Polymer-buried van der Waals magnets for promising wearable room-temperature spintronics

The demand for high-performance spintronic devices has boosted intense research on the manipulation of magnetism in van der Waals (vdW) magnets. Despite great efforts, robust ferromagnetic transitions above room temperature still face significant hurdles. Strain engineering can reversibly regulate m...

Full description

Saved in:
Bibliographic Details
Published inMaterials horizons Vol. 8; no. 12; pp. 336 - 3314
Main Authors Hu, Liang, Zhou, Jian, Hou, Zhipeng, Su, Weitao, Yang, Bingzhang, Li, Lingwei, Yan, Mi
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 29.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The demand for high-performance spintronic devices has boosted intense research on the manipulation of magnetism in van der Waals (vdW) magnets. Despite great efforts, robust ferromagnetic transitions above room temperature still face significant hurdles. Strain engineering can reversibly regulate magnetic exchange, but the degree of regulation is still impractical for most magnetic applications. Hereby we employ a large-strain transferrer to produce tunable strains of up to 4.7%, which induces authentic room-temperature ferromagnetism in large-area Fe 3 GeTe 2 nanoflakes with 20-fold improvement in magnetization. The record increment of the Curie temperature ( T C ) of well above 400 K originates from the strain-enhanced magnetic anisotropy and excellent magnetoelastic coupling. The correlation between the emerging ferromagnetism and Raman spectral evolution is also established, which complements well the T C phase diagram in a large-strain region. In addition, an unusual exchange bias effect with a vertical magnetization shift is tracked for the first time upon bending, which reveals the hidden competition between antiferromagnetic and ferromagnetic coupling. The reversible strain manipulation of single-domain ferromagnetic order in a single nanoflake further opens up a route to develop low-power wearable spintronic devices. The findings here provide vast opportunities to exploit the possibility of practical applications of more vdW magnets. A record Curie temperature of well above 400 K is reversibly realized in large-tensile strain-coupled van der Waals Fe 3 GeTe 2 nanoflakes.
AbstractList The demand for high-performance spintronic devices has boosted intense research on the manipulation of magnetism in van der Waals (vdW) magnets. Despite great efforts, robust ferromagnetic transitions above room temperature still face significant hurdles. Strain engineering can reversibly regulate magnetic exchange, but the degree of regulation is still impractical for most magnetic applications. Hereby we employ a large-strain transferrer to produce tunable strains of up to 4.7%, which induces authentic room-temperature ferromagnetism in large-area Fe3GeTe2 nanoflakes with 20-fold improvement in magnetization. The record increment of the Curie temperature (TC) of well above 400 K originates from the strain-enhanced magnetic anisotropy and excellent magnetoelastic coupling. The correlation between the emerging ferromagnetism and Raman spectral evolution is also established, which complements well the TC phase diagram in a large-strain region. In addition, an unusual exchange bias effect with a vertical magnetization shift is tracked for the first time upon bending, which reveals the hidden competition between antiferromagnetic and ferromagnetic coupling. The reversible strain manipulation of single-domain ferromagnetic order in a single nanoflake further opens up a route to develop low-power wearable spintronic devices. The findings here provide vast opportunities to exploit the possibility of practical applications of more vdW magnets.
The demand for high-performance spintronic devices has boosted intense research on the manipulation of magnetism in van der Waals (vdW) magnets. Despite great efforts, robust ferromagnetic transitions above room temperature still face significant hurdles. Strain engineering can reversibly regulate magnetic exchange, but the degree of regulation is still impractical for most magnetic applications. Hereby we employ a large-strain transferrer to produce tunable strains of up to 4.7%, which induces authentic room-temperature ferromagnetism in large-area Fe3GeTe2 nanoflakes with 20-fold improvement in magnetization. The record increment of the Curie temperature (TC) of well above 400 K originates from the strain-enhanced magnetic anisotropy and excellent magnetoelastic coupling. The correlation between the emerging ferromagnetism and Raman spectral evolution is also established, which complements well the TC phase diagram in a large-strain region. In addition, an unusual exchange bias effect with a vertical magnetization shift is tracked for the first time upon bending, which reveals the hidden competition between antiferromagnetic and ferromagnetic coupling. The reversible strain manipulation of single-domain ferromagnetic order in a single nanoflake further opens up a route to develop low-power wearable spintronic devices. The findings here provide vast opportunities to exploit the possibility of practical applications of more vdW magnets.The demand for high-performance spintronic devices has boosted intense research on the manipulation of magnetism in van der Waals (vdW) magnets. Despite great efforts, robust ferromagnetic transitions above room temperature still face significant hurdles. Strain engineering can reversibly regulate magnetic exchange, but the degree of regulation is still impractical for most magnetic applications. Hereby we employ a large-strain transferrer to produce tunable strains of up to 4.7%, which induces authentic room-temperature ferromagnetism in large-area Fe3GeTe2 nanoflakes with 20-fold improvement in magnetization. The record increment of the Curie temperature (TC) of well above 400 K originates from the strain-enhanced magnetic anisotropy and excellent magnetoelastic coupling. The correlation between the emerging ferromagnetism and Raman spectral evolution is also established, which complements well the TC phase diagram in a large-strain region. In addition, an unusual exchange bias effect with a vertical magnetization shift is tracked for the first time upon bending, which reveals the hidden competition between antiferromagnetic and ferromagnetic coupling. The reversible strain manipulation of single-domain ferromagnetic order in a single nanoflake further opens up a route to develop low-power wearable spintronic devices. The findings here provide vast opportunities to exploit the possibility of practical applications of more vdW magnets.
The demand for high-performance spintronic devices has boosted intense research on the manipulation of magnetism in van der Waals (vdW) magnets. Despite great efforts, robust ferromagnetic transitions above room temperature still face significant hurdles. Strain engineering can reversibly regulate magnetic exchange, but the degree of regulation is still impractical for most magnetic applications. Hereby we employ a large-strain transferrer to produce tunable strains of up to 4.7%, which induces authentic room-temperature ferromagnetism in large-area Fe 3 GeTe 2 nanoflakes with 20-fold improvement in magnetization. The record increment of the Curie temperature ( T C ) of well above 400 K originates from the strain-enhanced magnetic anisotropy and excellent magnetoelastic coupling. The correlation between the emerging ferromagnetism and Raman spectral evolution is also established, which complements well the T C phase diagram in a large-strain region. In addition, an unusual exchange bias effect with a vertical magnetization shift is tracked for the first time upon bending, which reveals the hidden competition between antiferromagnetic and ferromagnetic coupling. The reversible strain manipulation of single-domain ferromagnetic order in a single nanoflake further opens up a route to develop low-power wearable spintronic devices. The findings here provide vast opportunities to exploit the possibility of practical applications of more vdW magnets. A record Curie temperature of well above 400 K is reversibly realized in large-tensile strain-coupled van der Waals Fe 3 GeTe 2 nanoflakes.
The demand for high-performance spintronic devices has boosted intense research on the manipulation of magnetism in van der Waals (vdW) magnets. Despite great efforts, robust ferromagnetic transitions above room temperature still face significant hurdles. Strain engineering can reversibly regulate magnetic exchange, but the degree of regulation is still impractical for most magnetic applications. Hereby we employ a large-strain transferrer to produce tunable strains of up to 4.7%, which induces authentic room-temperature ferromagnetism in large-area Fe 3 GeTe 2 nanoflakes with 20-fold improvement in magnetization. The record increment of the Curie temperature ( T C ) of well above 400 K originates from the strain-enhanced magnetic anisotropy and excellent magnetoelastic coupling. The correlation between the emerging ferromagnetism and Raman spectral evolution is also established, which complements well the T C phase diagram in a large-strain region. In addition, an unusual exchange bias effect with a vertical magnetization shift is tracked for the first time upon bending, which reveals the hidden competition between antiferromagnetic and ferromagnetic coupling. The reversible strain manipulation of single-domain ferromagnetic order in a single nanoflake further opens up a route to develop low-power wearable spintronic devices. The findings here provide vast opportunities to exploit the possibility of practical applications of more vdW magnets.
The demand for high-performance spintronic devices has boosted intense research on the manipulation of magnetism in van der Waals (vdW) magnets. Despite great efforts, robust ferromagnetic transitions above room temperature still face significant hurdles. Strain engineering can reversibly regulate magnetic exchange, but the degree of regulation is still impractical for most magnetic applications. Hereby we employ a large-strain transferrer to produce tunable strains of up to 4.7%, which induces authentic room-temperature ferromagnetism in large-area Fe GeTe nanoflakes with 20-fold improvement in magnetization. The record increment of the Curie temperature ( ) of well above 400 K originates from the strain-enhanced magnetic anisotropy and excellent magnetoelastic coupling. The correlation between the emerging ferromagnetism and Raman spectral evolution is also established, which complements well the phase diagram in a large-strain region. In addition, an unusual exchange bias effect with a vertical magnetization shift is tracked for the first time upon bending, which reveals the hidden competition between antiferromagnetic and ferromagnetic coupling. The reversible strain manipulation of single-domain ferromagnetic order in a single nanoflake further opens up a route to develop low-power wearable spintronic devices. The findings here provide vast opportunities to exploit the possibility of practical applications of more vdW magnets.
Author Zhou, Jian
Yan, Mi
Li, Lingwei
Hou, Zhipeng
Hu, Liang
Su, Weitao
Yang, Bingzhang
AuthorAffiliation South China Academy of Advanced Optoelectronics
State Key Lab of Silicon Materials
School of Materials Science and Engineering
South China Normal University
Hangzhou Dianzi University
Key Laboratory of Novel Materials for Sensor of Zhejiang Province
College of Materials and Environmental Engineering
Zhejiang University
AuthorAffiliation_xml – name: Key Laboratory of Novel Materials for Sensor of Zhejiang Province
– name: College of Materials and Environmental Engineering
– name: South China Academy of Advanced Optoelectronics
– name: Hangzhou Dianzi University
– name: School of Materials Science and Engineering
– name: State Key Lab of Silicon Materials
– name: South China Normal University
– name: Zhejiang University
Author_xml – sequence: 1
  givenname: Liang
  surname: Hu
  fullname: Hu, Liang
– sequence: 2
  givenname: Jian
  surname: Zhou
  fullname: Zhou, Jian
– sequence: 3
  givenname: Zhipeng
  surname: Hou
  fullname: Hou, Zhipeng
– sequence: 4
  givenname: Weitao
  surname: Su
  fullname: Su, Weitao
– sequence: 5
  givenname: Bingzhang
  surname: Yang
  fullname: Yang, Bingzhang
– sequence: 6
  givenname: Lingwei
  surname: Li
  fullname: Li, Lingwei
– sequence: 7
  givenname: Mi
  surname: Yan
  fullname: Yan, Mi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34751291$$D View this record in MEDLINE/PubMed
BookMark eNptkcFPFTEQxhuDEQQu3jVNvBiTlXbb7m6PBIVnxMBBo7dmtp2Hhd320e5K-O-p7wEmhNNMJr_58s18r8lWiAEJecPZJ86EPnB8_MO4FPrqBdmpmeJVI5Taeuxlu032c75kjHEhFevYK7JdporXmu-Q3-dxuB0xVf2cPDr6FwJ1mOgvgCHTES4CTpkuY6KrFEeffbigNwgJ-gFpinGsJhxXmGCaE9K88mFKMXib98jLZZHA_fu6S34ef_lxtKhOz06-Hh2eVlYyMVUtB8c5SCdAa8eEVSD7GiRXtnWgnXTY1l3LVK2tWzorWNd30jUNqKYt14hd8mGjW_xdz5gnU1xaHAYIGOdsaqWVarpa64K-f4JexjmF4s7UDZNcCL2m3t1Tcz-iM6vkR0i35uFnBWAbwKaYc8KlsX6CycdyOvjBcGb-JWM-8--LdTLfysrHJysPqs_CbzdwyvaR-x-zuANeZZcr
CitedBy_id crossref_primary_10_1002_smll_202308187
crossref_primary_10_1016_j_mtphys_2022_100786
crossref_primary_10_1007_s11664_022_09808_z
crossref_primary_10_1073_pnas_2322361121
crossref_primary_10_1016_j_jallcom_2021_163116
crossref_primary_10_1016_j_ssc_2022_114885
crossref_primary_10_1007_s11664_022_09893_0
crossref_primary_10_1007_s40843_021_1967_5
crossref_primary_10_1016_j_ssc_2021_114621
crossref_primary_10_3390_nano13162378
crossref_primary_10_1016_j_matchemphys_2022_126527
crossref_primary_10_1021_acsnano_2c09143
crossref_primary_10_1002_adma_202205714
crossref_primary_10_1088_0256_307X_40_8_087501
crossref_primary_10_1016_j_jmst_2022_01_041
crossref_primary_10_3390_nano13243154
crossref_primary_10_1002_adfm_202409085
crossref_primary_10_1016_j_ceramint_2022_07_088
crossref_primary_10_3390_molecules28135004
crossref_primary_10_1016_j_esci_2023_100117
crossref_primary_10_1016_j_materresbull_2024_112828
crossref_primary_10_1016_j_ssc_2022_114696
crossref_primary_10_1088_1402_4896_acaee8
crossref_primary_10_1007_s10948_022_06263_z
crossref_primary_10_1016_j_jallcom_2021_162777
crossref_primary_10_1063_5_0087624
crossref_primary_10_3390_molecules28217244
crossref_primary_10_1002_smll_202409752
crossref_primary_10_1016_j_ceramint_2022_08_265
crossref_primary_10_1088_1674_1056_ac6edf
crossref_primary_10_1016_j_actamat_2022_117669
crossref_primary_10_1016_j_apsusc_2025_163020
crossref_primary_10_1021_acsmaterialslett_3c00088
crossref_primary_10_1063_5_0130037
crossref_primary_10_1002_adma_202211388
crossref_primary_10_1002_admi_202201531
crossref_primary_10_1016_j_ceramint_2022_11_013
crossref_primary_10_3390_nano15010015
Cites_doi 10.1021/nn303198w
10.1126/sciadv.aay8912
10.1021/acsnano.0c03152
10.1002/adfm.201901414
10.1038/s41586-018-0626-9
10.1103/PhysRevB.98.144411
10.7566/JPSJ.82.124711
10.1063/1.5142077
10.1016/j.mtphys.2021.100341
10.1088/1361-6528/ab0a37
10.1021/acsami.0c05530
10.1038/s41699-017-0033-3
10.1038/s41563-019-0505-2
10.1103/PhysRevB.93.134407
10.1038/nature22391
10.1002/qute.202000017
10.1038/s41565-018-0063-9
10.1021/jacs.9b06929
10.1002/adfm.201904734
10.1039/D1MH00009H
10.1038/s41467-021-22777-x
10.1021/acs.chemmater.8b01672
10.1002/adma.202004533
10.1103/PhysRevLett.91.017203
10.1103/RevModPhys.92.021003
10.1103/PhysRevB.99.214304
10.1002/smll.201202876
10.1002/adma.202000566
10.1039/C9NR10171C
10.1088/2053-1583/4/1/011005
10.1103/PhysRevB.99.184428
10.1038/ncomms6246
10.1038/s41563-018-0149-7
10.1021/acsnano.8b09660
10.1038/s41563-018-0040-6
10.1038/s41467-018-04018-w
10.1103/PhysRevB.93.014411
10.1103/PhysRevB.96.134428
10.1103/PhysRevLett.125.047202
10.1038/nature22060
10.1021/nn800459e
10.1021/acs.nanolett.9b01287
10.1038/s41928-019-0273-7
10.1002/aelm.202001159
10.1021/acs.nanolett.0c04434
10.1002/ejic.200501020
10.1002/adma.201900065
10.1002/adma.201805417
10.1088/0256-307X/37/7/076202
10.1103/PhysRevB.61.1315
10.1021/acs.nanolett.0c01149
10.1021/acs.nanolett.9b03453
10.1063/5.0006337
10.1038/s41467-020-15023-3
10.1002/adma.202002032
10.1021/acs.nanolett.8b02806
10.1002/inf2.12096
10.1088/2053-1583/abc8cb
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7TB
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/d1mh01439k
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2051-6355
EndPage 3314
ExternalDocumentID 34751291
10_1039_D1MH01439K
d1mh01439k
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R
4.4
AAEMU
AAGNR
AAIWI
AAJAE
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
H13
HZ
H~N
J3I
O-G
O9-
RCNCU
RIG
RPMJG
RRC
RSCEA
0R~
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABPDG
ABXOH
AEFDR
AENGV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AHGCF
AKBGW
AKMSF
APEMP
CITATION
GGIMP
HZ~
RAOCF
RVUXY
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7TB
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c403t-71ad11a4d3a99d03c5a4b2a415c7da9d4de72870529cdfdc308b84d66a5675083
ISSN 2051-6347
2051-6355
IngestDate Thu Jul 10 22:02:09 EDT 2025
Mon Jun 30 04:41:49 EDT 2025
Thu Apr 03 07:09:27 EDT 2025
Tue Jul 01 01:36:15 EDT 2025
Thu Apr 24 22:59:48 EDT 2025
Sun May 15 04:20:38 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c403t-71ad11a4d3a99d03c5a4b2a415c7da9d4de72870529cdfdc308b84d66a5675083
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/d1mh01439k
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7042-2717
0000-0001-8174-5351
PMID 34751291
PQID 2604133999
PQPubID 2047518
PageCount 9
ParticipantIDs crossref_primary_10_1039_D1MH01439K
pubmed_primary_34751291
proquest_journals_2604133999
rsc_primary_d1mh01439k
crossref_citationtrail_10_1039_D1MH01439K
proquest_miscellaneous_2595568299
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-29
PublicationDateYYYYMMDD 2021-11-29
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-29
  day: 29
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Materials horizons
PublicationTitleAlternate Mater Horiz
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Weber (D1MH01439K/cit55) 2019; 19
Guo (D1MH01439K/cit11) 2020; 2
Chen (D1MH01439K/cit34) 2013; 82
Dadgar (D1MH01439K/cit47) 2018; 30
Bonilla (D1MH01439K/cit16) 2018; 13
Nogués (D1MH01439K/cit49) 2000; 61
Zhuang (D1MH01439K/cit22) 2016; 93
May (D1MH01439K/cit25) 2016; 93
Hu (D1MH01439K/cit10) 2021; 8
Gong (D1MH01439K/cit3) 2017; 546
Kong (D1MH01439K/cit44) 2021; 7
Kim (D1MH01439K/cit30) 2019; 30
Wang (D1MH01439K/cit53) 2020; 14
Liu (D1MH01439K/cit18) 2014; 5
Zhou (D1MH01439K/cit19) 2012; 6
Yi (D1MH01439K/cit29) 2016; 4
Tian (D1MH01439K/cit38) 2019; 99
May (D1MH01439K/cit58) 2019; 13
Zheng (D1MH01439K/cit33) 2020; 125
Wang (D1MH01439K/cit26) 2017; 96
Ni (D1MH01439K/cit45) 2008; 2
Fei (D1MH01439K/cit23) 2018; 17
Wei (D1MH01439K/cit9) 2020; 8
Jie-Min Xu (D1MH01439K/cit41) 2020; 37
Ohldag (D1MH01439K/cit50) 2003; 91
Jiang (D1MH01439K/cit8) 2018; 17
Gweon (D1MH01439K/cit28) 2021; 21
Seo (D1MH01439K/cit57) 2020; 6
Cortie (D1MH01439K/cit7) 2020; 30
Li (D1MH01439K/cit54) 2018; 18
Hu (D1MH01439K/cit21) 2020; 12
Deng (D1MH01439K/cit4) 2018; 563
Huang (D1MH01439K/cit1) 2017; 546
Yang (D1MH01439K/cit52) 2020; 3
Ding (D1MH01439K/cit40) 2020; 20
Tian (D1MH01439K/cit59) 2020; 116
Li (D1MH01439K/cit12) 2019; 31
Wang (D1MH01439K/cit46) 2013; 9
Li (D1MH01439K/cit39) 2020; 11
Deiseroth (D1MH01439K/cit36) 2006
Du (D1MH01439K/cit43) 2019; 29
Hou (D1MH01439K/cit48) 2021; 17
Wang (D1MH01439K/cit15) 2019; 141
Avsar (D1MH01439K/cit6) 2020; 92
Milosavljević (D1MH01439K/cit42) 2019; 99
Tan (D1MH01439K/cit24) 2018; 9
Song (D1MH01439K/cit13) 2019; 18
Jang (D1MH01439K/cit27) 2020; 12
Zhang (D1MH01439K/cit31) 2020; 32
Ke (D1MH01439K/cit37) 2020; 32
Zhang (D1MH01439K/cit56) 2020; 116
Webster (D1MH01439K/cit20) 2018; 98
Zhang (D1MH01439K/cit2) 2021; 12
Liu (D1MH01439K/cit35) 2017; 1
Zhu (D1MH01439K/cit32) 2020; 20
Lin (D1MH01439K/cit5) 2019; 2
Dai (D1MH01439K/cit17) 2019; 31
Serri (D1MH01439K/cit51) 2020; 32
Wang (D1MH01439K/cit14) 2020; 32
References_xml – volume: 32
  start-page: 405805
  year: 2020
  ident: D1MH01439K/cit37
  publication-title: J. Phys.: Condens. Matter
– volume: 6
  start-page: 9727
  year: 2012
  ident: D1MH01439K/cit19
  publication-title: ACS Nano
  doi: 10.1021/nn303198w
– volume: 6
  start-page: eaay8912
  year: 2020
  ident: D1MH01439K/cit57
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay8912
– volume: 14
  start-page: 10045
  year: 2020
  ident: D1MH01439K/cit53
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03152
– volume: 30
  start-page: 1901414
  year: 2020
  ident: D1MH01439K/cit7
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901414
– volume: 563
  start-page: 94
  year: 2018
  ident: D1MH01439K/cit4
  publication-title: Nature
  doi: 10.1038/s41586-018-0626-9
– volume: 98
  start-page: 144411
  year: 2018
  ident: D1MH01439K/cit20
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.144411
– volume: 82
  start-page: 124711
  year: 2013
  ident: D1MH01439K/cit34
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.7566/JPSJ.82.124711
– volume: 116
  start-page: 042402
  year: 2020
  ident: D1MH01439K/cit56
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5142077
– volume: 17
  start-page: 100341
  year: 2021
  ident: D1MH01439K/cit48
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2021.100341
– volume: 30
  start-page: 245701
  year: 2019
  ident: D1MH01439K/cit30
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab0a37
– volume: 12
  start-page: 26367
  year: 2020
  ident: D1MH01439K/cit21
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c05530
– volume: 1
  start-page: 30
  year: 2017
  ident: D1MH01439K/cit35
  publication-title: npj 2D Mater. Appl.
  doi: 10.1038/s41699-017-0033-3
– volume: 18
  start-page: 1298
  year: 2019
  ident: D1MH01439K/cit13
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0505-2
– volume: 93
  start-page: 134407
  year: 2016
  ident: D1MH01439K/cit22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.134407
– volume: 546
  start-page: 270
  year: 2017
  ident: D1MH01439K/cit1
  publication-title: Nature
  doi: 10.1038/nature22391
– volume: 3
  start-page: 2000017
  year: 2020
  ident: D1MH01439K/cit52
  publication-title: Adv. Quantum Technol.
  doi: 10.1002/qute.202000017
– volume: 13
  start-page: 289
  year: 2018
  ident: D1MH01439K/cit16
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0063-9
– volume: 141
  start-page: 17166
  year: 2019
  ident: D1MH01439K/cit15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b06929
– volume: 29
  start-page: 1904734
  year: 2019
  ident: D1MH01439K/cit43
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201904734
– volume: 8
  start-page: 1286
  year: 2021
  ident: D1MH01439K/cit10
  publication-title: Mater. Horiz.
  doi: 10.1039/D1MH00009H
– volume: 12
  start-page: 2492
  year: 2021
  ident: D1MH01439K/cit2
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22777-x
– volume: 30
  start-page: 5148
  year: 2018
  ident: D1MH01439K/cit47
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b01672
– volume: 32
  start-page: 2004533
  year: 2020
  ident: D1MH01439K/cit14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202004533
– volume: 91
  start-page: 017203
  year: 2003
  ident: D1MH01439K/cit50
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.017203
– volume: 92
  start-page: 021003
  year: 2020
  ident: D1MH01439K/cit6
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.92.021003
– volume: 99
  start-page: 214304
  year: 2019
  ident: D1MH01439K/cit42
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.214304
– volume: 9
  start-page: 2857
  year: 2013
  ident: D1MH01439K/cit46
  publication-title: Small
  doi: 10.1002/smll.201202876
– volume: 32
  start-page: 2000566
  year: 2020
  ident: D1MH01439K/cit51
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000566
– volume: 12
  start-page: 13501
  year: 2020
  ident: D1MH01439K/cit27
  publication-title: Nanoscale
  doi: 10.1039/C9NR10171C
– volume: 4
  start-page: 011005
  year: 2016
  ident: D1MH01439K/cit29
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/4/1/011005
– volume: 99
  start-page: 184428
  year: 2019
  ident: D1MH01439K/cit38
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.184428
– volume: 5
  start-page: 5246
  year: 2014
  ident: D1MH01439K/cit18
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6246
– volume: 17
  start-page: 778
  year: 2018
  ident: D1MH01439K/cit23
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0149-7
– volume: 13
  start-page: 4436
  year: 2019
  ident: D1MH01439K/cit58
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b09660
– volume: 17
  start-page: 406
  year: 2018
  ident: D1MH01439K/cit8
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0040-6
– volume: 9
  start-page: 1554
  year: 2018
  ident: D1MH01439K/cit24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04018-w
– volume: 93
  start-page: 014411
  year: 2016
  ident: D1MH01439K/cit25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.014411
– volume: 96
  start-page: 134428
  year: 2017
  ident: D1MH01439K/cit26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.134428
– volume: 125
  start-page: 047202
  year: 2020
  ident: D1MH01439K/cit33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.047202
– volume: 546
  start-page: 265
  year: 2017
  ident: D1MH01439K/cit3
  publication-title: Nature
  doi: 10.1038/nature22060
– volume: 2
  start-page: 2301
  year: 2008
  ident: D1MH01439K/cit45
  publication-title: ACS Nano
  doi: 10.1021/nn800459e
– volume: 19
  start-page: 5031
  year: 2019
  ident: D1MH01439K/cit55
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b01287
– volume: 2
  start-page: 274
  year: 2019
  ident: D1MH01439K/cit5
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0273-7
– volume: 7
  start-page: 2001159
  year: 2021
  ident: D1MH01439K/cit44
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202001159
– volume: 21
  start-page: 1672
  year: 2021
  ident: D1MH01439K/cit28
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c04434
– start-page: 1561
  year: 2006
  ident: D1MH01439K/cit36
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.200501020
– volume: 31
  start-page: 1900065
  year: 2019
  ident: D1MH01439K/cit12
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900065
– volume: 31
  start-page: 1805417
  year: 2019
  ident: D1MH01439K/cit17
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805417
– volume: 37
  start-page: 076202
  year: 2020
  ident: D1MH01439K/cit41
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/37/7/076202
– volume: 61
  start-page: 1315
  year: 2000
  ident: D1MH01439K/cit49
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.61.1315
– volume: 20
  start-page: 5030
  year: 2020
  ident: D1MH01439K/cit32
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c01149
– volume: 20
  start-page: 868
  year: 2020
  ident: D1MH01439K/cit40
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b03453
– volume: 116
  start-page: 202402
  year: 2020
  ident: D1MH01439K/cit59
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0006337
– volume: 11
  start-page: 1151
  year: 2020
  ident: D1MH01439K/cit39
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15023-3
– volume: 32
  start-page: 2002032
  year: 2020
  ident: D1MH01439K/cit31
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002032
– volume: 18
  start-page: 5974
  year: 2018
  ident: D1MH01439K/cit54
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b02806
– volume: 2
  start-page: 639
  year: 2020
  ident: D1MH01439K/cit11
  publication-title: InfoMat
  doi: 10.1002/inf2.12096
– volume: 8
  start-page: 012005
  year: 2020
  ident: D1MH01439K/cit9
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/abc8cb
SSID ssj0001345080
Score 2.4395905
Snippet The demand for high-performance spintronic devices has boosted intense research on the manipulation of magnetism in van der Waals (vdW) magnets. Despite great...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 336
SubjectTerms Antiferromagnetism
Coupling
Curie temperature
Ferromagnetism
Magnetic anisotropy
Magnetism
Magnetization
Magnets
Phase diagrams
Polymers
Room temperature
Spintronics
Temperature
Wearable technology
Title Polymer-buried van der Waals magnets for promising wearable room-temperature spintronics
URI https://www.ncbi.nlm.nih.gov/pubmed/34751291
https://www.proquest.com/docview/2604133999
https://www.proquest.com/docview/2595568299
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gIPE7dBx0BG8IKmjCR2kuZxgqFSKEKi0ypeKt-gFWtStekD-_WcY-fisSEBL1F1bLmtz2f784nPZ0Jeap2IHFO3BFdhwHUGYy7XWRBFUsU8HYiMYYLz-FM6POOjaTLt9UbeqaVtJY_V5Y15Jf_jVbCBXzFL9h882zYKBvgM_oUneBief-Xjz-XFz6VZBxLvndP2Cl6UhjgXqIm8FN8LU1m5BTyFBf60cVdAts2WQsYcoDBVrap8tFktCnchzsZnrGNRub9yNC_Xi8smumeR4Db1ol78bPi5tMaRB7qhM32dL1amq_nFGs_NohKlH3mII0zBq8MTdoKKYUAHKXOKmcfGtznp3WaGHfhAir3pkrHUW3kZc_mk12b1kKEoqo6Wc1QjzH90a1d7orArvEV2Y9gywJy3e3I6ef-xi7gxDmwUg27tD2_0aln-umvgKkO5tu0AErJuLoexJGRyl-zVuwd64qBwj_RMcZ_c8TQlH5DpVVBQAAUFUFALClqDggIoaAsK2oCC_g4K6oHiITl7dzp5Mwzq6zMCxUNWBVkkdBQJrhmMRh0ylQguYwGMTWVa5Jprk-Fr7iTOlf6mFQsHcsB1mooEdpFAzffJTlEW5jGhKg6FVjJVIjNcyESmMoG2pUkToP9K9cmrpstmqtaWxytOLmb2jAPLZ2-j8dB274c-edHWXTlFlRtrHTY9P6tH3GYGe2_gXECp8z553hZDV-FLLlGYcgt1khxF9WKs88h5rP0a8Djy26hP9sGFrblz_cGfCp6Q290IOCQ71XprngIbreSzGma_AG8GjQM
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polymer-buried+van+der+Waals+magnets+for+promising+wearable+room-temperature+spintronics&rft.jtitle=Materials+horizons&rft.au=Hu%2C+Liang&rft.au=Zhou%2C+Jian&rft.au=Hou%2C+Zhipeng&rft.au=Su%2C+Weitao&rft.date=2021-11-29&rft.issn=2051-6347&rft.eissn=2051-6355&rft.volume=8&rft.issue=12&rft.spage=336&rft.epage=3314&rft_id=info:doi/10.1039%2Fd1mh01439k&rft.externalDocID=d1mh01439k
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-6347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-6347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-6347&client=summon