Concept Paper for a Digital Expert: Systematic Derivation of (Causal) Bayesian Networks Based on Ontologies for Knowledge-Based Production Steps
Despite increasing digitalization and automation, complex production processes often require human judgment/decision-making adaptability. Humans can abstract and transfer knowledge to new situations. People in production are an irreplaceable resource. This paper presents a new concept for digitizing...
Saved in:
Published in | Machine learning and knowledge extraction Vol. 6; no. 2; pp. 898 - 916 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2504-4990 2504-4990 |
DOI | 10.3390/make6020042 |
Cover
Abstract | Despite increasing digitalization and automation, complex production processes often require human judgment/decision-making adaptability. Humans can abstract and transfer knowledge to new situations. People in production are an irreplaceable resource. This paper presents a new concept for digitizing human expertise and their ability to make knowledge-based decisions in the production area based on ontologies and causal Bayesian networks for further research. Dedicated approaches for the ontology-based creation of Bayesian networks exist in the literature. Therefore, we first comprehensively analyze previous studies and summarize the approaches. We then add the causal perspective, which has often not been an explicit subject of consideration. We see a research gap in the systematic and structured approach to ontology-based generation of causal graphs (CGs). At the current state of knowledge, the semantic understanding of a domain formalized in an ontology can contribute to developing a generic approach to derive a CG. The ontology functions as a knowledge base by formally representing knowledge and experience. Causal inference calculations can mathematically imitate the human decision-making process under uncertainty. Therefore, a systematic ontology-based approach to building a CG can allow digitizing the human ability to make decisions based on experience and knowledge. |
---|---|
AbstractList | Despite increasing digitalization and automation, complex production processes often require human judgment/decision-making adaptability. Humans can abstract and transfer knowledge to new situations. People in production are an irreplaceable resource. This paper presents a new concept for digitizing human expertise and their ability to make knowledge-based decisions in the production area based on ontologies and causal Bayesian networks for further research. Dedicated approaches for the ontology-based creation of Bayesian networks exist in the literature. Therefore, we first comprehensively analyze previous studies and summarize the approaches. We then add the causal perspective, which has often not been an explicit subject of consideration. We see a research gap in the systematic and structured approach to ontology-based generation of causal graphs (CGs). At the current state of knowledge, the semantic understanding of a domain formalized in an ontology can contribute to developing a generic approach to derive a CG. The ontology functions as a knowledge base by formally representing knowledge and experience. Causal inference calculations can mathematically imitate the human decision-making process under uncertainty. Therefore, a systematic ontology-based approach to building a CG can allow digitizing the human ability to make decisions based on experience and knowledge. |
Audience | Academic |
Author | Pfaff-Kastner, Manja Mai-Ly Wenzel, Ken Ihlenfeldt, Steffen |
Author_xml | – sequence: 1 givenname: Manja Mai-Ly orcidid: 0000-0001-8944-4385 surname: Pfaff-Kastner fullname: Pfaff-Kastner, Manja Mai-Ly – sequence: 2 givenname: Ken orcidid: 0000-0002-6047-6153 surname: Wenzel fullname: Wenzel, Ken – sequence: 3 givenname: Steffen orcidid: 0000-0002-9258-5178 surname: Ihlenfeldt fullname: Ihlenfeldt, Steffen |
BookMark | eNptkc1uEzEUhUeoSJTSFS9giQ0IpVz_xDNmV9IWKipaqbC2bM915HQyTm2HkrfoI-MkIFUIeeGro3M--fq8bA7GOGLTvKZwwrmCD0tzhxIYgGDPmkM2BTERSsHBk_lFc5zzAgBYqwQFcdg8zuLocFXIjVlhIj4mYshZmIdiBnL-q2rlI7nd5IJLU4IjZ5jCzzrFkURP3s7MOpvhHflkNpiDGck3LA8x3eWqZOxJtV2PJQ5xHjDv6F_H-DBgP8fJ3nGTYr92O-BtwVV-1Tz3Zsh4_Oc-an5cnH-ffZlcXX--nJ1eTZwAXiYtk9Ya6NBSRtF3Pe0UB2oFBy9FT5lDy401goFi4L3vrOgl9J671jrJ-FFzuef20Sz0KoWlSRsdTdA7Iaa5NqluPKBuhbTMgJ_SzgnPhUXpO2mnUoDqoROV9WbPWqV4v8Zc9CKu01ifrzm0jHegOlpdJ3vX3FRoGH0sybh6elwGV7v0oeqnrVKSyanaYuk-4FLMOaHXrtay_aoaDIOmoLfF6yfF18z7fzJ_V_uf-zdex7Eh |
CitedBy_id | crossref_primary_10_3390_make6040134 |
Cites_doi | 10.1007/978-3-030-95481-9 10.1007/978-3-642-02906-6_16 10.1016/j.datak.2011.12.001 10.1080/00031305.2014.876829 10.1007/978-3-540-33473-6_1 10.1109/LRA.2021.3090020 10.1007/978-3-642-03754-2 10.1016/j.websem.2003.07.001 10.1007/978-3-031-15707-3 10.1016/j.inffus.2021.10.007 10.1007/978-3-540-89765-1_10 10.1016/j.eswa.2012.02.049 10.12987/9780300255881 10.3390/info10030095 10.1006/ijhc.1995.1081 10.1145/1041410.1041420 10.1109/CISIS.2009.33 10.1108/IMDS-01-2019-0032 10.1006/knac.1993.1008 10.1613/jair.305 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/make6020042 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (New) Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Open Access: DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2504-4990 |
EndPage | 916 |
ExternalDocumentID | oai_doaj_org_article_746b2a0f518c4f34be6f86b56409d084 A799626594 10_3390_make6020042 |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GroupedDBID | AADQD AAFWJ AAYXX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ICD ITC K7- MODMG M~E OK1 PHGZM PHGZT PIMPY PMFND 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c403t-726bba08eb121ef8d189301b430f64d12ceb3aba420920fff8b4d60df3c7bc623 |
IEDL.DBID | 8FG |
ISSN | 2504-4990 |
IngestDate | Wed Aug 27 01:32:51 EDT 2025 Sun Sep 07 03:34:06 EDT 2025 Tue Jun 10 21:01:25 EDT 2025 Tue Jul 01 03:11:07 EDT 2025 Thu Apr 24 23:09:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-726bba08eb121ef8d189301b430f64d12ceb3aba420920fff8b4d60df3c7bc623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9258-5178 0000-0001-8944-4385 0000-0002-6047-6153 |
OpenAccessLink | https://www.proquest.com/docview/3072380981?pq-origsite=%requestingapplication% |
PQID | 3072380981 |
PQPubID | 5046881 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_746b2a0f518c4f34be6f86b56409d084 proquest_journals_3072380981 gale_infotracacademiconefile_A799626594 crossref_citationtrail_10_3390_make6020042 crossref_primary_10_3390_make6020042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Machine learning and knowledge extraction |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Holzinger (ref_23) 2022; 79 Uschold (ref_14) 2004; 33 ref_36 ref_13 ref_35 ref_34 ref_33 Settas (ref_3) 2012; 39 ref_10 ref_32 Pearl (ref_25) 2014; 68 Sossai (ref_28) 2009; Volume 5590 ref_19 ref_18 ref_39 ref_16 ref_38 ref_15 ref_37 Gruber (ref_12) 1995; 43 Gruber (ref_11) 1993; 5 Horrocks (ref_17) 2003; 1 Chen (ref_27) 2021; 6 ref_24 ref_22 ref_21 ref_20 ref_40 ref_2 Ma (ref_9) 2006; Volume 204 ref_29 Fenz (ref_1) 2012; 73 ref_26 Fanizzi (ref_30) 2008; Volume 5327 ref_8 ref_5 Cao (ref_31) 2019; 119 ref_4 ref_7 ref_6 |
References_xml | – ident: ref_7 – ident: ref_19 doi: 10.1007/978-3-030-95481-9 – ident: ref_5 – ident: ref_32 – ident: ref_24 – ident: ref_26 – ident: ref_16 – ident: ref_39 – ident: ref_40 – ident: ref_37 – volume: Volume 5590 start-page: 168 year: 2009 ident: ref_28 article-title: Integrating Ontological Knowledge for Iterative Causal Discovery and Visualization publication-title: Symbolic and Quantitative Approaches to Reasoning with Uncertainty doi: 10.1007/978-3-642-02906-6_16 – ident: ref_18 – ident: ref_35 – volume: 73 start-page: 73 year: 2012 ident: ref_1 article-title: An ontology-based approach for constructing Bayesian networks publication-title: Data Knowl. Eng. doi: 10.1016/j.datak.2011.12.001 – volume: 68 start-page: 8 year: 2014 ident: ref_25 article-title: Comment: Understanding Simpson’s Paradox publication-title: Am. Stat. doi: 10.1080/00031305.2014.876829 – volume: Volume 204 start-page: 3 year: 2006 ident: ref_9 article-title: BayesOWL: Uncertainty Modeling in Semantic Web Ontologies publication-title: Soft Computing in Ontologies and Semantic Web doi: 10.1007/978-3-540-33473-6_1 – volume: 6 start-page: 6032 year: 2021 ident: ref_27 article-title: Ontology-Driven Learning of Bayesian Network for Causal Inference and Quality Assurance in Additive Manufacturing publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2021.3090020 – ident: ref_15 doi: 10.1007/978-3-642-03754-2 – ident: ref_6 – ident: ref_8 – volume: 1 start-page: 7 year: 2003 ident: ref_17 article-title: From SHIQ and RDF to OWL: The making of a Web Ontology Language publication-title: J. Web Semant. doi: 10.1016/j.websem.2003.07.001 – ident: ref_20 doi: 10.1007/978-3-031-15707-3 – ident: ref_4 – ident: ref_29 – ident: ref_33 – volume: 79 start-page: 263 year: 2022 ident: ref_23 article-title: Information fusion as an integrative cross-cutting enabler to achieve robust, explainable, and trustworthy medical artificial intelligence publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.10.007 – volume: Volume 5327 start-page: 161 year: 2008 ident: ref_30 article-title: An Ontology-Based Bayesian Network Approach for Representing Uncertainty in Clinical Practice Guidelines publication-title: Uncertainty Reasoning for the Semantic Web I doi: 10.1007/978-3-540-89765-1_10 – ident: ref_10 – volume: 39 start-page: 9041 year: 2012 ident: ref_3 article-title: Enhancing ontology-based antipattern detection using Bayesian networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.02.049 – ident: ref_21 doi: 10.12987/9780300255881 – ident: ref_13 – ident: ref_36 doi: 10.3390/info10030095 – ident: ref_38 – volume: 43 start-page: 907 year: 1995 ident: ref_12 article-title: Toward principles for the design of ontologies used for knowledge sharing? publication-title: Int. J. Hum.-Comput. Stud. doi: 10.1006/ijhc.1995.1081 – volume: 33 start-page: 58 year: 2004 ident: ref_14 article-title: Ontologies and semantics for seamless connectivity publication-title: ACM SIGMOD Rec. doi: 10.1145/1041410.1041420 – ident: ref_22 – ident: ref_2 doi: 10.1109/CISIS.2009.33 – volume: 119 start-page: 1691 year: 2019 ident: ref_31 article-title: An Ontology-based Bayesian network modelling for supply chain risk propagation publication-title: Ind. Manag. Data Syst. doi: 10.1108/IMDS-01-2019-0032 – volume: 5 start-page: 199 year: 1993 ident: ref_11 article-title: A translation approach to portable ontology specifications publication-title: Knowl. Acquis. doi: 10.1006/knac.1993.1008 – ident: ref_34 doi: 10.1613/jair.305 |
SSID | ssj0002794104 |
Score | 2.264437 |
Snippet | Despite increasing digitalization and automation, complex production processes often require human judgment/decision-making adaptability. Humans can abstract... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 898 |
SubjectTerms | Artificial intelligence basic formal ontology (BFO) Bayesian analysis bayesian network causal graph Causality Decision making Decision tree digital expert Digitization Expected values Graphs Human performance Influence Knowledge Knowledge bases (artificial intelligence) Knowledge management Knowledge representation Machine learning Methods Networks Ontology ontology-based Resource Description Framework-RDF Semantic web Semantics Web Ontology Language-OWL |
SummonAdditionalLinks | – databaseName: Open Access: DOAJ - Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhp15CS1qyTVp0COQBZmVZlqXckk1DaMgD2oXchJ6l7dYbYueQf5Gf3JHkXTaQ0EuvYhCyZjSaT575BqHdppReG_B-TAQCAMXzQgQmi9oR4xtXGZO6NVxe8fMp-3pb3660-oo5YZkeOG_cuGHcUE1CXQrLQsWM50FwmAGAiSMiMYESSVbA1K_0O00yABq5IK8CXD_-o397TqJN0GdXUGLqf80fp0vm7C3aGKJDfJxX9Q6t-XYTPU1yaSG-0Xf-HkOUiTU-_fkjtvvAiaq4P8LflozM-BSMKj-04nnA-xP90OnZAT7Rjz5WTOKrnPndwUjnHQax6zZ1sQXQnGa_WLyzFVniJrPCxgljUlj3Hk3PvnyfnBdDI4XCMlL1RUO5MZoI8Mu09EG4EqIUUhpWkcCZK6kFSK2NZrCTlIQQhGGOExcq2xgLAdIHtN7OW7-FsKwl4aFyzEIkxTnRpipN_N1rqZZMsxE6XOytsgPLeGx2MVOANqIi1IoiRmh3KXyXyTVeFjuJSlqKREbsNAB2ogY7Uf-ykxHaiypW8dzCgqweyg_gsyIDljpuAPlRXkuQ3FlYgRoOdKfAFUJwQ6QoP_6P1WyjNxSio5xztoPW-_sH_wmim958Tob8F2t898w priority: 102 providerName: Directory of Open Access Journals |
Title | Concept Paper for a Digital Expert: Systematic Derivation of (Causal) Bayesian Networks Based on Ontologies for Knowledge-Based Production Steps |
URI | https://www.proquest.com/docview/3072380981 https://doaj.org/article/746b2a0f518c4f34be6f86b56409d084 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagvXBBRYAolMiHSjykVW2v1-vlgpo0oQI1RECl3iw_K0RJ0mx64MJv4CczfiSABFz24B1Z3p3P45nxPBA6bGnntQHpx2UgYKB4UcnAu6pxxPjW1cakbg1nU3F6zt9eNBfF4daXsMqNTEyC2i1s9JEfARbhdCGdpK-X11XsGhVvV0sLjdtol8JJE3EuJ2-2PhYGYANzI6fl1WDdH33VX7wgERnsj4Mo1ev_l1ROR81kD90tOiI-zky9h275-X30Y5QTDPFML_0Kg66JNT75fBmbfuBUsHj9Cn_c1mXGJwCt7G7Fi4Cfj_RNr69e4KH-5mPeJJ7m-O8eRnrvMJC9n6detmA6p9nfbbxtVaaY5dqwccIYGtY_QOeT8afRaVXaKVSWk3pdtUwYo4kE6cyoD9JR0FUINbwmQXBHmQXDWhvNGekYCSFIw50gLtS2NRbUpIdoZ76Y-0cId01HRKgdt6BPCUG0qamJl76W6Y5rvo9ebv6tsqXWeGx5caXA5oiMUL8xYh8dbomXucTG38mGkUlbklgXOw0sVpeqbDPVcmGYJqGh0vJQc-NFkALwBmasIxIW9iyyWMXdCwuyuiQhwGfFOljquAX7j4mmA8qDDQpU2da9-gXCx_9__QTdYaD95JiyA7SzXt34p6C9rM0gQXSAdofj6ezDIPkA4Hn2ffwTjpPzoA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaq9AAXBAJEoQUfinhIq3q9jncXCaEmaZWSNkTQSr25flaINgnZVKj_gl_Cb2RmvRtAAm69ekeW1_N5HvY8CNnO09JrA9JPFIGBg-JlUgRRJl3HjM9dZkzdreFoLIcn4v1p93SN_GhzYTCsspWJtaB2M4t35DuARdAurCzSd_OvCXaNwtfVtoVGhMXIX38Dl616ezAA_j7nfH_vuD9Mmq4CiRUsWyY5l8ZoVoCQ4qkPhUtBZbPUiIwFKVzKLfiX2mjBWclZCKEwwknmQmZzYyUWOgCRvy4wo7VD1nt748nH1a0OB3iDgxMTAbOsZDuX-ouXDLHI_1B9dYeAf-mBWrnt3yV3GquU7kYY3SNrfnqffO_HlEY60XO_oGDdUk0Hn8-xzQitSyQv39BPq0rQdABgjhe8dBboy76-qvTFK9rT1x4zNek4RpxXMFJ5R4Hsw7TungvOej37qL3fSyLFJFajxQkxGK16QE5uZKsfks50NvWPCC27JZMhc8KCBScl0yZLDT4zW65LocUGed3urbJNdXNssnGhwMtBRqjfGLFBtlfE81jU4-9kPWTSigQrcdcDs8W5ag62yoU0XLPQTQsrQiaMl6GQgHBwnB0rYGEvkMUK5QUsyOom7QF-Cytvqd0cPE4uuyVQbrYoUI0gqdQv2D_-_-dn5Nbw-OhQHR6MR0_IbQ62V4xo2ySd5eLKb4HttDRPG8BScnbTZ-QnMjQu3A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA6lgvgiiorVqnmoeIFhM0k2kwgi7a5r6-q6oIW-xVyLtN1dd7ZI_4W_x1_nyWRmVVDf-jpzGGbmfDnnfMm5ILRTlSoYC9aPy0iAoARRyMhV0ffEhsoza5tpDe8nYv-Qvz3qH22gH10tTEqr7GxiY6j93KU98h5gEbwLUbLsxTYtYjocvVp8LdIEqXTS2o3TyBAZh4tvQN_qlwdD0PVjSkevPw32i3bCQOE4YauiosJaQyQYLFqGKH0J7puUljMSBfcldcA1jTWcEkVJjFFa7gXxkbnKOpGaHoD5v1KxSiXiJ0dv1vs7FIAOVCeXBDKmSO_MnARBEirpH06wmRXwL4_QuLnRDXS9jU_xbgbUTbQRZrfQ90EubsRTswhLDHEuNnj45TgNHMFNs-TVC_xx3RMaDwHWeasXzyN-OjDntTl9hvfMRUg1m3iSc89ruFIHj0Hsw6yZowu0vXn6uNvpK7LENPelTQ9MaWn1bXR4KT_6DtqczWfhLsKqr4iIzHMHsZwQxFhW2nTg7KhR3PAt9Lz7t9q1fc7TuI1TDXwnKUL_pogttLMWXuT2Hn8X20tKWoukntzNhfnyWLdLXFdcWGpI7JfS8ci4DSJKAVgHCu2JhBd7klSsk-WAF3KmLYCAz0o9uPRuBdyTir4Cye0OBbo1KbX-tQDu_f_2I3QVVoZ-dzAZ30fXKARhObVtG22ulufhAQRRK_uwQStGny97efwE3_oxrA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concept+Paper+for+a+Digital+Expert%3A+Systematic+Derivation+of+%28Causal%29+Bayesian+Networks+Based+on+Ontologies+for+Knowledge-Based+Production+Steps&rft.jtitle=Machine+learning+and+knowledge+extraction&rft.au=Pfaff-Kastner%2C+Manja+Mai-Ly&rft.au=Wenzel%2C+Ken&rft.au=Ihlenfeldt%2C+Steffen&rft.date=2024-06-01&rft.issn=2504-4990&rft.eissn=2504-4990&rft.volume=6&rft.issue=2&rft.spage=898&rft.epage=916&rft_id=info:doi/10.3390%2Fmake6020042&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_make6020042 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-4990&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-4990&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-4990&client=summon |