Numerical performance assessment of slope reinforcement using a pile-anchor structure under seismic loading
The pile-anchor structure is one of the most commonly used and effective methods in slope treatment. However, the dynamic behavior of slope reinforcement using a pile-anchor structure remains poorly understood. Performance assessment of the reinforcement system under seismic loading is therefore cri...
Saved in:
Published in | Soil dynamics and earthquake engineering (1984) Vol. 129; p. 105963 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Barking
Elsevier Ltd
01.02.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0267-7261 1879-341X |
DOI | 10.1016/j.soildyn.2019.105963 |
Cover
Loading…
Abstract | The pile-anchor structure is one of the most commonly used and effective methods in slope treatment. However, the dynamic behavior of slope reinforcement using a pile-anchor structure remains poorly understood. Performance assessment of the reinforcement system under seismic loading is therefore critical for reinforcement design. In this study, a numerical model of slope reinforced by pile-anchor structure, together with the analysis procedure, is briefly discussed. We consider four different reinforcement schemes to examine the effectiveness of pile-anchor reinforcement under seismic loading. Finite element analysis is used to derive the dynamic response, and Newmark sliding block analysis is employed to examine the stability of the reinforced slope. The performance assessment results indicate that the pile-anchor structure presents significant advantages of slope deformation reduction with a more reasonable internal force distribution and increased slope stability.
•Dynamic finite element analysis is used to simulate the pile-anchor structure.•Dynamic finite element combined with Newmark method is used to evaluate stability.•The dynamic responses of different types of landslide support structures are compared.•Pile-anchor structure presents the significant advantage in enhancing slope stability. |
---|---|
AbstractList | The pile-anchor structure is one of the most commonly used and effective methods in slope treatment. However, the dynamic behavior of slope reinforcement using a pile-anchor structure remains poorly understood. Performance assessment of the reinforcement system under seismic loading is therefore critical for reinforcement design. In this study, a numerical model of slope reinforced by pile-anchor structure, together with the analysis procedure, is briefly discussed. We consider four different reinforcement schemes to examine the effectiveness of pile-anchor reinforcement under seismic loading. Finite element analysis is used to derive the dynamic response, and Newmark sliding block analysis is employed to examine the stability of the reinforced slope. The performance assessment results indicate that the pile-anchor structure presents significant advantages of slope deformation reduction with a more reasonable internal force distribution and increased slope stability. The pile-anchor structure is one of the most commonly used and effective methods in slope treatment. However, the dynamic behavior of slope reinforcement using a pile-anchor structure remains poorly understood. Performance assessment of the reinforcement system under seismic loading is therefore critical for reinforcement design. In this study, a numerical model of slope reinforced by pile-anchor structure, together with the analysis procedure, is briefly discussed. We consider four different reinforcement schemes to examine the effectiveness of pile-anchor reinforcement under seismic loading. Finite element analysis is used to derive the dynamic response, and Newmark sliding block analysis is employed to examine the stability of the reinforced slope. The performance assessment results indicate that the pile-anchor structure presents significant advantages of slope deformation reduction with a more reasonable internal force distribution and increased slope stability. •Dynamic finite element analysis is used to simulate the pile-anchor structure.•Dynamic finite element combined with Newmark method is used to evaluate stability.•The dynamic responses of different types of landslide support structures are compared.•Pile-anchor structure presents the significant advantage in enhancing slope stability. |
ArticleNumber | 105963 |
Author | Xu, Xi Huang, Yu Mao, Wuwei |
Author_xml | – sequence: 1 givenname: Yu surname: Huang fullname: Huang, Yu email: yhuang@tongji.edu.cn organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai, 200092, China – sequence: 2 givenname: Xi surname: Xu fullname: Xu, Xi organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai, 200092, China – sequence: 3 givenname: Wuwei surname: Mao fullname: Mao, Wuwei organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai, 200092, China |
BookMark | eNqFkM9LwzAUgINMcE7_BCHguTNJ27TFg8jwFwy9KHgLafqqqW1Sk1TYf2_mdvKyU3iP73uB7xTNjDWA0AUlS0oov-qW3uq-2ZglI7SKu7zi6RGa07KokjSj7zM0J4wXScE4PUGn3neE0IKWfI6-nqcBnFayxyO41rpBGgVYeg_eD2ACti32vR0BO9AmAgr-1pPX5gNLPOoekuh8Wod9cJMKkwM8mQbiDNoPWuHeyibSZ-i4lb2H8_27QG_3d6-rx2T98vC0ul0nKiNpSIqagMoUrzjkpSTASmgZsJxlMlVtVpeSt2lbFpGoC55BWtW8yjlhpMi4IpAu0OXu7ujs9wQ-iM5OzsQvBUs5q3iesypS1ztKOeu9g1YoHWTQ1gQndS8oEdu6ohP7umJbV-zqRjv_Z49OD9JtDno3Ow9igB8NTnilISZvtAMVRGP1gQu_-G6cLA |
CitedBy_id | crossref_primary_10_1155_2022_2249654 crossref_primary_10_1016_j_soildyn_2021_106789 crossref_primary_10_1007_s10064_024_03559_3 crossref_primary_10_1007_s12665_024_11943_1 crossref_primary_10_1016_j_sandf_2023_101283 crossref_primary_10_1016_j_rineng_2025_104034 crossref_primary_10_1016_j_enggeo_2024_107623 crossref_primary_10_1007_s40098_024_01119_w crossref_primary_10_1007_s10064_021_02391_3 crossref_primary_10_1016_j_enggeo_2020_105782 crossref_primary_10_1016_j_soildyn_2025_109220 crossref_primary_10_3390_buildings14040886 crossref_primary_10_3390_buildings14113524 crossref_primary_10_1007_s12583_021_1474_3 crossref_primary_10_3390_w16010082 crossref_primary_10_1038_s41598_024_55766_3 crossref_primary_10_1016_j_engfailanal_2022_106223 crossref_primary_10_1007_s40098_024_00936_3 crossref_primary_10_1016_j_ijrmms_2022_105293 crossref_primary_10_3389_fmats_2022_1082292 crossref_primary_10_3390_buildings13102500 crossref_primary_10_1007_s00603_024_03857_y crossref_primary_10_1007_s40098_024_00954_1 crossref_primary_10_1134_S1995080224010153 crossref_primary_10_3390_su15065309 crossref_primary_10_1038_s41598_024_83382_8 crossref_primary_10_1080_13632469_2024_2445107 crossref_primary_10_1016_j_compgeo_2022_104751 crossref_primary_10_1016_j_enggeo_2022_106920 crossref_primary_10_1061__ASCE_GM_1943_5622_0002341 crossref_primary_10_1088_1742_6596_2732_1_012008 crossref_primary_10_1016_j_compgeo_2022_105069 |
Cites_doi | 10.1061/JMCEA3.0000735 10.1007/s10346-009-0164-5 10.1007/s12665-011-1489-7 10.1007/s10346-015-0560-y 10.1007/s11069-015-2118-7 10.1016/j.soildyn.2017.07.003 10.1016/j.enggeo.2017.03.018 10.1016/j.soildyn.2017.09.015 10.1680/geot.1965.15.2.139 10.1016/j.soildyn.2018.07.028 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Feb 2020 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Feb 2020 |
DBID | AAYXX CITATION 7ST 7TG 7UA 8FD C1K FR3 KL. KR7 SOI |
DOI | 10.1016/j.soildyn.2019.105963 |
DatabaseName | CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Meteorological & Geoastrophysical Abstracts Technology Research Database Engineering Research Database Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-341X |
ExternalDocumentID | 10_1016_j_soildyn_2019_105963 S0267726119308395 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACNNM ACRLP ACSBN ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IMUCA J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSE SST SSZ T5K TN5 WUQ Y6R ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7ST 7TG 7UA 8FD C1K EFKBS FR3 KL. KR7 SOI |
ID | FETCH-LOGICAL-c403t-7b0ec4c696e58a0e28ef2e2524a3cf4b8a6f3f87c69b764e39b6956020746c0e3 |
IEDL.DBID | .~1 |
ISSN | 0267-7261 |
IngestDate | Wed Aug 13 06:37:11 EDT 2025 Tue Jul 01 03:37:55 EDT 2025 Thu Apr 24 23:11:53 EDT 2025 Fri Feb 23 02:45:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Newmark sliding block analysis Finite element analysis Pile-anchor structure Seismic loading Performance assessment Reinforced slope |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-7b0ec4c696e58a0e28ef2e2524a3cf4b8a6f3f87c69b764e39b6956020746c0e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2362965529 |
PQPubID | 2045399 |
ParticipantIDs | proquest_journals_2362965529 crossref_citationtrail_10_1016_j_soildyn_2019_105963 crossref_primary_10_1016_j_soildyn_2019_105963 elsevier_sciencedirect_doi_10_1016_j_soildyn_2019_105963 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2020 2020-02-00 20200201 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationPlace | Barking |
PublicationPlace_xml | – name: Barking |
PublicationTitle | Soil dynamics and earthquake engineering (1984) |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Newmark (bib13) 1965; 15 Usluogullari, Temugan, Duman (bib16) 2016; 81 Zhou, Zhang, Tang (bib19) 2010; 29 Jibson, Michael (bib6) 2009 Makdisi, Seed (bib10) 1977; 104 (bib4) 2010 Veylon, Luu, Mercklé (bib17) 2017; 100 Naylor (bib12) 1982 Kramer (bib8) 1996 Qu, Luo, Hu (bib14) 2017; 115 Zhao, Wang, Wang (bib18) 2017; 222 (bib5) 2010 Kang, Song, Kim (bib7) 2009; 6 Lin, Cheng, Yang (bib9) 2018; 115 Song, Cui (bib15) 2016; 13 Clough, Chopra (bib1) 1966; 92 (bib11) 2013 (bib3) 2010 Ding, Dang, Yuan (bib2) 2012; 67 Ding (10.1016/j.soildyn.2019.105963_bib2) 2012; 67 (10.1016/j.soildyn.2019.105963_bib3) 2010 Kramer (10.1016/j.soildyn.2019.105963_bib8) 1996 (10.1016/j.soildyn.2019.105963_bib4) 2010 Zhou (10.1016/j.soildyn.2019.105963_bib19) 2010; 29 Jibson (10.1016/j.soildyn.2019.105963_bib6) 2009 Naylor (10.1016/j.soildyn.2019.105963_bib12) 1982 Song (10.1016/j.soildyn.2019.105963_bib15) 2016; 13 (10.1016/j.soildyn.2019.105963_bib5) 2010 Lin (10.1016/j.soildyn.2019.105963_bib9) 2018; 115 Clough (10.1016/j.soildyn.2019.105963_bib1) 1966; 92 Makdisi (10.1016/j.soildyn.2019.105963_bib10) 1977; 104 Kang (10.1016/j.soildyn.2019.105963_bib7) 2009; 6 (10.1016/j.soildyn.2019.105963_bib11) 2013 Usluogullari (10.1016/j.soildyn.2019.105963_bib16) 2016; 81 Zhao (10.1016/j.soildyn.2019.105963_bib18) 2017; 222 Qu (10.1016/j.soildyn.2019.105963_bib14) 2017; 115 Veylon (10.1016/j.soildyn.2019.105963_bib17) 2017; 100 Newmark (10.1016/j.soildyn.2019.105963_bib13) 1965; 15 |
References_xml | – volume: 6 start-page: 263 year: 2009 end-page: 272 ident: bib7 article-title: Behavior and stability of a large-scale cut slope considering reinforcement stages publication-title: Landslides – year: 2010 ident: bib3 article-title: Dynamic modeling with QUAKE/W – volume: 92 start-page: 197 year: 1966 end-page: 212 ident: bib1 article-title: Earthquake stress analysis in earth dams publication-title: J Eng Mech Div – year: 2009 ident: bib6 article-title: Maps showing seismic landslide hazards in Anchorage, Alaska – volume: 115 start-page: 352 year: 2018 end-page: 364 ident: bib9 article-title: Seismic response of a sheet-pile wall with anchoring frame beam by numerical simulation and shaking table test publication-title: Soil Dyn Earthq Eng – volume: 222 start-page: 29 year: 2017 end-page: 37 ident: bib18 article-title: Retaining mechanism and structural characteristics of h type anti-slide pile (hTP pile) and experience with its engineering application publication-title: Eng Geol – volume: 29 start-page: 565 year: 2010 end-page: 576 ident: bib19 article-title: Seismic damage analysis of road slopes in wenchuan earthquake publication-title: Chin J Rock Mech Eng – volume: 67 start-page: 161 year: 2012 end-page: 173 ident: bib2 article-title: Characteristics and remediation of a landslide complex triggered by the 2008 Wenchuan, China earthquake-case from Yingxiu near the earthquake epicenter publication-title: Environ. Earth Sci. – volume: 13 start-page: 321 year: 2016 end-page: 335 ident: bib15 article-title: A large-scale colluvial landslide caused by multiple factors: mechanism analysis and phased stabilization publication-title: Landslides – year: 2010 ident: bib5 article-title: Stress-deformation modeling with SIGMA/W – year: 1996 ident: bib8 article-title: Geotechnical earthquake engineering – year: 2010 ident: bib4 article-title: Stability modeling with SLOPE/W – volume: 100 start-page: 518 year: 2017 end-page: 528 ident: bib17 article-title: A simplified method for estimating Newmark displacements of mountain reservoirs publication-title: Soil Dyn Earthq Eng – volume: 115 start-page: 896 year: 2017 end-page: 906 ident: bib14 article-title: Dynamic response of anchored sheet pile wall under ground motion: analytical model with experimental validation publication-title: Soil Dyn Earthq Eng – volume: 81 start-page: 1027 year: 2016 end-page: 1050 ident: bib16 article-title: Comparison of slope stabilization methods by three-dimensional finite element analysis publication-title: Nat Hazards – volume: 104 start-page: 849 year: 1977 end-page: 867 ident: bib10 article-title: Simplified procedure for estimating dam and embankment earthquake induced deformations publication-title: Geotech Spec Publ – year: 2013 ident: bib11 article-title: Technical Code for building slope engineering (GB50330-2013) – volume: 15 start-page: 139 year: 1965 end-page: 160 ident: bib13 article-title: Effects of earthquakes on dams and embankments publication-title: Geotechnique – start-page: 229 year: 1982 end-page: 244 ident: bib12 article-title: Finite elements and slope stability publication-title: Numerical methods in geomechanics – year: 2010 ident: 10.1016/j.soildyn.2019.105963_bib4 – volume: 92 start-page: 197 issue: 2 year: 1966 ident: 10.1016/j.soildyn.2019.105963_bib1 article-title: Earthquake stress analysis in earth dams publication-title: J Eng Mech Div doi: 10.1061/JMCEA3.0000735 – volume: 6 start-page: 263 issue: 3 year: 2009 ident: 10.1016/j.soildyn.2019.105963_bib7 article-title: Behavior and stability of a large-scale cut slope considering reinforcement stages publication-title: Landslides doi: 10.1007/s10346-009-0164-5 – year: 1996 ident: 10.1016/j.soildyn.2019.105963_bib8 – volume: 67 start-page: 161 issue: 1 year: 2012 ident: 10.1016/j.soildyn.2019.105963_bib2 article-title: Characteristics and remediation of a landslide complex triggered by the 2008 Wenchuan, China earthquake-case from Yingxiu near the earthquake epicenter publication-title: Environ. Earth Sci. doi: 10.1007/s12665-011-1489-7 – volume: 13 start-page: 321 issue: 2 year: 2016 ident: 10.1016/j.soildyn.2019.105963_bib15 article-title: A large-scale colluvial landslide caused by multiple factors: mechanism analysis and phased stabilization publication-title: Landslides doi: 10.1007/s10346-015-0560-y – volume: 81 start-page: 1027 issue: 2 year: 2016 ident: 10.1016/j.soildyn.2019.105963_bib16 article-title: Comparison of slope stabilization methods by three-dimensional finite element analysis publication-title: Nat Hazards doi: 10.1007/s11069-015-2118-7 – volume: 100 start-page: 518 year: 2017 ident: 10.1016/j.soildyn.2019.105963_bib17 article-title: A simplified method for estimating Newmark displacements of mountain reservoirs publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2017.07.003 – volume: 222 start-page: 29 year: 2017 ident: 10.1016/j.soildyn.2019.105963_bib18 article-title: Retaining mechanism and structural characteristics of h type anti-slide pile (hTP pile) and experience with its engineering application publication-title: Eng Geol doi: 10.1016/j.enggeo.2017.03.018 – volume: 115 start-page: 896 year: 2017 ident: 10.1016/j.soildyn.2019.105963_bib14 article-title: Dynamic response of anchored sheet pile wall under ground motion: analytical model with experimental validation publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2017.09.015 – volume: 29 start-page: 565 issue: 3 year: 2010 ident: 10.1016/j.soildyn.2019.105963_bib19 article-title: Seismic damage analysis of road slopes in wenchuan earthquake publication-title: Chin J Rock Mech Eng – year: 2010 ident: 10.1016/j.soildyn.2019.105963_bib3 – year: 2010 ident: 10.1016/j.soildyn.2019.105963_bib5 – year: 2013 ident: 10.1016/j.soildyn.2019.105963_bib11 – volume: 15 start-page: 139 issue: 2 year: 1965 ident: 10.1016/j.soildyn.2019.105963_bib13 article-title: Effects of earthquakes on dams and embankments publication-title: Geotechnique doi: 10.1680/geot.1965.15.2.139 – year: 2009 ident: 10.1016/j.soildyn.2019.105963_bib6 – volume: 104 start-page: 849 issue: 7 year: 1977 ident: 10.1016/j.soildyn.2019.105963_bib10 article-title: Simplified procedure for estimating dam and embankment earthquake induced deformations publication-title: Geotech Spec Publ – volume: 115 start-page: 352 year: 2018 ident: 10.1016/j.soildyn.2019.105963_bib9 article-title: Seismic response of a sheet-pile wall with anchoring frame beam by numerical simulation and shaking table test publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2018.07.028 – start-page: 229 year: 1982 ident: 10.1016/j.soildyn.2019.105963_bib12 article-title: Finite elements and slope stability |
SSID | ssj0017186 |
Score | 2.4249108 |
Snippet | The pile-anchor structure is one of the most commonly used and effective methods in slope treatment. However, the dynamic behavior of slope reinforcement using... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105963 |
SubjectTerms | Dynamic response Earthquake loads Finite element analysis Finite element method Force distribution Internal forces Mathematical models Newmark sliding block analysis Numerical models Performance assessment Pile anchors Pile-anchor structure Reinforced slope Reinforcement Seismic analysis Seismic loading Seismic response Seismic stability Slope stability Stability analysis Stress concentration |
Title | Numerical performance assessment of slope reinforcement using a pile-anchor structure under seismic loading |
URI | https://dx.doi.org/10.1016/j.soildyn.2019.105963 https://www.proquest.com/docview/2362965529 |
Volume | 129 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPMWjIA-saVzHseOxqqgKiC5QqZtlGxtaQhP1MbDw27HzaAEJVWJM5IuiO-e7O-fuOwCumeLOD7R10GaIuARFqUC5bRM454eVJYbbgvHmYUD7Q3I3ikcN0K17YXxZZYX9JaYXaF3dCStthvl4HD762UnMJQAuBHFxBPeN5oQwz5_f-lyVebQd9tLynIUFfvW6iyeceL7c9PnD06C2uZ94y2n0l3_6hdSF--ntg70qboSd8tUOQMNMD8HuNzbBI_A2WJa_X1KYr9sBoFxxb8LMwnma5QbOTEGYqouzQehr31-ghLlDiMDJvGYzWPLKLmcG-i4zd23G8_exhmlWFN0fg2Hv5qnbD6pZCoEmKFoETCGjiaacmjiRyODEWGxwjImMtCUqkdRGNmFuhWKUmIgr6lMn7OeRaGSiE7A1zabmFEDNsJU2UpISn1xrpTSimij0jKwkSJ4BUmtQ6Ipo3M-7SEVdUTYRleKFV7woFX8GWiuxvGTa2CSQ1OYRP7aMcN5gk2izNqeovtm5wM6XcxrHmJ___8kXYAf7jLyo626CLWcsc-nCloW6KvblFdju3N73B19XRe9Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLZKGYABcYpyemBN6zqOHY8IUZWrCyB1s2zXhpbQRD0GFn47do4WkBASYyK_KHp-eYfzve8BcM4Ud3GgrYM2Q8QVKEoFyplN4IIfVpYYbnPGm_se7T6Rm37Ur4HLqhfGwypL31_49Nxbl3dapTZb2XDYevCzk5grAFwK4vIIHq2AVRKFzJt282OB82g750uLgxYW-OXLNp7WyBPmJoN3z4Pa5n7kLafhbwHqh6vO409nC2yWiSO8KN5tG9TMeAdsfKET3AWvvXnx_yWB2bIfAMoF-SZMLZwmaWbgxOSMqTo_HIQe_P4MJcyciwiczEs6gQWx7HxioG8zc9dmOH0bapikOep-Dzx1rh4vu0E5TCHQBIWzgClkNNGUUxPFEhkcG4sNjjCRobZExZLa0MbMrVCMEhNyRX3thP1AEo1MuA_q43RsDgDUDFtpQyUp8dW1VkojqolCA2QlQbIBSKVBoUumcT_wIhEVpGwkSsULr3hRKL4BmguxrKDa-EsgrrZHfLMZ4cLBX6LH1XaK8qOdCuyCOadRhPnh_598Bta6j_d34u66d3sE1rEvz3OQ9zGou40zJy6HmanT3EY_Aei08OY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+performance+assessment+of+slope+reinforcement+using+a+pile-anchor+structure+under+seismic+loading&rft.jtitle=Soil+dynamics+and+earthquake+engineering+%281984%29&rft.au=Huang%2C+Yu&rft.au=Xu%2C+Xi&rft.au=Mao%2C+Wuwei&rft.date=2020-02-01&rft.issn=0267-7261&rft.volume=129&rft.spage=105963&rft_id=info:doi/10.1016%2Fj.soildyn.2019.105963&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_soildyn_2019_105963 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0267-7261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0267-7261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0267-7261&client=summon |