Microporous membranes obtained from polypropylene blend films by stretching

Blends of two linear polypropylenes (PP, having different molecular weights) were prepared to develop microporous membranes through melt extrusion followed by stretching. The role of high molecular weight chains on the row-nucleated lamellar crystallization was investigated. The orientation of cryst...

Full description

Saved in:
Bibliographic Details
Published inJournal of membrane science Vol. 325; no. 2; pp. 772 - 782
Main Authors Tabatabaei, Seyed H., Carreau, Pierre J., Ajji, Abdellah
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Blends of two linear polypropylenes (PP, having different molecular weights) were prepared to develop microporous membranes through melt extrusion followed by stretching. The role of high molecular weight chains on the row-nucleated lamellar crystallization was investigated. The orientation of crystalline and amorphous phases was measured by wide angle X-ray diffraction (WAXD) and Fourier transform infrared (FTIR). Long period spacing was obtained using small angle X-ray scattering (SAXS). The effects of annealing temperature and applied elongation during annealing on the crystallinity of the films were studied using differential scanning calorimetry (DSC). It was found that annealing at 140 °C contributed significantly to the perfection of the crystalline phase. Scanning electron microscopy (SEM) images of the membrane surface showed more pore density and uniform pore size as the amount of high molecular weight component increased. The addition of the high M w PP improved the water vapor transmission rate (WVTR) of the membranes, indicating increased interconnectivity of the pores, which was also confirmed from cross-section SEM micrographs of the membranes. The surface area and pore dimensions of the microporous membranes were measured using the BET nitrogen absorption technique and mercury porosimetry, respectively. The influences of temperature and amount of stretching during cold and hot stretching on WVTR were also explored . Tensile properties in the machine and transverse directions (MD and TD, respectively) as well as puncture resistance in the normal direction (ND) were evaluated. As the high M w PP was added, a slight reduction in the mechanical properties along MD and TD and no changes in ND were observed.
AbstractList Blends of two linear polypropylenes (PP, having different molecular weights) were prepared to develop microporous membranes through melt extrusion followed by stretching. The role of high molecular weight chains on the row-nucleated lamellar crystallization was investigated. The orientation of crystalline and amorphous phases was measured by wide angle X-ray diffraction (WAXD) and Fourier transform infrared (FTIR). Long period spacing was obtained using small angle X-ray scattering (SAXS). The effects of annealing temperature and applied elongation during annealing on the crystallinity of the films were studied using differential scanning calorimetry (DSC). It was found that annealing at 140 °C contributed significantly to the perfection of the crystalline phase. Scanning electron microscopy (SEM) images of the membrane surface showed more pore density and uniform pore size as the amount of high molecular weight component increased. The addition of the high M w PP improved the water vapor transmission rate (WVTR) of the membranes, indicating increased interconnectivity of the pores, which was also confirmed from cross-section SEM micrographs of the membranes. The surface area and pore dimensions of the microporous membranes were measured using the BET nitrogen absorption technique and mercury porosimetry, respectively. The influences of temperature and amount of stretching during cold and hot stretching on WVTR were also explored . Tensile properties in the machine and transverse directions (MD and TD, respectively) as well as puncture resistance in the normal direction (ND) were evaluated. As the high M w PP was added, a slight reduction in the mechanical properties along MD and TD and no changes in ND were observed.
Blends of two linear polypropylenes (PP, having different molecular weights) were prepared to develop microporous membranes through melt extrusion followed by stretching. The role of high molecular weight chains on the row-nucleated lamellar crystallization was investigated. The orientation of crystalline and amorphous phases was measured by wide angle X-ray diffraction (WAXD) and Fourier transform infrared (FTIR). Long period spacing was obtained using small angle X-ray scattering (SAXS). The effects of annealing temperature and applied elongation during annealing on the crystallinity of the films were studied using differential scanning calorimetry (DSC). It was found that annealing at 140 degree C contributed significantly to the perfection of the crystalline phase. Scanning electron microscopy (SEM) images of the membrane surface showed more pore density and uniform pore size as the amount of high molecular weight component increased. The addition of the high M sub(w) PP improved the water vapor transmission rate (WVTR) of the membranes, indicating increased interconnectivity of the pores, which was also confirmed from cross-section SEM micrographs of the membranes. The surface area and pore dimensions of the microporous membranes were measured using the BET nitrogen absorption technique and mercury porosimetry, respectively. The influences of temperature and amount of stretching during cold and hot stretching on WVTR were also explored . Tensile properties in the machine and transverse directions (MD and TD, respectively) as well as puncture resistance in the normal direction (ND) were evaluated. As the high M sub(w) PP was added, a slight reduction in the mechanical properties along MD and TD and no changes in ND were observed.
Author Carreau, Pierre J.
Tabatabaei, Seyed H.
Ajji, Abdellah
Author_xml – sequence: 1
  givenname: Seyed H.
  surname: Tabatabaei
  fullname: Tabatabaei, Seyed H.
  organization: Center for Applied Research on Polymers and Composites, CREPEC, Ecole Polytechnique, Montreal, QC, Canada
– sequence: 2
  givenname: Pierre J.
  surname: Carreau
  fullname: Carreau, Pierre J.
  email: pcarreau@polymtl.ca
  organization: Center for Applied Research on Polymers and Composites, CREPEC, Ecole Polytechnique, Montreal, QC, Canada
– sequence: 3
  givenname: Abdellah
  surname: Ajji
  fullname: Ajji, Abdellah
  organization: CREPEC, Industrial Materials Institute, CNRC, Boucherville, QC, Canada
BookMark eNp9kE9PhDAQxRuzJq6r38ADJ2_glAKFi4nZ-C-u8aLnppRBuwGKLWvCt3c2ePYyM8n85mXeO2erwQ3I2BWHhAMvbvZJj30wNkkBygSqBICfsDUvpYgFT8WKrUHIIpaiLM_YeQh7AiSU1Zq9vFrj3ei8O4SIVGqvBwyRqydtB2yi1rs-Gl03j0TNHQ4Y1VRpYbs-RPUchcnjZL7s8HnBTlvdBbz86xv28XD_vn2Kd2-Pz9u7XWwyEFMsU13ViLnUJpOZBmhlnsq0oclwgW1WQFuYptWi4ai1QJRVpsssrYVMizIXG3a96NJP3wcMk-ptMNh19DrZULwShRQ5EJgtIFkMwWOrRm977WfFQR2TU3u1JKeOySmoFAVDZ7fLGZKJH4teEYGDwcZ6NJNqnP1f4BeAxXyJ
CitedBy_id crossref_primary_10_4028_www_scientific_net_AMR_1159_1
crossref_primary_10_1016_j_desal_2019_114246
crossref_primary_10_1007_s00289_022_04417_6
crossref_primary_10_1002_pi_5364
crossref_primary_10_1016_j_polymer_2024_126888
crossref_primary_10_1016_j_polymer_2019_03_019
crossref_primary_10_1016_j_desal_2019_01_004
crossref_primary_10_1002_pi_5082
crossref_primary_10_1039_C4RA09129A
crossref_primary_10_1039_C6CE00129G
crossref_primary_10_3390_polym10010033
crossref_primary_10_1002_app_41415
crossref_primary_10_1007_s11426_022_1520_9
crossref_primary_10_1016_j_polymer_2016_10_043
crossref_primary_10_1039_C6RA08156H
crossref_primary_10_1002_pi_4548
crossref_primary_10_1080_00222348_2014_931189
crossref_primary_10_1016_j_heliyon_2023_e12810
crossref_primary_10_1016_j_polymer_2020_122958
crossref_primary_10_1021_acs_iecr_1c01731
crossref_primary_10_3139_217_3774
crossref_primary_10_1016_j_polymer_2016_08_102
crossref_primary_10_1039_C5RA27913E
crossref_primary_10_1002_pen_23982
crossref_primary_10_3724_SP_J_1105_2012_11324
crossref_primary_10_1016_j_polymer_2020_122832
crossref_primary_10_4028_www_scientific_net_MSF_993_906
crossref_primary_10_1007_s00289_013_1077_y
crossref_primary_10_3724_SP_J_1105_2011_10328
crossref_primary_10_1007_s00289_014_1182_6
crossref_primary_10_1088_1755_1315_1213_1_012052
crossref_primary_10_1016_j_memsci_2012_10_002
crossref_primary_10_1016_j_polymer_2016_09_023
crossref_primary_10_1016_j_memsci_2009_08_038
crossref_primary_10_1177_8756087911434186
crossref_primary_10_1002_cjce_23983
crossref_primary_10_3390_fib9060035
crossref_primary_10_1002_app_46491
crossref_primary_10_3139_217_3023
crossref_primary_10_1016_j_desal_2011_02_045
crossref_primary_10_1039_C5RA13565F
crossref_primary_10_1007_s10965_018_1534_2
crossref_primary_10_1016_j_polymer_2019_05_003
crossref_primary_10_1016_j_carbpol_2023_121571
crossref_primary_10_3139_217_3638
crossref_primary_10_1002_pcr2_10129
crossref_primary_10_1088_2053_1591_ab0797
crossref_primary_10_1007_s10965_018_1681_5
crossref_primary_10_1021_acsami_3c08265
crossref_primary_10_1021_acs_langmuir_7b03676
crossref_primary_10_1039_C5RA21200F
crossref_primary_10_3390_ma14040705
crossref_primary_10_1016_j_polymer_2009_06_071
crossref_primary_10_1016_j_polymer_2017_09_017
crossref_primary_10_1007_s10118_018_2029_7
crossref_primary_10_1179_1743289814Y_0000000100
crossref_primary_10_1002_pcr2_10080
crossref_primary_10_1080_2374068X_2016_1247342
crossref_primary_10_1016_j_reactfunctpolym_2023_105733
crossref_primary_10_1007_s00396_017_4149_y
crossref_primary_10_1016_j_memsci_2021_119704
crossref_primary_10_1021_acs_macromol_9b00932
crossref_primary_10_1016_j_desal_2013_10_015
crossref_primary_10_1021_acsapm_0c00288
crossref_primary_10_1039_C6RA28486H
crossref_primary_10_1016_j_seppur_2019_116455
crossref_primary_10_1021_acsami_6b10447
crossref_primary_10_1007_s10098_024_02844_9
crossref_primary_10_1021_acsami_8b08191
crossref_primary_10_1021_acssuschemeng_0c06628
crossref_primary_10_1039_C5EW00159E
crossref_primary_10_1016_j_seppur_2015_11_046
crossref_primary_10_1002_app_45825
crossref_primary_10_1016_j_polymdegradstab_2018_05_006
crossref_primary_10_1021_acs_iecr_5b00215
crossref_primary_10_1007_s10965_014_0598_x
crossref_primary_10_1021_acs_iecr_8b05782
crossref_primary_10_1002_polb_22037
crossref_primary_10_1016_j_gsd_2024_101215
crossref_primary_10_1021_acsami_5b02848
crossref_primary_10_1039_D2VA00295G
crossref_primary_10_1088_1755_1315_770_1_012011
crossref_primary_10_1016_j_memsci_2014_09_016
crossref_primary_10_1016_j_seppur_2018_12_052
crossref_primary_10_1007_s00289_015_1485_2
crossref_primary_10_1016_j_polymer_2009_06_059
crossref_primary_10_1002_pc_23462
crossref_primary_10_1016_j_polymer_2015_06_034
crossref_primary_10_1007_s00289_017_2223_8
crossref_primary_10_1002_app_50209
crossref_primary_10_1016_j_memsci_2021_119558
crossref_primary_10_1016_j_polymer_2013_03_050
crossref_primary_10_1021_acs_macromol_2c02072
crossref_primary_10_3139_217_2404
crossref_primary_10_1021_acsami_7b06705
crossref_primary_10_1063_1_5094842
crossref_primary_10_1039_C5RA10310J
crossref_primary_10_1080_03602559_2016_1263866
crossref_primary_10_1016_j_memsci_2016_02_050
crossref_primary_10_1016_j_seppur_2022_122881
crossref_primary_10_1039_C4RA06310D
crossref_primary_10_1039_C3RA48036D
crossref_primary_10_1016_j_jtice_2020_09_008
crossref_primary_10_1021_acs_biomac_3c00188
crossref_primary_10_1007_s10965_018_1567_6
crossref_primary_10_1007_s00289_013_0933_0
crossref_primary_10_1007_s10118_015_1643_x
crossref_primary_10_1002_pen_25580
crossref_primary_10_1002_adv_22116
crossref_primary_10_1021_ie502300j
crossref_primary_10_1016_j_desal_2013_06_016
crossref_primary_10_1002_macp_201500471
crossref_primary_10_1021_acs_iecr_5b02141
crossref_primary_10_1016_j_rinma_2023_100434
crossref_primary_10_1016_j_ssi_2018_03_031
crossref_primary_10_1021_acs_macromol_4c00249
crossref_primary_10_1016_j_polymer_2023_125888
crossref_primary_10_1007_s13233_014_2087_9
crossref_primary_10_1016_j_colsurfa_2023_131383
crossref_primary_10_1016_j_memsci_2014_03_024
crossref_primary_10_1021_acsami_6b03071
crossref_primary_10_1016_j_polymer_2014_09_069
crossref_primary_10_1016_j_polymer_2018_07_066
crossref_primary_10_3390_polym15204139
crossref_primary_10_1007_s00289_018_2609_2
crossref_primary_10_1016_j_jtice_2019_02_010
crossref_primary_10_1002_app_49328
crossref_primary_10_1515_ipp_2020_4062
crossref_primary_10_1016_j_surfcoat_2020_126375
crossref_primary_10_1002_jbm_a_36269
crossref_primary_10_1021_acsmacrolett_0c00733
crossref_primary_10_1002_pi_6117
crossref_primary_10_1016_j_memsci_2017_11_023
crossref_primary_10_1002_app_40108
crossref_primary_10_1016_j_eurpolymj_2017_02_013
crossref_primary_10_1039_C4RA13298J
crossref_primary_10_1016_j_desal_2010_09_017
crossref_primary_10_1039_C5RA15302F
crossref_primary_10_1002_app_47937
crossref_primary_10_1016_j_ijbiomac_2024_133598
crossref_primary_10_1002_app_39351
crossref_primary_10_1007_s13726_017_0566_5
crossref_primary_10_1002_polb_24423
crossref_primary_10_1016_j_eurpolymj_2017_03_059
crossref_primary_10_1051_e3sconf_20186703018
crossref_primary_10_1021_acs_macromol_9b01163
crossref_primary_10_3390_polym10080854
crossref_primary_10_3390_polym11081310
crossref_primary_10_1039_C4RA03589E
crossref_primary_10_1016_j_seppur_2021_118890
crossref_primary_10_1016_j_jtice_2021_04_052
crossref_primary_10_1080_25740881_2018_1563142
crossref_primary_10_1155_2022_5970484
crossref_primary_10_1016_j_cherd_2021_11_005
crossref_primary_10_1021_la102680b
crossref_primary_10_3390_polym13152520
crossref_primary_10_1002_pen_23527
crossref_primary_10_1021_acs_iecr_9b05617
crossref_primary_10_1016_j_memsci_2017_10_001
crossref_primary_10_1016_j_polymer_2018_12_051
crossref_primary_10_1016_j_polymer_2023_126150
crossref_primary_10_4491_eer_2021_228
crossref_primary_10_1021_acs_macromol_5b00396
crossref_primary_10_1515_polyeng_2015_0112
crossref_primary_10_1016_j_polymer_2014_05_017
crossref_primary_10_1002_app_47249
crossref_primary_10_1063_5_0093288
crossref_primary_10_1007_s10965_014_0618_x
crossref_primary_10_1039_C5RA24758F
crossref_primary_10_4028_www_scientific_net_AMM_217_219_907
crossref_primary_10_1016_j_compscitech_2014_05_017
crossref_primary_10_1002_pi_5405
crossref_primary_10_1016_j_seppur_2024_128319
ContentType Journal Article
Copyright 2008 Elsevier B.V.
Copyright_xml – notice: 2008 Elsevier B.V.
DBID AAYXX
CITATION
7TV
C1K
DOI 10.1016/j.memsci.2008.09.001
DatabaseName CrossRef
Pollution Abstracts
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
Pollution Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Pollution Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3123
EndPage 782
ExternalDocumentID 10_1016_j_memsci_2008_09_001
S0376738808008181
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSM
SSZ
T5K
VH1
WUQ
XPP
Y6R
ZMT
~G-
AAHBH
AAXKI
AAYXX
AKRWK
CITATION
7TV
C1K
ID FETCH-LOGICAL-c403t-72a9bee57ac474a00f75272da00c13ef460f6cdfa3d1eaa3ee794a842b3726853
IEDL.DBID AIKHN
ISSN 0376-7388
IngestDate Sat Oct 26 01:20:19 EDT 2024
Thu Sep 12 16:41:38 EDT 2024
Fri Feb 23 02:33:57 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Polypropylene blends
Crystalline lamellar morphology
Permeability
Rheology
Membranes by stretching
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-72a9bee57ac474a00f75272da00c13ef460f6cdfa3d1eaa3ee794a842b3726853
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 19367350
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_19367350
crossref_primary_10_1016_j_memsci_2008_09_001
elsevier_sciencedirect_doi_10_1016_j_memsci_2008_09_001
PublicationCentury 2000
PublicationDate 2008-12-01
PublicationDateYYYYMMDD 2008-12-01
PublicationDate_xml – month: 12
  year: 2008
  text: 2008-12-01
  day: 01
PublicationDecade 2000
PublicationTitle Journal of membrane science
PublicationYear 2008
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Utracki, Schlund (bib15) 1987; 27
Alexander (bib23) 1969
Baker (bib24) 2004
Sadeghi, Ajji, Carreau (bib10) 2008; 46
F. Sadeghi, Developing of microporous polypropylene by stretching, PhD thesis, Ecole Polytechnique, Montreal, 2007.
Ward, Coates, Dumoulin (bib12) 2000
L.A. Utracki, Two Phase Polymer Systems, Hanser Publisher, New York, 1991.
Sadeghi, Ajji, Carreau (bib7) 2007; 47
Chu, Kimura (bib25) 1996; 37
Kwang, Rana, Cho, Rhee, Woo, Lee, Choe (bib17) 2000; 40
Johnson, Wilkes (bib19) 2000; 81
T.H. Yu, Processing and structure–property behavior of microporous polyethylene: From resin to final film, PhD thesis, Virginia Polytechnic Institute and State University, 1996.
Sadeghi, Ajji, Carreau (bib9) 2005; 21
Fujiyama, Inata (bib11) 2002; 84
M.B. Johnson, Investigations of the processing–structure–property relationship of selected semi crystalline polymers, PhD thesis, Virginia Polytechnic Institute and State University, 2000.
Li, Favis (bib14) 2001; 42
Honerkamp, Weese (bib16) 1993; 32
Ferrer-Balas, Maspoch, Martinez, Santana (bib22) 2001; 42
Agarwal, Somani, Weng, Mehta, Yang, Ran, Liu, Hsiao (bib3) 2003; 36
Somani, Hsiao, Nogales (bib4) 2000; 33
Brunauer, Emmett, Teller (bib13) 1938; 60
Johnson, Wilkes (bib20) 2002; 84
Seki, Thurman, Oberhauser, Kornfield (bib6) 2002; 35
Somani, Yang, Hsiao (bib5) 2006; 47
Sadeghi, Ajji, Carreau (bib8) 2007; 292
References_xml – volume: 47
  start-page: 1170
  year: 2007
  ident: bib7
  article-title: Orientation analysis of row nucleated lamellar structure of polypropylene obtained from cast film
  publication-title: Polym. Eng. Sci.
  contributor:
    fullname: Carreau
– volume: 40
  start-page: 1672
  year: 2000
  ident: bib17
  article-title: Binary blends of metallocene polyethylene with conventional polyolefins: rheological and morphological properties
  publication-title: Polym. Eng. Sci.
  contributor:
    fullname: Choe
– volume: 21
  start-page: 199
  year: 2005
  ident: bib9
  article-title: Study of polypropylene morphology obtained from blown and cast film processes: initial morphology requirement for making porous membrane by stretching
  publication-title: J. Plastic Film Sheet.
  contributor:
    fullname: Carreau
– volume: 60
  start-page: 309
  year: 1938
  ident: bib13
  article-title: Adsorption of gases in multimolecular layers
  publication-title: J. Am. Chem. Soc.
  contributor:
    fullname: Teller
– volume: 37
  start-page: 573
  year: 1996
  ident: bib25
  article-title: Structure and gas permeability of microporous film prepared by biaxial drawing of the beta-form polypropylene
  publication-title: Polymer
  contributor:
    fullname: Kimura
– volume: 292
  start-page: 62
  year: 2007
  ident: bib8
  article-title: Analysis of microporous membranes obtained from polypropylene films by stretching
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Carreau
– volume: 84
  start-page: 2157
  year: 2002
  ident: bib11
  article-title: Rheological properties of metallocene isotactic polypropylenes
  publication-title: J. Appl. Polym. Sci.
  contributor:
    fullname: Inata
– volume: 42
  start-page: 1697
  year: 2001
  ident: bib22
  article-title: Influence of annealing on the microstructural, tensile and fracture properties of polypropylene films
  publication-title: Polymer
  contributor:
    fullname: Santana
– year: 2004
  ident: bib24
  article-title: Membrane Technology and Applications
  contributor:
    fullname: Baker
– volume: 84
  start-page: 1762
  year: 2002
  ident: bib20
  article-title: Microporous membranes of polyoxymethylene from a melt-extrusion process. (II). Effects of thermal annealing and stretching on porosity
  publication-title: J. Appl. Polym. Sci.
  contributor:
    fullname: Wilkes
– volume: 35
  start-page: 2583
  year: 2002
  ident: bib6
  article-title: Shear-mediated crystallization of isotactic polypropylene: the role of long chain-long chain overlap
  publication-title: Macromolecules
  contributor:
    fullname: Kornfield
– year: 1969
  ident: bib23
  article-title: X-ray Diffraction Methods in Polymer Science
  contributor:
    fullname: Alexander
– volume: 27
  start-page: 1512
  year: 1987
  ident: bib15
  article-title: Linear low density polyethylene and their blends. Part 4. Shear flow of LLDPE blends with LLDPE and LDPE
  publication-title: Polym. Eng. Sci.
  contributor:
    fullname: Schlund
– volume: 46
  start-page: 148
  year: 2008
  ident: bib10
  article-title: Microporous membranes obtained from polypropylene blends with superior permeability properties
  publication-title: J. Polym. Sci., Polym. Phys.
  contributor:
    fullname: Carreau
– volume: 33
  start-page: 9385
  year: 2000
  ident: bib4
  article-title: Structure development during shear flow induced crystallization of i-PP: in situ wide-angle X-ray diffraction study
  publication-title: Macromolecules
  contributor:
    fullname: Nogales
– volume: 47
  start-page: 5657
  year: 2006
  ident: bib5
  article-title: Effects of molecular weight species on shear-induced orientation and crystallization of isotactic polypropylene
  publication-title: Polymer
  contributor:
    fullname: Hsiao
– volume: 36
  start-page: 5226
  year: 2003
  ident: bib3
  article-title: Shear-induced crystallization in novel long chain branched polypropylenes by in situ rheo-SAXS and -WAXD
  publication-title: Macromolecules
  contributor:
    fullname: Hsiao
– year: 2000
  ident: bib12
  article-title: Solid Phase Processing of Polymers
  contributor:
    fullname: Dumoulin
– volume: 42
  start-page: 5047
  year: 2001
  ident: bib14
  article-title: Characterizing co-continuous high density polyethylene/polystyrene blends
  publication-title: Polymer
  contributor:
    fullname: Favis
– volume: 81
  start-page: 2944
  year: 2000
  ident: bib19
  article-title: Microporous membranes of polyoxymethylene from a melt-extrusion process. (I). Effects of resin variables and extrusion conditions
  publication-title: J. Appl. Polym. Sci.
  contributor:
    fullname: Wilkes
– volume: 32
  start-page: 65
  year: 1993
  ident: bib16
  article-title: A non linear regularization method for the calculation of relaxation spectra
  publication-title: Rheol. Acta
  contributor:
    fullname: Weese
SSID ssj0017089
Score 2.4144304
Snippet Blends of two linear polypropylenes (PP, having different molecular weights) were prepared to develop microporous membranes through melt extrusion followed by...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 772
SubjectTerms Crystalline lamellar morphology
Membranes by stretching
Permeability
Polypropylene blends
Rheology
Title Microporous membranes obtained from polypropylene blend films by stretching
URI https://dx.doi.org/10.1016/j.memsci.2008.09.001
https://search.proquest.com/docview/19367350
Volume 325
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKu8CAeIryKB5YTd3YiZOxqqgKVbtApW6RnVykoj4iCEMXfjtnJ0GAhJBYoiiJnejz5R7yd3eE3KQSEuMHmolUCyZFCEyjWDAhlckg9FUa2XznyTQYzeTD3J83yKDOhbG0ykr3lzrdaevqSrdCs5svFt1HbguR2FomoavLhiFQC82Rh6Ld6t-PR9PPzQTFXSc8-zyzA-oMOkfzWsEKZ69Ila525W8W6oeudgZoeED2K8-R9suPOyQNWB-RvS_1BI_JeGLpdehRYzhP8ZUYCaMmoxtj439Iqc0loflmadOc8i3aG6AGj3hjsVy9UrOlNnWkcPTKEzIb3j0NRqzqlsASyUXBlKcjA-ArnUglNeeZ8j3lpXiW9ARkMuBZkKSZFmkPtBYA-CvqUHpGKC9Aq31KmuvNGs4IlQZ4IjhIdHdkBlkktAyDJEw9BehAZG3CaoTivCyKEddssee4RLTqbxlZ0lybqBrG-Nvixqi3_xh5XaMeo9zbzQwEDkGM0fHE1ff5-b_nviC7jvzhuCmXpFm8vMEVehiF6ZCd2_dep5KjD3jV0mY
link.rule.ids 315,783,787,4510,24129,27937,27938,45598,45692
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLaqMgAD4hTlqgdWUzd24mREFVWhx0IrdYvs5EUqom0EYejCb-fZSRAgISSWKEqcQ59f3qF87zMh16mExPiBZiLVgkkRAtNoFkxIZTIIfZVGtt95PAkGM_kw9-cN0qt7YSytsvL9pU933ro60qnQ7OSLReeRWyESq2USOl02LIG2pJUbR6O-ef_keXQVd-vg2dHMDq_75xzJawlLvHdFqXTKlb_Fpx-e2oWf_j7Zq_JGelu-2gFpwOqQ7H5REzwiw7El12E-jcU8xUdiHYx-jK6Nrf4hpbaThObrZ9vklG8w2gA1uMUTi-flKzUbahtHCkeuPCaz_t20N2DVWgkskVwUTHk6MgC-0olUUnOeKd9TXop7SVdAJgOeBUmaaZF2QWsBgB-iDqVnhPICjNknpLlar-CUUGmAJ4KDxGRHZpBFQsswSMLUU4DpQ9YirEYozktJjLjmij3FJaLV6paRpcy1iKphjL9NbYxe-48r2zXqMVq9_ZWBwCGIMaadOPc-P_v3vdtkezAdj-LR_WR4TnYcDcSxVC5Is3h5g0vMNQpz5WzpA1-50z8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microporous+membranes+obtained+from+polypropylene+blend+films+by+stretching&rft.jtitle=Journal+of+membrane+science&rft.au=TABATABAEI%2C+S&rft.au=CARREAU%2C+P&rft.au=AJJI%2C+A&rft.date=2008-12-01&rft.issn=0376-7388&rft.volume=325&rft.issue=2&rft.spage=772&rft.epage=782&rft_id=info:doi/10.1016%2Fj.memsci.2008.09.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_memsci_2008_09_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon