Microporous membranes obtained from polypropylene blend films by stretching
Blends of two linear polypropylenes (PP, having different molecular weights) were prepared to develop microporous membranes through melt extrusion followed by stretching. The role of high molecular weight chains on the row-nucleated lamellar crystallization was investigated. The orientation of cryst...
Saved in:
Published in | Journal of membrane science Vol. 325; no. 2; pp. 772 - 782 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Blends of two linear polypropylenes (PP, having different molecular weights) were prepared to develop microporous membranes through melt extrusion followed by stretching. The role of high molecular weight chains on the row-nucleated lamellar crystallization was investigated. The orientation of crystalline and amorphous phases was measured by wide angle X-ray diffraction (WAXD) and Fourier transform infrared (FTIR). Long period spacing was obtained using small angle X-ray scattering (SAXS). The effects of annealing temperature and applied elongation during annealing on the crystallinity of the films were studied using differential scanning calorimetry (DSC). It was found that annealing at 140
°C contributed significantly to the perfection of the crystalline phase. Scanning electron microscopy (SEM) images of the membrane surface showed more pore density and uniform pore size as the amount of high molecular weight component increased. The addition of the high
M
w PP improved the water vapor transmission rate (WVTR) of the membranes, indicating increased interconnectivity of the pores, which was also confirmed from cross-section SEM micrographs of the membranes. The surface area and pore dimensions of the microporous membranes were measured using the BET nitrogen absorption technique and mercury porosimetry, respectively. The influences of temperature and amount of stretching during cold and hot stretching on WVTR were also explored
. Tensile properties in the machine and transverse directions (MD and TD, respectively) as well as puncture resistance in the normal direction (ND) were evaluated. As the high
M
w PP was added, a slight reduction in the mechanical properties along MD and TD and no changes in ND were observed. |
---|---|
AbstractList | Blends of two linear polypropylenes (PP, having different molecular weights) were prepared to develop microporous membranes through melt extrusion followed by stretching. The role of high molecular weight chains on the row-nucleated lamellar crystallization was investigated. The orientation of crystalline and amorphous phases was measured by wide angle X-ray diffraction (WAXD) and Fourier transform infrared (FTIR). Long period spacing was obtained using small angle X-ray scattering (SAXS). The effects of annealing temperature and applied elongation during annealing on the crystallinity of the films were studied using differential scanning calorimetry (DSC). It was found that annealing at 140
°C contributed significantly to the perfection of the crystalline phase. Scanning electron microscopy (SEM) images of the membrane surface showed more pore density and uniform pore size as the amount of high molecular weight component increased. The addition of the high
M
w PP improved the water vapor transmission rate (WVTR) of the membranes, indicating increased interconnectivity of the pores, which was also confirmed from cross-section SEM micrographs of the membranes. The surface area and pore dimensions of the microporous membranes were measured using the BET nitrogen absorption technique and mercury porosimetry, respectively. The influences of temperature and amount of stretching during cold and hot stretching on WVTR were also explored
. Tensile properties in the machine and transverse directions (MD and TD, respectively) as well as puncture resistance in the normal direction (ND) were evaluated. As the high
M
w PP was added, a slight reduction in the mechanical properties along MD and TD and no changes in ND were observed. Blends of two linear polypropylenes (PP, having different molecular weights) were prepared to develop microporous membranes through melt extrusion followed by stretching. The role of high molecular weight chains on the row-nucleated lamellar crystallization was investigated. The orientation of crystalline and amorphous phases was measured by wide angle X-ray diffraction (WAXD) and Fourier transform infrared (FTIR). Long period spacing was obtained using small angle X-ray scattering (SAXS). The effects of annealing temperature and applied elongation during annealing on the crystallinity of the films were studied using differential scanning calorimetry (DSC). It was found that annealing at 140 degree C contributed significantly to the perfection of the crystalline phase. Scanning electron microscopy (SEM) images of the membrane surface showed more pore density and uniform pore size as the amount of high molecular weight component increased. The addition of the high M sub(w) PP improved the water vapor transmission rate (WVTR) of the membranes, indicating increased interconnectivity of the pores, which was also confirmed from cross-section SEM micrographs of the membranes. The surface area and pore dimensions of the microporous membranes were measured using the BET nitrogen absorption technique and mercury porosimetry, respectively. The influences of temperature and amount of stretching during cold and hot stretching on WVTR were also explored . Tensile properties in the machine and transverse directions (MD and TD, respectively) as well as puncture resistance in the normal direction (ND) were evaluated. As the high M sub(w) PP was added, a slight reduction in the mechanical properties along MD and TD and no changes in ND were observed. |
Author | Carreau, Pierre J. Tabatabaei, Seyed H. Ajji, Abdellah |
Author_xml | – sequence: 1 givenname: Seyed H. surname: Tabatabaei fullname: Tabatabaei, Seyed H. organization: Center for Applied Research on Polymers and Composites, CREPEC, Ecole Polytechnique, Montreal, QC, Canada – sequence: 2 givenname: Pierre J. surname: Carreau fullname: Carreau, Pierre J. email: pcarreau@polymtl.ca organization: Center for Applied Research on Polymers and Composites, CREPEC, Ecole Polytechnique, Montreal, QC, Canada – sequence: 3 givenname: Abdellah surname: Ajji fullname: Ajji, Abdellah organization: CREPEC, Industrial Materials Institute, CNRC, Boucherville, QC, Canada |
BookMark | eNp9kE9PhDAQxRuzJq6r38ADJ2_glAKFi4nZ-C-u8aLnppRBuwGKLWvCt3c2ePYyM8n85mXeO2erwQ3I2BWHhAMvbvZJj30wNkkBygSqBICfsDUvpYgFT8WKrUHIIpaiLM_YeQh7AiSU1Zq9vFrj3ei8O4SIVGqvBwyRqydtB2yi1rs-Gl03j0TNHQ4Y1VRpYbs-RPUchcnjZL7s8HnBTlvdBbz86xv28XD_vn2Kd2-Pz9u7XWwyEFMsU13ViLnUJpOZBmhlnsq0oclwgW1WQFuYptWi4ai1QJRVpsssrYVMizIXG3a96NJP3wcMk-ptMNh19DrZULwShRQ5EJgtIFkMwWOrRm977WfFQR2TU3u1JKeOySmoFAVDZ7fLGZKJH4teEYGDwcZ6NJNqnP1f4BeAxXyJ |
CitedBy_id | crossref_primary_10_4028_www_scientific_net_AMR_1159_1 crossref_primary_10_1016_j_desal_2019_114246 crossref_primary_10_1007_s00289_022_04417_6 crossref_primary_10_1002_pi_5364 crossref_primary_10_1016_j_polymer_2024_126888 crossref_primary_10_1016_j_polymer_2019_03_019 crossref_primary_10_1016_j_desal_2019_01_004 crossref_primary_10_1002_pi_5082 crossref_primary_10_1039_C4RA09129A crossref_primary_10_1039_C6CE00129G crossref_primary_10_3390_polym10010033 crossref_primary_10_1002_app_41415 crossref_primary_10_1007_s11426_022_1520_9 crossref_primary_10_1016_j_polymer_2016_10_043 crossref_primary_10_1039_C6RA08156H crossref_primary_10_1002_pi_4548 crossref_primary_10_1080_00222348_2014_931189 crossref_primary_10_1016_j_heliyon_2023_e12810 crossref_primary_10_1016_j_polymer_2020_122958 crossref_primary_10_1021_acs_iecr_1c01731 crossref_primary_10_3139_217_3774 crossref_primary_10_1016_j_polymer_2016_08_102 crossref_primary_10_1039_C5RA27913E crossref_primary_10_1002_pen_23982 crossref_primary_10_3724_SP_J_1105_2012_11324 crossref_primary_10_1016_j_polymer_2020_122832 crossref_primary_10_4028_www_scientific_net_MSF_993_906 crossref_primary_10_1007_s00289_013_1077_y crossref_primary_10_3724_SP_J_1105_2011_10328 crossref_primary_10_1007_s00289_014_1182_6 crossref_primary_10_1088_1755_1315_1213_1_012052 crossref_primary_10_1016_j_memsci_2012_10_002 crossref_primary_10_1016_j_polymer_2016_09_023 crossref_primary_10_1016_j_memsci_2009_08_038 crossref_primary_10_1177_8756087911434186 crossref_primary_10_1002_cjce_23983 crossref_primary_10_3390_fib9060035 crossref_primary_10_1002_app_46491 crossref_primary_10_3139_217_3023 crossref_primary_10_1016_j_desal_2011_02_045 crossref_primary_10_1039_C5RA13565F crossref_primary_10_1007_s10965_018_1534_2 crossref_primary_10_1016_j_polymer_2019_05_003 crossref_primary_10_1016_j_carbpol_2023_121571 crossref_primary_10_3139_217_3638 crossref_primary_10_1002_pcr2_10129 crossref_primary_10_1088_2053_1591_ab0797 crossref_primary_10_1007_s10965_018_1681_5 crossref_primary_10_1021_acsami_3c08265 crossref_primary_10_1021_acs_langmuir_7b03676 crossref_primary_10_1039_C5RA21200F crossref_primary_10_3390_ma14040705 crossref_primary_10_1016_j_polymer_2009_06_071 crossref_primary_10_1016_j_polymer_2017_09_017 crossref_primary_10_1007_s10118_018_2029_7 crossref_primary_10_1179_1743289814Y_0000000100 crossref_primary_10_1002_pcr2_10080 crossref_primary_10_1080_2374068X_2016_1247342 crossref_primary_10_1016_j_reactfunctpolym_2023_105733 crossref_primary_10_1007_s00396_017_4149_y crossref_primary_10_1016_j_memsci_2021_119704 crossref_primary_10_1021_acs_macromol_9b00932 crossref_primary_10_1016_j_desal_2013_10_015 crossref_primary_10_1021_acsapm_0c00288 crossref_primary_10_1039_C6RA28486H crossref_primary_10_1016_j_seppur_2019_116455 crossref_primary_10_1021_acsami_6b10447 crossref_primary_10_1007_s10098_024_02844_9 crossref_primary_10_1021_acsami_8b08191 crossref_primary_10_1021_acssuschemeng_0c06628 crossref_primary_10_1039_C5EW00159E crossref_primary_10_1016_j_seppur_2015_11_046 crossref_primary_10_1002_app_45825 crossref_primary_10_1016_j_polymdegradstab_2018_05_006 crossref_primary_10_1021_acs_iecr_5b00215 crossref_primary_10_1007_s10965_014_0598_x crossref_primary_10_1021_acs_iecr_8b05782 crossref_primary_10_1002_polb_22037 crossref_primary_10_1016_j_gsd_2024_101215 crossref_primary_10_1021_acsami_5b02848 crossref_primary_10_1039_D2VA00295G crossref_primary_10_1088_1755_1315_770_1_012011 crossref_primary_10_1016_j_memsci_2014_09_016 crossref_primary_10_1016_j_seppur_2018_12_052 crossref_primary_10_1007_s00289_015_1485_2 crossref_primary_10_1016_j_polymer_2009_06_059 crossref_primary_10_1002_pc_23462 crossref_primary_10_1016_j_polymer_2015_06_034 crossref_primary_10_1007_s00289_017_2223_8 crossref_primary_10_1002_app_50209 crossref_primary_10_1016_j_memsci_2021_119558 crossref_primary_10_1016_j_polymer_2013_03_050 crossref_primary_10_1021_acs_macromol_2c02072 crossref_primary_10_3139_217_2404 crossref_primary_10_1021_acsami_7b06705 crossref_primary_10_1063_1_5094842 crossref_primary_10_1039_C5RA10310J crossref_primary_10_1080_03602559_2016_1263866 crossref_primary_10_1016_j_memsci_2016_02_050 crossref_primary_10_1016_j_seppur_2022_122881 crossref_primary_10_1039_C4RA06310D crossref_primary_10_1039_C3RA48036D crossref_primary_10_1016_j_jtice_2020_09_008 crossref_primary_10_1021_acs_biomac_3c00188 crossref_primary_10_1007_s10965_018_1567_6 crossref_primary_10_1007_s00289_013_0933_0 crossref_primary_10_1007_s10118_015_1643_x crossref_primary_10_1002_pen_25580 crossref_primary_10_1002_adv_22116 crossref_primary_10_1021_ie502300j crossref_primary_10_1016_j_desal_2013_06_016 crossref_primary_10_1002_macp_201500471 crossref_primary_10_1021_acs_iecr_5b02141 crossref_primary_10_1016_j_rinma_2023_100434 crossref_primary_10_1016_j_ssi_2018_03_031 crossref_primary_10_1021_acs_macromol_4c00249 crossref_primary_10_1016_j_polymer_2023_125888 crossref_primary_10_1007_s13233_014_2087_9 crossref_primary_10_1016_j_colsurfa_2023_131383 crossref_primary_10_1016_j_memsci_2014_03_024 crossref_primary_10_1021_acsami_6b03071 crossref_primary_10_1016_j_polymer_2014_09_069 crossref_primary_10_1016_j_polymer_2018_07_066 crossref_primary_10_3390_polym15204139 crossref_primary_10_1007_s00289_018_2609_2 crossref_primary_10_1016_j_jtice_2019_02_010 crossref_primary_10_1002_app_49328 crossref_primary_10_1515_ipp_2020_4062 crossref_primary_10_1016_j_surfcoat_2020_126375 crossref_primary_10_1002_jbm_a_36269 crossref_primary_10_1021_acsmacrolett_0c00733 crossref_primary_10_1002_pi_6117 crossref_primary_10_1016_j_memsci_2017_11_023 crossref_primary_10_1002_app_40108 crossref_primary_10_1016_j_eurpolymj_2017_02_013 crossref_primary_10_1039_C4RA13298J crossref_primary_10_1016_j_desal_2010_09_017 crossref_primary_10_1039_C5RA15302F crossref_primary_10_1002_app_47937 crossref_primary_10_1016_j_ijbiomac_2024_133598 crossref_primary_10_1002_app_39351 crossref_primary_10_1007_s13726_017_0566_5 crossref_primary_10_1002_polb_24423 crossref_primary_10_1016_j_eurpolymj_2017_03_059 crossref_primary_10_1051_e3sconf_20186703018 crossref_primary_10_1021_acs_macromol_9b01163 crossref_primary_10_3390_polym10080854 crossref_primary_10_3390_polym11081310 crossref_primary_10_1039_C4RA03589E crossref_primary_10_1016_j_seppur_2021_118890 crossref_primary_10_1016_j_jtice_2021_04_052 crossref_primary_10_1080_25740881_2018_1563142 crossref_primary_10_1155_2022_5970484 crossref_primary_10_1016_j_cherd_2021_11_005 crossref_primary_10_1021_la102680b crossref_primary_10_3390_polym13152520 crossref_primary_10_1002_pen_23527 crossref_primary_10_1021_acs_iecr_9b05617 crossref_primary_10_1016_j_memsci_2017_10_001 crossref_primary_10_1016_j_polymer_2018_12_051 crossref_primary_10_1016_j_polymer_2023_126150 crossref_primary_10_4491_eer_2021_228 crossref_primary_10_1021_acs_macromol_5b00396 crossref_primary_10_1515_polyeng_2015_0112 crossref_primary_10_1016_j_polymer_2014_05_017 crossref_primary_10_1002_app_47249 crossref_primary_10_1063_5_0093288 crossref_primary_10_1007_s10965_014_0618_x crossref_primary_10_1039_C5RA24758F crossref_primary_10_4028_www_scientific_net_AMM_217_219_907 crossref_primary_10_1016_j_compscitech_2014_05_017 crossref_primary_10_1002_pi_5405 crossref_primary_10_1016_j_seppur_2024_128319 |
ContentType | Journal Article |
Copyright | 2008 Elsevier B.V. |
Copyright_xml | – notice: 2008 Elsevier B.V. |
DBID | AAYXX CITATION 7TV C1K |
DOI | 10.1016/j.memsci.2008.09.001 |
DatabaseName | CrossRef Pollution Abstracts Environmental Sciences and Pollution Management |
DatabaseTitle | CrossRef Pollution Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Pollution Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3123 |
EndPage | 782 |
ExternalDocumentID | 10_1016_j_memsci_2008_09_001 S0376738808008181 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNUV ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSM SSZ T5K VH1 WUQ XPP Y6R ZMT ~G- AAHBH AAXKI AAYXX AKRWK CITATION 7TV C1K |
ID | FETCH-LOGICAL-c403t-72a9bee57ac474a00f75272da00c13ef460f6cdfa3d1eaa3ee794a842b3726853 |
IEDL.DBID | AIKHN |
ISSN | 0376-7388 |
IngestDate | Sat Oct 26 01:20:19 EDT 2024 Thu Sep 12 16:41:38 EDT 2024 Fri Feb 23 02:33:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Polypropylene blends Crystalline lamellar morphology Permeability Rheology Membranes by stretching |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-72a9bee57ac474a00f75272da00c13ef460f6cdfa3d1eaa3ee794a842b3726853 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 19367350 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_19367350 crossref_primary_10_1016_j_memsci_2008_09_001 elsevier_sciencedirect_doi_10_1016_j_memsci_2008_09_001 |
PublicationCentury | 2000 |
PublicationDate | 2008-12-01 |
PublicationDateYYYYMMDD | 2008-12-01 |
PublicationDate_xml | – month: 12 year: 2008 text: 2008-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Journal of membrane science |
PublicationYear | 2008 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Utracki, Schlund (bib15) 1987; 27 Alexander (bib23) 1969 Baker (bib24) 2004 Sadeghi, Ajji, Carreau (bib10) 2008; 46 F. Sadeghi, Developing of microporous polypropylene by stretching, PhD thesis, Ecole Polytechnique, Montreal, 2007. Ward, Coates, Dumoulin (bib12) 2000 L.A. Utracki, Two Phase Polymer Systems, Hanser Publisher, New York, 1991. Sadeghi, Ajji, Carreau (bib7) 2007; 47 Chu, Kimura (bib25) 1996; 37 Kwang, Rana, Cho, Rhee, Woo, Lee, Choe (bib17) 2000; 40 Johnson, Wilkes (bib19) 2000; 81 T.H. Yu, Processing and structure–property behavior of microporous polyethylene: From resin to final film, PhD thesis, Virginia Polytechnic Institute and State University, 1996. Sadeghi, Ajji, Carreau (bib9) 2005; 21 Fujiyama, Inata (bib11) 2002; 84 M.B. Johnson, Investigations of the processing–structure–property relationship of selected semi crystalline polymers, PhD thesis, Virginia Polytechnic Institute and State University, 2000. Li, Favis (bib14) 2001; 42 Honerkamp, Weese (bib16) 1993; 32 Ferrer-Balas, Maspoch, Martinez, Santana (bib22) 2001; 42 Agarwal, Somani, Weng, Mehta, Yang, Ran, Liu, Hsiao (bib3) 2003; 36 Somani, Hsiao, Nogales (bib4) 2000; 33 Brunauer, Emmett, Teller (bib13) 1938; 60 Johnson, Wilkes (bib20) 2002; 84 Seki, Thurman, Oberhauser, Kornfield (bib6) 2002; 35 Somani, Yang, Hsiao (bib5) 2006; 47 Sadeghi, Ajji, Carreau (bib8) 2007; 292 |
References_xml | – volume: 47 start-page: 1170 year: 2007 ident: bib7 article-title: Orientation analysis of row nucleated lamellar structure of polypropylene obtained from cast film publication-title: Polym. Eng. Sci. contributor: fullname: Carreau – volume: 40 start-page: 1672 year: 2000 ident: bib17 article-title: Binary blends of metallocene polyethylene with conventional polyolefins: rheological and morphological properties publication-title: Polym. Eng. Sci. contributor: fullname: Choe – volume: 21 start-page: 199 year: 2005 ident: bib9 article-title: Study of polypropylene morphology obtained from blown and cast film processes: initial morphology requirement for making porous membrane by stretching publication-title: J. Plastic Film Sheet. contributor: fullname: Carreau – volume: 60 start-page: 309 year: 1938 ident: bib13 article-title: Adsorption of gases in multimolecular layers publication-title: J. Am. Chem. Soc. contributor: fullname: Teller – volume: 37 start-page: 573 year: 1996 ident: bib25 article-title: Structure and gas permeability of microporous film prepared by biaxial drawing of the beta-form polypropylene publication-title: Polymer contributor: fullname: Kimura – volume: 292 start-page: 62 year: 2007 ident: bib8 article-title: Analysis of microporous membranes obtained from polypropylene films by stretching publication-title: J. Membr. Sci. contributor: fullname: Carreau – volume: 84 start-page: 2157 year: 2002 ident: bib11 article-title: Rheological properties of metallocene isotactic polypropylenes publication-title: J. Appl. Polym. Sci. contributor: fullname: Inata – volume: 42 start-page: 1697 year: 2001 ident: bib22 article-title: Influence of annealing on the microstructural, tensile and fracture properties of polypropylene films publication-title: Polymer contributor: fullname: Santana – year: 2004 ident: bib24 article-title: Membrane Technology and Applications contributor: fullname: Baker – volume: 84 start-page: 1762 year: 2002 ident: bib20 article-title: Microporous membranes of polyoxymethylene from a melt-extrusion process. (II). Effects of thermal annealing and stretching on porosity publication-title: J. Appl. Polym. Sci. contributor: fullname: Wilkes – volume: 35 start-page: 2583 year: 2002 ident: bib6 article-title: Shear-mediated crystallization of isotactic polypropylene: the role of long chain-long chain overlap publication-title: Macromolecules contributor: fullname: Kornfield – year: 1969 ident: bib23 article-title: X-ray Diffraction Methods in Polymer Science contributor: fullname: Alexander – volume: 27 start-page: 1512 year: 1987 ident: bib15 article-title: Linear low density polyethylene and their blends. Part 4. Shear flow of LLDPE blends with LLDPE and LDPE publication-title: Polym. Eng. Sci. contributor: fullname: Schlund – volume: 46 start-page: 148 year: 2008 ident: bib10 article-title: Microporous membranes obtained from polypropylene blends with superior permeability properties publication-title: J. Polym. Sci., Polym. Phys. contributor: fullname: Carreau – volume: 33 start-page: 9385 year: 2000 ident: bib4 article-title: Structure development during shear flow induced crystallization of i-PP: in situ wide-angle X-ray diffraction study publication-title: Macromolecules contributor: fullname: Nogales – volume: 47 start-page: 5657 year: 2006 ident: bib5 article-title: Effects of molecular weight species on shear-induced orientation and crystallization of isotactic polypropylene publication-title: Polymer contributor: fullname: Hsiao – volume: 36 start-page: 5226 year: 2003 ident: bib3 article-title: Shear-induced crystallization in novel long chain branched polypropylenes by in situ rheo-SAXS and -WAXD publication-title: Macromolecules contributor: fullname: Hsiao – year: 2000 ident: bib12 article-title: Solid Phase Processing of Polymers contributor: fullname: Dumoulin – volume: 42 start-page: 5047 year: 2001 ident: bib14 article-title: Characterizing co-continuous high density polyethylene/polystyrene blends publication-title: Polymer contributor: fullname: Favis – volume: 81 start-page: 2944 year: 2000 ident: bib19 article-title: Microporous membranes of polyoxymethylene from a melt-extrusion process. (I). Effects of resin variables and extrusion conditions publication-title: J. Appl. Polym. Sci. contributor: fullname: Wilkes – volume: 32 start-page: 65 year: 1993 ident: bib16 article-title: A non linear regularization method for the calculation of relaxation spectra publication-title: Rheol. Acta contributor: fullname: Weese |
SSID | ssj0017089 |
Score | 2.4144304 |
Snippet | Blends of two linear polypropylenes (PP, having different molecular weights) were prepared to develop microporous membranes through melt extrusion followed by... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 772 |
SubjectTerms | Crystalline lamellar morphology Membranes by stretching Permeability Polypropylene blends Rheology |
Title | Microporous membranes obtained from polypropylene blend films by stretching |
URI | https://dx.doi.org/10.1016/j.memsci.2008.09.001 https://search.proquest.com/docview/19367350 |
Volume | 325 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKu8CAeIryKB5YTd3YiZOxqqgKVbtApW6RnVykoj4iCEMXfjtnJ0GAhJBYoiiJnejz5R7yd3eE3KQSEuMHmolUCyZFCEyjWDAhlckg9FUa2XznyTQYzeTD3J83yKDOhbG0ykr3lzrdaevqSrdCs5svFt1HbguR2FomoavLhiFQC82Rh6Ld6t-PR9PPzQTFXSc8-zyzA-oMOkfzWsEKZ69Ila525W8W6oeudgZoeED2K8-R9suPOyQNWB-RvS_1BI_JeGLpdehRYzhP8ZUYCaMmoxtj439Iqc0loflmadOc8i3aG6AGj3hjsVy9UrOlNnWkcPTKEzIb3j0NRqzqlsASyUXBlKcjA-ArnUglNeeZ8j3lpXiW9ARkMuBZkKSZFmkPtBYA-CvqUHpGKC9Aq31KmuvNGs4IlQZ4IjhIdHdkBlkktAyDJEw9BehAZG3CaoTivCyKEddssee4RLTqbxlZ0lybqBrG-Nvixqi3_xh5XaMeo9zbzQwEDkGM0fHE1ff5-b_nviC7jvzhuCmXpFm8vMEVehiF6ZCd2_dep5KjD3jV0mY |
link.rule.ids | 315,783,787,4510,24129,27937,27938,45598,45692 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLaqMgAD4hTlqgdWUzd24mREFVWhx0IrdYvs5EUqom0EYejCb-fZSRAgISSWKEqcQ59f3qF87zMh16mExPiBZiLVgkkRAtNoFkxIZTIIfZVGtt95PAkGM_kw9-cN0qt7YSytsvL9pU933ro60qnQ7OSLReeRWyESq2USOl02LIG2pJUbR6O-ef_keXQVd-vg2dHMDq_75xzJawlLvHdFqXTKlb_Fpx-e2oWf_j7Zq_JGelu-2gFpwOqQ7H5REzwiw7El12E-jcU8xUdiHYx-jK6Nrf4hpbaThObrZ9vklG8w2gA1uMUTi-flKzUbahtHCkeuPCaz_t20N2DVWgkskVwUTHk6MgC-0olUUnOeKd9TXop7SVdAJgOeBUmaaZF2QWsBgB-iDqVnhPICjNknpLlar-CUUGmAJ4KDxGRHZpBFQsswSMLUU4DpQ9YirEYozktJjLjmij3FJaLV6paRpcy1iKphjL9NbYxe-48r2zXqMVq9_ZWBwCGIMaadOPc-P_v3vdtkezAdj-LR_WR4TnYcDcSxVC5Is3h5g0vMNQpz5WzpA1-50z8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microporous+membranes+obtained+from+polypropylene+blend+films+by+stretching&rft.jtitle=Journal+of+membrane+science&rft.au=TABATABAEI%2C+S&rft.au=CARREAU%2C+P&rft.au=AJJI%2C+A&rft.date=2008-12-01&rft.issn=0376-7388&rft.volume=325&rft.issue=2&rft.spage=772&rft.epage=782&rft_id=info:doi/10.1016%2Fj.memsci.2008.09.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_memsci_2008_09_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon |