A data mining-based framework for the identification of daily electricity usage patterns and anomaly detection in building electricity consumption data

•We propose a general data mining-based framework for mining real-time building electricity consumption data.•The framework aims to identify typical electricity load patterns and discover insightful knowledge hidden in the patterns.•Applications of the framework in three practical office buildings a...

Full description

Saved in:
Bibliographic Details
Published inEnergy and buildings Vol. 231; p. 110601
Main Authors Liu, Xue, Ding, Yong, Tang, Hao, Xiao, Feng
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 15.01.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We propose a general data mining-based framework for mining real-time building electricity consumption data.•The framework aims to identify typical electricity load patterns and discover insightful knowledge hidden in the patterns.•Applications of the framework in three practical office buildings are presented.•The framework is potentially used for an early fault detection of anomalous electricity load profiles. With the development of advanced information techniques, smart energy meters have made a considerable amount of real-time electricity consumption data available. These data provide a promising way to understand energy usage patterns and improve building energy management. However, previous studies have paid more attention to methodologies for the identification of energy usage patterns and are limited in the interpretability and applications of the patterns. In this context, this paper proposes a general data mining-based framework that can extract typical electricity load patterns (TELPs) and discover insightful information hidden in the patterns. The framework integrates multiple data mining techniques and mainly consists of three phases: data preparation, identification of TELPs and knowledge discovery in the patterns. A new clustering method with a two-step clustering analysis is proposed to identify the TELPs at the individual building level. Before clustering, five statistical features that represent the shapes of electricity load profiles are first defined to reduce the dimensions of daily electricity load profiles. The first clustering step aims at detecting outliers of daily electricity load profiles (DELPs) by using the density-based spatial clustering application with noise (DBSCAN) algorithm clustering technique, which addresses the data quality issues for electricity consumption data derived from energy consumption monitoring platforms (ECMPs). The second clustering step aims at grouping similar DELPs by means of the k-means algorithm to extract TELPs. The effectiveness of the proposed clustering method is demonstrated by a comparison with two single-step clustering techniques. Furthermore, a classification and regression tree (CART) algorithm is employed to discover insightful knowledge on TELPs and improve the interpretability of clustering results, namely, to explain the relations between dynamic influencing factors related to electricity consumption and TELPs. The proposed framework is applied to analyze the time-series electricity consumption data of three practical office buildings in Chongqing, and its effectiveness has been confirmed. A potential application of discovered knowledge is presented: early fault detection of anomalous electricity load profiles. The proposed framework can provide building managers with an efficient way to understand the characteristics of building electricity usage patterns and detect anomalies therein.
AbstractList With the development of advanced information techniques, smart energy meters have made a considerable amount of real-time electricity consumption data available. These data provide a promising way to understand energy usage patterns and improve building energy management. However, previous studies have paid more attention to methodologies for the identification of energy usage patterns and are limited in the interpretability and applications of the patterns. In this context, this paper proposes a general data mining-based framework that can extract typical electricity load patterns (TELPs) and discover insightful information hidden in the patterns. The framework integrates multiple data mining techniques and mainly consists of three phases: data preparation, identification of TELPs and knowledge discovery in the patterns. A new clustering method with a two-step clustering analysis is proposed to identify the TELPs at the individual building level. Before clustering, five statistical features that represent the shapes of electricity load profiles are first defined to reduce the dimensions of daily electricity load profiles. The first clustering step aims at detecting outliers of daily electricity load profiles (DELPs) by using the density-based spatial clustering application with noise (DBSCAN) algorithm clustering technique, which addresses the data quality issues for electricity consumption data derived from energy consumption monitoring platforms (ECMPs). The second clustering step aims at grouping similar DELPs by means of the k-means algorithm to extract TELPs. The effectiveness of the proposed clustering method is demonstrated by a comparison with two single-step clustering techniques. Furthermore, a classification and regression tree (CART) algorithm is employed to discover insightful knowledge on TELPs and improve the interpretability of clustering results, namely, to explain the relations between dynamic influencing factors related to electricity consumption and TELPs. The proposed framework is applied to analyze the time-series electricity consumption data of three practical office buildings in Chongqing, and its effectiveness has been confirmed. A potential application of discovered knowledge is presented: early fault detection of anomalous electricity load profiles. The proposed framework can provide building managers with an efficient way to understand the characteristics of building electricity usage patterns and detect anomalies therein.
•We propose a general data mining-based framework for mining real-time building electricity consumption data.•The framework aims to identify typical electricity load patterns and discover insightful knowledge hidden in the patterns.•Applications of the framework in three practical office buildings are presented.•The framework is potentially used for an early fault detection of anomalous electricity load profiles. With the development of advanced information techniques, smart energy meters have made a considerable amount of real-time electricity consumption data available. These data provide a promising way to understand energy usage patterns and improve building energy management. However, previous studies have paid more attention to methodologies for the identification of energy usage patterns and are limited in the interpretability and applications of the patterns. In this context, this paper proposes a general data mining-based framework that can extract typical electricity load patterns (TELPs) and discover insightful information hidden in the patterns. The framework integrates multiple data mining techniques and mainly consists of three phases: data preparation, identification of TELPs and knowledge discovery in the patterns. A new clustering method with a two-step clustering analysis is proposed to identify the TELPs at the individual building level. Before clustering, five statistical features that represent the shapes of electricity load profiles are first defined to reduce the dimensions of daily electricity load profiles. The first clustering step aims at detecting outliers of daily electricity load profiles (DELPs) by using the density-based spatial clustering application with noise (DBSCAN) algorithm clustering technique, which addresses the data quality issues for electricity consumption data derived from energy consumption monitoring platforms (ECMPs). The second clustering step aims at grouping similar DELPs by means of the k-means algorithm to extract TELPs. The effectiveness of the proposed clustering method is demonstrated by a comparison with two single-step clustering techniques. Furthermore, a classification and regression tree (CART) algorithm is employed to discover insightful knowledge on TELPs and improve the interpretability of clustering results, namely, to explain the relations between dynamic influencing factors related to electricity consumption and TELPs. The proposed framework is applied to analyze the time-series electricity consumption data of three practical office buildings in Chongqing, and its effectiveness has been confirmed. A potential application of discovered knowledge is presented: early fault detection of anomalous electricity load profiles. The proposed framework can provide building managers with an efficient way to understand the characteristics of building electricity usage patterns and detect anomalies therein.
ArticleNumber 110601
Author Ding, Yong
Xiao, Feng
Liu, Xue
Tang, Hao
Author_xml – sequence: 1
  givenname: Xue
  surname: Liu
  fullname: Liu, Xue
  organization: Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China
– sequence: 2
  givenname: Yong
  surname: Ding
  fullname: Ding, Yong
  email: dingyongqq@163.com
  organization: Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China
– sequence: 3
  givenname: Hao
  surname: Tang
  fullname: Tang, Hao
  organization: Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China
– sequence: 4
  givenname: Feng
  surname: Xiao
  fullname: Xiao, Feng
  organization: School of Business Administration, Southwestern University of Finance and Economics, Chengdu, China
BookMark eNqFkUFrGzEQhUVJoE7Sn1AQ9LzuSLtayfRQQmjaQiCX5ixkaZTK9UqupG3xL-nfjWzn0lxyEAPifTOP9y7IWUwRCXnPYMmAjR83S4zrOWzdkgNvfwxGYG_IginJu5FJdUYW0EvVSanUW3JRygYARiHZgvy7ps5UQ6cQQ3zs1qagoz6bCf-m_Iv6lGn9iTQ4jDX4YE0NKdLkGxW2e4pbtDUHG-qezsU8It2ZWjHHQk107aXJNJnD2nQHMkR6tNqO_QfbFMs87Y6ag6Ercu7NtuC753lJHm6__Lj51t3df_1-c33X2QH62smVATEYab3tFeNcCSu4WjGO0qN0xgkhYCUA-WocPVdcjbgeoefMMrDK9Jfkw2nvLqffM5aqN2nOsZ3UfFBykABqaKpPJ5XNqZSMXjfTxyhqbjloBvrQhN7o5yb0oQl9aqLR4gW9y2Eyef8q9_nEYQvgT8Csiw0YLbqQW3LapfDKhifhtKqe
CitedBy_id crossref_primary_10_1049_gtd2_70027
crossref_primary_10_1016_j_jobe_2024_109227
crossref_primary_10_3390_buildings12101636
crossref_primary_10_3390_buildings14082534
crossref_primary_10_1016_j_enconman_2023_117244
crossref_primary_10_1016_j_jobe_2024_111143
crossref_primary_10_3390_buildings14082491
crossref_primary_10_1016_j_rser_2024_114804
crossref_primary_10_3390_en17133080
crossref_primary_10_1016_j_enbuild_2023_113877
crossref_primary_10_1016_j_techfore_2022_121523
crossref_primary_10_1088_1742_6596_2814_1_012053
crossref_primary_10_3390_en16093961
crossref_primary_10_1016_j_enbuild_2024_115177
crossref_primary_10_1016_j_apenergy_2024_124520
crossref_primary_10_1016_j_energy_2022_123798
crossref_primary_10_1016_j_enbuild_2024_114446
crossref_primary_10_7717_peerj_cs_1872
crossref_primary_10_58496_MJBD_2023_007
crossref_primary_10_1016_j_segan_2023_101194
crossref_primary_10_3390_en16114504
crossref_primary_10_1016_j_jobe_2022_105732
crossref_primary_10_1109_ACCESS_2024_3513714
crossref_primary_10_3390_iot5040036
crossref_primary_10_1177_01436244221122851
crossref_primary_10_2478_amns_2024_1219
crossref_primary_10_1016_j_scs_2022_104007
crossref_primary_10_2478_amns_2025_0551
crossref_primary_10_1016_j_jobe_2024_111016
crossref_primary_10_1108_ECAM_03_2023_0200
crossref_primary_10_20965_jaciii_2024_p0953
crossref_primary_10_3390_en15207644
crossref_primary_10_1016_j_enbuild_2022_112753
crossref_primary_10_1016_j_dibe_2023_100176
crossref_primary_10_1016_j_jclepro_2024_144555
crossref_primary_10_4218_etrij_2022_0135
crossref_primary_10_1016_j_jhydrol_2024_132115
crossref_primary_10_1016_j_autcon_2022_104303
crossref_primary_10_3390_app13010314
crossref_primary_10_1016_j_apenergy_2023_122550
crossref_primary_10_1016_j_jobe_2022_105509
crossref_primary_10_1016_j_enbenv_2024_12_005
crossref_primary_10_3390_make6020045
crossref_primary_10_1016_j_enbuild_2024_114897
crossref_primary_10_1016_j_eswa_2022_117649
crossref_primary_10_1016_j_enbuild_2021_111160
crossref_primary_10_3390_su14042066
crossref_primary_10_1016_j_egyr_2023_04_006
crossref_primary_10_3390_en17030700
crossref_primary_10_36548_jeea_2024_4_002
crossref_primary_10_4218_etrij_2023_0155
crossref_primary_10_3390_app12020612
crossref_primary_10_1016_j_jobe_2023_106653
crossref_primary_10_1016_j_enbuild_2022_112687
crossref_primary_10_1016_j_apenergy_2024_124584
crossref_primary_10_1016_j_apenergy_2023_121030
crossref_primary_10_1016_j_enbuild_2023_113419
crossref_primary_10_3390_en18010221
crossref_primary_10_1016_j_enbuild_2024_114341
crossref_primary_10_1016_j_enbuild_2024_115232
crossref_primary_10_1109_TSG_2023_3253824
crossref_primary_10_3390_buildings13030666
crossref_primary_10_1088_1742_6596_2666_1_012039
crossref_primary_10_1109_ACCESS_2022_3160170
crossref_primary_10_1016_j_energy_2021_120821
crossref_primary_10_1016_j_energy_2023_126608
crossref_primary_10_1080_23311916_2023_2199518
crossref_primary_10_1109_JSEN_2024_3426090
crossref_primary_10_1016_j_epsr_2024_110876
crossref_primary_10_1007_s12273_025_1242_x
crossref_primary_10_1016_j_egyr_2023_06_025
crossref_primary_10_1016_j_jobe_2024_110025
crossref_primary_10_1016_j_ins_2023_119479
crossref_primary_10_3390_en17163904
crossref_primary_10_3390_en18051062
crossref_primary_10_3390_su15065569
crossref_primary_10_3934_electreng_2021015
crossref_primary_10_1007_s40866_025_00252_6
crossref_primary_10_1016_j_knosys_2022_109236
crossref_primary_10_37394_232025_2024_6_27
crossref_primary_10_1021_acs_est_3c08331
crossref_primary_10_1038_s41597_024_04106_1
crossref_primary_10_1049_gtd2_12417
crossref_primary_10_3390_electricity5010005
crossref_primary_10_1016_j_egyr_2022_07_043
crossref_primary_10_1016_j_scs_2024_105553
crossref_primary_10_1016_j_jobe_2022_105688
crossref_primary_10_3390_en15124366
crossref_primary_10_1007_s40031_023_00963_3
Cites_doi 10.1016/j.enbuild.2013.07.007
10.1016/j.rser.2019.109628
10.1016/j.ijepes.2013.09.022
10.1016/j.jup.2018.01.008
10.1016/j.enbuild.2016.04.079
10.1016/j.enpol.2015.10.016
10.1111/j.2044-8317.1976.tb00714.x
10.1016/j.apenergy.2017.07.108
10.1016/j.autcon.2014.12.006
10.1109/TSG.2015.2409786
10.1016/j.energy.2017.05.191
10.1016/j.enconman.2018.06.017
10.1109/TSG.2016.2548565
10.1016/j.enbuild.2020.110299
10.1016/j.enbenv.2019.11.003
10.1016/j.jclepro.2018.12.067
10.1016/j.proeng.2017.10.334
10.1007/11494669_93
10.1016/j.apenergy.2018.09.050
10.1016/j.apenergy.2014.12.039
10.1016/j.rser.2017.09.108
10.1016/j.egypro.2017.07.400
10.1016/j.enbuild.2019.02.014
10.1007/978-3-642-04921-7_41
10.1016/0377-0427(87)90125-7
10.1109/TGRS.2016.2543748
10.18637/jss.v025.i04
10.1145/170036.170072
10.1109/ICDEW.2006.99
10.1016/j.is.2015.04.007
10.1016/j.energy.2018.05.127
10.1109/TNN.2005.845141
10.1109/34.865189
10.1109/TPAMI.1979.4766909
10.1016/j.enpol.2008.12.032
10.1016/j.apenergy.2018.12.025
10.1016/j.rser.2017.05.124
10.1016/j.buildenv.2014.04.030
10.1016/j.enbuild.2017.11.008
10.1016/j.energy.2019.03.003
10.1080/01969727408546059
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Jan 15, 2021
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Jan 15, 2021
DBID AAYXX
CITATION
7ST
8FD
C1K
F28
FR3
KR7
SOI
DOI 10.1016/j.enbuild.2020.110601
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-6178
ExternalDocumentID 10_1016_j_enbuild_2020_110601
S0378778820333879
GroupedDBID --M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
SDF
SDG
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~02
~G-
--K
29G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RPZ
SAC
SET
SEW
SSH
WUQ
ZMT
ZY4
7ST
8FD
C1K
EFKBS
F28
FR3
KR7
SOI
ID FETCH-LOGICAL-c403t-79a054a7cfc3812285c528912e7fe7dad5550950e2966f28286eb60321c10c8a3
IEDL.DBID .~1
ISSN 0378-7788
IngestDate Wed Aug 13 07:20:04 EDT 2025
Tue Jul 01 01:13:02 EDT 2025
Thu Apr 24 22:55:20 EDT 2025
Sat Aug 24 15:41:35 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Knowledge discovery
Data mining
Building energy management
Time series clustering
Electricity usage pattern
Decision tree
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-79a054a7cfc3812285c528912e7fe7dad5550950e2966f28286eb60321c10c8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2487470084
PQPubID 2045483
ParticipantIDs proquest_journals_2487470084
crossref_citationtrail_10_1016_j_enbuild_2020_110601
crossref_primary_10_1016_j_enbuild_2020_110601
elsevier_sciencedirect_doi_10_1016_j_enbuild_2020_110601
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-15
PublicationDateYYYYMMDD 2021-01-15
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-15
  day: 15
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Energy and buildings
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Wang, Hong (b0225) 2020; 224
Lu, Tian, Peng, Niu, Li, Zhang (b0075) 2019; 190
Zhao, Du (b0150) 2016; 54
McLoughlin, Duffy, Conlon (b0140) 2015; 141
Hubert, Schultz (b0240) 1976; 29
Miller, Nagy, Schlueter (b0015) 2018; 81
Fan, Xiao, Yan (b0125) 2015; 50
Haben, Singleton, Grindrod (b0120) 2016; 1
M. Hahsler M. Piekenbrock S. Arya D. Mount R, Package 'dbscan' 2020 (Accessed on 11 July 2020).
F. Wang, K. Li, N. Dui, Z. Mi, B. Hodge, M. Sha, J.P.S. Catalão, Association rule mining based quantitative analysis approach of household characteristics impacts on residential electricity consumption patterns, 171 (2018) 839–854. https://doi.org/10.1016/j.enconman.2018.06.017.
Capozzoli, Piscitelli, Brandi, Grassi, Chicco (b0135) 2018; 157
Rousseeuw (b0260) 1987; 20
Aghabozorgi, Seyed Shirkhorshidi, Ying Wah (b0055) 2015; 53
Biernacki, Celeux, Govaert (b0235) 2000; 22
International Energy Agency (IEA) (b0005) 2012
Wei, Zhang, Shi, Xia, Pan, Wu, Han, Zhao (b0050) 2018; 82
Zhao, Zhang, Liang (b0215) 2013; 66
Sarkar, Ghosh (b0155) 2019
Wei, Yong, Yan, Zhongcheng (b0025) 2009; 37
Li, Yang, Robinson, Ma, Ma (b0065) 2019; 174
M. Verleysen, D. François, The curse of dimensionality in data mining and time series pre- diction, In: Proceedings of International Work-Conference on Artificial Neural Networks (IWANN 2005), Heidelberg, Berlin, Springer, 2005. pp. 758–770. 2005. https://doi.org/10.1007/11494669_93.
Caliñski, Harabasz (b0245) 1974; 3
Ma, Song, Zhang (b0145) 2017; 205
Benítez, Quijano, Díez, Delgado (b0175) 2014; 55
Luo, Hong, Chen, Piette (b0110) 2017; 204
(Accessed on 11 July 2020).
Wen, Zhou, Yang (b0085) 2019; 212
Xu, Wunsch (b0170) 2005; 16
T. Räsänen, M. Kolehmainen, Feature-Based Clustering for Electricity Use Time Feature-Based Clustering for Electricity Use, In: Proceedings of international conference on adaptive and natural computing algorithms (LNCS 5495). Berlin, Germany: Springer-Verlag; 2009. pp. 401–412. 2009. https://doi.org/10.1007/978-3-642-04921-7.
Ma, Yan, Nord (b0060) 2017; 134
Li, Yao, Li, Ding, Li (b0210) 2018; 51
Hou, Liu, Wu, Zhou, Feng (b0030) 2016; 88
R. Agrawal, Mining Association Rules between Sets of Items in Large Databases, In: Proc of the 1993 ACM-SIGMOD international conference on management of data. pp. 207–216.
T. Therneau, B. Atkinson, B. Ripley, M.B. Ripley, R Package 'rpart', 2020
Miller, Meggers (b0220) 2017; 122
Y. Wang, Q. Chen, C. Kang, Q. Xia, Clustering of Electricity Consumption Behavior Dynamics Toward Big Data Applications, (2017). https://doi.org/10.1109/TSG.2016.2548565.
Park, Yang, Miller, Arjunan, Nagy (b0080) 2019; 236
Zhao, Zhang, Zhang, Wang, Li (b0035) 2020; 1
Fan, Xiao, Li, Wang (b0010) 2018; 159
(Accessed on 11July 2020).
Chiba (b0100) 1978; 1
Davies, Bouldin (b0255) 1979; 29
M. Ester, H. Kriegel, X. Xu, D.- Miinchen, A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, In: Proceedings of the 2nd ACM SIGKDD, Portland, Oregon; 1996. pp. 226–231.
B. Lkhagva, Y. Suzuki, K. Kawagoe, New Time Series Data Representation ESAX for Financial Applications New Time Series Data Representation ESAX for Financial Applications, 22nd International Conference on Data Engineering Workshops (ICDEW'06), Atlanta, GA, USA, 2006, pp. x115–x115, https://doi.org/10.1109/ICDEW.2006.99.
Do Carmo, Christensen (b0090) 2016; 125
Sun, Yan, Hong, Guo (b0230) 2014; 79
Dunn (b0250) 1974; 4
A. Sard, Comparing Time-Series Clustering Algorithms in R Using the dtwclust Comparing Time-Series Clustering Algorithms in R Using the dtwclust Package, (2019).
P. Rousseeuw, A. Struyf, M. Hubert, M. Studer, P. Roudier, Package 'cluster', 2020
Rajabi, Eskandari, Ghadi, Li, Zhang, Siano (b0045) 2020; 120
EIA. How many smart meters are installed in the United States, and who has them?; 2020
Li, Ma, Robinson, Ma (b0040) 2018; 231
G. Brock, V. Pihur, S. Datta, S. Datta, ClValid: An R package for cluster validation, J. Stat. Softw. 25 (2008) 1–22. https://doi.org/10.18637/jss.v025.i04.
T.M. Therneau, E.J. Atkinson, An Introduction to Recursive Partitioning Using the RPART Routines, 2019
10.1016/j.enbuild.2020.110601_b0115
Sarkar (10.1016/j.enbuild.2020.110601_b0155) 2019
Hou (10.1016/j.enbuild.2020.110601_b0030) 2016; 88
Rousseeuw (10.1016/j.enbuild.2020.110601_b0260) 1987; 20
10.1016/j.enbuild.2020.110601_b0195
Do Carmo (10.1016/j.enbuild.2020.110601_b0090) 2016; 125
Wei (10.1016/j.enbuild.2020.110601_b0050) 2018; 82
Caliñski (10.1016/j.enbuild.2020.110601_b0245) 1974; 3
10.1016/j.enbuild.2020.110601_b0190
10.1016/j.enbuild.2020.110601_b0070
Rajabi (10.1016/j.enbuild.2020.110601_b0045) 2020; 120
Miller (10.1016/j.enbuild.2020.110601_b0015) 2018; 81
Benítez (10.1016/j.enbuild.2020.110601_b0175) 2014; 55
Li (10.1016/j.enbuild.2020.110601_b0065) 2019; 174
Lu (10.1016/j.enbuild.2020.110601_b0075) 2019; 190
10.1016/j.enbuild.2020.110601_b0105
Zhao (10.1016/j.enbuild.2020.110601_b0035) 2020; 1
Dunn (10.1016/j.enbuild.2020.110601_b0250) 1974; 4
10.1016/j.enbuild.2020.110601_b0020
Chiba (10.1016/j.enbuild.2020.110601_b0100) 1978; 1
McLoughlin (10.1016/j.enbuild.2020.110601_b0140) 2015; 141
10.1016/j.enbuild.2020.110601_b0185
Li (10.1016/j.enbuild.2020.110601_b0040) 2018; 231
Wang (10.1016/j.enbuild.2020.110601_b0225) 2020; 224
Wei (10.1016/j.enbuild.2020.110601_b0025) 2009; 37
Ma (10.1016/j.enbuild.2020.110601_b0145) 2017; 205
10.1016/j.enbuild.2020.110601_b0180
Haben (10.1016/j.enbuild.2020.110601_b0120) 2016; 1
Li (10.1016/j.enbuild.2020.110601_b0210) 2018; 51
Park (10.1016/j.enbuild.2020.110601_b0080) 2019; 236
Fan (10.1016/j.enbuild.2020.110601_b0125) 2015; 50
10.1016/j.enbuild.2020.110601_b0130
Miller (10.1016/j.enbuild.2020.110601_b0220) 2017; 122
Capozzoli (10.1016/j.enbuild.2020.110601_b0135) 2018; 157
Aghabozorgi (10.1016/j.enbuild.2020.110601_b0055) 2015; 53
Fan (10.1016/j.enbuild.2020.110601_b0010) 2018; 159
10.1016/j.enbuild.2020.110601_b0095
Wen (10.1016/j.enbuild.2020.110601_b0085) 2019; 212
Ma (10.1016/j.enbuild.2020.110601_b0060) 2017; 134
Xu (10.1016/j.enbuild.2020.110601_b0170) 2005; 16
10.1016/j.enbuild.2020.110601_b0205
Biernacki (10.1016/j.enbuild.2020.110601_b0235) 2000; 22
International Energy Agency (IEA) (10.1016/j.enbuild.2020.110601_b0005) 2012
10.1016/j.enbuild.2020.110601_b0165
10.1016/j.enbuild.2020.110601_b0200
Luo (10.1016/j.enbuild.2020.110601_b0110) 2017; 204
Davies (10.1016/j.enbuild.2020.110601_b0255) 1979; 29
Zhao (10.1016/j.enbuild.2020.110601_b0150) 2016; 54
Zhao (10.1016/j.enbuild.2020.110601_b0215) 2013; 66
Hubert (10.1016/j.enbuild.2020.110601_b0240) 1976; 29
10.1016/j.enbuild.2020.110601_b0160
Sun (10.1016/j.enbuild.2020.110601_b0230) 2014; 79
References_xml – volume: 53
  start-page: 16
  year: 2015
  end-page: 38
  ident: b0055
  article-title: Time-series clustering – A decade review
  publication-title: Inf. Syst.
– volume: 1
  start-page: 149
  year: 2020
  end-page: 164
  ident: b0035
  article-title: A review of data mining technologies in building energy systems: Load prediction, pattern identification, fault detection and diagnosis
  publication-title: Energy Built Environ.
– volume: 224
  year: 2020
  ident: b0225
  article-title: Generating realistic building electrical load profiles through the Generative Adversarial Network (GAN)
  publication-title: Energy Build.
– volume: 1
  start-page: 159
  year: 1978
  end-page: 165
  ident: b0100
  article-title: Dynamic Programming Algorithm Optimization for Spoken Word Recognition
  publication-title: IEEE Trans. Acoust Speech Singal Process.
– volume: 134
  start-page: 90
  year: 2017
  end-page: 102
  ident: b0060
  article-title: A variation focused cluster analysis strategy to identify typical daily heating load profiles of higher education buildings
  publication-title: Energy
– reference: T. Therneau, B. Atkinson, B. Ripley, M.B. Ripley, R Package 'rpart', 2020
– reference: P. Rousseeuw, A. Struyf, M. Hubert, M. Studer, P. Roudier, Package 'cluster', 2020
– volume: 236
  start-page: 1280
  year: 2019
  end-page: 1295
  ident: b0080
  article-title: Apples or oranges? Identification of fundamental load shape profiles for benchmarking buildings using a large and diverse dataset
  publication-title: Appl. Energy
– volume: 16
  start-page: 645
  year: 2005
  end-page: 678
  ident: b0170
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Netw.
– reference: B. Lkhagva, Y. Suzuki, K. Kawagoe, New Time Series Data Representation ESAX for Financial Applications New Time Series Data Representation ESAX for Financial Applications, 22nd International Conference on Data Engineering Workshops (ICDEW'06), Atlanta, GA, USA, 2006, pp. x115–x115, https://doi.org/10.1109/ICDEW.2006.99.
– reference: EIA. How many smart meters are installed in the United States, and who has them?; 2020
– volume: 212
  start-page: 475
  year: 2019
  end-page: 488
  ident: b0085
  article-title: A shape-based clustering method for pattern recognition of residential electricity consumption
  publication-title: J. Clean. Prod.
– volume: 66
  start-page: 41
  year: 2013
  end-page: 48
  ident: b0215
  article-title: Development of an energy monitoring system for large public buildings
  publication-title: Energy Build.
– volume: 3
  start-page: 1
  year: 1974
  end-page: 27
  ident: b0245
  article-title: A dendrite method foe cluster analysis
  publication-title: Commun. Stat.
– volume: 141
  start-page: 190
  year: 2015
  end-page: 199
  ident: b0140
  article-title: A clustering approach to domestic electricity load profile characterisation using smart metering data
  publication-title: Appl. Energy
– reference: T. Räsänen, M. Kolehmainen, Feature-Based Clustering for Electricity Use Time Feature-Based Clustering for Electricity Use, In: Proceedings of international conference on adaptive and natural computing algorithms (LNCS 5495). Berlin, Germany: Springer-Verlag; 2009. pp. 401–412. 2009. https://doi.org/10.1007/978-3-642-04921-7.
– start-page: 2012
  year: 2012
  ident: b0005
  article-title: Energy Technology Perspectives Scenarios and Strategies to 2050
– volume: 88
  start-page: 204
  year: 2016
  end-page: 215
  ident: b0030
  article-title: Comparative study of commercial building energy-efficiency retrofit policies in four pilot cities in China
  publication-title: Energy Policy
– reference: M. Hahsler M. Piekenbrock S. Arya D. Mount R, Package 'dbscan' 2020 (Accessed on 11 July 2020).
– volume: 37
  start-page: 2087
  year: 2009
  end-page: 2091
  ident: b0025
  article-title: Government management and implementation of national real-time energy monitoring system for China large-scale public building
  publication-title: Energy Policy.
– volume: 29
  start-page: 190
  year: 1976
  end-page: 241
  ident: b0240
  article-title: Quadratic assignment as a general data analysis strategy
  publication-title: Br. J. Math. Stat. Psychol.
– reference: T.M. Therneau, E.J. Atkinson, An Introduction to Recursive Partitioning Using the RPART Routines, 2019
– volume: 54
  start-page: 4544
  year: 2016
  end-page: 4554
  ident: b0150
  article-title: Spectral-spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 79
  start-page: 1
  year: 2014
  end-page: 12
  ident: b0230
  article-title: Stochastic modeling of overtime occupancy and its application in building energy simulation and calibration
  publication-title: Build. Environ.
– volume: 29
  start-page: 224
  year: 1979
  end-page: 227
  ident: b0255
  article-title: A cluster separation measure
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 157
  start-page: 336
  year: 2018
  end-page: 352
  ident: b0135
  article-title: Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings
  publication-title: Energy
– reference: A. Sard, Comparing Time-Series Clustering Algorithms in R Using the dtwclust Comparing Time-Series Clustering Algorithms in R Using the dtwclust Package, (2019).
– volume: 50
  start-page: 81
  year: 2015
  end-page: 90
  ident: b0125
  article-title: A framework for knowledge discovery in massive building automation data and its application in building diagnostics
  publication-title: Autom. Constr.
– reference: (Accessed on 11 July 2020).
– volume: 1
  start-page: 136
  year: 2016
  end-page: 144
  ident: b0120
  article-title: Analysis and clustering of residential customers energy behavioral demand using smart meter data
  publication-title: IEEE Trans. Smart Grid.
– reference: M. Ester, H. Kriegel, X. Xu, D.- Miinchen, A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, In: Proceedings of the 2nd ACM SIGKDD, Portland, Oregon; 1996. pp. 226–231.
– volume: 4
  start-page: 95
  year: 1974
  end-page: 104
  ident: b0250
  article-title: Well-separated clusters and optimal fuzzy partitions
  publication-title: J. Cybern.
– volume: 55
  start-page: 437
  year: 2014
  end-page: 448
  ident: b0175
  article-title: Dynamic clustering segmentation applied to load profiles of energy consumption from Spanish customers
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 190
  start-page: 49
  year: 2019
  end-page: 60
  ident: b0075
  article-title: GMM clustering for heating load patterns in-depth identification and prediction model accuracy improvement of district heating system
  publication-title: Energy Build.
– start-page: 1
  year: 2019
  ident: b0155
  article-title: On perfect clustering of high dimension, low sample size data
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 174
  start-page: 735
  year: 2019
  end-page: 748
  ident: b0065
  article-title: An agglomerative hierarchical clustering-based strategy using Shared Nearest Neighbours and multiple dissimilarity measures to identify typical daily electricity usage profiles of university library buildings
  publication-title: Energy
– volume: 231
  start-page: 331
  year: 2018
  end-page: 342
  ident: b0040
  article-title: Identification of typical building daily electricity usage profiles using Gaussian mixture model-based clustering and hierarchical clustering
  publication-title: Appl. Energy
– reference: R. Agrawal, Mining Association Rules between Sets of Items in Large Databases, In: Proc of the 1993 ACM-SIGMOD international conference on management of data. pp. 207–216.
– volume: 159
  start-page: 296
  year: 2018
  end-page: 308
  ident: b0010
  article-title: Unsupervised data analytics in mining big building operational data for energy efficiency enhancement: a review
  publication-title: Energy Build.
– volume: 204
  start-page: 715
  year: 2017
  end-page: 725
  ident: b0110
  article-title: Electric load shape benchmarking for small- and medium-sized commercial buildings
  publication-title: Appl. Energy.
– volume: 205
  start-page: 1657
  year: 2017
  end-page: 1664
  ident: b0145
  article-title: A real-time detection method of abnormal building energy consumption data coupled POD-LSE and FCD
  publication-title: Procedia Eng.
– volume: 20
  start-page: 53
  year: 1987
  end-page: 65
  ident: b0260
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
– volume: 22
  start-page: 719
  year: 2000
  end-page: 725
  ident: b0235
  article-title: Assessing a mixture model for clustering with the integrated completed likelihood
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Y. Wang, Q. Chen, C. Kang, Q. Xia, Clustering of Electricity Consumption Behavior Dynamics Toward Big Data Applications, (2017). https://doi.org/10.1109/TSG.2016.2548565.
– reference: F. Wang, K. Li, N. Dui, Z. Mi, B. Hodge, M. Sha, J.P.S. Catalão, Association rule mining based quantitative analysis approach of household characteristics impacts on residential electricity consumption patterns, 171 (2018) 839–854. https://doi.org/10.1016/j.enconman.2018.06.017.
– volume: 122
  start-page: 439
  year: 2017
  end-page: 444
  ident: b0220
  article-title: The building data genome project: an open, public data set from non-residential building electrical meters
  publication-title: Energy Procedia
– volume: 81
  start-page: 1365
  year: 2018
  end-page: 1377
  ident: b0015
  article-title: A review of unsupervised statistical learning and visual analytics techniques applied to performance analysis of non-residential buildings
  publication-title: Renew. Sustain. Energy Rev.
– volume: 82
  start-page: 1027
  year: 2018
  end-page: 1047
  ident: b0050
  article-title: A review of data-driven approaches for prediction and classification of building energy consumption
  publication-title: Renew. Sustain. Energy Rev.
– reference: G. Brock, V. Pihur, S. Datta, S. Datta, ClValid: An R package for cluster validation, J. Stat. Softw. 25 (2008) 1–22. https://doi.org/10.18637/jss.v025.i04.
– volume: 120
  year: 2020
  ident: b0045
  article-title: A comparative study of clustering techniques for electrical load pattern segmentation
  publication-title: Renew. Sustain. Energy Rev.
– reference: M. Verleysen, D. François, The curse of dimensionality in data mining and time series pre- diction, In: Proceedings of International Work-Conference on Artificial Neural Networks (IWANN 2005), Heidelberg, Berlin, Springer, 2005. pp. 758–770. 2005. https://doi.org/10.1007/11494669_93.
– reference: (Accessed on 11July 2020).
– volume: 51
  start-page: 1
  year: 2018
  end-page: 11
  ident: b0210
  article-title: An object-oriented energy benchmark for the evaluation of the office building stock
  publication-title: Util. Policy
– volume: 125
  start-page: 171
  year: 2016
  end-page: 180
  ident: b0090
  article-title: Cluster analysis of residential heat load profiles and the role of technical and household characteristics
  publication-title: Energy Build.
– volume: 66
  start-page: 41
  year: 2013
  ident: 10.1016/j.enbuild.2020.110601_b0215
  article-title: Development of an energy monitoring system for large public buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.07.007
– ident: 10.1016/j.enbuild.2020.110601_b0200
– volume: 120
  year: 2020
  ident: 10.1016/j.enbuild.2020.110601_b0045
  article-title: A comparative study of clustering techniques for electrical load pattern segmentation
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.109628
– volume: 55
  start-page: 437
  year: 2014
  ident: 10.1016/j.enbuild.2020.110601_b0175
  article-title: Dynamic clustering segmentation applied to load profiles of energy consumption from Spanish customers
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2013.09.022
– ident: 10.1016/j.enbuild.2020.110601_b0195
– volume: 51
  start-page: 1
  year: 2018
  ident: 10.1016/j.enbuild.2020.110601_b0210
  article-title: An object-oriented energy benchmark for the evaluation of the office building stock
  publication-title: Util. Policy
  doi: 10.1016/j.jup.2018.01.008
– volume: 125
  start-page: 171
  year: 2016
  ident: 10.1016/j.enbuild.2020.110601_b0090
  article-title: Cluster analysis of residential heat load profiles and the role of technical and household characteristics
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.04.079
– volume: 88
  start-page: 204
  year: 2016
  ident: 10.1016/j.enbuild.2020.110601_b0030
  article-title: Comparative study of commercial building energy-efficiency retrofit policies in four pilot cities in China
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2015.10.016
– volume: 29
  start-page: 190
  year: 1976
  ident: 10.1016/j.enbuild.2020.110601_b0240
  article-title: Quadratic assignment as a general data analysis strategy
  publication-title: Br. J. Math. Stat. Psychol.
  doi: 10.1111/j.2044-8317.1976.tb00714.x
– volume: 204
  start-page: 715
  year: 2017
  ident: 10.1016/j.enbuild.2020.110601_b0110
  article-title: Electric load shape benchmarking for small- and medium-sized commercial buildings
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2017.07.108
– volume: 50
  start-page: 81
  year: 2015
  ident: 10.1016/j.enbuild.2020.110601_b0125
  article-title: A framework for knowledge discovery in massive building automation data and its application in building diagnostics
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2014.12.006
– volume: 1
  start-page: 136
  year: 2016
  ident: 10.1016/j.enbuild.2020.110601_b0120
  article-title: Analysis and clustering of residential customers energy behavioral demand using smart meter data
  publication-title: IEEE Trans. Smart Grid.
  doi: 10.1109/TSG.2015.2409786
– volume: 3
  start-page: 1
  year: 1974
  ident: 10.1016/j.enbuild.2020.110601_b0245
  article-title: A dendrite method foe cluster analysis
  publication-title: Commun. Stat.
– volume: 134
  start-page: 90
  year: 2017
  ident: 10.1016/j.enbuild.2020.110601_b0060
  article-title: A variation focused cluster analysis strategy to identify typical daily heating load profiles of higher education buildings
  publication-title: Energy
  doi: 10.1016/j.energy.2017.05.191
– ident: 10.1016/j.enbuild.2020.110601_b0130
  doi: 10.1016/j.enconman.2018.06.017
– ident: 10.1016/j.enbuild.2020.110601_b0070
  doi: 10.1109/TSG.2016.2548565
– start-page: 1
  year: 2019
  ident: 10.1016/j.enbuild.2020.110601_b0155
  article-title: On perfect clustering of high dimension, low sample size data
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 224
  year: 2020
  ident: 10.1016/j.enbuild.2020.110601_b0225
  article-title: Generating realistic building electrical load profiles through the Generative Adversarial Network (GAN)
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.110299
– volume: 1
  start-page: 149
  year: 2020
  ident: 10.1016/j.enbuild.2020.110601_b0035
  article-title: A review of data mining technologies in building energy systems: Load prediction, pattern identification, fault detection and diagnosis
  publication-title: Energy Built Environ.
  doi: 10.1016/j.enbenv.2019.11.003
– volume: 212
  start-page: 475
  year: 2019
  ident: 10.1016/j.enbuild.2020.110601_b0085
  article-title: A shape-based clustering method for pattern recognition of residential electricity consumption
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.12.067
– volume: 205
  start-page: 1657
  year: 2017
  ident: 10.1016/j.enbuild.2020.110601_b0145
  article-title: A real-time detection method of abnormal building energy consumption data coupled POD-LSE and FCD
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.10.334
– ident: 10.1016/j.enbuild.2020.110601_b0095
  doi: 10.1007/11494669_93
– ident: 10.1016/j.enbuild.2020.110601_b0160
– volume: 231
  start-page: 331
  year: 2018
  ident: 10.1016/j.enbuild.2020.110601_b0040
  article-title: Identification of typical building daily electricity usage profiles using Gaussian mixture model-based clustering and hierarchical clustering
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.050
– start-page: 2012
  year: 2012
  ident: 10.1016/j.enbuild.2020.110601_b0005
– volume: 141
  start-page: 190
  year: 2015
  ident: 10.1016/j.enbuild.2020.110601_b0140
  article-title: A clustering approach to domestic electricity load profile characterisation using smart metering data
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.12.039
– volume: 82
  start-page: 1027
  year: 2018
  ident: 10.1016/j.enbuild.2020.110601_b0050
  article-title: A review of data-driven approaches for prediction and classification of building energy consumption
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.09.108
– volume: 1
  start-page: 159
  year: 1978
  ident: 10.1016/j.enbuild.2020.110601_b0100
  article-title: Dynamic Programming Algorithm Optimization for Spoken Word Recognition
  publication-title: IEEE Trans. Acoust Speech Singal Process.
– volume: 122
  start-page: 439
  year: 2017
  ident: 10.1016/j.enbuild.2020.110601_b0220
  article-title: The building data genome project: an open, public data set from non-residential building electrical meters
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.07.400
– volume: 190
  start-page: 49
  year: 2019
  ident: 10.1016/j.enbuild.2020.110601_b0075
  article-title: GMM clustering for heating load patterns in-depth identification and prediction model accuracy improvement of district heating system
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.02.014
– ident: 10.1016/j.enbuild.2020.110601_b0115
  doi: 10.1007/978-3-642-04921-7_41
– volume: 20
  start-page: 53
  year: 1987
  ident: 10.1016/j.enbuild.2020.110601_b0260
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(87)90125-7
– ident: 10.1016/j.enbuild.2020.110601_b0205
– volume: 54
  start-page: 4544
  year: 2016
  ident: 10.1016/j.enbuild.2020.110601_b0150
  article-title: Spectral-spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2543748
– ident: 10.1016/j.enbuild.2020.110601_b0185
  doi: 10.18637/jss.v025.i04
– ident: 10.1016/j.enbuild.2020.110601_b0190
  doi: 10.1145/170036.170072
– ident: 10.1016/j.enbuild.2020.110601_b0165
– ident: 10.1016/j.enbuild.2020.110601_b0180
  doi: 10.1109/ICDEW.2006.99
– volume: 53
  start-page: 16
  year: 2015
  ident: 10.1016/j.enbuild.2020.110601_b0055
  article-title: Time-series clustering – A decade review
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2015.04.007
– volume: 157
  start-page: 336
  year: 2018
  ident: 10.1016/j.enbuild.2020.110601_b0135
  article-title: Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings
  publication-title: Energy
  doi: 10.1016/j.energy.2018.05.127
– volume: 16
  start-page: 645
  year: 2005
  ident: 10.1016/j.enbuild.2020.110601_b0170
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2005.845141
– volume: 22
  start-page: 719
  year: 2000
  ident: 10.1016/j.enbuild.2020.110601_b0235
  article-title: Assessing a mixture model for clustering with the integrated completed likelihood
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.865189
– ident: 10.1016/j.enbuild.2020.110601_b0020
– volume: 29
  start-page: 224
  year: 1979
  ident: 10.1016/j.enbuild.2020.110601_b0255
  article-title: A cluster separation measure
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1979.4766909
– ident: 10.1016/j.enbuild.2020.110601_b0105
– volume: 37
  start-page: 2087
  year: 2009
  ident: 10.1016/j.enbuild.2020.110601_b0025
  article-title: Government management and implementation of national real-time energy monitoring system for China large-scale public building
  publication-title: Energy Policy.
  doi: 10.1016/j.enpol.2008.12.032
– volume: 236
  start-page: 1280
  year: 2019
  ident: 10.1016/j.enbuild.2020.110601_b0080
  article-title: Apples or oranges? Identification of fundamental load shape profiles for benchmarking buildings using a large and diverse dataset
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.12.025
– volume: 81
  start-page: 1365
  year: 2018
  ident: 10.1016/j.enbuild.2020.110601_b0015
  article-title: A review of unsupervised statistical learning and visual analytics techniques applied to performance analysis of non-residential buildings
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.05.124
– volume: 79
  start-page: 1
  year: 2014
  ident: 10.1016/j.enbuild.2020.110601_b0230
  article-title: Stochastic modeling of overtime occupancy and its application in building energy simulation and calibration
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2014.04.030
– volume: 159
  start-page: 296
  year: 2018
  ident: 10.1016/j.enbuild.2020.110601_b0010
  article-title: Unsupervised data analytics in mining big building operational data for energy efficiency enhancement: a review
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.11.008
– volume: 174
  start-page: 735
  year: 2019
  ident: 10.1016/j.enbuild.2020.110601_b0065
  article-title: An agglomerative hierarchical clustering-based strategy using Shared Nearest Neighbours and multiple dissimilarity measures to identify typical daily electricity usage profiles of university library buildings
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.003
– volume: 4
  start-page: 95
  year: 1974
  ident: 10.1016/j.enbuild.2020.110601_b0250
  article-title: Well-separated clusters and optimal fuzzy partitions
  publication-title: J. Cybern.
  doi: 10.1080/01969727408546059
SSID ssj0006571
Score 2.6344492
Snippet •We propose a general data mining-based framework for mining real-time building electricity consumption data.•The framework aims to identify typical...
With the development of advanced information techniques, smart energy meters have made a considerable amount of real-time electricity consumption data...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110601
SubjectTerms Algorithms
Anomalies
Building energy management
Cluster analysis
Clustering
Data analysis
Data mining
Decision tree
Electricity
Electricity consumption
Electricity usage pattern
Energy consumption
Energy management
Energy usage
Fault detection
Knowledge discovery
Office buildings
Outliers (statistics)
Regression analysis
Statistical analysis
Time series clustering
Use statistics
Title A data mining-based framework for the identification of daily electricity usage patterns and anomaly detection in building electricity consumption data
URI https://dx.doi.org/10.1016/j.enbuild.2020.110601
https://www.proquest.com/docview/2487470084
Volume 231
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvQgPvG55OC1u22aNLvHZVHWByI-wFtIkxQqa3fR9eDFv-HfdSZN1RVhwUMplExp-6Uz88E3M4Qcay77Gvh_lPW5iTgz4AeNlfDHOy2dzrAcFNUWV9nonp8_iIcWGTa1MCirDL6_9uneW4cr3fA1u9Oy7N7GKWw2YHAsToFnSSzi41ziLu-8f8s8MuFJFy6OcPV3FU_3sYPtBcoxNgxlXhCfhdkwf8SnX57ah5_TdbIW8kY6qB9tg7RctUlWf3QT3CIfA4p6T_rkZz5EGJ8sLRrxFYXslEK2R0sbBEIeEzopwKocv9F6IE5pIC2nryg3o1Pfe7N6obqycEyeNCyzbubVWxUtK5qHodpzxsZXdXpX5B9om9yfntwNR1GYuxAZHqezCNETXEtTGIjnjPWEEcDLEuZk4aTVVgCt6YvYMeBKBXK2zOWAKktMEpueTnfIUjWp3C6h0qR5CssEl0BFEpP3rchzAEzbQgAye4Q3X1uZ0JQcZ2OMVaM-e1QBJIUgqRqkPdL5MpvWXTkWGfQaKNXc9lIQORaZHjbQq_B_vygGPA9eKe7x_f_f-YCsMFTIxEmUiEOyNHt-dUeQ4szytt_DbbI8GN5cXuP57GJ09QkIJ_6P
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T-QwEB5xUNxRILiHeOPirsxu4tjxpqBAPLQ8mwOJzufYjhS0ZFfsIkTD3-CH8AcZOw6PExISEkWaKGNNPOOZ-aTPMwC_FRO5QvwfZTnTEaMa46A2Ak-8VcKqzF0HdWyLk6x_xg7O-fkUPLR3YRytMsT-Jqb7aB3edMNudkdV1f0bp-hsiOBonCLOEnlgVh7a2xvEbePN_R008h9K93ZPt_tRGC0QaRank8gpyJkSutSYsijtcc0ReiTUitIKowzHyj3nsaUIB0oHSzJboOI00UmseyrFdb_ADMNw4cYmdO6eeSUZ9yjPaRc59Z6vDXUvOq6fQTVwHUqpZ-BnYRjNGwnxv9Tg893ePMyFQpVsNXuxAFO2_g6zL9oX_oD7LeIIpuTSD5mIXEI0pGzZXgTLYYLlJalMYCR5JyDDEqWqwS1pJvBUGnEAuXb8NjLyzT7rMVG1wWd4qfAzYyeeLlaTqiZFmOL9Slj7a6Q-9nmFfsLZp1jjF0zXw9ouAhE6LVL8jDOB2CfRRW54UaCHKFNytMwSsHa3pQ5d0N0wjoFs6W4XMhhJOiPJxkhL0HkSGzVtQN4T6LWmlK_8WWKqek90tTW9DAFlLCkCS_yluMeWP77yBnztnx4fyaP9k8MV-EYdPSdOooSvwvTk6tquYX01Kda9PxP499kH6BEg8jaT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data+mining-based+framework+for+the+identification+of+daily+electricity+usage+patterns+and+anomaly+detection+in+building+electricity+consumption+data&rft.jtitle=Energy+and+buildings&rft.au=Liu%2C+Xue&rft.au=Ding%2C+Yong&rft.au=Tang%2C+Hao&rft.au=Xiao%2C+Feng&rft.date=2021-01-15&rft.pub=Elsevier+B.V&rft.issn=0378-7788&rft.volume=231&rft_id=info:doi/10.1016%2Fj.enbuild.2020.110601&rft.externalDocID=S0378778820333879
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon