A highly-enhanced electrochemiluminescence luminophore generated by a metal-organic framework-linked perylene derivative and its application for ractopamine assay

In this study, a sensitive and effective monitoring method for ractopamine (RAC) was developed based on a sensitive electrochemiluminescence (ECL) aptasensor. Here, we employed a perylene derivative (PTC-PEI) with a Cu-based metal-organic framework (HKUST-1), which could accelerate the electron-tran...

Full description

Saved in:
Bibliographic Details
Published inAnalyst (London) Vol. 146; no. 6; pp. 229 - 236
Main Authors Zhou, Lijun, Jiang, Ding, Wang, Yuru, Li, Haibo, Shan, Xueling, Wang, Wenchang, Chen, Zhidong
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 21.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, a sensitive and effective monitoring method for ractopamine (RAC) was developed based on a sensitive electrochemiluminescence (ECL) aptasensor. Here, we employed a perylene derivative (PTC-PEI) with a Cu-based metal-organic framework (HKUST-1), which could accelerate the electron-transfer (ET) rate and strengthen interactions by the amido bond, resulting in enhanced ECL sensitivity and stability. Astonishingly, compared with the response of PTC-PEI and complex, the ECL signal of the MOF-based ECL material was noticeably raised by 6 times higher than that of PTC-PEI. HKUST-1 exhibited an excellent catalytic effect towards the electrochemical reduction process of S 2 O 8 2− , thus allowing more sulfate radical anions (SO 4 &z.rad; − ) to be generated. The strong ECL intensity of HKUST-1/PTC-PEI not only stemmed from the fixation of PTC-PEI that utilized its excellent film-forming abilities but also originated from the high porosity of HKUST-1 that carried more luminophores able to be excited. Satisfyingly, in the presence of the target molecule RAC, we observed an obvious quenching effect of signal, which could be attributed to aptamer recognition resulting in RAC being specifically captured on the electrode. Under optimal conditions, the developed sensor for the RAC assay displayed a desired linear range of 1.0 × 10 −12 -1.0 × 10 −6 M and a low detection limit of 6.17 × 10 −13 M (S/N = 3). This ECL sensor showed high sensitivity, good stability and excellent selectivity. More importantly, the proposed aptasensor exhibited excellent determination towards RAC detection and potential practical utility for real samples. Herein, a sensitive and efficient ECL aptasensor for the quantitation of RAC was constructed.
AbstractList In this study, a sensitive and effective monitoring method for ractopamine (RAC) was developed based on a sensitive electrochemiluminescence (ECL) aptasensor. Here, we employed a perylene derivative (PTC-PEI) with a Cu-based metal-organic framework (HKUST-1), which could accelerate the electron-transfer (ET) rate and strengthen interactions by the amido bond, resulting in enhanced ECL sensitivity and stability. Astonishingly, compared with the response of PTC-PEI and complex, the ECL signal of the MOF-based ECL material was noticeably raised by 6 times higher than that of PTC-PEI. HKUST-1 exhibited an excellent catalytic effect towards the electrochemical reduction process of S 2 O 8 2− , thus allowing more sulfate radical anions (SO 4 &z.rad; − ) to be generated. The strong ECL intensity of HKUST-1/PTC-PEI not only stemmed from the fixation of PTC-PEI that utilized its excellent film-forming abilities but also originated from the high porosity of HKUST-1 that carried more luminophores able to be excited. Satisfyingly, in the presence of the target molecule RAC, we observed an obvious quenching effect of signal, which could be attributed to aptamer recognition resulting in RAC being specifically captured on the electrode. Under optimal conditions, the developed sensor for the RAC assay displayed a desired linear range of 1.0 × 10 −12 -1.0 × 10 −6 M and a low detection limit of 6.17 × 10 −13 M (S/N = 3). This ECL sensor showed high sensitivity, good stability and excellent selectivity. More importantly, the proposed aptasensor exhibited excellent determination towards RAC detection and potential practical utility for real samples. Herein, a sensitive and efficient ECL aptasensor for the quantitation of RAC was constructed.
In this study, a sensitive and effective monitoring method for ractopamine (RAC) was developed based on a sensitive electrochemiluminescence (ECL) aptasensor. Here, we employed a perylene derivative (PTC-PEI) with a Cu-based metal–organic framework (HKUST-1), which could accelerate the electron-transfer (ET) rate and strengthen interactions by the amido bond, resulting in enhanced ECL sensitivity and stability. Astonishingly, compared with the response of PTC-PEI and complex, the ECL signal of the MOF-based ECL material was noticeably raised by 6 times higher than that of PTC-PEI. HKUST-1 exhibited an excellent catalytic effect towards the electrochemical reduction process of S2O82−, thus allowing more sulfate radical anions (SO4·−) to be generated. The strong ECL intensity of HKUST-1/PTC-PEI not only stemmed from the fixation of PTC-PEI that utilized its excellent film-forming abilities but also originated from the high porosity of HKUST-1 that carried more luminophores able to be excited. Satisfyingly, in the presence of the target molecule RAC, we observed an obvious quenching effect of signal, which could be attributed to aptamer recognition resulting in RAC being specifically captured on the electrode. Under optimal conditions, the developed sensor for the RAC assay displayed a desired linear range of 1.0 × 10−12–1.0 × 10−6 M and a low detection limit of 6.17 × 10−13 M (S/N = 3). This ECL sensor showed high sensitivity, good stability and excellent selectivity. More importantly, the proposed aptasensor exhibited excellent determination towards RAC detection and potential practical utility for real samples.
In this study, a sensitive and effective monitoring method for ractopamine (RAC) was developed based on a sensitive electrochemiluminescence (ECL) aptasensor. Here, we employed a perylene derivative (PTC-PEI) with a Cu-based metal-organic framework (HKUST-1), which could accelerate the electron-transfer (ET) rate and strengthen interactions by the amido bond, resulting in enhanced ECL sensitivity and stability. Astonishingly, compared with the response of PTC-PEI and complex, the ECL signal of the MOF-based ECL material was noticeably raised by 6 times higher than that of PTC-PEI. HKUST-1 exhibited an excellent catalytic effect towards the electrochemical reduction process of S O , thus allowing more sulfate radical anions (SO ˙ ) to be generated. The strong ECL intensity of HKUST-1/PTC-PEI not only stemmed from the fixation of PTC-PEI that utilized its excellent film-forming abilities but also originated from the high porosity of HKUST-1 that carried more luminophores able to be excited. Satisfyingly, in the presence of the target molecule RAC, we observed an obvious quenching effect of signal, which could be attributed to aptamer recognition resulting in RAC being specifically captured on the electrode. Under optimal conditions, the developed sensor for the RAC assay displayed a desired linear range of 1.0 × 10 -1.0 × 10 M and a low detection limit of 6.17 × 10 M (S/N = 3). This ECL sensor showed high sensitivity, good stability and excellent selectivity. More importantly, the proposed aptasensor exhibited excellent determination towards RAC detection and potential practical utility for real samples.
In this study, a sensitive and effective monitoring method for ractopamine (RAC) was developed based on a sensitive electrochemiluminescence (ECL) aptasensor. Here, we employed a perylene derivative (PTC-PEI) with a Cu-based metal-organic framework (HKUST-1), which could accelerate the electron-transfer (ET) rate and strengthen interactions by the amido bond, resulting in enhanced ECL sensitivity and stability. Astonishingly, compared with the response of PTC-PEI and complex, the ECL signal of the MOF-based ECL material was noticeably raised by 6 times higher than that of PTC-PEI. HKUST-1 exhibited an excellent catalytic effect towards the electrochemical reduction process of S2O82-, thus allowing more sulfate radical anions (SO4˙-) to be generated. The strong ECL intensity of HKUST-1/PTC-PEI not only stemmed from the fixation of PTC-PEI that utilized its excellent film-forming abilities but also originated from the high porosity of HKUST-1 that carried more luminophores able to be excited. Satisfyingly, in the presence of the target molecule RAC, we observed an obvious quenching effect of signal, which could be attributed to aptamer recognition resulting in RAC being specifically captured on the electrode. Under optimal conditions, the developed sensor for the RAC assay displayed a desired linear range of 1.0 × 10-12-1.0 × 10-6 M and a low detection limit of 6.17 × 10-13 M (S/N = 3). This ECL sensor showed high sensitivity, good stability and excellent selectivity. More importantly, the proposed aptasensor exhibited excellent determination towards RAC detection and potential practical utility for real samples.In this study, a sensitive and effective monitoring method for ractopamine (RAC) was developed based on a sensitive electrochemiluminescence (ECL) aptasensor. Here, we employed a perylene derivative (PTC-PEI) with a Cu-based metal-organic framework (HKUST-1), which could accelerate the electron-transfer (ET) rate and strengthen interactions by the amido bond, resulting in enhanced ECL sensitivity and stability. Astonishingly, compared with the response of PTC-PEI and complex, the ECL signal of the MOF-based ECL material was noticeably raised by 6 times higher than that of PTC-PEI. HKUST-1 exhibited an excellent catalytic effect towards the electrochemical reduction process of S2O82-, thus allowing more sulfate radical anions (SO4˙-) to be generated. The strong ECL intensity of HKUST-1/PTC-PEI not only stemmed from the fixation of PTC-PEI that utilized its excellent film-forming abilities but also originated from the high porosity of HKUST-1 that carried more luminophores able to be excited. Satisfyingly, in the presence of the target molecule RAC, we observed an obvious quenching effect of signal, which could be attributed to aptamer recognition resulting in RAC being specifically captured on the electrode. Under optimal conditions, the developed sensor for the RAC assay displayed a desired linear range of 1.0 × 10-12-1.0 × 10-6 M and a low detection limit of 6.17 × 10-13 M (S/N = 3). This ECL sensor showed high sensitivity, good stability and excellent selectivity. More importantly, the proposed aptasensor exhibited excellent determination towards RAC detection and potential practical utility for real samples.
In this study, a sensitive and effective monitoring method for ractopamine (RAC) was developed based on a sensitive electrochemiluminescence (ECL) aptasensor. Here, we employed a perylene derivative (PTC-PEI) with a Cu-based metal–organic framework (HKUST-1), which could accelerate the electron-transfer (ET) rate and strengthen interactions by the amido bond, resulting in enhanced ECL sensitivity and stability. Astonishingly, compared with the response of PTC-PEI and complex, the ECL signal of the MOF-based ECL material was noticeably raised by 6 times higher than that of PTC-PEI. HKUST-1 exhibited an excellent catalytic effect towards the electrochemical reduction process of S 2 O 8 2− , thus allowing more sulfate radical anions (SO 4 ˙ − ) to be generated. The strong ECL intensity of HKUST-1/PTC-PEI not only stemmed from the fixation of PTC-PEI that utilized its excellent film-forming abilities but also originated from the high porosity of HKUST-1 that carried more luminophores able to be excited. Satisfyingly, in the presence of the target molecule RAC, we observed an obvious quenching effect of signal, which could be attributed to aptamer recognition resulting in RAC being specifically captured on the electrode. Under optimal conditions, the developed sensor for the RAC assay displayed a desired linear range of 1.0 × 10 −12 –1.0 × 10 −6 M and a low detection limit of 6.17 × 10 −13 M (S/N = 3). This ECL sensor showed high sensitivity, good stability and excellent selectivity. More importantly, the proposed aptasensor exhibited excellent determination towards RAC detection and potential practical utility for real samples.
Author Li, Haibo
Wang, Wenchang
Jiang, Ding
Shan, Xueling
Chen, Zhidong
Zhou, Lijun
Wang, Yuru
AuthorAffiliation Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
School of Petrochemical Engineering
Changzhou University
Advanced Catalysis and Green Manufacturing Collaborative Innovation Center
AuthorAffiliation_xml – name: Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
– name: Advanced Catalysis and Green Manufacturing Collaborative Innovation Center
– name: School of Petrochemical Engineering
– name: Changzhou University
Author_xml – sequence: 1
  givenname: Lijun
  surname: Zhou
  fullname: Zhou, Lijun
– sequence: 2
  givenname: Ding
  surname: Jiang
  fullname: Jiang, Ding
– sequence: 3
  givenname: Yuru
  surname: Wang
  fullname: Wang, Yuru
– sequence: 4
  givenname: Haibo
  surname: Li
  fullname: Li, Haibo
– sequence: 5
  givenname: Xueling
  surname: Shan
  fullname: Shan, Xueling
– sequence: 6
  givenname: Wenchang
  surname: Wang
  fullname: Wang, Wenchang
– sequence: 7
  givenname: Zhidong
  surname: Chen
  fullname: Chen, Zhidong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33528465$$D View this record in MEDLINE/PubMed
BookMark eNpt0s1u1DAQAGALFdFt4cIdZKkXhJRix042Oa5KoUhVucA5mjiTjVvHDrZTlNfpk9bdbYtUcbLG_mb8Mz4iB9ZZJOQ9Z6ecifpLx8CynFclviIrLkqZFUVeHZAVY0xkeVnIQ3IUwnUKOSvYG3IoRAKyLFbkbkMHvR3MkqEdwCrsKBpU0Ts14KjNPGqLQWFaobvATYPzSLdo0UNMvF0o0BEjmMz5LVitaO9hxL_O32RG25tkJvSLSRm0Q69vIepbpGA7qmOgME1GqzTnLO2dpx5UdBM87EshBFjektc9mIDvHsdj8vvb-a-zi-zy5_cfZ5vLTEkmYraGUgoleZvuW6q2q5ToBK9FK1LEWyZ4X2DNclbyvpdK4bovu3WdQ99WCUlxTD7t607e_ZkxxGbU6ebGgEU3hyaXVVFwWdUs0ZMX9NrN3qbTNXnBhKhyXuZJfXxUczti10xej-CX5un1E2B7oLwLwWPfKB13LxE9aNNw1jw0uPnKNle7Bp-nlM8vUp6q_hd_2GMf1LP791vEPdMisto
CitedBy_id crossref_primary_10_1016_j_bios_2023_115541
crossref_primary_10_1016_j_talanta_2022_124159
crossref_primary_10_1016_j_ccr_2023_215136
crossref_primary_10_1016_j_snb_2023_134365
crossref_primary_10_1016_j_aca_2022_339963
crossref_primary_10_1039_D3AY00872J
crossref_primary_10_1016_j_tifs_2021_10_024
crossref_primary_10_1002_jmr_2903
crossref_primary_10_1007_s00604_023_05937_2
crossref_primary_10_1016_j_coelec_2022_101023
crossref_primary_10_1016_j_bioelechem_2022_108170
crossref_primary_10_1016_j_nantod_2023_101874
crossref_primary_10_1016_j_trac_2022_116679
crossref_primary_10_1016_j_jallcom_2023_172897
crossref_primary_10_1016_j_microc_2021_106927
crossref_primary_10_1016_j_mtchem_2022_100965
Cites_doi 10.1016/j.bios.2016.07.036
10.1016/j.aca.2019.11.069
10.1016/j.snb.2019.127619
10.1021/acsami.8b12380
10.1016/j.snb.2016.11.135
10.1021/acscatal.0c00592
10.1039/C4RA16387G
10.1016/j.snb.2020.127919
10.1149/1945-7111/ab98ac
10.1016/j.bios.2015.09.050
10.1016/j.electacta.2015.11.082
10.1016/j.snb.2018.03.046
10.1039/D0CC00661K
10.1016/j.jelechem.2011.11.011
10.1002/elan.201900424
10.1021/acs.analchem.8b05443
10.1021/acs.analchem.7b00259
10.1016/j.bios.2009.10.042
10.1002/chem.201304067
10.1016/j.bios.2017.09.040
10.1016/j.micromeso.2015.07.027
10.1021/acs.analchem.8b02577
10.1007/s00216-015-8917-6
10.1016/j.snb.2020.128395
10.1021/ja409675j
10.1039/D0AN00212G
10.1039/C9AN00183B
10.1016/S0003-2670(03)00120-X
10.1021/acsami.8b21424
10.1021/acs.jpcc.8b05882
10.1021/ja4083254
10.1021/ac0702443
10.1016/j.foodchem.2019.04.050
10.1016/j.anifeedsci.2006.03.013
10.1039/D0AN00169D
10.1021/acs.analchem.9b03314
10.1002/adma.200903867
10.1016/j.solmat.2020.110596
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d0an02186e
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1364-5528
EndPage 236
ExternalDocumentID 33528465
10_1039_D0AN02186E
d0an02186e
Genre Journal Article
GroupedDBID -
0-7
02
0R
1TJ
23M
4.4
5RE
70
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABFLS
ABGFH
ABOCM
ABPTK
ABRYZ
ACGFS
ACHRU
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
EBS
ECGLT
EE0
EF-
F5P
GNO
HR
HZ
H~N
IDZ
J3I
JG
M4U
N9A
O9-
P2P
R7B
R7E
RCNCU
RIG
RPMJG
RRA
RRC
RSCEA
SKM
SKR
SKZ
SLC
SLF
TN5
UPT
VH6
WH7
X
---
-~X
.HR
0R~
2WC
70~
AAJAE
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ANUXI
APEMP
CITATION
COF
GGIMP
H13
HZ~
R56
RAOCF
~02
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c403t-7a643c41b6546cbd8c3d3193b36cb1b031f5e902061ff4cce7f6d792afb83b343
ISSN 0003-2654
1364-5528
IngestDate Fri Jul 11 05:23:30 EDT 2025
Mon Jun 30 04:07:50 EDT 2025
Mon Jul 21 05:59:14 EDT 2025
Tue Jul 01 01:57:04 EDT 2025
Thu Apr 24 23:10:20 EDT 2025
Sat Jan 08 03:48:10 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c403t-7a643c41b6546cbd8c3d3193b36cb1b031f5e902061ff4cce7f6d792afb83b343
Notes 10.1039/d0an02186e
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9383-9563
PMID 33528465
PQID 2503382162
PQPubID 2047505
PageCount 8
ParticipantIDs pubmed_primary_33528465
rsc_primary_d0an02186e
proquest_journals_2503382162
crossref_citationtrail_10_1039_D0AN02186E
crossref_primary_10_1039_D0AN02186E
proquest_miscellaneous_2485514890
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-21
PublicationDateYYYYMMDD 2021-03-21
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Analyst (London)
PublicationTitleAlternate Analyst
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Wang (D0AN02186E-(cit33)/*[position()=1]) 2020; 320
Niu (D0AN02186E-(cit29)/*[position()=1]) 2016; 219
He (D0AN02186E-(cit5)/*[position()=1]) 2007; 132
Feng (D0AN02186E-(cit8)/*[position()=1]) 2018; 265
Mohanadas (D0AN02186E-(cit23)/*[position()=1]) 2020; 214
Zhao (D0AN02186E-(cit35)/*[position()=1]) 2016; 86
Lu (D0AN02186E-(cit39)/*[position()=1]) 2015; 5
Hall (D0AN02186E-(cit26)/*[position()=1]) 2013; 135
Xiong (D0AN02186E-(cit19)/*[position()=1]) 2017; 89
Ameloot (D0AN02186E-(cit21)/*[position()=1]) 2010; 22
Li (D0AN02186E-(cit4)/*[position()=1]) 2015; 407
Zhan (D0AN02186E-(cit27)/*[position()=1]) 2018; 10
Guo (D0AN02186E-(cit30)/*[position()=1]) 2018; 122
Wu (D0AN02186E-(cit16)/*[position()=1]) 2020; 145
Li (D0AN02186E-(cit37)/*[position()=1]) 2020; 145
Liu (D0AN02186E-(cit17)/*[position()=1]) 2020; 150
Chen (D0AN02186E-(cit38)/*[position()=1]) 2020; 56
Luo (D0AN02186E-(cit31)/*[position()=1]) 2019; 292
Wang (D0AN02186E-(cit32)/*[position()=1]) 2019; 91
Zhu (D0AN02186E-(cit1)/*[position()=1]) 2017; 243
Huang (D0AN02186E-(cit28)/*[position()=1]) 2019; 11
Wang (D0AN02186E-(cit15)/*[position()=1]) 2020; 311
Wang (D0AN02186E-(cit40)/*[position()=1]) 2020; 167
Li (D0AN02186E-(cit7)/*[position()=1]) 2016; 187
Yang (D0AN02186E-(cit2)/*[position()=1]) 2016; 77
Dai (D0AN02186E-(cit41)/*[position()=1]) 2010; 25
Wang (D0AN02186E-(cit18)/*[position()=1]) 2020; 307
Feng (D0AN02186E-(cit9)/*[position()=1]) 2020; 1100
Wang (D0AN02186E-(cit6)/*[position()=1]) 2012; 664
Wang (D0AN02186E-(cit14)/*[position()=1]) 2020; 167
Zhao (D0AN02186E-(cit20)/*[position()=1]) 2016; 86
Sun (D0AN02186E-(cit25)/*[position()=1]) 2014; 20
Li (D0AN02186E-(cit22)/*[position()=1]) 2014; 136
Shan (D0AN02186E-(cit34)/*[position()=1]) 2020; 32
Wang (D0AN02186E-(cit36)/*[position()=1]) 2020; 167
Han (D0AN02186E-(cit24)/*[position()=1]) 2020; 10
Xiong (D0AN02186E-(cit42)/*[position()=1]) 2019; 144
Qiao (D0AN02186E-(cit12)/*[position()=1]) 2018; 90
Zeng (D0AN02186E-(cit13)/*[position()=1]) 2018; 100
Saqib (D0AN02186E-(cit11)/*[position()=1]) 2019; 91
Shishani (D0AN02186E-(cit3)/*[position()=1]) 2003; 483
Chi (D0AN02186E-(cit10)/*[position()=1]) 2007; 79
References_xml – volume: 86
  start-page: 720
  year: 2016
  ident: D0AN02186E-(cit20)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.07.036
– volume: 1100
  start-page: 232
  year: 2020
  ident: D0AN02186E-(cit9)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2019.11.069
– volume: 307
  start-page: 127619
  year: 2020
  ident: D0AN02186E-(cit18)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2019.127619
– volume: 10
  start-page: 35234
  year: 2018
  ident: D0AN02186E-(cit27)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b12380
– volume: 243
  start-page: 121
  year: 2017
  ident: D0AN02186E-(cit1)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2016.11.135
– volume: 10
  start-page: 4997
  year: 2020
  ident: D0AN02186E-(cit24)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c00592
– volume: 5
  start-page: 22289
  year: 2015
  ident: D0AN02186E-(cit39)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA16387G
– volume: 311
  start-page: 127919
  year: 2020
  ident: D0AN02186E-(cit15)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2020.127919
– volume: 167
  start-page: 107505
  year: 2020
  ident: D0AN02186E-(cit36)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ab98ac
– volume: 77
  start-page: 347
  year: 2016
  ident: D0AN02186E-(cit2)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.09.050
– volume: 187
  start-page: 433
  year: 2016
  ident: D0AN02186E-(cit7)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.11.082
– volume: 265
  start-page: 378
  year: 2018
  ident: D0AN02186E-(cit8)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2018.03.046
– volume: 56
  start-page: 4680
  year: 2020
  ident: D0AN02186E-(cit38)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC00661K
– volume: 664
  start-page: 146
  year: 2012
  ident: D0AN02186E-(cit6)/*[position()=1]
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2011.11.011
– volume: 86
  start-page: 720
  year: 2016
  ident: D0AN02186E-(cit35)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.07.036
– volume: 167
  start-page: 107505
  year: 2020
  ident: D0AN02186E-(cit40)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ab98ac
– volume: 32
  start-page: 462
  year: 2020
  ident: D0AN02186E-(cit34)/*[position()=1]
  publication-title: Electroanalysis
  doi: 10.1002/elan.201900424
– volume: 91
  start-page: 3048
  year: 2019
  ident: D0AN02186E-(cit32)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b05443
– volume: 89
  start-page: 3222
  year: 2017
  ident: D0AN02186E-(cit19)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b00259
– volume: 25
  start-page: 1414
  year: 2010
  ident: D0AN02186E-(cit41)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2009.10.042
– volume: 150
  start-page: 1
  year: 2020
  ident: D0AN02186E-(cit17)/*[position()=1]
  publication-title: Biosens. Bioelectron.
– volume: 20
  start-page: 4780
  year: 2014
  ident: D0AN02186E-(cit25)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201304067
– volume: 100
  start-page: 490
  year: 2018
  ident: D0AN02186E-(cit13)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2017.09.040
– volume: 219
  start-page: 48
  year: 2016
  ident: D0AN02186E-(cit29)/*[position()=1]
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2015.07.027
– volume: 90
  start-page: 9629
  year: 2018
  ident: D0AN02186E-(cit12)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b02577
– volume: 407
  start-page: 7615
  year: 2015
  ident: D0AN02186E-(cit4)/*[position()=1]
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-015-8917-6
– volume: 320
  start-page: 128395
  year: 2020
  ident: D0AN02186E-(cit33)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2020.128395
– volume: 136
  start-page: 5631
  year: 2014
  ident: D0AN02186E-(cit22)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja409675j
– volume: 145
  start-page: 3306
  year: 2020
  ident: D0AN02186E-(cit37)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/D0AN00212G
– volume: 144
  start-page: 2550
  year: 2019
  ident: D0AN02186E-(cit42)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/C9AN00183B
– volume: 483
  start-page: 137
  year: 2003
  ident: D0AN02186E-(cit3)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(03)00120-X
– volume: 11
  start-page: 10389
  year: 2019
  ident: D0AN02186E-(cit28)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b21424
– volume: 122
  start-page: 21433
  year: 2018
  ident: D0AN02186E-(cit30)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b05882
– volume: 135
  start-page: 16276
  year: 2013
  ident: D0AN02186E-(cit26)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4083254
– volume: 79
  start-page: 4521
  year: 2007
  ident: D0AN02186E-(cit10)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac0702443
– volume: 292
  start-page: 98
  year: 2019
  ident: D0AN02186E-(cit31)/*[position()=1]
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2019.04.050
– volume: 167
  start-page: 107505
  year: 2020
  ident: D0AN02186E-(cit14)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ab98ac
– volume: 132
  start-page: 316
  year: 2007
  ident: D0AN02186E-(cit5)/*[position()=1]
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2006.03.013
– volume: 145
  start-page: 2159
  year: 2020
  ident: D0AN02186E-(cit16)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/D0AN00169D
– volume: 91
  start-page: 12517
  year: 2019
  ident: D0AN02186E-(cit11)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b03314
– volume: 22
  start-page: 2685
  year: 2010
  ident: D0AN02186E-(cit21)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903867
– volume: 214
  start-page: 110596
  year: 2020
  ident: D0AN02186E-(cit23)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2020.110596
SSID ssj0001050
Score 2.4347236
Snippet In this study, a sensitive and effective monitoring method for ractopamine (RAC) was developed based on a sensitive electrochemiluminescence (ECL) aptasensor....
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 229
SubjectTerms Chemical reduction
Copper
Electrochemiluminescence
Metal-organic frameworks
Porosity
Selectivity
Sensitivity enhancement
Stability
Title A highly-enhanced electrochemiluminescence luminophore generated by a metal-organic framework-linked perylene derivative and its application for ractopamine assay
URI https://www.ncbi.nlm.nih.gov/pubmed/33528465
https://www.proquest.com/docview/2503382162
https://www.proquest.com/docview/2485514890
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6F9gAXxF8hpaBFcEGRi-1dO_YxaoNKVfWUSoVLtLteK6kiOzIxUnriHXgF3oN34UmY_bPdpEiFixVvNrGT-Twzu_PzIfSOcJpTJkKPxCL2aJIzj0UpHDIZgT3hORM6y_c8Prmgp5fRZa_3q5O1VK_4obi-ta7kf6QKYyBXVSX7D5JtvhQG4DXIF44gYTjeScajgeo2vFh7spiZSL5ltRGqDQCoHZXTLvSzq0_K5ayspGJNVq2Uje-pSaTZwiU9EEPzJAa5y9ryVIwX5i5ltQYTpeqsKk2J9q2NPHTC4DpvUZVewWpcXX8A3jm7ETs2fVBWXTKRZjfiy6yszVbBVd3A9nRuN7WPnZ3VEQAz9rmuajd2Zii42ZyX3d2MUKdzmRLpRkPDQGwaSx9Ko5RJTL0oskXkTmvbncv5tg727V1Le2o6rGzZCp-oVqvH_uhcE3ONW4vosgA2DGWTvqgD9ySdtp-9h3ZDWKeAot0djSefzhpnANxX35E2qp_lOuSS9EP76Zs-0dZCB9yeytHRaLdn8gg9tOsVPDLge4x6sniC7h85msCn6OcIb4AQ_w2EuANC3IAQ8zVmWIPw9_cfFn54E37YwQ-38MMAPwzwwx34YYAf7sAPa_g9Qxcfx5OjE89Sf3iC-mTlDRl4yoIGXNXaCZ4lgmRgLAgHlcIDDpYoj2QKS504yHMqhBzmcTZMQ5bzBCZRsod2irKQLxBWjEZgSoOQUUZ5BkqLkTBLZZL5oQyY7KP37s-fCtsXX9GzLKbbYu6jt83cpekGc-usAyfDqdUWX6ehyhdIwiAO--hN8zbISgXoWCHLGuaoTk0BTVK_j54b2TeXUbWRsFaI-mgPwNAMZz4r9FXl_p3u7SV60D52B2hnVdXyFbjVK_7aQvcPRr7TqQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+highly-enhanced+electrochemiluminescence+luminophore+generated+by+a+metal%E2%80%93organic+framework-linked+perylene+derivative+and+its+application+for+ractopamine+assay&rft.jtitle=Analyst+%28London%29&rft.au=Zhou%2C+Lijun&rft.au=Jiang%2C+Ding&rft.au=Wang%2C+Yuru&rft.au=Li%2C+Haibo&rft.date=2021-03-21&rft.issn=0003-2654&rft.eissn=1364-5528&rft.volume=146&rft.issue=6&rft.spage=2029&rft.epage=2036&rft_id=info:doi/10.1039%2FD0AN02186E&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0AN02186E
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2654&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2654&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2654&client=summon