Concept Paper for a Digital Expert: Systematic Derivation of (Causal) Bayesian Networks Based on Ontologies for Knowledge-Based Production Steps

Despite increasing digitalization and automation, complex production processes often require human judgment/decision-making adaptability. Humans can abstract and transfer knowledge to new situations. People in production are an irreplaceable resource. This paper presents a new concept for digitizing...

Full description

Saved in:
Bibliographic Details
Published inMachine learning and knowledge extraction Vol. 6; no. 2; pp. 898 - 916
Main Authors Pfaff-Kastner, Manja Mai-Ly, Wenzel, Ken, Ihlenfeldt, Steffen
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2024
Subjects
Online AccessGet full text
ISSN2504-4990
2504-4990
DOI10.3390/make6020042

Cover

Abstract Despite increasing digitalization and automation, complex production processes often require human judgment/decision-making adaptability. Humans can abstract and transfer knowledge to new situations. People in production are an irreplaceable resource. This paper presents a new concept for digitizing human expertise and their ability to make knowledge-based decisions in the production area based on ontologies and causal Bayesian networks for further research. Dedicated approaches for the ontology-based creation of Bayesian networks exist in the literature. Therefore, we first comprehensively analyze previous studies and summarize the approaches. We then add the causal perspective, which has often not been an explicit subject of consideration. We see a research gap in the systematic and structured approach to ontology-based generation of causal graphs (CGs). At the current state of knowledge, the semantic understanding of a domain formalized in an ontology can contribute to developing a generic approach to derive a CG. The ontology functions as a knowledge base by formally representing knowledge and experience. Causal inference calculations can mathematically imitate the human decision-making process under uncertainty. Therefore, a systematic ontology-based approach to building a CG can allow digitizing the human ability to make decisions based on experience and knowledge.
AbstractList Despite increasing digitalization and automation, complex production processes often require human judgment/decision-making adaptability. Humans can abstract and transfer knowledge to new situations. People in production are an irreplaceable resource. This paper presents a new concept for digitizing human expertise and their ability to make knowledge-based decisions in the production area based on ontologies and causal Bayesian networks for further research. Dedicated approaches for the ontology-based creation of Bayesian networks exist in the literature. Therefore, we first comprehensively analyze previous studies and summarize the approaches. We then add the causal perspective, which has often not been an explicit subject of consideration. We see a research gap in the systematic and structured approach to ontology-based generation of causal graphs (CGs). At the current state of knowledge, the semantic understanding of a domain formalized in an ontology can contribute to developing a generic approach to derive a CG. The ontology functions as a knowledge base by formally representing knowledge and experience. Causal inference calculations can mathematically imitate the human decision-making process under uncertainty. Therefore, a systematic ontology-based approach to building a CG can allow digitizing the human ability to make decisions based on experience and knowledge.
Audience Academic
Author Pfaff-Kastner, Manja Mai-Ly
Wenzel, Ken
Ihlenfeldt, Steffen
Author_xml – sequence: 1
  givenname: Manja Mai-Ly
  orcidid: 0000-0001-8944-4385
  surname: Pfaff-Kastner
  fullname: Pfaff-Kastner, Manja Mai-Ly
– sequence: 2
  givenname: Ken
  orcidid: 0000-0002-6047-6153
  surname: Wenzel
  fullname: Wenzel, Ken
– sequence: 3
  givenname: Steffen
  orcidid: 0000-0002-9258-5178
  surname: Ihlenfeldt
  fullname: Ihlenfeldt, Steffen
BookMark eNptkc1uEzEUhUeoSJTSFS9giQ0IpVz_xDNmV9IWKipaqbC2bM915HQyTm2HkrfoI-MkIFUIeeGro3M--fq8bA7GOGLTvKZwwrmCD0tzhxIYgGDPmkM2BTERSsHBk_lFc5zzAgBYqwQFcdg8zuLocFXIjVlhIj4mYshZmIdiBnL-q2rlI7nd5IJLU4IjZ5jCzzrFkURP3s7MOpvhHflkNpiDGck3LA8x3eWqZOxJtV2PJQ5xHjDv6F_H-DBgP8fJ3nGTYr92O-BtwVV-1Tz3Zsh4_Oc-an5cnH-ffZlcXX--nJ1eTZwAXiYtk9Ya6NBSRtF3Pe0UB2oFBy9FT5lDy401goFi4L3vrOgl9J671jrJ-FFzuef20Sz0KoWlSRsdTdA7Iaa5NqluPKBuhbTMgJ_SzgnPhUXpO2mnUoDqoROV9WbPWqV4v8Zc9CKu01ifrzm0jHegOlpdJ3vX3FRoGH0sybh6elwGV7v0oeqnrVKSyanaYuk-4FLMOaHXrtay_aoaDIOmoLfF6yfF18z7fzJ_V_uf-zdex7Eh
CitedBy_id crossref_primary_10_3390_make6040134
Cites_doi 10.1007/978-3-030-95481-9
10.1007/978-3-642-02906-6_16
10.1016/j.datak.2011.12.001
10.1080/00031305.2014.876829
10.1007/978-3-540-33473-6_1
10.1109/LRA.2021.3090020
10.1007/978-3-642-03754-2
10.1016/j.websem.2003.07.001
10.1007/978-3-031-15707-3
10.1016/j.inffus.2021.10.007
10.1007/978-3-540-89765-1_10
10.1016/j.eswa.2012.02.049
10.12987/9780300255881
10.3390/info10030095
10.1006/ijhc.1995.1081
10.1145/1041410.1041420
10.1109/CISIS.2009.33
10.1108/IMDS-01-2019-0032
10.1006/knac.1993.1008
10.1613/jair.305
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/make6020042
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (New)
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2504-4990
EndPage 916
ExternalDocumentID oai_doaj_org_article_746b2a0f518c4f34be6f86b56409d084
A799626594
10_3390_make6020042
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID AADQD
AAFWJ
AAYXX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
K7-
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PMFND
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c403t-726bba08eb121ef8d189301b430f64d12ceb3aba420920fff8b4d60df3c7bc623
IEDL.DBID 8FG
ISSN 2504-4990
IngestDate Wed Aug 27 01:32:51 EDT 2025
Sun Sep 07 03:34:06 EDT 2025
Tue Jun 10 21:01:25 EDT 2025
Tue Jul 01 03:11:07 EDT 2025
Thu Apr 24 23:09:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-726bba08eb121ef8d189301b430f64d12ceb3aba420920fff8b4d60df3c7bc623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9258-5178
0000-0001-8944-4385
0000-0002-6047-6153
OpenAccessLink https://www.proquest.com/docview/3072380981?pq-origsite=%requestingapplication%
PQID 3072380981
PQPubID 5046881
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_746b2a0f518c4f34be6f86b56409d084
proquest_journals_3072380981
gale_infotracacademiconefile_A799626594
crossref_citationtrail_10_3390_make6020042
crossref_primary_10_3390_make6020042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Machine learning and knowledge extraction
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Holzinger (ref_23) 2022; 79
Uschold (ref_14) 2004; 33
ref_36
ref_13
ref_35
ref_34
ref_33
Settas (ref_3) 2012; 39
ref_10
ref_32
Pearl (ref_25) 2014; 68
Sossai (ref_28) 2009; Volume 5590
ref_19
ref_18
ref_39
ref_16
ref_38
ref_15
ref_37
Gruber (ref_12) 1995; 43
Gruber (ref_11) 1993; 5
Horrocks (ref_17) 2003; 1
Chen (ref_27) 2021; 6
ref_24
ref_22
ref_21
ref_20
ref_40
ref_2
Ma (ref_9) 2006; Volume 204
ref_29
Fenz (ref_1) 2012; 73
ref_26
Fanizzi (ref_30) 2008; Volume 5327
ref_8
ref_5
Cao (ref_31) 2019; 119
ref_4
ref_7
ref_6
References_xml – ident: ref_7
– ident: ref_19
  doi: 10.1007/978-3-030-95481-9
– ident: ref_5
– ident: ref_32
– ident: ref_24
– ident: ref_26
– ident: ref_16
– ident: ref_39
– ident: ref_40
– ident: ref_37
– volume: Volume 5590
  start-page: 168
  year: 2009
  ident: ref_28
  article-title: Integrating Ontological Knowledge for Iterative Causal Discovery and Visualization
  publication-title: Symbolic and Quantitative Approaches to Reasoning with Uncertainty
  doi: 10.1007/978-3-642-02906-6_16
– ident: ref_18
– ident: ref_35
– volume: 73
  start-page: 73
  year: 2012
  ident: ref_1
  article-title: An ontology-based approach for constructing Bayesian networks
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2011.12.001
– volume: 68
  start-page: 8
  year: 2014
  ident: ref_25
  article-title: Comment: Understanding Simpson’s Paradox
  publication-title: Am. Stat.
  doi: 10.1080/00031305.2014.876829
– volume: Volume 204
  start-page: 3
  year: 2006
  ident: ref_9
  article-title: BayesOWL: Uncertainty Modeling in Semantic Web Ontologies
  publication-title: Soft Computing in Ontologies and Semantic Web
  doi: 10.1007/978-3-540-33473-6_1
– volume: 6
  start-page: 6032
  year: 2021
  ident: ref_27
  article-title: Ontology-Driven Learning of Bayesian Network for Causal Inference and Quality Assurance in Additive Manufacturing
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3090020
– ident: ref_15
  doi: 10.1007/978-3-642-03754-2
– ident: ref_6
– ident: ref_8
– volume: 1
  start-page: 7
  year: 2003
  ident: ref_17
  article-title: From SHIQ and RDF to OWL: The making of a Web Ontology Language
  publication-title: J. Web Semant.
  doi: 10.1016/j.websem.2003.07.001
– ident: ref_20
  doi: 10.1007/978-3-031-15707-3
– ident: ref_4
– ident: ref_29
– ident: ref_33
– volume: 79
  start-page: 263
  year: 2022
  ident: ref_23
  article-title: Information fusion as an integrative cross-cutting enabler to achieve robust, explainable, and trustworthy medical artificial intelligence
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.10.007
– volume: Volume 5327
  start-page: 161
  year: 2008
  ident: ref_30
  article-title: An Ontology-Based Bayesian Network Approach for Representing Uncertainty in Clinical Practice Guidelines
  publication-title: Uncertainty Reasoning for the Semantic Web I
  doi: 10.1007/978-3-540-89765-1_10
– ident: ref_10
– volume: 39
  start-page: 9041
  year: 2012
  ident: ref_3
  article-title: Enhancing ontology-based antipattern detection using Bayesian networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.02.049
– ident: ref_21
  doi: 10.12987/9780300255881
– ident: ref_13
– ident: ref_36
  doi: 10.3390/info10030095
– ident: ref_38
– volume: 43
  start-page: 907
  year: 1995
  ident: ref_12
  article-title: Toward principles for the design of ontologies used for knowledge sharing?
  publication-title: Int. J. Hum.-Comput. Stud.
  doi: 10.1006/ijhc.1995.1081
– volume: 33
  start-page: 58
  year: 2004
  ident: ref_14
  article-title: Ontologies and semantics for seamless connectivity
  publication-title: ACM SIGMOD Rec.
  doi: 10.1145/1041410.1041420
– ident: ref_22
– ident: ref_2
  doi: 10.1109/CISIS.2009.33
– volume: 119
  start-page: 1691
  year: 2019
  ident: ref_31
  article-title: An Ontology-based Bayesian network modelling for supply chain risk propagation
  publication-title: Ind. Manag. Data Syst.
  doi: 10.1108/IMDS-01-2019-0032
– volume: 5
  start-page: 199
  year: 1993
  ident: ref_11
  article-title: A translation approach to portable ontology specifications
  publication-title: Knowl. Acquis.
  doi: 10.1006/knac.1993.1008
– ident: ref_34
  doi: 10.1613/jair.305
SSID ssj0002794104
Score 2.264437
Snippet Despite increasing digitalization and automation, complex production processes often require human judgment/decision-making adaptability. Humans can abstract...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 898
SubjectTerms Artificial intelligence
basic formal ontology (BFO)
Bayesian analysis
bayesian network
causal graph
Causality
Decision making
Decision tree
digital expert
Digitization
Expected values
Graphs
Human performance
Influence
Knowledge
Knowledge bases (artificial intelligence)
Knowledge management
Knowledge representation
Machine learning
Methods
Networks
Ontology
ontology-based
Resource Description Framework-RDF
Semantic web
Semantics
Web Ontology Language-OWL
SummonAdditionalLinks – databaseName: Open Access: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhp15CS1qyTVp0COQBZmVZlqXckk1DaMgD2oXchJ6l7dYbYueQf5Gf3JHkXTaQ0EuvYhCyZjSaT575BqHdppReG_B-TAQCAMXzQgQmi9oR4xtXGZO6NVxe8fMp-3pb3660-oo5YZkeOG_cuGHcUE1CXQrLQsWM50FwmAGAiSMiMYESSVbA1K_0O00yABq5IK8CXD_-o397TqJN0GdXUGLqf80fp0vm7C3aGKJDfJxX9Q6t-XYTPU1yaSG-0Xf-HkOUiTU-_fkjtvvAiaq4P8LflozM-BSMKj-04nnA-xP90OnZAT7Rjz5WTOKrnPndwUjnHQax6zZ1sQXQnGa_WLyzFVniJrPCxgljUlj3Hk3PvnyfnBdDI4XCMlL1RUO5MZoI8Mu09EG4EqIUUhpWkcCZK6kFSK2NZrCTlIQQhGGOExcq2xgLAdIHtN7OW7-FsKwl4aFyzEIkxTnRpipN_N1rqZZMsxE6XOytsgPLeGx2MVOANqIi1IoiRmh3KXyXyTVeFjuJSlqKREbsNAB2ogY7Uf-ykxHaiypW8dzCgqweyg_gsyIDljpuAPlRXkuQ3FlYgRoOdKfAFUJwQ6QoP_6P1WyjNxSio5xztoPW-_sH_wmim958Tob8F2t898w
  priority: 102
  providerName: Directory of Open Access Journals
Title Concept Paper for a Digital Expert: Systematic Derivation of (Causal) Bayesian Networks Based on Ontologies for Knowledge-Based Production Steps
URI https://www.proquest.com/docview/3072380981
https://doaj.org/article/746b2a0f518c4f34be6f86b56409d084
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagvXBBRYAolMiHSjykVW2v1-vlgpo0oQI1RECl3iw_K0RJ0mx64MJv4CczfiSABFz24B1Z3p3P45nxPBA6bGnntQHpx2UgYKB4UcnAu6pxxPjW1cakbg1nU3F6zt9eNBfF4daXsMqNTEyC2i1s9JEfARbhdCGdpK-X11XsGhVvV0sLjdtol8JJE3EuJ2-2PhYGYANzI6fl1WDdH33VX7wgERnsj4Mo1ev_l1ROR81kD90tOiI-zky9h275-X30Y5QTDPFML_0Kg66JNT75fBmbfuBUsHj9Cn_c1mXGJwCt7G7Fi4Cfj_RNr69e4KH-5mPeJJ7m-O8eRnrvMJC9n6detmA6p9nfbbxtVaaY5dqwccIYGtY_QOeT8afRaVXaKVSWk3pdtUwYo4kE6cyoD9JR0FUINbwmQXBHmQXDWhvNGekYCSFIw50gLtS2NRbUpIdoZ76Y-0cId01HRKgdt6BPCUG0qamJl76W6Y5rvo9ebv6tsqXWeGx5caXA5oiMUL8xYh8dbomXucTG38mGkUlbklgXOw0sVpeqbDPVcmGYJqGh0vJQc-NFkALwBmasIxIW9iyyWMXdCwuyuiQhwGfFOljquAX7j4mmA8qDDQpU2da9-gXCx_9__QTdYaD95JiyA7SzXt34p6C9rM0gQXSAdofj6ezDIPkA4Hn2ffwTjpPzoA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaq9AAXBAJEoQUfinhIq3q9jncXCaEmaZWSNkTQSr25flaINgnZVKj_gl_Cb2RmvRtAAm69ekeW1_N5HvY8CNnO09JrA9JPFIGBg-JlUgRRJl3HjM9dZkzdreFoLIcn4v1p93SN_GhzYTCsspWJtaB2M4t35DuARdAurCzSd_OvCXaNwtfVtoVGhMXIX38Dl616ezAA_j7nfH_vuD9Mmq4CiRUsWyY5l8ZoVoCQ4qkPhUtBZbPUiIwFKVzKLfiX2mjBWclZCKEwwknmQmZzYyUWOgCRvy4wo7VD1nt748nH1a0OB3iDgxMTAbOsZDuX-ouXDLHI_1B9dYeAf-mBWrnt3yV3GquU7kYY3SNrfnqffO_HlEY60XO_oGDdUk0Hn8-xzQitSyQv39BPq0rQdABgjhe8dBboy76-qvTFK9rT1x4zNek4RpxXMFJ5R4Hsw7TungvOej37qL3fSyLFJFajxQkxGK16QE5uZKsfks50NvWPCC27JZMhc8KCBScl0yZLDT4zW65LocUGed3urbJNdXNssnGhwMtBRqjfGLFBtlfE81jU4-9kPWTSigQrcdcDs8W5ag62yoU0XLPQTQsrQiaMl6GQgHBwnB0rYGEvkMUK5QUsyOom7QF-Cytvqd0cPE4uuyVQbrYoUI0gqdQv2D_-_-dn5Nbw-OhQHR6MR0_IbQ62V4xo2ySd5eLKb4HttDRPG8BScnbTZ-QnMjQu3A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA6lgvgiiorVqnmoeIFhM0k2kwgi7a5r6-q6oIW-xVyLtN1dd7ZI_4W_x1_nyWRmVVDf-jpzGGbmfDnnfMm5ILRTlSoYC9aPy0iAoARRyMhV0ffEhsoza5tpDe8nYv-Qvz3qH22gH10tTEqr7GxiY6j93KU98h5gEbwLUbLsxTYtYjocvVp8LdIEqXTS2o3TyBAZh4tvQN_qlwdD0PVjSkevPw32i3bCQOE4YauiosJaQyQYLFqGKH0J7puUljMSBfcldcA1jTWcEkVJjFFa7gXxkbnKOpGaHoD5v1KxSiXiJ0dv1vs7FIAOVCeXBDKmSO_MnARBEirpH06wmRXwL4_QuLnRDXS9jU_xbgbUTbQRZrfQ90EubsRTswhLDHEuNnj45TgNHMFNs-TVC_xx3RMaDwHWeasXzyN-OjDntTl9hvfMRUg1m3iSc89ruFIHj0Hsw6yZowu0vXn6uNvpK7LENPelTQ9MaWn1bXR4KT_6DtqczWfhLsKqr4iIzHMHsZwQxFhW2nTg7KhR3PAt9Lz7t9q1fc7TuI1TDXwnKUL_pogttLMWXuT2Hn8X20tKWoukntzNhfnyWLdLXFdcWGpI7JfS8ci4DSJKAVgHCu2JhBd7klSsk-WAF3KmLYCAz0o9uPRuBdyTir4Cye0OBbo1KbX-tQDu_f_2I3QVVoZ-dzAZ30fXKARhObVtG22ulufhAQRRK_uwQStGny97efwE3_oxrA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concept+Paper+for+a+Digital+Expert%3A+Systematic+Derivation+of+%28Causal%29+Bayesian+Networks+Based+on+Ontologies+for+Knowledge-Based+Production+Steps&rft.jtitle=Machine+learning+and+knowledge+extraction&rft.au=Pfaff-Kastner%2C+Manja+Mai-Ly&rft.au=Wenzel%2C+Ken&rft.au=Ihlenfeldt%2C+Steffen&rft.date=2024-06-01&rft.issn=2504-4990&rft.eissn=2504-4990&rft.volume=6&rft.issue=2&rft.spage=898&rft.epage=916&rft_id=info:doi/10.3390%2Fmake6020042&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_make6020042
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-4990&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-4990&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-4990&client=summon