A data mining-based framework for the identification of daily electricity usage patterns and anomaly detection in building electricity consumption data
•We propose a general data mining-based framework for mining real-time building electricity consumption data.•The framework aims to identify typical electricity load patterns and discover insightful knowledge hidden in the patterns.•Applications of the framework in three practical office buildings a...
Saved in:
Published in | Energy and buildings Vol. 231; p. 110601 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.01.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We propose a general data mining-based framework for mining real-time building electricity consumption data.•The framework aims to identify typical electricity load patterns and discover insightful knowledge hidden in the patterns.•Applications of the framework in three practical office buildings are presented.•The framework is potentially used for an early fault detection of anomalous electricity load profiles.
With the development of advanced information techniques, smart energy meters have made a considerable amount of real-time electricity consumption data available. These data provide a promising way to understand energy usage patterns and improve building energy management. However, previous studies have paid more attention to methodologies for the identification of energy usage patterns and are limited in the interpretability and applications of the patterns. In this context, this paper proposes a general data mining-based framework that can extract typical electricity load patterns (TELPs) and discover insightful information hidden in the patterns. The framework integrates multiple data mining techniques and mainly consists of three phases: data preparation, identification of TELPs and knowledge discovery in the patterns. A new clustering method with a two-step clustering analysis is proposed to identify the TELPs at the individual building level. Before clustering, five statistical features that represent the shapes of electricity load profiles are first defined to reduce the dimensions of daily electricity load profiles. The first clustering step aims at detecting outliers of daily electricity load profiles (DELPs) by using the density-based spatial clustering application with noise (DBSCAN) algorithm clustering technique, which addresses the data quality issues for electricity consumption data derived from energy consumption monitoring platforms (ECMPs). The second clustering step aims at grouping similar DELPs by means of the k-means algorithm to extract TELPs. The effectiveness of the proposed clustering method is demonstrated by a comparison with two single-step clustering techniques. Furthermore, a classification and regression tree (CART) algorithm is employed to discover insightful knowledge on TELPs and improve the interpretability of clustering results, namely, to explain the relations between dynamic influencing factors related to electricity consumption and TELPs. The proposed framework is applied to analyze the time-series electricity consumption data of three practical office buildings in Chongqing, and its effectiveness has been confirmed. A potential application of discovered knowledge is presented: early fault detection of anomalous electricity load profiles. The proposed framework can provide building managers with an efficient way to understand the characteristics of building electricity usage patterns and detect anomalies therein. |
---|---|
AbstractList | With the development of advanced information techniques, smart energy meters have made a considerable amount of real-time electricity consumption data available. These data provide a promising way to understand energy usage patterns and improve building energy management. However, previous studies have paid more attention to methodologies for the identification of energy usage patterns and are limited in the interpretability and applications of the patterns. In this context, this paper proposes a general data mining-based framework that can extract typical electricity load patterns (TELPs) and discover insightful information hidden in the patterns. The framework integrates multiple data mining techniques and mainly consists of three phases: data preparation, identification of TELPs and knowledge discovery in the patterns. A new clustering method with a two-step clustering analysis is proposed to identify the TELPs at the individual building level. Before clustering, five statistical features that represent the shapes of electricity load profiles are first defined to reduce the dimensions of daily electricity load profiles. The first clustering step aims at detecting outliers of daily electricity load profiles (DELPs) by using the density-based spatial clustering application with noise (DBSCAN) algorithm clustering technique, which addresses the data quality issues for electricity consumption data derived from energy consumption monitoring platforms (ECMPs). The second clustering step aims at grouping similar DELPs by means of the k-means algorithm to extract TELPs. The effectiveness of the proposed clustering method is demonstrated by a comparison with two single-step clustering techniques. Furthermore, a classification and regression tree (CART) algorithm is employed to discover insightful knowledge on TELPs and improve the interpretability of clustering results, namely, to explain the relations between dynamic influencing factors related to electricity consumption and TELPs. The proposed framework is applied to analyze the time-series electricity consumption data of three practical office buildings in Chongqing, and its effectiveness has been confirmed. A potential application of discovered knowledge is presented: early fault detection of anomalous electricity load profiles. The proposed framework can provide building managers with an efficient way to understand the characteristics of building electricity usage patterns and detect anomalies therein. •We propose a general data mining-based framework for mining real-time building electricity consumption data.•The framework aims to identify typical electricity load patterns and discover insightful knowledge hidden in the patterns.•Applications of the framework in three practical office buildings are presented.•The framework is potentially used for an early fault detection of anomalous electricity load profiles. With the development of advanced information techniques, smart energy meters have made a considerable amount of real-time electricity consumption data available. These data provide a promising way to understand energy usage patterns and improve building energy management. However, previous studies have paid more attention to methodologies for the identification of energy usage patterns and are limited in the interpretability and applications of the patterns. In this context, this paper proposes a general data mining-based framework that can extract typical electricity load patterns (TELPs) and discover insightful information hidden in the patterns. The framework integrates multiple data mining techniques and mainly consists of three phases: data preparation, identification of TELPs and knowledge discovery in the patterns. A new clustering method with a two-step clustering analysis is proposed to identify the TELPs at the individual building level. Before clustering, five statistical features that represent the shapes of electricity load profiles are first defined to reduce the dimensions of daily electricity load profiles. The first clustering step aims at detecting outliers of daily electricity load profiles (DELPs) by using the density-based spatial clustering application with noise (DBSCAN) algorithm clustering technique, which addresses the data quality issues for electricity consumption data derived from energy consumption monitoring platforms (ECMPs). The second clustering step aims at grouping similar DELPs by means of the k-means algorithm to extract TELPs. The effectiveness of the proposed clustering method is demonstrated by a comparison with two single-step clustering techniques. Furthermore, a classification and regression tree (CART) algorithm is employed to discover insightful knowledge on TELPs and improve the interpretability of clustering results, namely, to explain the relations between dynamic influencing factors related to electricity consumption and TELPs. The proposed framework is applied to analyze the time-series electricity consumption data of three practical office buildings in Chongqing, and its effectiveness has been confirmed. A potential application of discovered knowledge is presented: early fault detection of anomalous electricity load profiles. The proposed framework can provide building managers with an efficient way to understand the characteristics of building electricity usage patterns and detect anomalies therein. |
ArticleNumber | 110601 |
Author | Ding, Yong Xiao, Feng Liu, Xue Tang, Hao |
Author_xml | – sequence: 1 givenname: Xue surname: Liu fullname: Liu, Xue organization: Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China – sequence: 2 givenname: Yong surname: Ding fullname: Ding, Yong email: dingyongqq@163.com organization: Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China – sequence: 3 givenname: Hao surname: Tang fullname: Tang, Hao organization: Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China – sequence: 4 givenname: Feng surname: Xiao fullname: Xiao, Feng organization: School of Business Administration, Southwestern University of Finance and Economics, Chengdu, China |
BookMark | eNqFkUFrGzEQhUVJoE7Sn1AQ9LzuSLtayfRQQmjaQiCX5ixkaZTK9UqupG3xL-nfjWzn0lxyEAPifTOP9y7IWUwRCXnPYMmAjR83S4zrOWzdkgNvfwxGYG_IginJu5FJdUYW0EvVSanUW3JRygYARiHZgvy7ps5UQ6cQQ3zs1qagoz6bCf-m_Iv6lGn9iTQ4jDX4YE0NKdLkGxW2e4pbtDUHG-qezsU8It2ZWjHHQk107aXJNJnD2nQHMkR6tNqO_QfbFMs87Y6ag6Ercu7NtuC753lJHm6__Lj51t3df_1-c33X2QH62smVATEYab3tFeNcCSu4WjGO0qN0xgkhYCUA-WocPVdcjbgeoefMMrDK9Jfkw2nvLqffM5aqN2nOsZ3UfFBykABqaKpPJ5XNqZSMXjfTxyhqbjloBvrQhN7o5yb0oQl9aqLR4gW9y2Eyef8q9_nEYQvgT8Csiw0YLbqQW3LapfDKhifhtKqe |
CitedBy_id | crossref_primary_10_1049_gtd2_70027 crossref_primary_10_1016_j_jobe_2024_109227 crossref_primary_10_3390_buildings12101636 crossref_primary_10_3390_buildings14082534 crossref_primary_10_1016_j_enconman_2023_117244 crossref_primary_10_1016_j_jobe_2024_111143 crossref_primary_10_3390_buildings14082491 crossref_primary_10_1016_j_rser_2024_114804 crossref_primary_10_3390_en17133080 crossref_primary_10_1016_j_enbuild_2023_113877 crossref_primary_10_1016_j_techfore_2022_121523 crossref_primary_10_1088_1742_6596_2814_1_012053 crossref_primary_10_3390_en16093961 crossref_primary_10_1016_j_enbuild_2024_115177 crossref_primary_10_1016_j_apenergy_2024_124520 crossref_primary_10_1016_j_energy_2022_123798 crossref_primary_10_1016_j_enbuild_2024_114446 crossref_primary_10_7717_peerj_cs_1872 crossref_primary_10_58496_MJBD_2023_007 crossref_primary_10_1016_j_segan_2023_101194 crossref_primary_10_3390_en16114504 crossref_primary_10_1016_j_jobe_2022_105732 crossref_primary_10_1109_ACCESS_2024_3513714 crossref_primary_10_3390_iot5040036 crossref_primary_10_1177_01436244221122851 crossref_primary_10_2478_amns_2024_1219 crossref_primary_10_1016_j_scs_2022_104007 crossref_primary_10_2478_amns_2025_0551 crossref_primary_10_1016_j_jobe_2024_111016 crossref_primary_10_1108_ECAM_03_2023_0200 crossref_primary_10_20965_jaciii_2024_p0953 crossref_primary_10_3390_en15207644 crossref_primary_10_1016_j_enbuild_2022_112753 crossref_primary_10_1016_j_dibe_2023_100176 crossref_primary_10_1016_j_jclepro_2024_144555 crossref_primary_10_4218_etrij_2022_0135 crossref_primary_10_1016_j_jhydrol_2024_132115 crossref_primary_10_1016_j_autcon_2022_104303 crossref_primary_10_3390_app13010314 crossref_primary_10_1016_j_apenergy_2023_122550 crossref_primary_10_1016_j_jobe_2022_105509 crossref_primary_10_1016_j_enbenv_2024_12_005 crossref_primary_10_3390_make6020045 crossref_primary_10_1016_j_enbuild_2024_114897 crossref_primary_10_1016_j_eswa_2022_117649 crossref_primary_10_1016_j_enbuild_2021_111160 crossref_primary_10_3390_su14042066 crossref_primary_10_1016_j_egyr_2023_04_006 crossref_primary_10_3390_en17030700 crossref_primary_10_36548_jeea_2024_4_002 crossref_primary_10_4218_etrij_2023_0155 crossref_primary_10_3390_app12020612 crossref_primary_10_1016_j_jobe_2023_106653 crossref_primary_10_1016_j_enbuild_2022_112687 crossref_primary_10_1016_j_apenergy_2024_124584 crossref_primary_10_1016_j_apenergy_2023_121030 crossref_primary_10_1016_j_enbuild_2023_113419 crossref_primary_10_3390_en18010221 crossref_primary_10_1016_j_enbuild_2024_114341 crossref_primary_10_1016_j_enbuild_2024_115232 crossref_primary_10_1109_TSG_2023_3253824 crossref_primary_10_3390_buildings13030666 crossref_primary_10_1088_1742_6596_2666_1_012039 crossref_primary_10_1109_ACCESS_2022_3160170 crossref_primary_10_1016_j_energy_2021_120821 crossref_primary_10_1016_j_energy_2023_126608 crossref_primary_10_1080_23311916_2023_2199518 crossref_primary_10_1109_JSEN_2024_3426090 crossref_primary_10_1016_j_epsr_2024_110876 crossref_primary_10_1007_s12273_025_1242_x crossref_primary_10_1016_j_egyr_2023_06_025 crossref_primary_10_1016_j_jobe_2024_110025 crossref_primary_10_1016_j_ins_2023_119479 crossref_primary_10_3390_en17163904 crossref_primary_10_3390_en18051062 crossref_primary_10_3390_su15065569 crossref_primary_10_3934_electreng_2021015 crossref_primary_10_1007_s40866_025_00252_6 crossref_primary_10_1016_j_knosys_2022_109236 crossref_primary_10_37394_232025_2024_6_27 crossref_primary_10_1021_acs_est_3c08331 crossref_primary_10_1038_s41597_024_04106_1 crossref_primary_10_1049_gtd2_12417 crossref_primary_10_3390_electricity5010005 crossref_primary_10_1016_j_egyr_2022_07_043 crossref_primary_10_1016_j_scs_2024_105553 crossref_primary_10_1016_j_jobe_2022_105688 crossref_primary_10_3390_en15124366 crossref_primary_10_1007_s40031_023_00963_3 |
Cites_doi | 10.1016/j.enbuild.2013.07.007 10.1016/j.rser.2019.109628 10.1016/j.ijepes.2013.09.022 10.1016/j.jup.2018.01.008 10.1016/j.enbuild.2016.04.079 10.1016/j.enpol.2015.10.016 10.1111/j.2044-8317.1976.tb00714.x 10.1016/j.apenergy.2017.07.108 10.1016/j.autcon.2014.12.006 10.1109/TSG.2015.2409786 10.1016/j.energy.2017.05.191 10.1016/j.enconman.2018.06.017 10.1109/TSG.2016.2548565 10.1016/j.enbuild.2020.110299 10.1016/j.enbenv.2019.11.003 10.1016/j.jclepro.2018.12.067 10.1016/j.proeng.2017.10.334 10.1007/11494669_93 10.1016/j.apenergy.2018.09.050 10.1016/j.apenergy.2014.12.039 10.1016/j.rser.2017.09.108 10.1016/j.egypro.2017.07.400 10.1016/j.enbuild.2019.02.014 10.1007/978-3-642-04921-7_41 10.1016/0377-0427(87)90125-7 10.1109/TGRS.2016.2543748 10.18637/jss.v025.i04 10.1145/170036.170072 10.1109/ICDEW.2006.99 10.1016/j.is.2015.04.007 10.1016/j.energy.2018.05.127 10.1109/TNN.2005.845141 10.1109/34.865189 10.1109/TPAMI.1979.4766909 10.1016/j.enpol.2008.12.032 10.1016/j.apenergy.2018.12.025 10.1016/j.rser.2017.05.124 10.1016/j.buildenv.2014.04.030 10.1016/j.enbuild.2017.11.008 10.1016/j.energy.2019.03.003 10.1080/01969727408546059 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Jan 15, 2021 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Jan 15, 2021 |
DBID | AAYXX CITATION 7ST 8FD C1K F28 FR3 KR7 SOI |
DOI | 10.1016/j.enbuild.2020.110601 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-6178 |
ExternalDocumentID | 10_1016_j_enbuild_2020_110601 S0378778820333879 |
GroupedDBID | --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL SDF SDG SES SPC SPCBC SSJ SSR SST SSZ T5K ~02 ~G- --K 29G AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RPZ SAC SET SEW SSH WUQ ZMT ZY4 7ST 8FD C1K EFKBS F28 FR3 KR7 SOI |
ID | FETCH-LOGICAL-c403t-79a054a7cfc3812285c528912e7fe7dad5550950e2966f28286eb60321c10c8a3 |
IEDL.DBID | .~1 |
ISSN | 0378-7788 |
IngestDate | Wed Aug 13 07:20:04 EDT 2025 Tue Jul 01 01:13:02 EDT 2025 Thu Apr 24 22:55:20 EDT 2025 Sat Aug 24 15:41:35 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Knowledge discovery Data mining Building energy management Time series clustering Electricity usage pattern Decision tree |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-79a054a7cfc3812285c528912e7fe7dad5550950e2966f28286eb60321c10c8a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2487470084 |
PQPubID | 2045483 |
ParticipantIDs | proquest_journals_2487470084 crossref_citationtrail_10_1016_j_enbuild_2020_110601 crossref_primary_10_1016_j_enbuild_2020_110601 elsevier_sciencedirect_doi_10_1016_j_enbuild_2020_110601 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-15 |
PublicationDateYYYYMMDD | 2021-01-15 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Energy and buildings |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Wang, Hong (b0225) 2020; 224 Lu, Tian, Peng, Niu, Li, Zhang (b0075) 2019; 190 Zhao, Du (b0150) 2016; 54 McLoughlin, Duffy, Conlon (b0140) 2015; 141 Hubert, Schultz (b0240) 1976; 29 Miller, Nagy, Schlueter (b0015) 2018; 81 Fan, Xiao, Yan (b0125) 2015; 50 Haben, Singleton, Grindrod (b0120) 2016; 1 M. Hahsler M. Piekenbrock S. Arya D. Mount R, Package 'dbscan' 2020 (Accessed on 11 July 2020). F. Wang, K. Li, N. Dui, Z. Mi, B. Hodge, M. Sha, J.P.S. Catalão, Association rule mining based quantitative analysis approach of household characteristics impacts on residential electricity consumption patterns, 171 (2018) 839–854. https://doi.org/10.1016/j.enconman.2018.06.017. Capozzoli, Piscitelli, Brandi, Grassi, Chicco (b0135) 2018; 157 Rousseeuw (b0260) 1987; 20 Aghabozorgi, Seyed Shirkhorshidi, Ying Wah (b0055) 2015; 53 Biernacki, Celeux, Govaert (b0235) 2000; 22 International Energy Agency (IEA) (b0005) 2012 Wei, Zhang, Shi, Xia, Pan, Wu, Han, Zhao (b0050) 2018; 82 Zhao, Zhang, Liang (b0215) 2013; 66 Sarkar, Ghosh (b0155) 2019 Wei, Yong, Yan, Zhongcheng (b0025) 2009; 37 Li, Yang, Robinson, Ma, Ma (b0065) 2019; 174 M. Verleysen, D. François, The curse of dimensionality in data mining and time series pre- diction, In: Proceedings of International Work-Conference on Artificial Neural Networks (IWANN 2005), Heidelberg, Berlin, Springer, 2005. pp. 758–770. 2005. https://doi.org/10.1007/11494669_93. Caliñski, Harabasz (b0245) 1974; 3 Ma, Song, Zhang (b0145) 2017; 205 Benítez, Quijano, Díez, Delgado (b0175) 2014; 55 Luo, Hong, Chen, Piette (b0110) 2017; 204 (Accessed on 11 July 2020). Wen, Zhou, Yang (b0085) 2019; 212 Xu, Wunsch (b0170) 2005; 16 T. Räsänen, M. Kolehmainen, Feature-Based Clustering for Electricity Use Time Feature-Based Clustering for Electricity Use, In: Proceedings of international conference on adaptive and natural computing algorithms (LNCS 5495). Berlin, Germany: Springer-Verlag; 2009. pp. 401–412. 2009. https://doi.org/10.1007/978-3-642-04921-7. Ma, Yan, Nord (b0060) 2017; 134 Li, Yao, Li, Ding, Li (b0210) 2018; 51 Hou, Liu, Wu, Zhou, Feng (b0030) 2016; 88 R. Agrawal, Mining Association Rules between Sets of Items in Large Databases, In: Proc of the 1993 ACM-SIGMOD international conference on management of data. pp. 207–216. T. Therneau, B. Atkinson, B. Ripley, M.B. Ripley, R Package 'rpart', 2020 Miller, Meggers (b0220) 2017; 122 Y. Wang, Q. Chen, C. Kang, Q. Xia, Clustering of Electricity Consumption Behavior Dynamics Toward Big Data Applications, (2017). https://doi.org/10.1109/TSG.2016.2548565. Park, Yang, Miller, Arjunan, Nagy (b0080) 2019; 236 Zhao, Zhang, Zhang, Wang, Li (b0035) 2020; 1 Fan, Xiao, Li, Wang (b0010) 2018; 159 (Accessed on 11July 2020). Chiba (b0100) 1978; 1 Davies, Bouldin (b0255) 1979; 29 M. Ester, H. Kriegel, X. Xu, D.- Miinchen, A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, In: Proceedings of the 2nd ACM SIGKDD, Portland, Oregon; 1996. pp. 226–231. B. Lkhagva, Y. Suzuki, K. Kawagoe, New Time Series Data Representation ESAX for Financial Applications New Time Series Data Representation ESAX for Financial Applications, 22nd International Conference on Data Engineering Workshops (ICDEW'06), Atlanta, GA, USA, 2006, pp. x115–x115, https://doi.org/10.1109/ICDEW.2006.99. Do Carmo, Christensen (b0090) 2016; 125 Sun, Yan, Hong, Guo (b0230) 2014; 79 Dunn (b0250) 1974; 4 A. Sard, Comparing Time-Series Clustering Algorithms in R Using the dtwclust Comparing Time-Series Clustering Algorithms in R Using the dtwclust Package, (2019). P. Rousseeuw, A. Struyf, M. Hubert, M. Studer, P. Roudier, Package 'cluster', 2020 Rajabi, Eskandari, Ghadi, Li, Zhang, Siano (b0045) 2020; 120 EIA. How many smart meters are installed in the United States, and who has them?; 2020 Li, Ma, Robinson, Ma (b0040) 2018; 231 G. Brock, V. Pihur, S. Datta, S. Datta, ClValid: An R package for cluster validation, J. Stat. Softw. 25 (2008) 1–22. https://doi.org/10.18637/jss.v025.i04. T.M. Therneau, E.J. Atkinson, An Introduction to Recursive Partitioning Using the RPART Routines, 2019 10.1016/j.enbuild.2020.110601_b0115 Sarkar (10.1016/j.enbuild.2020.110601_b0155) 2019 Hou (10.1016/j.enbuild.2020.110601_b0030) 2016; 88 Rousseeuw (10.1016/j.enbuild.2020.110601_b0260) 1987; 20 10.1016/j.enbuild.2020.110601_b0195 Do Carmo (10.1016/j.enbuild.2020.110601_b0090) 2016; 125 Wei (10.1016/j.enbuild.2020.110601_b0050) 2018; 82 Caliñski (10.1016/j.enbuild.2020.110601_b0245) 1974; 3 10.1016/j.enbuild.2020.110601_b0190 10.1016/j.enbuild.2020.110601_b0070 Rajabi (10.1016/j.enbuild.2020.110601_b0045) 2020; 120 Miller (10.1016/j.enbuild.2020.110601_b0015) 2018; 81 Benítez (10.1016/j.enbuild.2020.110601_b0175) 2014; 55 Li (10.1016/j.enbuild.2020.110601_b0065) 2019; 174 Lu (10.1016/j.enbuild.2020.110601_b0075) 2019; 190 10.1016/j.enbuild.2020.110601_b0105 Zhao (10.1016/j.enbuild.2020.110601_b0035) 2020; 1 Dunn (10.1016/j.enbuild.2020.110601_b0250) 1974; 4 10.1016/j.enbuild.2020.110601_b0020 Chiba (10.1016/j.enbuild.2020.110601_b0100) 1978; 1 McLoughlin (10.1016/j.enbuild.2020.110601_b0140) 2015; 141 10.1016/j.enbuild.2020.110601_b0185 Li (10.1016/j.enbuild.2020.110601_b0040) 2018; 231 Wang (10.1016/j.enbuild.2020.110601_b0225) 2020; 224 Wei (10.1016/j.enbuild.2020.110601_b0025) 2009; 37 Ma (10.1016/j.enbuild.2020.110601_b0145) 2017; 205 10.1016/j.enbuild.2020.110601_b0180 Haben (10.1016/j.enbuild.2020.110601_b0120) 2016; 1 Li (10.1016/j.enbuild.2020.110601_b0210) 2018; 51 Park (10.1016/j.enbuild.2020.110601_b0080) 2019; 236 Fan (10.1016/j.enbuild.2020.110601_b0125) 2015; 50 10.1016/j.enbuild.2020.110601_b0130 Miller (10.1016/j.enbuild.2020.110601_b0220) 2017; 122 Capozzoli (10.1016/j.enbuild.2020.110601_b0135) 2018; 157 Aghabozorgi (10.1016/j.enbuild.2020.110601_b0055) 2015; 53 Fan (10.1016/j.enbuild.2020.110601_b0010) 2018; 159 10.1016/j.enbuild.2020.110601_b0095 Wen (10.1016/j.enbuild.2020.110601_b0085) 2019; 212 Ma (10.1016/j.enbuild.2020.110601_b0060) 2017; 134 Xu (10.1016/j.enbuild.2020.110601_b0170) 2005; 16 10.1016/j.enbuild.2020.110601_b0205 Biernacki (10.1016/j.enbuild.2020.110601_b0235) 2000; 22 International Energy Agency (IEA) (10.1016/j.enbuild.2020.110601_b0005) 2012 10.1016/j.enbuild.2020.110601_b0165 10.1016/j.enbuild.2020.110601_b0200 Luo (10.1016/j.enbuild.2020.110601_b0110) 2017; 204 Davies (10.1016/j.enbuild.2020.110601_b0255) 1979; 29 Zhao (10.1016/j.enbuild.2020.110601_b0150) 2016; 54 Zhao (10.1016/j.enbuild.2020.110601_b0215) 2013; 66 Hubert (10.1016/j.enbuild.2020.110601_b0240) 1976; 29 10.1016/j.enbuild.2020.110601_b0160 Sun (10.1016/j.enbuild.2020.110601_b0230) 2014; 79 |
References_xml | – volume: 53 start-page: 16 year: 2015 end-page: 38 ident: b0055 article-title: Time-series clustering – A decade review publication-title: Inf. Syst. – volume: 1 start-page: 149 year: 2020 end-page: 164 ident: b0035 article-title: A review of data mining technologies in building energy systems: Load prediction, pattern identification, fault detection and diagnosis publication-title: Energy Built Environ. – volume: 224 year: 2020 ident: b0225 article-title: Generating realistic building electrical load profiles through the Generative Adversarial Network (GAN) publication-title: Energy Build. – volume: 1 start-page: 159 year: 1978 end-page: 165 ident: b0100 article-title: Dynamic Programming Algorithm Optimization for Spoken Word Recognition publication-title: IEEE Trans. Acoust Speech Singal Process. – volume: 134 start-page: 90 year: 2017 end-page: 102 ident: b0060 article-title: A variation focused cluster analysis strategy to identify typical daily heating load profiles of higher education buildings publication-title: Energy – reference: T. Therneau, B. Atkinson, B. Ripley, M.B. Ripley, R Package 'rpart', 2020 – reference: P. Rousseeuw, A. Struyf, M. Hubert, M. Studer, P. Roudier, Package 'cluster', 2020 – volume: 236 start-page: 1280 year: 2019 end-page: 1295 ident: b0080 article-title: Apples or oranges? Identification of fundamental load shape profiles for benchmarking buildings using a large and diverse dataset publication-title: Appl. Energy – volume: 16 start-page: 645 year: 2005 end-page: 678 ident: b0170 article-title: Survey of clustering algorithms publication-title: IEEE Trans. Neural Netw. – reference: B. Lkhagva, Y. Suzuki, K. Kawagoe, New Time Series Data Representation ESAX for Financial Applications New Time Series Data Representation ESAX for Financial Applications, 22nd International Conference on Data Engineering Workshops (ICDEW'06), Atlanta, GA, USA, 2006, pp. x115–x115, https://doi.org/10.1109/ICDEW.2006.99. – reference: EIA. How many smart meters are installed in the United States, and who has them?; 2020 – volume: 212 start-page: 475 year: 2019 end-page: 488 ident: b0085 article-title: A shape-based clustering method for pattern recognition of residential electricity consumption publication-title: J. Clean. Prod. – volume: 66 start-page: 41 year: 2013 end-page: 48 ident: b0215 article-title: Development of an energy monitoring system for large public buildings publication-title: Energy Build. – volume: 3 start-page: 1 year: 1974 end-page: 27 ident: b0245 article-title: A dendrite method foe cluster analysis publication-title: Commun. Stat. – volume: 141 start-page: 190 year: 2015 end-page: 199 ident: b0140 article-title: A clustering approach to domestic electricity load profile characterisation using smart metering data publication-title: Appl. Energy – reference: T. Räsänen, M. Kolehmainen, Feature-Based Clustering for Electricity Use Time Feature-Based Clustering for Electricity Use, In: Proceedings of international conference on adaptive and natural computing algorithms (LNCS 5495). Berlin, Germany: Springer-Verlag; 2009. pp. 401–412. 2009. https://doi.org/10.1007/978-3-642-04921-7. – start-page: 2012 year: 2012 ident: b0005 article-title: Energy Technology Perspectives Scenarios and Strategies to 2050 – volume: 88 start-page: 204 year: 2016 end-page: 215 ident: b0030 article-title: Comparative study of commercial building energy-efficiency retrofit policies in four pilot cities in China publication-title: Energy Policy – reference: M. Hahsler M. Piekenbrock S. Arya D. Mount R, Package 'dbscan' 2020 (Accessed on 11 July 2020). – volume: 37 start-page: 2087 year: 2009 end-page: 2091 ident: b0025 article-title: Government management and implementation of national real-time energy monitoring system for China large-scale public building publication-title: Energy Policy. – volume: 29 start-page: 190 year: 1976 end-page: 241 ident: b0240 article-title: Quadratic assignment as a general data analysis strategy publication-title: Br. J. Math. Stat. Psychol. – reference: T.M. Therneau, E.J. Atkinson, An Introduction to Recursive Partitioning Using the RPART Routines, 2019 – volume: 54 start-page: 4544 year: 2016 end-page: 4554 ident: b0150 article-title: Spectral-spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 79 start-page: 1 year: 2014 end-page: 12 ident: b0230 article-title: Stochastic modeling of overtime occupancy and its application in building energy simulation and calibration publication-title: Build. Environ. – volume: 29 start-page: 224 year: 1979 end-page: 227 ident: b0255 article-title: A cluster separation measure publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 157 start-page: 336 year: 2018 end-page: 352 ident: b0135 article-title: Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings publication-title: Energy – reference: A. Sard, Comparing Time-Series Clustering Algorithms in R Using the dtwclust Comparing Time-Series Clustering Algorithms in R Using the dtwclust Package, (2019). – volume: 50 start-page: 81 year: 2015 end-page: 90 ident: b0125 article-title: A framework for knowledge discovery in massive building automation data and its application in building diagnostics publication-title: Autom. Constr. – reference: (Accessed on 11 July 2020). – volume: 1 start-page: 136 year: 2016 end-page: 144 ident: b0120 article-title: Analysis and clustering of residential customers energy behavioral demand using smart meter data publication-title: IEEE Trans. Smart Grid. – reference: M. Ester, H. Kriegel, X. Xu, D.- Miinchen, A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, In: Proceedings of the 2nd ACM SIGKDD, Portland, Oregon; 1996. pp. 226–231. – volume: 4 start-page: 95 year: 1974 end-page: 104 ident: b0250 article-title: Well-separated clusters and optimal fuzzy partitions publication-title: J. Cybern. – volume: 55 start-page: 437 year: 2014 end-page: 448 ident: b0175 article-title: Dynamic clustering segmentation applied to load profiles of energy consumption from Spanish customers publication-title: Int. J. Electr. Power Energy Syst. – volume: 190 start-page: 49 year: 2019 end-page: 60 ident: b0075 article-title: GMM clustering for heating load patterns in-depth identification and prediction model accuracy improvement of district heating system publication-title: Energy Build. – start-page: 1 year: 2019 ident: b0155 article-title: On perfect clustering of high dimension, low sample size data publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 174 start-page: 735 year: 2019 end-page: 748 ident: b0065 article-title: An agglomerative hierarchical clustering-based strategy using Shared Nearest Neighbours and multiple dissimilarity measures to identify typical daily electricity usage profiles of university library buildings publication-title: Energy – volume: 231 start-page: 331 year: 2018 end-page: 342 ident: b0040 article-title: Identification of typical building daily electricity usage profiles using Gaussian mixture model-based clustering and hierarchical clustering publication-title: Appl. Energy – reference: R. Agrawal, Mining Association Rules between Sets of Items in Large Databases, In: Proc of the 1993 ACM-SIGMOD international conference on management of data. pp. 207–216. – volume: 159 start-page: 296 year: 2018 end-page: 308 ident: b0010 article-title: Unsupervised data analytics in mining big building operational data for energy efficiency enhancement: a review publication-title: Energy Build. – volume: 204 start-page: 715 year: 2017 end-page: 725 ident: b0110 article-title: Electric load shape benchmarking for small- and medium-sized commercial buildings publication-title: Appl. Energy. – volume: 205 start-page: 1657 year: 2017 end-page: 1664 ident: b0145 article-title: A real-time detection method of abnormal building energy consumption data coupled POD-LSE and FCD publication-title: Procedia Eng. – volume: 20 start-page: 53 year: 1987 end-page: 65 ident: b0260 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. – volume: 22 start-page: 719 year: 2000 end-page: 725 ident: b0235 article-title: Assessing a mixture model for clustering with the integrated completed likelihood publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Y. Wang, Q. Chen, C. Kang, Q. Xia, Clustering of Electricity Consumption Behavior Dynamics Toward Big Data Applications, (2017). https://doi.org/10.1109/TSG.2016.2548565. – reference: F. Wang, K. Li, N. Dui, Z. Mi, B. Hodge, M. Sha, J.P.S. Catalão, Association rule mining based quantitative analysis approach of household characteristics impacts on residential electricity consumption patterns, 171 (2018) 839–854. https://doi.org/10.1016/j.enconman.2018.06.017. – volume: 122 start-page: 439 year: 2017 end-page: 444 ident: b0220 article-title: The building data genome project: an open, public data set from non-residential building electrical meters publication-title: Energy Procedia – volume: 81 start-page: 1365 year: 2018 end-page: 1377 ident: b0015 article-title: A review of unsupervised statistical learning and visual analytics techniques applied to performance analysis of non-residential buildings publication-title: Renew. Sustain. Energy Rev. – volume: 82 start-page: 1027 year: 2018 end-page: 1047 ident: b0050 article-title: A review of data-driven approaches for prediction and classification of building energy consumption publication-title: Renew. Sustain. Energy Rev. – reference: G. Brock, V. Pihur, S. Datta, S. Datta, ClValid: An R package for cluster validation, J. Stat. Softw. 25 (2008) 1–22. https://doi.org/10.18637/jss.v025.i04. – volume: 120 year: 2020 ident: b0045 article-title: A comparative study of clustering techniques for electrical load pattern segmentation publication-title: Renew. Sustain. Energy Rev. – reference: M. Verleysen, D. François, The curse of dimensionality in data mining and time series pre- diction, In: Proceedings of International Work-Conference on Artificial Neural Networks (IWANN 2005), Heidelberg, Berlin, Springer, 2005. pp. 758–770. 2005. https://doi.org/10.1007/11494669_93. – reference: (Accessed on 11July 2020). – volume: 51 start-page: 1 year: 2018 end-page: 11 ident: b0210 article-title: An object-oriented energy benchmark for the evaluation of the office building stock publication-title: Util. Policy – volume: 125 start-page: 171 year: 2016 end-page: 180 ident: b0090 article-title: Cluster analysis of residential heat load profiles and the role of technical and household characteristics publication-title: Energy Build. – volume: 66 start-page: 41 year: 2013 ident: 10.1016/j.enbuild.2020.110601_b0215 article-title: Development of an energy monitoring system for large public buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.07.007 – ident: 10.1016/j.enbuild.2020.110601_b0200 – volume: 120 year: 2020 ident: 10.1016/j.enbuild.2020.110601_b0045 article-title: A comparative study of clustering techniques for electrical load pattern segmentation publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.109628 – volume: 55 start-page: 437 year: 2014 ident: 10.1016/j.enbuild.2020.110601_b0175 article-title: Dynamic clustering segmentation applied to load profiles of energy consumption from Spanish customers publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2013.09.022 – ident: 10.1016/j.enbuild.2020.110601_b0195 – volume: 51 start-page: 1 year: 2018 ident: 10.1016/j.enbuild.2020.110601_b0210 article-title: An object-oriented energy benchmark for the evaluation of the office building stock publication-title: Util. Policy doi: 10.1016/j.jup.2018.01.008 – volume: 125 start-page: 171 year: 2016 ident: 10.1016/j.enbuild.2020.110601_b0090 article-title: Cluster analysis of residential heat load profiles and the role of technical and household characteristics publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.04.079 – volume: 88 start-page: 204 year: 2016 ident: 10.1016/j.enbuild.2020.110601_b0030 article-title: Comparative study of commercial building energy-efficiency retrofit policies in four pilot cities in China publication-title: Energy Policy doi: 10.1016/j.enpol.2015.10.016 – volume: 29 start-page: 190 year: 1976 ident: 10.1016/j.enbuild.2020.110601_b0240 article-title: Quadratic assignment as a general data analysis strategy publication-title: Br. J. Math. Stat. Psychol. doi: 10.1111/j.2044-8317.1976.tb00714.x – volume: 204 start-page: 715 year: 2017 ident: 10.1016/j.enbuild.2020.110601_b0110 article-title: Electric load shape benchmarking for small- and medium-sized commercial buildings publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2017.07.108 – volume: 50 start-page: 81 year: 2015 ident: 10.1016/j.enbuild.2020.110601_b0125 article-title: A framework for knowledge discovery in massive building automation data and its application in building diagnostics publication-title: Autom. Constr. doi: 10.1016/j.autcon.2014.12.006 – volume: 1 start-page: 136 year: 2016 ident: 10.1016/j.enbuild.2020.110601_b0120 article-title: Analysis and clustering of residential customers energy behavioral demand using smart meter data publication-title: IEEE Trans. Smart Grid. doi: 10.1109/TSG.2015.2409786 – volume: 3 start-page: 1 year: 1974 ident: 10.1016/j.enbuild.2020.110601_b0245 article-title: A dendrite method foe cluster analysis publication-title: Commun. Stat. – volume: 134 start-page: 90 year: 2017 ident: 10.1016/j.enbuild.2020.110601_b0060 article-title: A variation focused cluster analysis strategy to identify typical daily heating load profiles of higher education buildings publication-title: Energy doi: 10.1016/j.energy.2017.05.191 – ident: 10.1016/j.enbuild.2020.110601_b0130 doi: 10.1016/j.enconman.2018.06.017 – ident: 10.1016/j.enbuild.2020.110601_b0070 doi: 10.1109/TSG.2016.2548565 – start-page: 1 year: 2019 ident: 10.1016/j.enbuild.2020.110601_b0155 article-title: On perfect clustering of high dimension, low sample size data publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 224 year: 2020 ident: 10.1016/j.enbuild.2020.110601_b0225 article-title: Generating realistic building electrical load profiles through the Generative Adversarial Network (GAN) publication-title: Energy Build. doi: 10.1016/j.enbuild.2020.110299 – volume: 1 start-page: 149 year: 2020 ident: 10.1016/j.enbuild.2020.110601_b0035 article-title: A review of data mining technologies in building energy systems: Load prediction, pattern identification, fault detection and diagnosis publication-title: Energy Built Environ. doi: 10.1016/j.enbenv.2019.11.003 – volume: 212 start-page: 475 year: 2019 ident: 10.1016/j.enbuild.2020.110601_b0085 article-title: A shape-based clustering method for pattern recognition of residential electricity consumption publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.12.067 – volume: 205 start-page: 1657 year: 2017 ident: 10.1016/j.enbuild.2020.110601_b0145 article-title: A real-time detection method of abnormal building energy consumption data coupled POD-LSE and FCD publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.10.334 – ident: 10.1016/j.enbuild.2020.110601_b0095 doi: 10.1007/11494669_93 – ident: 10.1016/j.enbuild.2020.110601_b0160 – volume: 231 start-page: 331 year: 2018 ident: 10.1016/j.enbuild.2020.110601_b0040 article-title: Identification of typical building daily electricity usage profiles using Gaussian mixture model-based clustering and hierarchical clustering publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.09.050 – start-page: 2012 year: 2012 ident: 10.1016/j.enbuild.2020.110601_b0005 – volume: 141 start-page: 190 year: 2015 ident: 10.1016/j.enbuild.2020.110601_b0140 article-title: A clustering approach to domestic electricity load profile characterisation using smart metering data publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.12.039 – volume: 82 start-page: 1027 year: 2018 ident: 10.1016/j.enbuild.2020.110601_b0050 article-title: A review of data-driven approaches for prediction and classification of building energy consumption publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.09.108 – volume: 1 start-page: 159 year: 1978 ident: 10.1016/j.enbuild.2020.110601_b0100 article-title: Dynamic Programming Algorithm Optimization for Spoken Word Recognition publication-title: IEEE Trans. Acoust Speech Singal Process. – volume: 122 start-page: 439 year: 2017 ident: 10.1016/j.enbuild.2020.110601_b0220 article-title: The building data genome project: an open, public data set from non-residential building electrical meters publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.07.400 – volume: 190 start-page: 49 year: 2019 ident: 10.1016/j.enbuild.2020.110601_b0075 article-title: GMM clustering for heating load patterns in-depth identification and prediction model accuracy improvement of district heating system publication-title: Energy Build. doi: 10.1016/j.enbuild.2019.02.014 – ident: 10.1016/j.enbuild.2020.110601_b0115 doi: 10.1007/978-3-642-04921-7_41 – volume: 20 start-page: 53 year: 1987 ident: 10.1016/j.enbuild.2020.110601_b0260 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(87)90125-7 – ident: 10.1016/j.enbuild.2020.110601_b0205 – volume: 54 start-page: 4544 year: 2016 ident: 10.1016/j.enbuild.2020.110601_b0150 article-title: Spectral-spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2543748 – ident: 10.1016/j.enbuild.2020.110601_b0185 doi: 10.18637/jss.v025.i04 – ident: 10.1016/j.enbuild.2020.110601_b0190 doi: 10.1145/170036.170072 – ident: 10.1016/j.enbuild.2020.110601_b0165 – ident: 10.1016/j.enbuild.2020.110601_b0180 doi: 10.1109/ICDEW.2006.99 – volume: 53 start-page: 16 year: 2015 ident: 10.1016/j.enbuild.2020.110601_b0055 article-title: Time-series clustering – A decade review publication-title: Inf. Syst. doi: 10.1016/j.is.2015.04.007 – volume: 157 start-page: 336 year: 2018 ident: 10.1016/j.enbuild.2020.110601_b0135 article-title: Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings publication-title: Energy doi: 10.1016/j.energy.2018.05.127 – volume: 16 start-page: 645 year: 2005 ident: 10.1016/j.enbuild.2020.110601_b0170 article-title: Survey of clustering algorithms publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2005.845141 – volume: 22 start-page: 719 year: 2000 ident: 10.1016/j.enbuild.2020.110601_b0235 article-title: Assessing a mixture model for clustering with the integrated completed likelihood publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.865189 – ident: 10.1016/j.enbuild.2020.110601_b0020 – volume: 29 start-page: 224 year: 1979 ident: 10.1016/j.enbuild.2020.110601_b0255 article-title: A cluster separation measure publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1979.4766909 – ident: 10.1016/j.enbuild.2020.110601_b0105 – volume: 37 start-page: 2087 year: 2009 ident: 10.1016/j.enbuild.2020.110601_b0025 article-title: Government management and implementation of national real-time energy monitoring system for China large-scale public building publication-title: Energy Policy. doi: 10.1016/j.enpol.2008.12.032 – volume: 236 start-page: 1280 year: 2019 ident: 10.1016/j.enbuild.2020.110601_b0080 article-title: Apples or oranges? Identification of fundamental load shape profiles for benchmarking buildings using a large and diverse dataset publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.12.025 – volume: 81 start-page: 1365 year: 2018 ident: 10.1016/j.enbuild.2020.110601_b0015 article-title: A review of unsupervised statistical learning and visual analytics techniques applied to performance analysis of non-residential buildings publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.05.124 – volume: 79 start-page: 1 year: 2014 ident: 10.1016/j.enbuild.2020.110601_b0230 article-title: Stochastic modeling of overtime occupancy and its application in building energy simulation and calibration publication-title: Build. Environ. doi: 10.1016/j.buildenv.2014.04.030 – volume: 159 start-page: 296 year: 2018 ident: 10.1016/j.enbuild.2020.110601_b0010 article-title: Unsupervised data analytics in mining big building operational data for energy efficiency enhancement: a review publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.11.008 – volume: 174 start-page: 735 year: 2019 ident: 10.1016/j.enbuild.2020.110601_b0065 article-title: An agglomerative hierarchical clustering-based strategy using Shared Nearest Neighbours and multiple dissimilarity measures to identify typical daily electricity usage profiles of university library buildings publication-title: Energy doi: 10.1016/j.energy.2019.03.003 – volume: 4 start-page: 95 year: 1974 ident: 10.1016/j.enbuild.2020.110601_b0250 article-title: Well-separated clusters and optimal fuzzy partitions publication-title: J. Cybern. doi: 10.1080/01969727408546059 |
SSID | ssj0006571 |
Score | 2.6344492 |
Snippet | •We propose a general data mining-based framework for mining real-time building electricity consumption data.•The framework aims to identify typical... With the development of advanced information techniques, smart energy meters have made a considerable amount of real-time electricity consumption data... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 110601 |
SubjectTerms | Algorithms Anomalies Building energy management Cluster analysis Clustering Data analysis Data mining Decision tree Electricity Electricity consumption Electricity usage pattern Energy consumption Energy management Energy usage Fault detection Knowledge discovery Office buildings Outliers (statistics) Regression analysis Statistical analysis Time series clustering Use statistics |
Title | A data mining-based framework for the identification of daily electricity usage patterns and anomaly detection in building electricity consumption data |
URI | https://dx.doi.org/10.1016/j.enbuild.2020.110601 https://www.proquest.com/docview/2487470084 |
Volume | 231 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvQgPvG55OC1u22aNLvHZVHWByI-wFtIkxQqa3fR9eDFv-HfdSZN1RVhwUMplExp-6Uz88E3M4Qcay77Gvh_lPW5iTgz4AeNlfDHOy2dzrAcFNUWV9nonp8_iIcWGTa1MCirDL6_9uneW4cr3fA1u9Oy7N7GKWw2YHAsToFnSSzi41ziLu-8f8s8MuFJFy6OcPV3FU_3sYPtBcoxNgxlXhCfhdkwf8SnX57ah5_TdbIW8kY6qB9tg7RctUlWf3QT3CIfA4p6T_rkZz5EGJ8sLRrxFYXslEK2R0sbBEIeEzopwKocv9F6IE5pIC2nryg3o1Pfe7N6obqycEyeNCyzbubVWxUtK5qHodpzxsZXdXpX5B9om9yfntwNR1GYuxAZHqezCNETXEtTGIjnjPWEEcDLEuZk4aTVVgCt6YvYMeBKBXK2zOWAKktMEpueTnfIUjWp3C6h0qR5CssEl0BFEpP3rchzAEzbQgAye4Q3X1uZ0JQcZ2OMVaM-e1QBJIUgqRqkPdL5MpvWXTkWGfQaKNXc9lIQORaZHjbQq_B_vygGPA9eKe7x_f_f-YCsMFTIxEmUiEOyNHt-dUeQ4szytt_DbbI8GN5cXuP57GJ09QkIJ_6P |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T-QwEB5xUNxRILiHeOPirsxu4tjxpqBAPLQ8mwOJzufYjhS0ZFfsIkTD3-CH8AcZOw6PExISEkWaKGNNPOOZ-aTPMwC_FRO5QvwfZTnTEaMa46A2Ak-8VcKqzF0HdWyLk6x_xg7O-fkUPLR3YRytMsT-Jqb7aB3edMNudkdV1f0bp-hsiOBonCLOEnlgVh7a2xvEbePN_R008h9K93ZPt_tRGC0QaRank8gpyJkSutSYsijtcc0ReiTUitIKowzHyj3nsaUIB0oHSzJboOI00UmseyrFdb_ADMNw4cYmdO6eeSUZ9yjPaRc59Z6vDXUvOq6fQTVwHUqpZ-BnYRjNGwnxv9Tg893ePMyFQpVsNXuxAFO2_g6zL9oX_oD7LeIIpuTSD5mIXEI0pGzZXgTLYYLlJalMYCR5JyDDEqWqwS1pJvBUGnEAuXb8NjLyzT7rMVG1wWd4qfAzYyeeLlaTqiZFmOL9Slj7a6Q-9nmFfsLZp1jjF0zXw9ouAhE6LVL8jDOB2CfRRW54UaCHKFNytMwSsHa3pQ5d0N0wjoFs6W4XMhhJOiPJxkhL0HkSGzVtQN4T6LWmlK_8WWKqek90tTW9DAFlLCkCS_yluMeWP77yBnztnx4fyaP9k8MV-EYdPSdOooSvwvTk6tquYX01Kda9PxP499kH6BEg8jaT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data+mining-based+framework+for+the+identification+of+daily+electricity+usage+patterns+and+anomaly+detection+in+building+electricity+consumption+data&rft.jtitle=Energy+and+buildings&rft.au=Liu%2C+Xue&rft.au=Ding%2C+Yong&rft.au=Tang%2C+Hao&rft.au=Xiao%2C+Feng&rft.date=2021-01-15&rft.pub=Elsevier+B.V&rft.issn=0378-7788&rft.volume=231&rft_id=info:doi/10.1016%2Fj.enbuild.2020.110601&rft.externalDocID=S0378778820333879 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon |