A Review on the Development of Pneumatic Artificial Muscle Actuators: Force Model and Application

Pneumatic artificial muscles (PAMs) are soft and flexible linear pneumatic actuators which produce human muscle like actuation. Due to these properties, the muscle actuators have an adaptable compliance for various robotic platforms as well as medical applications. While a variety of possible actuat...

Full description

Saved in:
Bibliographic Details
Published inActuators Vol. 11; no. 10; p. 288
Main Authors Kalita, Bhaben, Leonessa, Alexander, Dwivedy, Santosha K.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pneumatic artificial muscles (PAMs) are soft and flexible linear pneumatic actuators which produce human muscle like actuation. Due to these properties, the muscle actuators have an adaptable compliance for various robotic platforms as well as medical applications. While a variety of possible actuation schemes are present, there is still a need for the development of a soft actuator that is very light-weight, compact, and flexible with high power-to-weight ratio. To achieve this, the development of the PAM actuators has become an interesting topic for many researchers. In this review, the development of the different kinds of PAM available to date are presented along with manufacturing process and the operating principle. The various force models for artificial muscle presented in the literature are broadly reviewed with the constraints. Furthermore, the applications of PAM are included and classified based on the fields of biorobotics, medicine, and industry, along with advanced medical instrumentation. Finally, the needful improvements in terms of the dynamics of the muscle are discussed for the precise control of the PAMs as per the requirements for the applications. This review will be helpful for researchers working in the field of robotics and for designers to develop new type of artificial muscle depending on the applications.
AbstractList Pneumatic artificial muscles (PAMs) are soft and flexible linear pneumatic actuators which produce human muscle like actuation. Due to these properties, the muscle actuators have an adaptable compliance for various robotic platforms as well as medical applications. While a variety of possible actuation schemes are present, there is still a need for the development of a soft actuator that is very light-weight, compact, and flexible with high power-to-weight ratio. To achieve this, the development of the PAM actuators has become an interesting topic for many researchers. In this review, the development of the different kinds of PAM available to date are presented along with manufacturing process and the operating principle. The various force models for artificial muscle presented in the literature are broadly reviewed with the constraints. Furthermore, the applications of PAM are included and classified based on the fields of biorobotics, medicine, and industry, along with advanced medical instrumentation. Finally, the needful improvements in terms of the dynamics of the muscle are discussed for the precise control of the PAMs as per the requirements for the applications. This review will be helpful for researchers working in the field of robotics and for designers to develop new type of artificial muscle depending on the applications.
Audience Academic
Author Leonessa, Alexander
Kalita, Bhaben
Dwivedy, Santosha K.
Author_xml – sequence: 1
  givenname: Bhaben
  orcidid: 0000-0001-8361-9308
  surname: Kalita
  fullname: Kalita, Bhaben
– sequence: 2
  givenname: Alexander
  orcidid: 0000-0001-9317-2714
  surname: Leonessa
  fullname: Leonessa, Alexander
– sequence: 3
  givenname: Santosha K.
  surname: Dwivedy
  fullname: Dwivedy, Santosha K.
BookMark eNptUcFq3TAQNCWFpklO_QFBj-UlK8mWpd5MmjSBhJSQns16Jad6-EmuLKf076vmlRJKtQeJZWY0u_O2OggxuKp6x-FUSgNnSJlzDiC0flUdCmjVBrRoDl6831Qny7KFcgyXGuRhhR27d0_e_WAxsPzNsU_uyU1x3rmQWRzZl-DWHWZPrEvZj548Tux2XWhyrKO8Yo5p-cguYyLHbqN1E8NgWTfPk6fCi-G4ej3itLiTP_dR9fXy4uH8anNz9_n6vLvZUA0yb1oyTnOjG6sbbqVRWvABEC24xqpGGWFQ1gNara0dpJBEDZJplSZAGGt5VF3vdW3EbT8nv8P0s4_o--dGTI89lhGK8V7VgkPbajB1KSStlGjGBqQaRkFmKFrv91pzit9Xt-R-G9cUiv1etELXoKHWBXW6Rz1iEfVhjDkhlbJu56mEM_rS79qat6BMwwvhw55AKS5LcuNfmxz63xn2LzIsaP4Pmnx-Xmn5xk__5fwCfIueQg
CitedBy_id crossref_primary_10_3390_act13120507
crossref_primary_10_3390_act12060221
crossref_primary_10_3390_machines11070764
crossref_primary_10_3390_math11010149
crossref_primary_10_3390_s23020776
crossref_primary_10_1016_j_birob_2024_100172
crossref_primary_10_3390_polym17020127
crossref_primary_10_1007_s11071_024_09883_3
crossref_primary_10_3390_s24217095
crossref_primary_10_3390_s24237532
crossref_primary_10_1109_TRO_2024_3443714
crossref_primary_10_3389_fbioe_2023_1251879
crossref_primary_10_1108_IR_06_2023_0122
crossref_primary_10_3390_act11110314
crossref_primary_10_3390_act12110409
crossref_primary_10_37394_232022_2023_3_26
crossref_primary_10_3390_act14030153
crossref_primary_10_1155_2023_5522710
crossref_primary_10_3390_machines11100936
crossref_primary_10_3390_act13100418
crossref_primary_10_1142_S0218127423300082
crossref_primary_10_3390_act13080286
crossref_primary_10_3390_app14125329
crossref_primary_10_3389_fnins_2023_1128332
crossref_primary_10_2478_ama_2024_0071
crossref_primary_10_1038_s41528_024_00297_0
crossref_primary_10_1080_01691864_2024_2363394
crossref_primary_10_3390_act12010035
crossref_primary_10_3390_biomimetics9030177
crossref_primary_10_3390_s23146341
crossref_primary_10_1016_j_aej_2024_07_089
crossref_primary_10_20517_ss_2023_49
crossref_primary_10_1515_bmt_2022_0262
crossref_primary_10_1177_09544119241262372
crossref_primary_10_1007_s40799_023_00686_6
crossref_primary_10_3390_app14146385
crossref_primary_10_3390_biomimetics9040236
crossref_primary_10_3390_en17143381
crossref_primary_10_3390_act13090355
crossref_primary_10_1177_1045389X241263878
crossref_primary_10_1016_j_mechmachtheory_2023_105448
crossref_primary_10_3389_frobt_2024_1449721
crossref_primary_10_3390_app122111024
crossref_primary_10_1016_j_mechatronics_2023_103053
crossref_primary_10_3390_mi14071431
crossref_primary_10_1007_s43154_023_00102_2
crossref_primary_10_1007_s42235_023_00475_2
Cites_doi 10.1108/01439911311309951
10.1016/j.mechmachtheory.2017.07.016
10.1016/j.jbiomech.2011.01.030
10.1051/matecconf/201821102008
10.1089/soro.2017.0114
10.1115/1.4044539
10.1109/TRO.2008.924923
10.1115/1.3158982
10.1002/ange.201006464
10.1115/1.4035496
10.1109/37.833638
10.1177/0278364906063227
10.1016/j.gaitpost.2005.05.004
10.1115/1.4041660
10.1163/156855306777681357
10.1109/ICHR.2010.5686316
10.1123/jab.21.2.189
10.1088/0964-1726/22/1/014016
10.3389/frobt.2018.00136
10.21203/rs.3.rs-327092/v1
10.1016/j.sna.2015.08.025
10.1177/1045389X11433495
10.1109/ICCAS.2010.5669921
10.1016/j.sna.2019.07.047
10.20965/jrm.2001.p0056
10.1115/1.4033325
10.1109/SAMI.2013.6480994
10.1007/3-540-26415-9_67
10.3233/THC-2002-10203
10.1007/s10514-005-0726-x
10.20965/jrm.2004.p0008
10.3390/act9010001
10.1007/978-1-4615-6558-1_14
10.1109/ICRA.2017.7989648
10.1007/s10514-013-9374-8
10.2514/6.2008-1418
10.1109/TMECH.2019.2916783
10.1007/BF02584440
10.1109/TMECH.2011.2163415
10.5545/sv-jme.2016.4027
10.1109/5254.867911
10.1109/TMECH.2016.2585503
10.1007/BF02474672
10.1016/j.gaitpost.2006.07.002
10.1007/s41133-020-00043-x
10.1016/j.sna.2011.01.002
10.1007/978-981-13-8323-6_24
10.1016/j.ijengsci.2009.08.001
10.1016/j.mechatronics.2017.05.007
10.1177/1045389X14533430
10.1089/soro.2021.0220
10.1016/j.ijmecsci.2013.11.010
10.1109/3516.653050
10.1016/j.ijnonlinmec.2020.103544
10.1115/1.482478
10.1007/978-1-4613-9030-5_7
10.1016/j.jbiomech.2009.12.024
10.3182/20080706-5-KR-1001.00133
10.1109/IROS.2008.4651230
10.1002/adma.201704407
10.1177/1045389X11424216
10.3390/act3020041
10.3390/app8040499
10.3390/act11070194
10.1109/ROBOT.2007.363848
10.3390/act10060123
10.2514/6.2009-2140
10.1016/j.mechatronics.2012.09.010
10.1007/s12541-012-0099-y
10.1016/j.gaitpost.2009.06.002
10.1016/j.cirp.2014.05.006
10.1109/70.481753
10.1016/0928-4869(95)00010-Q
10.1007/s12369-020-00662-9
10.1080/10255840902948017
10.1007/s00170-012-4324-8
10.1080/17483107.2018.1494218
10.1109/IROS.2006.282229
10.1016/j.mechatronics.2010.05.002
10.1016/j.mechmachtheory.2018.03.010
10.1115/1.4007636
10.1111/j.1525-1594.2008.00549.x
10.1007/s12206-013-0837-9
10.3390/app10010043
10.1007/s11071-019-05122-2
10.1109/LRA.2017.2724140
10.1115/1.4040490
10.1109/ICRA.2013.6630851
10.23919/ECC.2003.7085344
10.1080/14399776.2001.10781119
10.1109/ROBOT.1998.680894
10.1080/10255840802654327
10.1016/0005-1098(93)90052-U
10.1016/j.mechatronics.2008.02.006
10.1088/0964-1726/23/12/125039
10.1089/soro.2018.0110
10.3390/act11020032
10.1007/s00419-022-02144-y
10.2514/6.1999-1742
10.1088/0964-1726/25/6/065013
10.1115/1.4046246
10.1109/ICSMC.1993.384780
10.1371/journal.pone.0204637
10.1371/journal.pone.0056137
10.1109/37.341863
10.1016/S1474-6670(17)49354-2
10.1016/j.mechmachtheory.2014.11.006
10.1109/MED.2011.5982983
10.1109/ROBOT.2007.364151
10.1016/j.isatra.2013.06.009
10.1109/ISIE.2011.5984340
10.1109/ICAR.2005.1507504
10.1016/0957-4158(93)90002-J
10.1088/0964-1726/25/6/065014
10.3390/act7040082
10.1109/ICVR.2008.4625154
10.1109/TMECH.2006.875558
10.1088/1361-665X/aa5496
10.1007/978-981-16-0550-5_160
10.3390/app12094146
10.1016/j.jbiomech.2009.09.030
10.1115/IMECE2004-60075
10.1109/ROBOT.1999.770030
10.1109/ROBOT.2007.364246
10.1016/j.mechmachtheory.2019.01.031
10.1063/1.1712836
10.1115/1.4004417
10.1115/1.1630812
10.1016/j.jbiomech.2005.05.018
10.3390/act9040118
10.1115/1.4028420
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SP
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/act11100288
DatabaseName CrossRef
ProQuest Central (Corporate)
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection (ProQuest)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2076-0825
ExternalDocumentID oai_doaj_org_article_64210778094949ac86625f5036bf2c9b
A741706951
10_3390_act11100288
GeographicLocations New Jersey
GeographicLocations_xml – name: New Jersey
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ABUWG
ACIWK
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
PMFND
3V.
7SP
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
L7M
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c403t-7c9e81985d851d396821b0aad0e5d656929a34bad88ddb323cc5ac9768c0a0f43
IEDL.DBID DOA
ISSN 2076-0825
IngestDate Wed Aug 27 01:32:03 EDT 2025
Fri Jul 25 12:04:50 EDT 2025
Tue Jun 10 20:44:23 EDT 2025
Tue Jul 01 02:08:09 EDT 2025
Thu Apr 24 22:56:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-7c9e81985d851d396821b0aad0e5d656929a34bad88ddb323cc5ac9768c0a0f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9317-2714
0000-0001-8361-9308
OpenAccessLink https://doaj.org/article/64210778094949ac86625f5036bf2c9b
PQID 2728408048
PQPubID 2032444
ParticipantIDs doaj_primary_oai_doaj_org_article_64210778094949ac86625f5036bf2c9b
proquest_journals_2728408048
gale_infotracacademiconefile_A741706951
crossref_primary_10_3390_act11100288
crossref_citationtrail_10_3390_act11100288
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Actuators
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ashwin (ref_5) 2018; 70
ref_94
ref_137
ref_136
Kothera (ref_93) 2009; 131
ref_138
Malcolm (ref_165) 2009; 30
Kalita (ref_95) 2019; 135
Kalita (ref_39) 2018; Volume 211
Leclair (ref_162) 2018; 15
Mendizabal (ref_51) 2010; 20
ref_13
Cveticanin (ref_64) 2018; 125
ref_131
ref_133
ref_132
Prior (ref_139) 1995; 3
Kim (ref_161) 2013; 27
Oguntosin (ref_42) 2019; 297
Ferraresi (ref_79) 2001; 13
ref_135
ref_134
Isermann (ref_8) 1993; 29
ref_19
Ferris (ref_149) 2005; 21
ref_18
Ball (ref_91) 2016; 10
ref_17
Han (ref_37) 2018; 5
Andrikopoulos (ref_90) 2016; 21
Obiajulu (ref_172) 2013; Volume 55935
Pomiers (ref_174) 2003; 2003
(ref_31) 1969; 7
Daerden (ref_127) 2001; Volume 2
Hunter (ref_10) 1991; 2
Liu (ref_80) 2003; 70
Moers (ref_85) 2011; 166
ref_126
ref_125
ref_128
Fantoni (ref_109) 2014; 63
ref_129
Zhang (ref_53) 2008; 18
ref_25
Caldwell (ref_141) 2002; 10
ref_24
ref_23
ref_120
ref_22
ref_21
ref_20
ref_123
ref_29
ref_28
Chakravarthy (ref_173) 2014; 8
ref_27
Rivlin (ref_100) 1948; 241
Daerden (ref_4) 2002; 47
Caldwell (ref_11) 1993; Volume 1
Deaconescu (ref_154) 2009; Volume 2
ref_71
Ganguly (ref_52) 2012; 22
Colbrunn (ref_65) 2001; Volume 4
Herr (ref_145) 2004; Volume 5385
ref_76
Noritsugu (ref_118) 1997; 2
Kalita (ref_60) 2022; 92
Chou (ref_2) 1996; 12
Tondu (ref_3) 2000; 20
Norris (ref_159) 2007; 25
Xie (ref_75) 2018; 120
Kalita (ref_98) 2020; 15
ref_148
ref_147
ref_81
Wirekoh (ref_43) 2017; 26
ref_142
Trivedi (ref_83) 2008; 24
ref_143
ref_146
Caldwell (ref_178) 1999; Volume 1
Narayan (ref_15) 2021; 6
ref_84
Caldwell (ref_12) 1993; 3
Serres (ref_54) 2010; 13
Woods (ref_101) 2011; 22
Mooney (ref_99) 1940; 11
Kao (ref_158) 2010; 43
Daerden (ref_33) 2001; 2
Kalita (ref_97) 2020; 125
Vimieiro (ref_156) 2008; 32
Cullinan (ref_63) 2017; 9
ref_50
Palomares (ref_62) 2017; 45
Mirvakili (ref_1) 2018; 30
Ferris (ref_150) 2006; 23
Kawashima (ref_175) 2004; 16
ref_56
ref_177
ref_176
ref_179
Serres (ref_55) 2009; 12
Yang (ref_47) 2019; 5
ref_180
Terryn (ref_34) 2017; 3
Ashwin (ref_116) 2019; 24
ref_182
Wickramatunge (ref_58) 2013; 52
Li (ref_59) 2011; 18
Kao (ref_157) 2010; 43
Robinson (ref_186) 2014; 3
ref_169
Hocking (ref_88) 2012; 22
Caldwell (ref_26) 1993; 26
Verrelst (ref_117) 2006; 20
ref_67
ref_164
ref_66
ref_163
Kobayashi (ref_144) 2004; Volume 3
ref_166
Caldwell (ref_121) 1998; Volume 4
ref_168
Kothera (ref_72) 2014; 23
ref_167
Havran (ref_77) 2012; 19
Knestel (ref_153) 2008; 41
ref_170
Wickramatunge (ref_57) 2010; 48
Caldwell (ref_48) 1995; 15
Waycaster (ref_107) 2011; 5
ref_114
Biro (ref_61) 2015; 85
(ref_69) 2015; 9
ref_119
Veale (ref_78) 2016; 25
ref_36
ref_35
Ilievski (ref_112) 2011; 123
ref_32
ref_111
ref_30
Liu (ref_74) 2017; 63
ref_113
Gupta (ref_152) 2006; 11
Kalita (ref_14) 2021; 13
Klute (ref_92) 2000; 122
Wu (ref_108) 2012; 6
ref_38
Kim (ref_102) 2012; 13
(ref_73) 2018; 10
Chen (ref_86) 2014; 78
Verrelst (ref_130) 2005; 18
ref_104
ref_103
ref_106
ref_105
Carneiro (ref_68) 2013; 66
Kalita (ref_96) 2019; 97
Tjahyono (ref_171) 2013; 40
Hannaford (ref_122) 1995; 23
ref_184
ref_46
ref_183
ref_45
Kawamura (ref_124) 2000; 15
ref_185
Ashwin (ref_115) 2019; 11
ref_188
ref_187
ref_40
Radojicic (ref_181) 2009; 60
ref_189
Veale (ref_41) 2016; 25
Wirekoh (ref_44) 2019; 6
Fedak (ref_70) 2017; 2017
ref_190
ref_49
Misuraca (ref_140) 2001; Volume 35609
Deaconescu (ref_155) 2009; 1
ref_9
Giannaccini (ref_110) 2014; 36
Wang (ref_87) 2015; 26
Sangian (ref_89) 2015; 234
Gordon (ref_151) 2006; 39
Lewis (ref_160) 2011; 44
Davis (ref_82) 2006; 25
ref_7
ref_6
Woods (ref_16) 2012; 23
References_xml – ident: ref_190
– ident: ref_9
– volume: 40
  start-page: 251
  year: 2013
  ident: ref_171
  article-title: A five-fingered hand exoskeleton driven by pneumatic artificial muscles with novel polypyrrole sensors
  publication-title: Ind. Robot. Int. J.
  doi: 10.1108/01439911311309951
– volume: 120
  start-page: 213
  year: 2018
  ident: ref_75
  article-title: Hysteresis modeling and trajectory tracking control of the pneumatic muscle actuator using modified Prandtl–Ishlinskii model
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2017.07.016
– volume: 241
  start-page: 379
  year: 1948
  ident: ref_100
  article-title: Large elastic deformations of isotropic materials IV. Further developments of the general theory
  publication-title: Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci.
– volume: 44
  start-page: 789
  year: 2011
  ident: ref_160
  article-title: Invariant hip moment pattern while walking with a robotic hip exoskeleton
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.01.030
– volume: Volume 2
  start-page: 1823
  year: 2009
  ident: ref_154
  article-title: Pneumatic muscle actuated isokinetic equipment for the rehabilitation of patients with disabilities of the bearing joints
  publication-title: Proceedings of the International MultiConference of Engineers and Computer Scientists
– volume: Volume 211
  start-page: 02008
  year: 2018
  ident: ref_39
  article-title: Dynamic analysis of a parametrically excited golden Muga silk embedded pneumatic artificial muscle
  publication-title: Proceedings of the MATEC Web of Conferences
  doi: 10.1051/matecconf/201821102008
– volume: 5
  start-page: 554
  year: 2018
  ident: ref_37
  article-title: A novel soft pneumatic artificial muscle with high-contraction ratio
  publication-title: Soft Robot.
  doi: 10.1089/soro.2017.0114
– volume: 11
  start-page: 061004
  year: 2019
  ident: ref_115
  article-title: A soft-robotic end-effector for independently actuating endoscopic catheters
  publication-title: J. Mech. Robot.
  doi: 10.1115/1.4044539
– ident: ref_123
– ident: ref_71
– ident: ref_94
– ident: ref_146
– volume: 24
  start-page: 773
  year: 2008
  ident: ref_83
  article-title: Geometrically exact models for soft robotic manipulators
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2008.924923
– volume: 131
  start-page: 091010
  year: 2009
  ident: ref_93
  article-title: Experimental characterization and static modeling of McKibben actuators
  publication-title: J. Mech. Des.
  doi: 10.1115/1.3158982
– volume: 123
  start-page: 1930
  year: 2011
  ident: ref_112
  article-title: Soft robotics for chemists
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201006464
– ident: ref_56
– volume: 9
  start-page: 011013
  year: 2017
  ident: ref_63
  article-title: A McKibben type sleeve pneumatic muscle and integrated mechanism for improved stroke length
  publication-title: J. Mech. Robot.
  doi: 10.1115/1.4035496
– ident: ref_120
– ident: ref_135
– volume: 1
  start-page: 3
  year: 2009
  ident: ref_155
  article-title: Pneumatic muscle actuated robotized arm for rehabilitation systems
  publication-title: Environment
– volume: Volume 3
  start-page: 2480
  year: 2004
  ident: ref_144
  article-title: Development of muscle suit for upper limb
  publication-title: Proceedings of the IEEE International Conference on Robotics and Automation
– volume: 20
  start-page: 15
  year: 2000
  ident: ref_3
  article-title: Modeling and control of McKibben artificial muscle robot actuators
  publication-title: IEEE Control Syst. Mag.
  doi: 10.1109/37.833638
– volume: 25
  start-page: 359
  year: 2006
  ident: ref_82
  article-title: Braid effects on contractile range and friction modeling in pneumatic muscle actuators
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364906063227
– ident: ref_128
– ident: ref_13
– ident: ref_103
– volume: 23
  start-page: 425
  year: 2006
  ident: ref_150
  article-title: An improved powered ankle–foot orthosis using proportional myoelectric control
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2005.05.004
– volume: 70
  start-page: 040802
  year: 2018
  ident: ref_5
  article-title: A survey on static modeling of miniaturized pneumatic artificial muscles with new model and experimental results
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.4041660
– volume: 20
  start-page: 783
  year: 2006
  ident: ref_117
  article-title: Second generation pleated pneumatic artificial muscle and its robotic applications
  publication-title: Adv. Robot.
  doi: 10.1163/156855306777681357
– ident: ref_136
  doi: 10.1109/ICHR.2010.5686316
– volume: 21
  start-page: 189
  year: 2005
  ident: ref_149
  article-title: An ankle-foot orthosis powered by artificial pneumatic muscles
  publication-title: J. Appl. Biomech.
  doi: 10.1123/jab.21.2.189
– volume: 22
  start-page: 014016
  year: 2012
  ident: ref_88
  article-title: Analysis of nonlinear elastic behavior in miniature pneumatic artificial muscles
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/1/014016
– ident: ref_28
– volume: 5
  start-page: 136
  year: 2019
  ident: ref_47
  article-title: Modeling and analysis of a high-displacement pneumatic artificial muscle with integrated sensing
  publication-title: Front. Robot. AI
  doi: 10.3389/frobt.2018.00136
– ident: ref_30
– volume: Volume 2
  start-page: 738
  year: 2001
  ident: ref_127
  article-title: Pleated pneumatic artificial muscles: Actuators for automation and robotics
  publication-title: Proceedings of the 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Proceedings (Cat. No. 01TH8556)
– ident: ref_7
  doi: 10.21203/rs.3.rs-327092/v1
– volume: 234
  start-page: 150
  year: 2015
  ident: ref_89
  article-title: The effect of geometry and material properties on the performance of a small hydraulic McKibben muscle system
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2015.08.025
– volume: 23
  start-page: 327
  year: 2012
  ident: ref_16
  article-title: Fatigue life testing of swaged pneumatic artificial muscles as actuators for aerospace applications
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X11433495
– ident: ref_163
  doi: 10.1109/ICCAS.2010.5669921
– volume: 297
  start-page: 111523
  year: 2019
  ident: ref_42
  article-title: Design and characterization of artificial muscles from wedge-like pneumatic soft modules
  publication-title: Sensors Actuators A Phys.
  doi: 10.1016/j.sna.2019.07.047
– volume: 13
  start-page: 56
  year: 2001
  ident: ref_79
  article-title: Flexible Pneumatic Actuators: A comparison between the McKibben and the straight fibres muscles
  publication-title: J. Robot. Mechatron.
  doi: 10.20965/jrm.2001.p0056
– volume: 10
  start-page: 041001
  year: 2016
  ident: ref_91
  article-title: Effects of bladder geometry in pneumatic artificial muscles
  publication-title: J. Med. Devices
  doi: 10.1115/1.4033325
– ident: ref_66
  doi: 10.1109/SAMI.2013.6480994
– ident: ref_177
– ident: ref_176
  doi: 10.1007/3-540-26415-9_67
– volume: 19
  start-page: 673
  year: 2012
  ident: ref_77
  article-title: Dynamic modelling of one degree of freedom pneumatic muscle-based actuator for industrial applications
  publication-title: Teh. Vjesn.
– volume: 10
  start-page: 107
  year: 2002
  ident: ref_141
  article-title: Biomimetic actuators in prosthetic and rehabilitation applications
  publication-title: Technol. Health Care
  doi: 10.3233/THC-2002-10203
– volume: 18
  start-page: 201
  year: 2005
  ident: ref_130
  article-title: The pneumatic biped “Lucy” actuated with pleated pneumatic artificial muscles
  publication-title: Auton. Robot.
  doi: 10.1007/s10514-005-0726-x
– volume: 16
  start-page: 8
  year: 2004
  ident: ref_175
  article-title: Development of robot using pneumatic artificial rubber muscles to operate construction machinery
  publication-title: J. Robot. Mechatron.
  doi: 10.20965/jrm.2004.p0008
– ident: ref_185
  doi: 10.3390/act9010001
– ident: ref_29
  doi: 10.1007/978-1-4615-6558-1_14
– ident: ref_45
  doi: 10.1109/ICRA.2017.7989648
– volume: 36
  start-page: 93
  year: 2014
  ident: ref_110
  article-title: A variable compliance, soft gripper
  publication-title: Auton. Robot.
  doi: 10.1007/s10514-013-9374-8
– ident: ref_182
  doi: 10.2514/6.2008-1418
– ident: ref_106
– ident: ref_148
– volume: 24
  start-page: 1429
  year: 2019
  ident: ref_116
  article-title: Static modeling of miniaturized pneumatic artificial muscles, kinematic analysis, and experiments on an endoscopic end-effector
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2019.2916783
– volume: 23
  start-page: 399
  year: 1995
  ident: ref_122
  article-title: The anthroform biorobotic arm: A system for the study of spinal circuits
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/BF02584440
– volume: 18
  start-page: 74
  year: 2011
  ident: ref_59
  article-title: Achieving haptic perception in forceps’ manipulator using pneumatic artificial muscle
  publication-title: IEEE/ASME Trans. Mechatronics
  doi: 10.1109/TMECH.2011.2163415
– volume: 63
  start-page: 56
  year: 2017
  ident: ref_74
  article-title: Modelling length/pressure hysteresis of a pneumatic artificial muscle using a modified Prandtl-Ishlinskii model
  publication-title: Stroj. Vestn. J. Mech. Eng.
  doi: 10.5545/sv-jme.2016.4027
– volume: 15
  start-page: 38
  year: 2000
  ident: ref_124
  article-title: ISAC: Foundations in human-humanoid interaction
  publication-title: IEEE Intell. Syst. Their Appl.
  doi: 10.1109/5254.867911
– volume: 2003
  start-page: 879
  year: 2003
  ident: ref_174
  article-title: Modular robot arm based on pneumatic artificial rubber muscles (PARM)
  publication-title: Proc. CLAWAR Catania
– volume: 21
  start-page: 2647
  year: 2016
  ident: ref_90
  article-title: Novel considerations on static force modeling of pneumatic muscle actuators
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2016.2585503
– ident: ref_143
– ident: ref_25
– volume: 7
  start-page: 77
  year: 1969
  ident: ref_31
  article-title: Positional servo-mechanism activated by artificial muscles
  publication-title: Med. Biol. Eng.
  doi: 10.1007/BF02474672
– ident: ref_50
– volume: 25
  start-page: 620
  year: 2007
  ident: ref_159
  article-title: Effect of augmented plantarflexion power on preferred walking speed and economy in young and older adults
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2006.07.002
– volume: 6
  start-page: 4
  year: 2021
  ident: ref_15
  article-title: Development of robot-based upper limb devices for rehabilitation purposes: A systematic review
  publication-title: Augment. Hum. Res.
  doi: 10.1007/s41133-020-00043-x
– volume: 2017
  start-page: 7168462
  year: 2017
  ident: ref_70
  article-title: Analysis of step responses in nonlinear dynamic systems consisting of antagonistic involvement of pneumatic artificial muscles
  publication-title: Adv. Mater. Sci. Eng.g
– volume: 166
  start-page: 111
  year: 2011
  ident: ref_85
  article-title: Fabrication and control of miniature McKibben actuators
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2011.01.002
– ident: ref_40
  doi: 10.1007/978-981-13-8323-6_24
– volume: 48
  start-page: 188
  year: 2010
  ident: ref_57
  article-title: Study on mechanical behaviors of pneumatic artificial muscle
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2009.08.001
– volume: 45
  start-page: 37
  year: 2017
  ident: ref_62
  article-title: Dynamic behaviour of pneumatic linear actuators
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2017.05.007
– volume: 26
  start-page: 541
  year: 2015
  ident: ref_87
  article-title: Non-linear quasi-static model of pneumatic artificial muscle actuators
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X14533430
– ident: ref_184
  doi: 10.1089/soro.2021.0220
– volume: 78
  start-page: 183
  year: 2014
  ident: ref_86
  article-title: Prediction of the mechanical performance of McKibben artificial muscle actuator
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2013.11.010
– ident: ref_137
– volume: 2
  start-page: 259
  year: 1997
  ident: ref_118
  article-title: Application of rubber artificial muscle manipulator as a rehabilitation robot
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/3516.653050
– volume: 125
  start-page: 103544
  year: 2020
  ident: ref_97
  article-title: Nonlinear dynamic response of pneumatic artificial muscle: A theoretical and experimental study
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2020.103544
– volume: 122
  start-page: 386
  year: 2000
  ident: ref_92
  article-title: Accounting for elastic energy storage in McKibben artificial muscle actuators
  publication-title: J. Dyn. Sys. Meas. Control
  doi: 10.1115/1.482478
– ident: ref_179
– ident: ref_27
  doi: 10.1007/978-1-4613-9030-5_7
– volume: 43
  start-page: 1401
  year: 2010
  ident: ref_158
  article-title: Joint kinetic response during unexpectedly reduced plantar flexor torque provided by a robotic ankle exoskeleton during walking
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.12.024
– volume: 41
  start-page: 773
  year: 2008
  ident: ref_153
  article-title: The artificial muscle as an innovative actuator in rehabilitation robotics
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20080706-5-KR-1001.00133
– ident: ref_134
  doi: 10.1109/IROS.2008.4651230
– volume: Volume 55935
  start-page: V06AT07A009
  year: 2013
  ident: ref_172
  article-title: Soft pneumatic artificial muscles with low threshold pressures for a cardiac compression device
  publication-title: Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
– volume: 30
  start-page: 1704407
  year: 2018
  ident: ref_1
  article-title: Artificial muscles: Mechanisms, applications, and challenges
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704407
– ident: ref_36
– volume: 22
  start-page: 1513
  year: 2011
  ident: ref_101
  article-title: Wind tunnel testing of a helicopter rotor trailing edge flap actuated via pneumatic artificial muscles
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X11424216
– ident: ref_19
– volume: 3
  start-page: 41
  year: 2014
  ident: ref_186
  article-title: Control of a heavy-lift robotic manipulator with pneumatic artificial muscles
  publication-title: Actuators
  doi: 10.3390/act3020041
– ident: ref_22
– ident: ref_169
  doi: 10.3390/app8040499
– ident: ref_126
  doi: 10.3390/act11070194
– ident: ref_142
– ident: ref_132
  doi: 10.1109/ROBOT.2007.363848
– ident: ref_167
  doi: 10.3390/act10060123
– ident: ref_183
  doi: 10.2514/6.2009-2140
– volume: 22
  start-page: 1135
  year: 2012
  ident: ref_52
  article-title: Control of pneumatic artificial muscle system through experimental modelling
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2012.09.010
– volume: 13
  start-page: 759
  year: 2012
  ident: ref_102
  article-title: A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for chloroprene rubber
  publication-title: Int. J. Precis. Eng. Manuf.
  doi: 10.1007/s12541-012-0099-y
– volume: 9
  start-page: 228
  year: 2015
  ident: ref_69
  article-title: Numerical approximation of static characteristics of McKibben pneumatic artificial muscle
  publication-title: Int. J. Math. Comput. Simul.
– ident: ref_32
– volume: 30
  start-page: 322
  year: 2009
  ident: ref_165
  article-title: Experimental study on the role of the ankle push off in the walk-to-run transition by means of a powered ankle-foot-exoskeleton
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2009.06.002
– ident: ref_84
– volume: 63
  start-page: 679
  year: 2014
  ident: ref_109
  article-title: Grasping devices and methods in automated production processes
  publication-title: CIRP Ann.
  doi: 10.1016/j.cirp.2014.05.006
– volume: 12
  start-page: 90
  year: 1996
  ident: ref_2
  article-title: Measurement and modeling of McKibben pneumatic artificial muscles
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/70.481753
– volume: 3
  start-page: 81
  year: 1995
  ident: ref_139
  article-title: Measurements and simulation of a pneumatic muscle actuator for a rehabilitation robot
  publication-title: Simul. Pract. Theory
  doi: 10.1016/0928-4869(95)00010-Q
– volume: 13
  start-page: 775
  year: 2021
  ident: ref_14
  article-title: Development of active lower limb robotic-based orthosis and exoskeleton devices: A systematic review
  publication-title: Int. J. Soc. Robot.
  doi: 10.1007/s12369-020-00662-9
– volume: 13
  start-page: 11
  year: 2010
  ident: ref_54
  article-title: Characterisation of a pneumatic muscle test station with two dynamic plants in cascade
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255840902948017
– volume: 66
  start-page: 283
  year: 2013
  ident: ref_68
  article-title: Using two servovalves to improve pneumatic force control in industrial cylinders
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-012-4324-8
– ident: ref_180
– volume: 15
  start-page: 1
  year: 2018
  ident: ref_162
  article-title: Development of an unpowered ankle exoskeleton for walking assist
  publication-title: Disabil. Rehabil. Assist. Technol.
  doi: 10.1080/17483107.2018.1494218
– ident: ref_35
– ident: ref_104
– ident: ref_129
  doi: 10.1109/IROS.2006.282229
– volume: 20
  start-page: 535
  year: 2010
  ident: ref_51
  article-title: Modelling in Modelica and position control of a 1-DoF set-up powered by pneumatic muscles
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2010.05.002
– ident: ref_23
– volume: 125
  start-page: 196
  year: 2018
  ident: ref_64
  article-title: Mathematical investigation of the stability condition and steady state position of a pneumatic artificial muscle–mass system
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2018.03.010
– volume: 6
  start-page: 041004
  year: 2012
  ident: ref_108
  article-title: Design and control of a pneumatically actuated lower-extremity orthosis
  publication-title: J. Med. Devices
  doi: 10.1115/1.4007636
– volume: 32
  start-page: 317
  year: 2008
  ident: ref_156
  article-title: Hip orthosis powered by pneumatic artificial muscle: Voluntary activation in absence of myoelectrical signal
  publication-title: Artif. Organs
  doi: 10.1111/j.1525-1594.2008.00549.x
– volume: 27
  start-page: 3161
  year: 2013
  ident: ref_161
  article-title: Analysis of the assistance characteristics for the knee extension motion of knee orthosis using muscular stiffness force feedback
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-013-0837-9
– ident: ref_170
  doi: 10.3390/app10010043
– ident: ref_188
– volume: 97
  start-page: 2271
  year: 2019
  ident: ref_96
  article-title: Dynamic analysis of pneumatic artificial muscle (PAM) actuator for rehabilitation with principal parametric resonance condition
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-05122-2
– volume: 3
  start-page: 16
  year: 2017
  ident: ref_34
  article-title: A pneumatic artificial muscle manufactured out of self-healing polymers that can repair macroscopic damages
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2017.2724140
– volume: 10
  start-page: 055001
  year: 2018
  ident: ref_73
  article-title: Ball and beam balancing mechanism actuated with pneumatic artificial muscles
  publication-title: J. Mech. Robot.
  doi: 10.1115/1.4040490
– ident: ref_111
  doi: 10.1109/ICRA.2013.6630851
– ident: ref_67
  doi: 10.23919/ECC.2003.7085344
– volume: 2
  start-page: 41
  year: 2001
  ident: ref_33
  article-title: The concept and design of pleated pneumatic artificial muscles
  publication-title: Int. J. Fluid Power
  doi: 10.1080/14399776.2001.10781119
– volume: Volume 4
  start-page: 3053
  year: 1998
  ident: ref_121
  article-title: Pneumatic muscle actuator technology: A light weight power system for a humanoid robot
  publication-title: Proceedings of the 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146)
  doi: 10.1109/ROBOT.1998.680894
– volume: 12
  start-page: 423
  year: 2009
  ident: ref_55
  article-title: Characterisation of a phenomenological model for commercial pneumatic muscle actuators
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255840802654327
– volume: 29
  start-page: 1315
  year: 1993
  ident: ref_8
  article-title: Intelligent actuators—Ways to autonomous actuating systems
  publication-title: Automatica
  doi: 10.1016/0005-1098(93)90052-U
– volume: 18
  start-page: 448
  year: 2008
  ident: ref_53
  article-title: Modeling and control of a curved pneumatic muscle actuator for wearable elbow exoskeleton
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2008.02.006
– volume: 23
  start-page: 125039
  year: 2014
  ident: ref_72
  article-title: Mechanism and bias considerations for design of a bi-directional pneumatic artificial muscle actuator
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/23/12/125039
– volume: 60
  start-page: 832
  year: 2009
  ident: ref_181
  article-title: Modular hybrid robots for safe human-robot interaction
  publication-title: Int. J. World Acad. Sci. Eng. Technol. (WASET)
– ident: ref_131
– volume: 6
  start-page: 768
  year: 2019
  ident: ref_44
  article-title: Sensorized, flat, pneumatic artificial muscle embedded with biomimetic microfluidic sensors for proprioceptive feedback
  publication-title: Soft Robot.
  doi: 10.1089/soro.2018.0110
– ident: ref_20
– ident: ref_166
  doi: 10.3390/act11020032
– volume: 92
  start-page: 2019
  year: 2022
  ident: ref_60
  article-title: Instability regions of pneumatic artificial muscle actuator subject to direct and parametric excitations
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-022-02144-y
– ident: ref_187
  doi: 10.2514/6.1999-1742
– volume: 25
  start-page: 065013
  year: 2016
  ident: ref_78
  article-title: Characterizing the Peano fluidic muscle and the effects of its geometry properties on its behavior
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/6/065013
– volume: 15
  start-page: 041003
  year: 2020
  ident: ref_98
  article-title: Numerical investigation of nonlinear dynamics of a pneumatic artificial muscle with hard excitation
  publication-title: J. Comput. Nonlinear Dyn.
  doi: 10.1115/1.4046246
– volume: Volume 1
  start-page: 423
  year: 1993
  ident: ref_11
  article-title: Braided pneumatic actuator control of a multi-jointed manipulator
  publication-title: Proceedings of the IEEE Systems Man and Cybernetics Conference—SMC
  doi: 10.1109/ICSMC.1993.384780
– ident: ref_46
  doi: 10.1371/journal.pone.0204637
– ident: ref_76
– volume: 2
  start-page: 299
  year: 1991
  ident: ref_10
  article-title: A comparative analysis of actuator technologies for robotics
  publication-title: Robot. Rev.
– ident: ref_24
– ident: ref_164
  doi: 10.1371/journal.pone.0056137
– volume: 15
  start-page: 40
  year: 1995
  ident: ref_48
  article-title: Control of pneumatic muscle actuators
  publication-title: IEEE Control Syst. Mag.
  doi: 10.1109/37.341863
– volume: 26
  start-page: 522
  year: 1993
  ident: ref_26
  article-title: Braided pneumatic muscle actuators
  publication-title: IFAC Proc. Vol.
  doi: 10.1016/S1474-6670(17)49354-2
– volume: 85
  start-page: 25
  year: 2015
  ident: ref_61
  article-title: Dynamic modeling of a pneumatic muscle actuator with two-direction motion
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2014.11.006
– ident: ref_125
– volume: Volume 4
  start-page: 1964
  year: 2001
  ident: ref_65
  article-title: Modeling of braided pneumatic actuators for robotic control
  publication-title: Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180)
– ident: ref_6
  doi: 10.1109/MED.2011.5982983
– ident: ref_18
– ident: ref_38
  doi: 10.1109/ROBOT.2007.364151
– volume: 52
  start-page: 825
  year: 2013
  ident: ref_58
  article-title: Empirical modeling of dynamic behaviors of pneumatic artificial muscle actuators
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2013.06.009
– ident: ref_21
– ident: ref_49
  doi: 10.1109/ISIE.2011.5984340
– ident: ref_81
  doi: 10.1109/ICAR.2005.1507504
– volume: 3
  start-page: 269
  year: 1993
  ident: ref_12
  article-title: Natural and artificial muscle elements as robot actuators
  publication-title: Mechatronics
  doi: 10.1016/0957-4158(93)90002-J
– volume: 25
  start-page: 065014
  year: 2016
  ident: ref_41
  article-title: Modeling the Peano fluidic muscle and the effects of its material properties on its static and dynamic behavior
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/6/065014
– ident: ref_119
  doi: 10.3390/act7040082
– ident: ref_147
  doi: 10.1109/ICVR.2008.4625154
– ident: ref_189
– volume: 11
  start-page: 280
  year: 2006
  ident: ref_152
  article-title: Design of a haptic arm exoskeleton for training and rehabilitation
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2006.875558
– volume: 26
  start-page: 035009
  year: 2017
  ident: ref_43
  article-title: Design of flat pneumatic artificial muscles
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa5496
– ident: ref_17
  doi: 10.1007/978-981-16-0550-5_160
– ident: ref_138
  doi: 10.3390/app12094146
– volume: Volume 35609
  start-page: 963
  year: 2001
  ident: ref_140
  article-title: Lower limb human muscle enhancer
  publication-title: Proceedings of the ASME International Mechanical Engineering Congress and Exposition
– volume: 43
  start-page: 203
  year: 2010
  ident: ref_157
  article-title: Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.09.030
– ident: ref_114
  doi: 10.1115/IMECE2004-60075
– volume: 47
  start-page: 11
  year: 2002
  ident: ref_4
  article-title: Pneumatic artificial muscles: Actuators for robotics and automation
  publication-title: Eur. J. Mech. Environ. Eng.
– volume: Volume 1
  start-page: 525
  year: 1999
  ident: ref_178
  article-title: Development of a pneumatic muscle actuator driven manipulator rig for nuclear waste retrieval operations
  publication-title: Proceedings of the 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C)
  doi: 10.1109/ROBOT.1999.770030
– ident: ref_113
  doi: 10.1109/ROBOT.2007.364246
– ident: ref_133
– volume: 135
  start-page: 281
  year: 2019
  ident: ref_95
  article-title: Nonlinear dynamics of a parametrically excited pneumatic artificial muscle (PAM) actuator with simultaneous resonance condition
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2019.01.031
– volume: 11
  start-page: 582
  year: 1940
  ident: ref_99
  article-title: A theory of large elastic deformation
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1712836
– ident: ref_105
– volume: 5
  start-page: 031003
  year: 2011
  ident: ref_107
  article-title: Design and control of a pneumatic artificial muscle actuated above-knee prosthesis
  publication-title: J. Med. Devices
  doi: 10.1115/1.4004417
– volume: Volume 5385
  start-page: 1
  year: 2004
  ident: ref_145
  article-title: New horizons for orthotic and prosthetic technology: Artificial muscle for ambulation
  publication-title: Proceedings of the Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD)
– volume: 70
  start-page: 853
  year: 2003
  ident: ref_80
  article-title: Fiber-reinforced membrane models of McKibben actuators
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.1630812
– volume: 39
  start-page: 1832
  year: 2006
  ident: ref_151
  article-title: Mechanical performance of artificial pneumatic muscles to power an ankle–foot orthosis
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.05.018
– ident: ref_168
  doi: 10.3390/act9040118
– volume: 8
  start-page: 041011
  year: 2014
  ident: ref_173
  article-title: Experimental characterization and control of miniaturized pneumatic artificial muscle
  publication-title: J. Med. Devices
  doi: 10.1115/1.4028420
SSID ssj0000913803
Score 2.483742
SecondaryResourceType review_article
Snippet Pneumatic artificial muscles (PAMs) are soft and flexible linear pneumatic actuators which produce human muscle like actuation. Due to these properties, the...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 288
SubjectTerms Actuation
actuator
Actuators
Artificial muscles
Automation
Bionics
Compliance
Design
flexible
Force
force model
Heavy construction
Manufacturing engineering
pneumatic artificial muscle
Pneumatics
Robotics
Robots
soft structure
Systematic review
Weight reduction
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbt5tIeStq0dJuk6BAoBERkyQ85l-CELKGQEEoDuQk9ewl2uo__3xlZ-zikwTdbDLbGmvlmpPmGkBMlWs95tAycm2Al-CBm6qJgleVlEarYRosJ_du7-uah_PlYPeaE2yIfq1zbxGSo_eAwR34mGjCkAG9KdfH8l2HXKNxdzS003pI9MMFKTcje5fXd_a9NlgVZL1VqjywgYGcYD41FehJi_TPjlgVSponUd2XrlhJ7__9sdHI8s33yISNG2o0q_kjehP4Teb_DI3hATEfHHD8degqIju4cBaJDpPd9WCVq1iRl5Iygt6sFyKMdVpBgy51zOhvmLlDsjvZETe9pt93c_kweZte_r25Y7p3AXMnlkjWuDeDsVeUBUnnZ1koUlhvjeag8YDhARUaW1nilvLdSSOcq4wCbKMcNj6X8Qib90IevhAICCrWEMCeqUIa6BTHONpEXznoJsqfkdD112mVicexv8aQhwMB51jvzPCUnm8HPI5_Gy8MuUQebIUiCnW4M8z86rymNNbq8aRREqHAZp2oI5mIFPtlG4Vo7JT9QgxqXKryQM7niAD4LSa90B2iq4TVgzCk5WitZ5zW80Ns_7tvrjw_JO4FFEemI3xGZLOercAxQZWm_5__xHw6j5Ps
  priority: 102
  providerName: ProQuest
Title A Review on the Development of Pneumatic Artificial Muscle Actuators: Force Model and Application
URI https://www.proquest.com/docview/2728408048
https://doaj.org/article/64210778094949ac86625f5036bf2c9b
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58XPQgPrG6LjksCEIxbfpIvVXZdREUEQVvIc-TdGUf_99JWrUHxYv0VsKQTiYz36SZbwBGPK0MpU7FGNzSOMMYFMsiSeJc0Syxuauc8gf69w_F9CW7e81fe62-_J2wlh64VdylL8SkZckxDcFHal4gYnc5Ol7lUl0p730x5vWSqeCDq4RxytqCPIZ5_aXUy8TTo6Whx8p3CApM_b_54xBkJruw06FDUrez2oM12-zDdo8z8ABkTdrzfDJrCKI30rv2Q2aOPDZ2FWhYg5SWH4LcrxYoj9S-WsS317kik9lcW-I7ob0R2RhSf__IPoSXyfj5Zhp3fRJinVG2jEtdWQzsPDcInwyrCp4mikppqM0N4jVEQJJlShrOjVEsZVrnUiMO4ZpK6jJ2BBvNrLHHQBDt2IJhSuO4zWxRoRitSkcTrQxD2RFcfKpO6I5E3PeyeBOYTHg9i56eIxh9DX5vuTN-Hnbt1-BriCe8Di_QDERnBuIvM4jg3K-g8NsSJ6RlV12An-UJrkSNyKmkBeLJCAafiyy6_boQaYlhGsFzxk_-YzansJX6Molw6W8AG8v5yp4heFmqIazzye0QNq_HD49Pw2C1Hx8D6w8
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOqLzUhQI-FCEhRXWcl1OpQimwbGm34tBKvRm_wqVKyj6E-FP8RmacZHcPwK3KLbFGie3MfGN7vg9gX4rScV6bCIObiFKMQZHO4zjKDE9jn9VlbWhBf3qeTy7TL1fZ1Rb8Hmph6Fjl4BODo3atpTXyA1GgI0V4k8r3Nz8iUo2i3dVBQqObFqf-109M2eZHJx9xfN8IMf508WES9aoCkU15sogKW3oMgzJzCDZcUuZSxIZr7bjPHKIbxAs6SY12UjpnEpFYm2mLUVtarnmdJmj3DtxNE4zkVJk-_rxa0yGOTRnEmAUvMFHH7KsrCcS2_EDbRUwEbSKovKyDYNAK-FdECGFuvAMPe3zKqm5CPYIt3zyGBxushU9AV6zbUWBtwxA_so2DR6yt2dfGLwMRbLDSMVSw6XKO9lhF9Sok8HPIxu3MekZabNdMN45V6630p3B5K336DLabtvG7wBBv-TzBpKqWPvV5iWasKWoeW-MStD2Cd0PXKdvTmJOaxrXCdIb6WW308wj2V41vOvaOvzc7pjFYNSHK7XCjnX1X_R-sqCKYF4XEfBgvbWWOqWOdIQIwtbClGcFbGkFFjgFfyOq-vgE_iyi2VIXYreA5ItoR7A2DrHqPMVfr-f38_49fw73JxfRMnZ2cn76A-4LKMcLhwj3YXsyW_iWCpIV5FWYmg2-3_Sv8Afj9IF4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC7iBkQP4hM3idqHiCAM29Pz6hFENiZLYsyyiIHc2n56CTNxH4h_zV9n1Tx296Dewt5mm2KmH1VfdXd9H8ChFKXjPJgIg5uIUoxBkc7jOMoMT2OfhTIY2tC_mOanl-mnq-xqB373tTB0rbL3iY2jdrWlPfKRKNCRIrxJ5Sh01yJmx5MPNz8iUpCik9ZeTqOdIuf-109M3xbvz45xrF8LMTn5-vE06hQGIpvyZBkVtvQYEmXmEHi4pMyliA3X2nGfOUQ6iB10khrtpHTOJCKxNtMWI7i0XPOQJmj3DuwWlBUNYPfoZDr7st7hIcZN2UgzC15g2o65WFsgmCQlH2m7jImuTTSaL5uQ2CgH_Cs-NEFv8hAedGiVjdvp9Qh2fPUY7m9xGD4BPWbt-QKrK4Zokm1dQ2J1YLPKrxpa2MZKy1fBLlYLtMfGVL1Ccj_v2KSeW89Ime2a6cqx8eZg_Slc3kqvPoNBVVf-OTBEXz5PMMUK0qc-L9GMNUXgsTUuQdtDeNt3nbIdqTlpa1wrTG6on9VWPw_hcN34puXy-HuzIxqDdRMi4G4e1PPvqlvPiuqDeVFIzI7xp63MMZEMGeIBE4QtzRDe0AgqchP4QlZ31Q74WUS4pcaI5AqeI74dwkE_yKrzHwu1me17___7FdzFZaA-n03P9-GeoNqM5qbhAQyW85V_gYhpaV52U5PBt9teDX8ATtcl8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+on+the+Development+of+Pneumatic+Artificial+Muscle+Actuators%3A+Force+Model+and+Application&rft.jtitle=Actuators&rft.au=Bhaben+Kalita&rft.au=Alexander+Leonessa&rft.au=Santosha+K.+Dwivedy&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=2076-0825&rft.volume=11&rft.issue=10&rft.spage=288&rft_id=info:doi/10.3390%2Fact11100288&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_64210778094949ac86625f5036bf2c9b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-0825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-0825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-0825&client=summon