (ref_41) 2016; 25 Wirekoh (ref_44) 2019; 6 Fedak (ref_70) 2017; 2017 ref_190 ref_49 Misuraca (ref_140) 2001; Volume 35609 Deaconescu (ref_155) 2009; 1 ref_9 Giannaccini (ref_110) 2014; 36 Wang (ref_87) 2015; 26 Sangian (ref_89) 2015; 234 Gordon (ref_151) 2006; 39 Lewis (ref_160) 2011; 44 Davis (ref_82) 2006; 25 ref_7 ref_6 Woods (ref_16) 2012; 23 |
References_xml | – ident: ref_190 – ident: ref_9 – volume: 40 start-page: 251 year: 2013 ident: ref_171 article-title: A five-fingered hand exoskeleton driven by pneumatic artificial muscles with novel polypyrrole sensors publication-title: Ind. Robot. Int. J. doi: 10.1108/01439911311309951 – volume: 120 start-page: 213 year: 2018 ident: ref_75 article-title: Hysteresis modeling and trajectory tracking control of the pneumatic muscle actuator using modified Prandtl–Ishlinskii model publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2017.07.016 – volume: 241 start-page: 379 year: 1948 ident: ref_100 article-title: Large elastic deformations of isotropic materials IV. Further developments of the general theory publication-title: Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. – volume: 44 start-page: 789 year: 2011 ident: ref_160 article-title: Invariant hip moment pattern while walking with a robotic hip exoskeleton publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.01.030 – volume: Volume 2 start-page: 1823 year: 2009 ident: ref_154 article-title: Pneumatic muscle actuated isokinetic equipment for the rehabilitation of patients with disabilities of the bearing joints publication-title: Proceedings of the International MultiConference of Engineers and Computer Scientists – volume: Volume 211 start-page: 02008 year: 2018 ident: ref_39 article-title: Dynamic analysis of a parametrically excited golden Muga silk embedded pneumatic artificial muscle publication-title: Proceedings of the MATEC Web of Conferences doi: 10.1051/matecconf/201821102008 – volume: 5 start-page: 554 year: 2018 ident: ref_37 article-title: A novel soft pneumatic artificial muscle with high-contraction ratio publication-title: Soft Robot. doi: 10.1089/soro.2017.0114 – volume: 11 start-page: 061004 year: 2019 ident: ref_115 article-title: A soft-robotic end-effector for independently actuating endoscopic catheters publication-title: J. Mech. Robot. doi: 10.1115/1.4044539 – ident: ref_123 – ident: ref_71 – ident: ref_94 – ident: ref_146 – volume: 24 start-page: 773 year: 2008 ident: ref_83 article-title: Geometrically exact models for soft robotic manipulators publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2008.924923 – volume: 131 start-page: 091010 year: 2009 ident: ref_93 article-title: Experimental characterization and static modeling of McKibben actuators publication-title: J. Mech. Des. doi: 10.1115/1.3158982 – volume: 123 start-page: 1930 year: 2011 ident: ref_112 article-title: Soft robotics for chemists publication-title: Angew. Chem. doi: 10.1002/ange.201006464 – ident: ref_56 – volume: 9 start-page: 011013 year: 2017 ident: ref_63 article-title: A McKibben type sleeve pneumatic muscle and integrated mechanism for improved stroke length publication-title: J. Mech. Robot. doi: 10.1115/1.4035496 – ident: ref_120 – ident: ref_135 – volume: 1 start-page: 3 year: 2009 ident: ref_155 article-title: Pneumatic muscle actuated robotized arm for rehabilitation systems publication-title: Environment – volume: Volume 3 start-page: 2480 year: 2004 ident: ref_144 article-title: Development of muscle suit for upper limb publication-title: Proceedings of the IEEE International Conference on Robotics and Automation – volume: 20 start-page: 15 year: 2000 ident: ref_3 article-title: Modeling and control of McKibben artificial muscle robot actuators publication-title: IEEE Control Syst. Mag. doi: 10.1109/37.833638 – volume: 25 start-page: 359 year: 2006 ident: ref_82 article-title: Braid effects on contractile range and friction modeling in pneumatic muscle actuators publication-title: Int. J. Robot. Res. doi: 10.1177/0278364906063227 – ident: ref_128 – ident: ref_13 – ident: ref_103 – volume: 23 start-page: 425 year: 2006 ident: ref_150 article-title: An improved powered ankle–foot orthosis using proportional myoelectric control publication-title: Gait Posture doi: 10.1016/j.gaitpost.2005.05.004 – volume: 70 start-page: 040802 year: 2018 ident: ref_5 article-title: A survey on static modeling of miniaturized pneumatic artificial muscles with new model and experimental results publication-title: Appl. Mech. Rev. doi: 10.1115/1.4041660 – volume: 20 start-page: 783 year: 2006 ident: ref_117 article-title: Second generation pleated pneumatic artificial muscle and its robotic applications publication-title: Adv. Robot. doi: 10.1163/156855306777681357 – ident: ref_136 doi: 10.1109/ICHR.2010.5686316 – volume: 21 start-page: 189 year: 2005 ident: ref_149 article-title: An ankle-foot orthosis powered by artificial pneumatic muscles publication-title: J. Appl. Biomech. doi: 10.1123/jab.21.2.189 – volume: 22 start-page: 014016 year: 2012 ident: ref_88 article-title: Analysis of nonlinear elastic behavior in miniature pneumatic artificial muscles publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/1/014016 – ident: ref_28 – volume: 5 start-page: 136 year: 2019 ident: ref_47 article-title: Modeling and analysis of a high-displacement pneumatic artificial muscle with integrated sensing publication-title: Front. Robot. AI doi: 10.3389/frobt.2018.00136 – ident: ref_30 – volume: Volume 2 start-page: 738 year: 2001 ident: ref_127 article-title: Pleated pneumatic artificial muscles: Actuators for automation and robotics publication-title: Proceedings of the 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Proceedings (Cat. No. 01TH8556) – ident: ref_7 doi: 10.21203/rs.3.rs-327092/v1 – volume: 234 start-page: 150 year: 2015 ident: ref_89 article-title: The effect of geometry and material properties on the performance of a small hydraulic McKibben muscle system publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2015.08.025 – volume: 23 start-page: 327 year: 2012 ident: ref_16 article-title: Fatigue life testing of swaged pneumatic artificial muscles as actuators for aerospace applications publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X11433495 – ident: ref_163 doi: 10.1109/ICCAS.2010.5669921 – volume: 297 start-page: 111523 year: 2019 ident: ref_42 article-title: Design and characterization of artificial muscles from wedge-like pneumatic soft modules publication-title: Sensors Actuators A Phys. doi: 10.1016/j.sna.2019.07.047 – volume: 13 start-page: 56 year: 2001 ident: ref_79 article-title: Flexible Pneumatic Actuators: A comparison between the McKibben and the straight fibres muscles publication-title: J. Robot. Mechatron. doi: 10.20965/jrm.2001.p0056 – volume: 10 start-page: 041001 year: 2016 ident: ref_91 article-title: Effects of bladder geometry in pneumatic artificial muscles publication-title: J. Med. Devices doi: 10.1115/1.4033325 – ident: ref_66 doi: 10.1109/SAMI.2013.6480994 – ident: ref_177 – ident: ref_176 doi: 10.1007/3-540-26415-9_67 – volume: 19 start-page: 673 year: 2012 ident: ref_77 article-title: Dynamic modelling of one degree of freedom pneumatic muscle-based actuator for industrial applications publication-title: Teh. Vjesn. – volume: 10 start-page: 107 year: 2002 ident: ref_141 article-title: Biomimetic actuators in prosthetic and rehabilitation applications publication-title: Technol. Health Care doi: 10.3233/THC-2002-10203 – volume: 18 start-page: 201 year: 2005 ident: ref_130 article-title: The pneumatic biped “Lucy” actuated with pleated pneumatic artificial muscles publication-title: Auton. Robot. doi: 10.1007/s10514-005-0726-x – volume: 16 start-page: 8 year: 2004 ident: ref_175 article-title: Development of robot using pneumatic artificial rubber muscles to operate construction machinery publication-title: J. Robot. Mechatron. doi: 10.20965/jrm.2004.p0008 – ident: ref_185 doi: 10.3390/act9010001 – ident: ref_29 doi: 10.1007/978-1-4615-6558-1_14 – ident: ref_45 doi: 10.1109/ICRA.2017.7989648 – volume: 36 start-page: 93 year: 2014 ident: ref_110 article-title: A variable compliance, soft gripper publication-title: Auton. Robot. doi: 10.1007/s10514-013-9374-8 – ident: ref_182 doi: 10.2514/6.2008-1418 – ident: ref_106 – ident: ref_148 – volume: 24 start-page: 1429 year: 2019 ident: ref_116 article-title: Static modeling of miniaturized pneumatic artificial muscles, kinematic analysis, and experiments on an endoscopic end-effector publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2019.2916783 – volume: 23 start-page: 399 year: 1995 ident: ref_122 article-title: The anthroform biorobotic arm: A system for the study of spinal circuits publication-title: Ann. Biomed. Eng. doi: 10.1007/BF02584440 – volume: 18 start-page: 74 year: 2011 ident: ref_59 article-title: Achieving haptic perception in forceps’ manipulator using pneumatic artificial muscle publication-title: IEEE/ASME Trans. Mechatronics doi: 10.1109/TMECH.2011.2163415 – volume: 63 start-page: 56 year: 2017 ident: ref_74 article-title: Modelling length/pressure hysteresis of a pneumatic artificial muscle using a modified Prandtl-Ishlinskii model publication-title: Stroj. Vestn. J. Mech. Eng. doi: 10.5545/sv-jme.2016.4027 – volume: 15 start-page: 38 year: 2000 ident: ref_124 article-title: ISAC: Foundations in human-humanoid interaction publication-title: IEEE Intell. Syst. Their Appl. doi: 10.1109/5254.867911 – volume: 2003 start-page: 879 year: 2003 ident: ref_174 article-title: Modular robot arm based on pneumatic artificial rubber muscles (PARM) publication-title: Proc. CLAWAR Catania – volume: 21 start-page: 2647 year: 2016 ident: ref_90 article-title: Novel considerations on static force modeling of pneumatic muscle actuators publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2016.2585503 – ident: ref_143 – ident: ref_25 – volume: 7 start-page: 77 year: 1969 ident: ref_31 article-title: Positional servo-mechanism activated by artificial muscles publication-title: Med. Biol. Eng. doi: 10.1007/BF02474672 – ident: ref_50 – volume: 25 start-page: 620 year: 2007 ident: ref_159 article-title: Effect of augmented plantarflexion power on preferred walking speed and economy in young and older adults publication-title: Gait Posture doi: 10.1016/j.gaitpost.2006.07.002 – volume: 6 start-page: 4 year: 2021 ident: ref_15 article-title: Development of robot-based upper limb devices for rehabilitation purposes: A systematic review publication-title: Augment. Hum. Res. doi: 10.1007/s41133-020-00043-x – volume: 2017 start-page: 7168462 year: 2017 ident: ref_70 article-title: Analysis of step responses in nonlinear dynamic systems consisting of antagonistic involvement of pneumatic artificial muscles publication-title: Adv. Mater. Sci. Eng.g – volume: 166 start-page: 111 year: 2011 ident: ref_85 article-title: Fabrication and control of miniature McKibben actuators publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2011.01.002 – ident: ref_40 doi: 10.1007/978-981-13-8323-6_24 – volume: 48 start-page: 188 year: 2010 ident: ref_57 article-title: Study on mechanical behaviors of pneumatic artificial muscle publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2009.08.001 – volume: 45 start-page: 37 year: 2017 ident: ref_62 article-title: Dynamic behaviour of pneumatic linear actuators publication-title: Mechatronics doi: 10.1016/j.mechatronics.2017.05.007 – volume: 26 start-page: 541 year: 2015 ident: ref_87 article-title: Non-linear quasi-static model of pneumatic artificial muscle actuators publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X14533430 – ident: ref_184 doi: 10.1089/soro.2021.0220 – volume: 78 start-page: 183 year: 2014 ident: ref_86 article-title: Prediction of the mechanical performance of McKibben artificial muscle actuator publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2013.11.010 – ident: ref_137 – volume: 2 start-page: 259 year: 1997 ident: ref_118 article-title: Application of rubber artificial muscle manipulator as a rehabilitation robot publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/3516.653050 – volume: 125 start-page: 103544 year: 2020 ident: ref_97 article-title: Nonlinear dynamic response of pneumatic artificial muscle: A theoretical and experimental study publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2020.103544 – volume: 122 start-page: 386 year: 2000 ident: ref_92 article-title: Accounting for elastic energy storage in McKibben artificial muscle actuators publication-title: J. Dyn. Sys. Meas. Control doi: 10.1115/1.482478 – ident: ref_179 – ident: ref_27 doi: 10.1007/978-1-4613-9030-5_7 – volume: 43 start-page: 1401 year: 2010 ident: ref_158 article-title: Joint kinetic response during unexpectedly reduced plantar flexor torque provided by a robotic ankle exoskeleton during walking publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.12.024 – volume: 41 start-page: 773 year: 2008 ident: ref_153 article-title: The artificial muscle as an innovative actuator in rehabilitation robotics publication-title: IFAC Proc. Vol. doi: 10.3182/20080706-5-KR-1001.00133 – ident: ref_134 doi: 10.1109/IROS.2008.4651230 – volume: Volume 55935 start-page: V06AT07A009 year: 2013 ident: ref_172 article-title: Soft pneumatic artificial muscles with low threshold pressures for a cardiac compression device publication-title: Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference – volume: 30 start-page: 1704407 year: 2018 ident: ref_1 article-title: Artificial muscles: Mechanisms, applications, and challenges publication-title: Adv. Mater. doi: 10.1002/adma.201704407 – ident: ref_36 – volume: 22 start-page: 1513 year: 2011 ident: ref_101 article-title: Wind tunnel testing of a helicopter rotor trailing edge flap actuated via pneumatic artificial muscles publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X11424216 – ident: ref_19 – volume: 3 start-page: 41 year: 2014 ident: ref_186 article-title: Control of a heavy-lift robotic manipulator with pneumatic artificial muscles publication-title: Actuators doi: 10.3390/act3020041 – ident: ref_22 – ident: ref_169 doi: 10.3390/app8040499 – ident: ref_126 doi: 10.3390/act11070194 – ident: ref_142 – ident: ref_132 doi: 10.1109/ROBOT.2007.363848 – ident: ref_167 doi: 10.3390/act10060123 – ident: ref_183 doi: 10.2514/6.2009-2140 – volume: 22 start-page: 1135 year: 2012 ident: ref_52 article-title: Control of pneumatic artificial muscle system through experimental modelling publication-title: Mechatronics doi: 10.1016/j.mechatronics.2012.09.010 – volume: 13 start-page: 759 year: 2012 ident: ref_102 article-title: A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for chloroprene rubber publication-title: Int. J. Precis. Eng. Manuf. doi: 10.1007/s12541-012-0099-y – volume: 9 start-page: 228 year: 2015 ident: ref_69 article-title: Numerical approximation of static characteristics of McKibben pneumatic artificial muscle publication-title: Int. J. Math. Comput. Simul. – ident: ref_32 – volume: 30 start-page: 322 year: 2009 ident: ref_165 article-title: Experimental study on the role of the ankle push off in the walk-to-run transition by means of a powered ankle-foot-exoskeleton publication-title: Gait Posture doi: 10.1016/j.gaitpost.2009.06.002 – ident: ref_84 – volume: 63 start-page: 679 year: 2014 ident: ref_109 article-title: Grasping devices and methods in automated production processes publication-title: CIRP Ann. doi: 10.1016/j.cirp.2014.05.006 – volume: 12 start-page: 90 year: 1996 ident: ref_2 article-title: Measurement and modeling of McKibben pneumatic artificial muscles publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/70.481753 – volume: 3 start-page: 81 year: 1995 ident: ref_139 article-title: Measurements and simulation of a pneumatic muscle actuator for a rehabilitation robot publication-title: Simul. Pract. Theory doi: 10.1016/0928-4869(95)00010-Q – volume: 13 start-page: 775 year: 2021 ident: ref_14 article-title: Development of active lower limb robotic-based orthosis and exoskeleton devices: A systematic review publication-title: Int. J. Soc. Robot. doi: 10.1007/s12369-020-00662-9 – volume: 13 start-page: 11 year: 2010 ident: ref_54 article-title: Characterisation of a pneumatic muscle test station with two dynamic plants in cascade publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255840902948017 – volume: 66 start-page: 283 year: 2013 ident: ref_68 article-title: Using two servovalves to improve pneumatic force control in industrial cylinders publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-012-4324-8 – ident: ref_180 – volume: 15 start-page: 1 year: 2018 ident: ref_162 article-title: Development of an unpowered ankle exoskeleton for walking assist publication-title: Disabil. Rehabil. Assist. Technol. doi: 10.1080/17483107.2018.1494218 – ident: ref_35 – ident: ref_104 – ident: ref_129 doi: 10.1109/IROS.2006.282229 – volume: 20 start-page: 535 year: 2010 ident: ref_51 article-title: Modelling in Modelica and position control of a 1-DoF set-up powered by pneumatic muscles publication-title: Mechatronics doi: 10.1016/j.mechatronics.2010.05.002 – ident: ref_23 – volume: 125 start-page: 196 year: 2018 ident: ref_64 article-title: Mathematical investigation of the stability condition and steady state position of a pneumatic artificial muscle–mass system publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2018.03.010 – volume: 6 start-page: 041004 year: 2012 ident: ref_108 article-title: Design and control of a pneumatically actuated lower-extremity orthosis publication-title: J. Med. Devices doi: 10.1115/1.4007636 – volume: 32 start-page: 317 year: 2008 ident: ref_156 article-title: Hip orthosis powered by pneumatic artificial muscle: Voluntary activation in absence of myoelectrical signal publication-title: Artif. Organs doi: 10.1111/j.1525-1594.2008.00549.x – volume: 27 start-page: 3161 year: 2013 ident: ref_161 article-title: Analysis of the assistance characteristics for the knee extension motion of knee orthosis using muscular stiffness force feedback publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-013-0837-9 – ident: ref_170 doi: 10.3390/app10010043 – ident: ref_188 – volume: 97 start-page: 2271 year: 2019 ident: ref_96 article-title: Dynamic analysis of pneumatic artificial muscle (PAM) actuator for rehabilitation with principal parametric resonance condition publication-title: Nonlinear Dyn. doi: 10.1007/s11071-019-05122-2 – volume: 3 start-page: 16 year: 2017 ident: ref_34 article-title: A pneumatic artificial muscle manufactured out of self-healing polymers that can repair macroscopic damages publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2017.2724140 – volume: 10 start-page: 055001 year: 2018 ident: ref_73 article-title: Ball and beam balancing mechanism actuated with pneumatic artificial muscles publication-title: J. Mech. Robot. doi: 10.1115/1.4040490 – ident: ref_111 doi: 10.1109/ICRA.2013.6630851 – ident: ref_67 doi: 10.23919/ECC.2003.7085344 – volume: 2 start-page: 41 year: 2001 ident: ref_33 article-title: The concept and design of pleated pneumatic artificial muscles publication-title: Int. J. Fluid Power doi: 10.1080/14399776.2001.10781119 – volume: Volume 4 start-page: 3053 year: 1998 ident: ref_121 article-title: Pneumatic muscle actuator technology: A light weight power system for a humanoid robot publication-title: Proceedings of the 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146) doi: 10.1109/ROBOT.1998.680894 – volume: 12 start-page: 423 year: 2009 ident: ref_55 article-title: Characterisation of a phenomenological model for commercial pneumatic muscle actuators publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255840802654327 – volume: 29 start-page: 1315 year: 1993 ident: ref_8 article-title: Intelligent actuators—Ways to autonomous actuating systems publication-title: Automatica doi: 10.1016/0005-1098(93)90052-U – volume: 18 start-page: 448 year: 2008 ident: ref_53 article-title: Modeling and control of a curved pneumatic muscle actuator for wearable elbow exoskeleton publication-title: Mechatronics doi: 10.1016/j.mechatronics.2008.02.006 – volume: 23 start-page: 125039 year: 2014 ident: ref_72 article-title: Mechanism and bias considerations for design of a bi-directional pneumatic artificial muscle actuator publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/23/12/125039 – volume: 60 start-page: 832 year: 2009 ident: ref_181 article-title: Modular hybrid robots for safe human-robot interaction publication-title: Int. J. World Acad. Sci. Eng. Technol. (WASET) – ident: ref_131 – volume: 6 start-page: 768 year: 2019 ident: ref_44 article-title: Sensorized, flat, pneumatic artificial muscle embedded with biomimetic microfluidic sensors for proprioceptive feedback publication-title: Soft Robot. doi: 10.1089/soro.2018.0110 – ident: ref_20 – ident: ref_166 doi: 10.3390/act11020032 – volume: 92 start-page: 2019 year: 2022 ident: ref_60 article-title: Instability regions of pneumatic artificial muscle actuator subject to direct and parametric excitations publication-title: Arch. Appl. Mech. doi: 10.1007/s00419-022-02144-y – ident: ref_187 doi: 10.2514/6.1999-1742 – volume: 25 start-page: 065013 year: 2016 ident: ref_78 article-title: Characterizing the Peano fluidic muscle and the effects of its geometry properties on its behavior publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/25/6/065013 – volume: 15 start-page: 041003 year: 2020 ident: ref_98 article-title: Numerical investigation of nonlinear dynamics of a pneumatic artificial muscle with hard excitation publication-title: J. Comput. Nonlinear Dyn. doi: 10.1115/1.4046246 – volume: Volume 1 start-page: 423 year: 1993 ident: ref_11 article-title: Braided pneumatic actuator control of a multi-jointed manipulator publication-title: Proceedings of the IEEE Systems Man and Cybernetics Conference—SMC doi: 10.1109/ICSMC.1993.384780 – ident: ref_46 doi: 10.1371/journal.pone.0204637 – ident: ref_76 – volume: 2 start-page: 299 year: 1991 ident: ref_10 article-title: A comparative analysis of actuator technologies for robotics publication-title: Robot. Rev. – ident: ref_24 – ident: ref_164 doi: 10.1371/journal.pone.0056137 – volume: 15 start-page: 40 year: 1995 ident: ref_48 article-title: Control of pneumatic muscle actuators publication-title: IEEE Control Syst. Mag. doi: 10.1109/37.341863 – volume: 26 start-page: 522 year: 1993 ident: ref_26 article-title: Braided pneumatic muscle actuators publication-title: IFAC Proc. Vol. doi: 10.1016/S1474-6670(17)49354-2 – volume: 85 start-page: 25 year: 2015 ident: ref_61 article-title: Dynamic modeling of a pneumatic muscle actuator with two-direction motion publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2014.11.006 – ident: ref_125 – volume: Volume 4 start-page: 1964 year: 2001 ident: ref_65 article-title: Modeling of braided pneumatic actuators for robotic control publication-title: Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180) – ident: ref_6 doi: 10.1109/MED.2011.5982983 – ident: ref_18 – ident: ref_38 doi: 10.1109/ROBOT.2007.364151 – volume: 52 start-page: 825 year: 2013 ident: ref_58 article-title: Empirical modeling of dynamic behaviors of pneumatic artificial muscle actuators publication-title: ISA Trans. doi: 10.1016/j.isatra.2013.06.009 – ident: ref_21 – ident: ref_49 doi: 10.1109/ISIE.2011.5984340 – ident: ref_81 doi: 10.1109/ICAR.2005.1507504 – volume: 3 start-page: 269 year: 1993 ident: ref_12 article-title: Natural and artificial muscle elements as robot actuators publication-title: Mechatronics doi: 10.1016/0957-4158(93)90002-J – volume: 25 start-page: 065014 year: 2016 ident: ref_41 article-title: Modeling the Peano fluidic muscle and the effects of its material properties on its static and dynamic behavior publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/25/6/065014 – ident: ref_119 doi: 10.3390/act7040082 – ident: ref_147 doi: 10.1109/ICVR.2008.4625154 – ident: ref_189 – volume: 11 start-page: 280 year: 2006 ident: ref_152 article-title: Design of a haptic arm exoskeleton for training and rehabilitation publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2006.875558 – volume: 26 start-page: 035009 year: 2017 ident: ref_43 article-title: Design of flat pneumatic artificial muscles publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa5496 – ident: ref_17 doi: 10.1007/978-981-16-0550-5_160 – ident: ref_138 doi: 10.3390/app12094146 – volume: Volume 35609 start-page: 963 year: 2001 ident: ref_140 article-title: Lower limb human muscle enhancer publication-title: Proceedings of the ASME International Mechanical Engineering Congress and Exposition – volume: 43 start-page: 203 year: 2010 ident: ref_157 article-title: Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.09.030 – ident: ref_114 doi: 10.1115/IMECE2004-60075 – volume: 47 start-page: 11 year: 2002 ident: ref_4 article-title: Pneumatic artificial muscles: Actuators for robotics and automation publication-title: Eur. J. Mech. Environ. Eng. – volume: Volume 1 start-page: 525 year: 1999 ident: ref_178 article-title: Development of a pneumatic muscle actuator driven manipulator rig for nuclear waste retrieval operations publication-title: Proceedings of the 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C) doi: 10.1109/ROBOT.1999.770030 – ident: ref_113 doi: 10.1109/ROBOT.2007.364246 – ident: ref_133 – volume: 135 start-page: 281 year: 2019 ident: ref_95 article-title: Nonlinear dynamics of a parametrically excited pneumatic artificial muscle (PAM) actuator with simultaneous resonance condition publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2019.01.031 – volume: 11 start-page: 582 year: 1940 ident: ref_99 article-title: A theory of large elastic deformation publication-title: J. Appl. Phys. doi: 10.1063/1.1712836 – ident: ref_105 – volume: 5 start-page: 031003 year: 2011 ident: ref_107 article-title: Design and control of a pneumatic artificial muscle actuated above-knee prosthesis publication-title: J. Med. Devices doi: 10.1115/1.4004417 – volume: Volume 5385 start-page: 1 year: 2004 ident: ref_145 article-title: New horizons for orthotic and prosthetic technology: Artificial muscle for ambulation publication-title: Proceedings of the Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD) – volume: 70 start-page: 853 year: 2003 ident: ref_80 article-title: Fiber-reinforced membrane models of McKibben actuators publication-title: J. Appl. Mech. doi: 10.1115/1.1630812 – volume: 39 start-page: 1832 year: 2006 ident: ref_151 article-title: Mechanical performance of artificial pneumatic muscles to power an ankle–foot orthosis publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.05.018 – ident: ref_168 doi: 10.3390/act9040118 – volume: 8 start-page: 041011 year: 2014 ident: ref_173 article-title: Experimental characterization and control of miniaturized pneumatic artificial muscle publication-title: J. Med. Devices doi: 10.1115/1.4028420 |
SSID | ssj0000913803 |
Score | 2.483742 |
SecondaryResourceType | review_article |
Snippet | Pneumatic artificial muscles (PAMs) are soft and flexible linear pneumatic actuators which produce human muscle like actuation. Due to these properties, the... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 288 |
SubjectTerms | Actuation actuator Actuators Artificial muscles Automation Bionics Compliance Design flexible Force force model Heavy construction Manufacturing engineering pneumatic artificial muscle Pneumatics Robotics Robots soft structure Systematic review Weight reduction |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbt5tIeStq0dJuk6BAoBERkyQ85l-CELKGQEEoDuQk9ewl2uo__3xlZ-zikwTdbDLbGmvlmpPmGkBMlWs95tAycm2Al-CBm6qJgleVlEarYRosJ_du7-uah_PlYPeaE2yIfq1zbxGSo_eAwR34mGjCkAG9KdfH8l2HXKNxdzS003pI9MMFKTcje5fXd_a9NlgVZL1VqjywgYGcYD41FehJi_TPjlgVSponUd2XrlhJ7__9sdHI8s33yISNG2o0q_kjehP4Teb_DI3hATEfHHD8degqIju4cBaJDpPd9WCVq1iRl5Iygt6sFyKMdVpBgy51zOhvmLlDsjvZETe9pt93c_kweZte_r25Y7p3AXMnlkjWuDeDsVeUBUnnZ1koUlhvjeag8YDhARUaW1nilvLdSSOcq4wCbKMcNj6X8Qib90IevhAICCrWEMCeqUIa6BTHONpEXznoJsqfkdD112mVicexv8aQhwMB51jvzPCUnm8HPI5_Gy8MuUQebIUiCnW4M8z86rymNNbq8aRREqHAZp2oI5mIFPtlG4Vo7JT9QgxqXKryQM7niAD4LSa90B2iq4TVgzCk5WitZ5zW80Ns_7tvrjw_JO4FFEemI3xGZLOercAxQZWm_5__xHw6j5Ps priority: 102 providerName: ProQuest |
Title | A Review on the Development of Pneumatic Artificial Muscle Actuators: Force Model and Application |
URI | https://www.proquest.com/docview/2728408048 https://doaj.org/article/64210778094949ac86625f5036bf2c9b |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58XPQgPrG6LjksCEIxbfpIvVXZdREUEQVvIc-TdGUf_99JWrUHxYv0VsKQTiYz36SZbwBGPK0MpU7FGNzSOMMYFMsiSeJc0Syxuauc8gf69w_F9CW7e81fe62-_J2wlh64VdylL8SkZckxDcFHal4gYnc5Ol7lUl0p730x5vWSqeCDq4RxytqCPIZ5_aXUy8TTo6Whx8p3CApM_b_54xBkJruw06FDUrez2oM12-zDdo8z8ABkTdrzfDJrCKI30rv2Q2aOPDZ2FWhYg5SWH4LcrxYoj9S-WsS317kik9lcW-I7ob0R2RhSf__IPoSXyfj5Zhp3fRJinVG2jEtdWQzsPDcInwyrCp4mikppqM0N4jVEQJJlShrOjVEsZVrnUiMO4ZpK6jJ2BBvNrLHHQBDt2IJhSuO4zWxRoRitSkcTrQxD2RFcfKpO6I5E3PeyeBOYTHg9i56eIxh9DX5vuTN-Hnbt1-BriCe8Di_QDERnBuIvM4jg3K-g8NsSJ6RlV12An-UJrkSNyKmkBeLJCAafiyy6_boQaYlhGsFzxk_-YzansJX6Molw6W8AG8v5yp4heFmqIazzye0QNq_HD49Pw2C1Hx8D6w8 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOqLzUhQI-FCEhRXWcl1OpQimwbGm34tBKvRm_wqVKyj6E-FP8RmacZHcPwK3KLbFGie3MfGN7vg9gX4rScV6bCIObiFKMQZHO4zjKDE9jn9VlbWhBf3qeTy7TL1fZ1Rb8Hmph6Fjl4BODo3atpTXyA1GgI0V4k8r3Nz8iUo2i3dVBQqObFqf-109M2eZHJx9xfN8IMf508WES9aoCkU15sogKW3oMgzJzCDZcUuZSxIZr7bjPHKIbxAs6SY12UjpnEpFYm2mLUVtarnmdJmj3DtxNE4zkVJk-_rxa0yGOTRnEmAUvMFHH7KsrCcS2_EDbRUwEbSKovKyDYNAK-FdECGFuvAMPe3zKqm5CPYIt3zyGBxushU9AV6zbUWBtwxA_so2DR6yt2dfGLwMRbLDSMVSw6XKO9lhF9Sok8HPIxu3MekZabNdMN45V6630p3B5K336DLabtvG7wBBv-TzBpKqWPvV5iWasKWoeW-MStD2Cd0PXKdvTmJOaxrXCdIb6WW308wj2V41vOvaOvzc7pjFYNSHK7XCjnX1X_R-sqCKYF4XEfBgvbWWOqWOdIQIwtbClGcFbGkFFjgFfyOq-vgE_iyi2VIXYreA5ItoR7A2DrHqPMVfr-f38_49fw73JxfRMnZ2cn76A-4LKMcLhwj3YXsyW_iWCpIV5FWYmg2-3_Sv8Afj9IF4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC7iBkQP4hM3idqHiCAM29Pz6hFENiZLYsyyiIHc2n56CTNxH4h_zV9n1Tx296Dewt5mm2KmH1VfdXd9H8ChFKXjPJgIg5uIUoxBkc7jOMoMT2OfhTIY2tC_mOanl-mnq-xqB373tTB0rbL3iY2jdrWlPfKRKNCRIrxJ5Sh01yJmx5MPNz8iUpCik9ZeTqOdIuf-109M3xbvz45xrF8LMTn5-vE06hQGIpvyZBkVtvQYEmXmEHi4pMyliA3X2nGfOUQ6iB10khrtpHTOJCKxNtMWI7i0XPOQJmj3DuwWlBUNYPfoZDr7st7hIcZN2UgzC15g2o65WFsgmCQlH2m7jImuTTSaL5uQ2CgH_Cs-NEFv8hAedGiVjdvp9Qh2fPUY7m9xGD4BPWbt-QKrK4Zokm1dQ2J1YLPKrxpa2MZKy1fBLlYLtMfGVL1Ccj_v2KSeW89Ime2a6cqx8eZg_Slc3kqvPoNBVVf-OTBEXz5PMMUK0qc-L9GMNUXgsTUuQdtDeNt3nbIdqTlpa1wrTG6on9VWPw_hcN34puXy-HuzIxqDdRMi4G4e1PPvqlvPiuqDeVFIzI7xp63MMZEMGeIBE4QtzRDe0AgqchP4QlZ31Q74WUS4pcaI5AqeI74dwkE_yKrzHwu1me17___7FdzFZaA-n03P9-GeoNqM5qbhAQyW85V_gYhpaV52U5PBt9teDX8ATtcl8A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+on+the+Development+of+Pneumatic+Artificial+Muscle+Actuators%3A+Force+Model+and+Application&rft.jtitle=Actuators&rft.au=Bhaben+Kalita&rft.au=Alexander+Leonessa&rft.au=Santosha+K.+Dwivedy&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=2076-0825&rft.volume=11&rft.issue=10&rft.spage=288&rft_id=info:doi/10.3390%2Fact11100288&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_64210778094949ac86625f5036bf2c9b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-0825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-0825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-0825&client=summon |