Polymer-buried van der Waals magnets for promising wearable room-temperature spintronics
The demand for high-performance spintronic devices has boosted intense research on the manipulation of magnetism in van der Waals (vdW) magnets. Despite great efforts, robust ferromagnetic transitions above room temperature still face significant hurdles. Strain engineering can reversibly regulate m...
Saved in:
Published in | Materials horizons Vol. 8; no. 12; pp. 336 - 3314 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
29.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The demand for high-performance spintronic devices has boosted intense research on the manipulation of magnetism in van der Waals (vdW) magnets. Despite great efforts, robust ferromagnetic transitions above room temperature still face significant hurdles. Strain engineering can reversibly regulate magnetic exchange, but the degree of regulation is still impractical for most magnetic applications. Hereby we employ a large-strain transferrer to produce tunable strains of up to 4.7%, which induces authentic room-temperature ferromagnetism in large-area Fe
3
GeTe
2
nanoflakes with 20-fold improvement in magnetization. The record increment of the Curie temperature (
T
C
) of well above 400 K originates from the strain-enhanced magnetic anisotropy and excellent magnetoelastic coupling. The correlation between the emerging ferromagnetism and Raman spectral evolution is also established, which complements well the
T
C
phase diagram in a large-strain region. In addition, an unusual exchange bias effect with a vertical magnetization shift is tracked for the first time upon bending, which reveals the hidden competition between antiferromagnetic and ferromagnetic coupling. The reversible strain manipulation of single-domain ferromagnetic order in a single nanoflake further opens up a route to develop low-power wearable spintronic devices. The findings here provide vast opportunities to exploit the possibility of practical applications of more vdW magnets.
A record Curie temperature of well above 400 K is reversibly realized in large-tensile strain-coupled van der Waals Fe
3
GeTe
2
nanoflakes. |
---|---|
AbstractList | The demand for high-performance spintronic devices has boosted intense research on the manipulation of magnetism in van der Waals (vdW) magnets. Despite great efforts, robust ferromagnetic transitions above room temperature still face significant hurdles. Strain engineering can reversibly regulate magnetic exchange, but the degree of regulation is still impractical for most magnetic applications. Hereby we employ a large-strain transferrer to produce tunable strains of up to 4.7%, which induces authentic room-temperature ferromagnetism in large-area Fe3GeTe2 nanoflakes with 20-fold improvement in magnetization. The record increment of the Curie temperature (TC) of well above 400 K originates from the strain-enhanced magnetic anisotropy and excellent magnetoelastic coupling. The correlation between the emerging ferromagnetism and Raman spectral evolution is also established, which complements well the TC phase diagram in a large-strain region. In addition, an unusual exchange bias effect with a vertical magnetization shift is tracked for the first time upon bending, which reveals the hidden competition between antiferromagnetic and ferromagnetic coupling. The reversible strain manipulation of single-domain ferromagnetic order in a single nanoflake further opens up a route to develop low-power wearable spintronic devices. The findings here provide vast opportunities to exploit the possibility of practical applications of more vdW magnets. The demand for high-performance spintronic devices has boosted intense research on the manipulation of magnetism in van der Waals (vdW) magnets. Despite great efforts, robust ferromagnetic transitions above room temperature still face significant hurdles. Strain engineering can reversibly regulate magnetic exchange, but the degree of regulation is still impractical for most magnetic applications. Hereby we employ a large-strain transferrer to produce tunable strains of up to 4.7%, which induces authentic room-temperature ferromagnetism in large-area Fe3GeTe2 nanoflakes with 20-fold improvement in magnetization. The record increment of the Curie temperature (TC) of well above 400 K originates from the strain-enhanced magnetic anisotropy and excellent magnetoelastic coupling. The correlation between the emerging ferromagnetism and Raman spectral evolution is also established, which complements well the TC phase diagram in a large-strain region. In addition, an unusual exchange bias effect with a vertical magnetization shift is tracked for the first time upon bending, which reveals the hidden competition between antiferromagnetic and ferromagnetic coupling. The reversible strain manipulation of single-domain ferromagnetic order in a single nanoflake further opens up a route to develop low-power wearable spintronic devices. The findings here provide vast opportunities to exploit the possibility of practical applications of more vdW magnets.The demand for high-performance spintronic devices has boosted intense research on the manipulation of magnetism in van der Waals (vdW) magnets. Despite great efforts, robust ferromagnetic transitions above room temperature still face significant hurdles. Strain engineering can reversibly regulate magnetic exchange, but the degree of regulation is still impractical for most magnetic applications. Hereby we employ a large-strain transferrer to produce tunable strains of up to 4.7%, which induces authentic room-temperature ferromagnetism in large-area Fe3GeTe2 nanoflakes with 20-fold improvement in magnetization. The record increment of the Curie temperature (TC) of well above 400 K originates from the strain-enhanced magnetic anisotropy and excellent magnetoelastic coupling. The correlation between the emerging ferromagnetism and Raman spectral evolution is also established, which complements well the TC phase diagram in a large-strain region. In addition, an unusual exchange bias effect with a vertical magnetization shift is tracked for the first time upon bending, which reveals the hidden competition between antiferromagnetic and ferromagnetic coupling. The reversible strain manipulation of single-domain ferromagnetic order in a single nanoflake further opens up a route to develop low-power wearable spintronic devices. The findings here provide vast opportunities to exploit the possibility of practical applications of more vdW magnets. The demand for high-performance spintronic devices has boosted intense research on the manipulation of magnetism in van der Waals (vdW) magnets. Despite great efforts, robust ferromagnetic transitions above room temperature still face significant hurdles. Strain engineering can reversibly regulate magnetic exchange, but the degree of regulation is still impractical for most magnetic applications. Hereby we employ a large-strain transferrer to produce tunable strains of up to 4.7%, which induces authentic room-temperature ferromagnetism in large-area Fe 3 GeTe 2 nanoflakes with 20-fold improvement in magnetization. The record increment of the Curie temperature ( T C ) of well above 400 K originates from the strain-enhanced magnetic anisotropy and excellent magnetoelastic coupling. The correlation between the emerging ferromagnetism and Raman spectral evolution is also established, which complements well the T C phase diagram in a large-strain region. In addition, an unusual exchange bias effect with a vertical magnetization shift is tracked for the first time upon bending, which reveals the hidden competition between antiferromagnetic and ferromagnetic coupling. The reversible strain manipulation of single-domain ferromagnetic order in a single nanoflake further opens up a route to develop low-power wearable spintronic devices. The findings here provide vast opportunities to exploit the possibility of practical applications of more vdW magnets. A record Curie temperature of well above 400 K is reversibly realized in large-tensile strain-coupled van der Waals Fe 3 GeTe 2 nanoflakes. The demand for high-performance spintronic devices has boosted intense research on the manipulation of magnetism in van der Waals (vdW) magnets. Despite great efforts, robust ferromagnetic transitions above room temperature still face significant hurdles. Strain engineering can reversibly regulate magnetic exchange, but the degree of regulation is still impractical for most magnetic applications. Hereby we employ a large-strain transferrer to produce tunable strains of up to 4.7%, which induces authentic room-temperature ferromagnetism in large-area Fe 3 GeTe 2 nanoflakes with 20-fold improvement in magnetization. The record increment of the Curie temperature ( T C ) of well above 400 K originates from the strain-enhanced magnetic anisotropy and excellent magnetoelastic coupling. The correlation between the emerging ferromagnetism and Raman spectral evolution is also established, which complements well the T C phase diagram in a large-strain region. In addition, an unusual exchange bias effect with a vertical magnetization shift is tracked for the first time upon bending, which reveals the hidden competition between antiferromagnetic and ferromagnetic coupling. The reversible strain manipulation of single-domain ferromagnetic order in a single nanoflake further opens up a route to develop low-power wearable spintronic devices. The findings here provide vast opportunities to exploit the possibility of practical applications of more vdW magnets. The demand for high-performance spintronic devices has boosted intense research on the manipulation of magnetism in van der Waals (vdW) magnets. Despite great efforts, robust ferromagnetic transitions above room temperature still face significant hurdles. Strain engineering can reversibly regulate magnetic exchange, but the degree of regulation is still impractical for most magnetic applications. Hereby we employ a large-strain transferrer to produce tunable strains of up to 4.7%, which induces authentic room-temperature ferromagnetism in large-area Fe GeTe nanoflakes with 20-fold improvement in magnetization. The record increment of the Curie temperature ( ) of well above 400 K originates from the strain-enhanced magnetic anisotropy and excellent magnetoelastic coupling. The correlation between the emerging ferromagnetism and Raman spectral evolution is also established, which complements well the phase diagram in a large-strain region. In addition, an unusual exchange bias effect with a vertical magnetization shift is tracked for the first time upon bending, which reveals the hidden competition between antiferromagnetic and ferromagnetic coupling. The reversible strain manipulation of single-domain ferromagnetic order in a single nanoflake further opens up a route to develop low-power wearable spintronic devices. The findings here provide vast opportunities to exploit the possibility of practical applications of more vdW magnets. |
Author | Zhou, Jian Yan, Mi Li, Lingwei Hou, Zhipeng Hu, Liang Su, Weitao Yang, Bingzhang |
AuthorAffiliation | South China Academy of Advanced Optoelectronics State Key Lab of Silicon Materials School of Materials Science and Engineering South China Normal University Hangzhou Dianzi University Key Laboratory of Novel Materials for Sensor of Zhejiang Province College of Materials and Environmental Engineering Zhejiang University |
AuthorAffiliation_xml | – name: Key Laboratory of Novel Materials for Sensor of Zhejiang Province – name: College of Materials and Environmental Engineering – name: South China Academy of Advanced Optoelectronics – name: Hangzhou Dianzi University – name: School of Materials Science and Engineering – name: State Key Lab of Silicon Materials – name: South China Normal University – name: Zhejiang University |
Author_xml | – sequence: 1 givenname: Liang surname: Hu fullname: Hu, Liang – sequence: 2 givenname: Jian surname: Zhou fullname: Zhou, Jian – sequence: 3 givenname: Zhipeng surname: Hou fullname: Hou, Zhipeng – sequence: 4 givenname: Weitao surname: Su fullname: Su, Weitao – sequence: 5 givenname: Bingzhang surname: Yang fullname: Yang, Bingzhang – sequence: 6 givenname: Lingwei surname: Li fullname: Li, Lingwei – sequence: 7 givenname: Mi surname: Yan fullname: Yan, Mi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34751291$$D View this record in MEDLINE/PubMed |
BookMark | eNptkcFPFTEQxhuDEQQu3jVNvBiTlXbb7m6PBIVnxMBBo7dmtp2Hhd320e5K-O-p7wEmhNNMJr_58s18r8lWiAEJecPZJ86EPnB8_MO4FPrqBdmpmeJVI5Taeuxlu032c75kjHEhFevYK7JdporXmu-Q3-dxuB0xVf2cPDr6FwJ1mOgvgCHTES4CTpkuY6KrFEeffbigNwgJ-gFpinGsJhxXmGCaE9K88mFKMXib98jLZZHA_fu6S34ef_lxtKhOz06-Hh2eVlYyMVUtB8c5SCdAa8eEVSD7GiRXtnWgnXTY1l3LVK2tWzorWNd30jUNqKYt14hd8mGjW_xdz5gnU1xaHAYIGOdsaqWVarpa64K-f4JexjmF4s7UDZNcCL2m3t1Tcz-iM6vkR0i35uFnBWAbwKaYc8KlsX6CycdyOvjBcGb-JWM-8--LdTLfysrHJysPqs_CbzdwyvaR-x-zuANeZZcr |
CitedBy_id | crossref_primary_10_1002_smll_202308187 crossref_primary_10_1016_j_mtphys_2022_100786 crossref_primary_10_1007_s11664_022_09808_z crossref_primary_10_1073_pnas_2322361121 crossref_primary_10_1016_j_jallcom_2021_163116 crossref_primary_10_1016_j_ssc_2022_114885 crossref_primary_10_1007_s11664_022_09893_0 crossref_primary_10_1007_s40843_021_1967_5 crossref_primary_10_1016_j_ssc_2021_114621 crossref_primary_10_3390_nano13162378 crossref_primary_10_1016_j_matchemphys_2022_126527 crossref_primary_10_1021_acsnano_2c09143 crossref_primary_10_1002_adma_202205714 crossref_primary_10_1088_0256_307X_40_8_087501 crossref_primary_10_1016_j_jmst_2022_01_041 crossref_primary_10_3390_nano13243154 crossref_primary_10_1002_adfm_202409085 crossref_primary_10_1016_j_ceramint_2022_07_088 crossref_primary_10_3390_molecules28135004 crossref_primary_10_1016_j_esci_2023_100117 crossref_primary_10_1016_j_materresbull_2024_112828 crossref_primary_10_1016_j_ssc_2022_114696 crossref_primary_10_1088_1402_4896_acaee8 crossref_primary_10_1007_s10948_022_06263_z crossref_primary_10_1016_j_jallcom_2021_162777 crossref_primary_10_1063_5_0087624 crossref_primary_10_3390_molecules28217244 crossref_primary_10_1002_smll_202409752 crossref_primary_10_1016_j_ceramint_2022_08_265 crossref_primary_10_1088_1674_1056_ac6edf crossref_primary_10_1016_j_actamat_2022_117669 crossref_primary_10_1016_j_apsusc_2025_163020 crossref_primary_10_1021_acsmaterialslett_3c00088 crossref_primary_10_1063_5_0130037 crossref_primary_10_1002_adma_202211388 crossref_primary_10_1002_admi_202201531 crossref_primary_10_1016_j_ceramint_2022_11_013 crossref_primary_10_3390_nano15010015 |
Cites_doi | 10.1021/nn303198w 10.1126/sciadv.aay8912 10.1021/acsnano.0c03152 10.1002/adfm.201901414 10.1038/s41586-018-0626-9 10.1103/PhysRevB.98.144411 10.7566/JPSJ.82.124711 10.1063/1.5142077 10.1016/j.mtphys.2021.100341 10.1088/1361-6528/ab0a37 10.1021/acsami.0c05530 10.1038/s41699-017-0033-3 10.1038/s41563-019-0505-2 10.1103/PhysRevB.93.134407 10.1038/nature22391 10.1002/qute.202000017 10.1038/s41565-018-0063-9 10.1021/jacs.9b06929 10.1002/adfm.201904734 10.1039/D1MH00009H 10.1038/s41467-021-22777-x 10.1021/acs.chemmater.8b01672 10.1002/adma.202004533 10.1103/PhysRevLett.91.017203 10.1103/RevModPhys.92.021003 10.1103/PhysRevB.99.214304 10.1002/smll.201202876 10.1002/adma.202000566 10.1039/C9NR10171C 10.1088/2053-1583/4/1/011005 10.1103/PhysRevB.99.184428 10.1038/ncomms6246 10.1038/s41563-018-0149-7 10.1021/acsnano.8b09660 10.1038/s41563-018-0040-6 10.1038/s41467-018-04018-w 10.1103/PhysRevB.93.014411 10.1103/PhysRevB.96.134428 10.1103/PhysRevLett.125.047202 10.1038/nature22060 10.1021/nn800459e 10.1021/acs.nanolett.9b01287 10.1038/s41928-019-0273-7 10.1002/aelm.202001159 10.1021/acs.nanolett.0c04434 10.1002/ejic.200501020 10.1002/adma.201900065 10.1002/adma.201805417 10.1088/0256-307X/37/7/076202 10.1103/PhysRevB.61.1315 10.1021/acs.nanolett.0c01149 10.1021/acs.nanolett.9b03453 10.1063/5.0006337 10.1038/s41467-020-15023-3 10.1002/adma.202002032 10.1021/acs.nanolett.8b02806 10.1002/inf2.12096 10.1088/2053-1583/abc8cb |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7TB 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/d1mh01439k |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2051-6355 |
EndPage | 3314 |
ExternalDocumentID | 34751291 10_1039_D1MH01439K d1mh01439k |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R 4.4 AAEMU AAGNR AAIWI AAJAE AANOJ ABASK ABDVN ABGFH ABRYZ ACIWK ACLDK ADMRA ADSRN AENEX AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- H13 HZ H~N J3I O-G O9- RCNCU RIG RPMJG RRC RSCEA 0R~ AARTK AAWGC AAXHV AAYXX ABEMK ABPDG ABXOH AEFDR AENGV AETIL AFLYV AFOGI AFRZK AGEGJ AHGCF AKBGW AKMSF APEMP CITATION GGIMP HZ~ RAOCF RVUXY CGR CUY CVF ECM EIF NPM 7SR 7TB 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c403t-71ad11a4d3a99d03c5a4b2a415c7da9d4de72870529cdfdc308b84d66a5675083 |
ISSN | 2051-6347 2051-6355 |
IngestDate | Thu Jul 10 22:02:09 EDT 2025 Mon Jun 30 04:41:49 EDT 2025 Thu Apr 03 07:09:27 EDT 2025 Tue Jul 01 01:36:15 EDT 2025 Thu Apr 24 22:59:48 EDT 2025 Sun May 15 04:20:38 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c403t-71ad11a4d3a99d03c5a4b2a415c7da9d4de72870529cdfdc308b84d66a5675083 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/d1mh01439k ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7042-2717 0000-0001-8174-5351 |
PMID | 34751291 |
PQID | 2604133999 |
PQPubID | 2047518 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1039_D1MH01439K pubmed_primary_34751291 proquest_journals_2604133999 rsc_primary_d1mh01439k crossref_citationtrail_10_1039_D1MH01439K proquest_miscellaneous_2595568299 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-29 |
PublicationDateYYYYMMDD | 2021-11-29 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Materials horizons |
PublicationTitleAlternate | Mater Horiz |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Weber (D1MH01439K/cit55) 2019; 19 Guo (D1MH01439K/cit11) 2020; 2 Chen (D1MH01439K/cit34) 2013; 82 Dadgar (D1MH01439K/cit47) 2018; 30 Bonilla (D1MH01439K/cit16) 2018; 13 Nogués (D1MH01439K/cit49) 2000; 61 Zhuang (D1MH01439K/cit22) 2016; 93 May (D1MH01439K/cit25) 2016; 93 Hu (D1MH01439K/cit10) 2021; 8 Gong (D1MH01439K/cit3) 2017; 546 Kong (D1MH01439K/cit44) 2021; 7 Kim (D1MH01439K/cit30) 2019; 30 Wang (D1MH01439K/cit53) 2020; 14 Liu (D1MH01439K/cit18) 2014; 5 Zhou (D1MH01439K/cit19) 2012; 6 Yi (D1MH01439K/cit29) 2016; 4 Tian (D1MH01439K/cit38) 2019; 99 May (D1MH01439K/cit58) 2019; 13 Zheng (D1MH01439K/cit33) 2020; 125 Wang (D1MH01439K/cit26) 2017; 96 Ni (D1MH01439K/cit45) 2008; 2 Fei (D1MH01439K/cit23) 2018; 17 Wei (D1MH01439K/cit9) 2020; 8 Jie-Min Xu (D1MH01439K/cit41) 2020; 37 Ohldag (D1MH01439K/cit50) 2003; 91 Jiang (D1MH01439K/cit8) 2018; 17 Gweon (D1MH01439K/cit28) 2021; 21 Seo (D1MH01439K/cit57) 2020; 6 Cortie (D1MH01439K/cit7) 2020; 30 Li (D1MH01439K/cit54) 2018; 18 Hu (D1MH01439K/cit21) 2020; 12 Deng (D1MH01439K/cit4) 2018; 563 Huang (D1MH01439K/cit1) 2017; 546 Yang (D1MH01439K/cit52) 2020; 3 Ding (D1MH01439K/cit40) 2020; 20 Tian (D1MH01439K/cit59) 2020; 116 Li (D1MH01439K/cit12) 2019; 31 Wang (D1MH01439K/cit46) 2013; 9 Li (D1MH01439K/cit39) 2020; 11 Deiseroth (D1MH01439K/cit36) 2006 Du (D1MH01439K/cit43) 2019; 29 Hou (D1MH01439K/cit48) 2021; 17 Wang (D1MH01439K/cit15) 2019; 141 Avsar (D1MH01439K/cit6) 2020; 92 Milosavljević (D1MH01439K/cit42) 2019; 99 Tan (D1MH01439K/cit24) 2018; 9 Song (D1MH01439K/cit13) 2019; 18 Jang (D1MH01439K/cit27) 2020; 12 Zhang (D1MH01439K/cit31) 2020; 32 Ke (D1MH01439K/cit37) 2020; 32 Zhang (D1MH01439K/cit56) 2020; 116 Webster (D1MH01439K/cit20) 2018; 98 Zhang (D1MH01439K/cit2) 2021; 12 Liu (D1MH01439K/cit35) 2017; 1 Zhu (D1MH01439K/cit32) 2020; 20 Lin (D1MH01439K/cit5) 2019; 2 Dai (D1MH01439K/cit17) 2019; 31 Serri (D1MH01439K/cit51) 2020; 32 Wang (D1MH01439K/cit14) 2020; 32 |
References_xml | – volume: 32 start-page: 405805 year: 2020 ident: D1MH01439K/cit37 publication-title: J. Phys.: Condens. Matter – volume: 6 start-page: 9727 year: 2012 ident: D1MH01439K/cit19 publication-title: ACS Nano doi: 10.1021/nn303198w – volume: 6 start-page: eaay8912 year: 2020 ident: D1MH01439K/cit57 publication-title: Sci. Adv. doi: 10.1126/sciadv.aay8912 – volume: 14 start-page: 10045 year: 2020 ident: D1MH01439K/cit53 publication-title: ACS Nano doi: 10.1021/acsnano.0c03152 – volume: 30 start-page: 1901414 year: 2020 ident: D1MH01439K/cit7 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901414 – volume: 563 start-page: 94 year: 2018 ident: D1MH01439K/cit4 publication-title: Nature doi: 10.1038/s41586-018-0626-9 – volume: 98 start-page: 144411 year: 2018 ident: D1MH01439K/cit20 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.144411 – volume: 82 start-page: 124711 year: 2013 ident: D1MH01439K/cit34 publication-title: J. Phys. Soc. Jpn. doi: 10.7566/JPSJ.82.124711 – volume: 116 start-page: 042402 year: 2020 ident: D1MH01439K/cit56 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5142077 – volume: 17 start-page: 100341 year: 2021 ident: D1MH01439K/cit48 publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2021.100341 – volume: 30 start-page: 245701 year: 2019 ident: D1MH01439K/cit30 publication-title: Nanotechnology doi: 10.1088/1361-6528/ab0a37 – volume: 12 start-page: 26367 year: 2020 ident: D1MH01439K/cit21 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c05530 – volume: 1 start-page: 30 year: 2017 ident: D1MH01439K/cit35 publication-title: npj 2D Mater. Appl. doi: 10.1038/s41699-017-0033-3 – volume: 18 start-page: 1298 year: 2019 ident: D1MH01439K/cit13 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0505-2 – volume: 93 start-page: 134407 year: 2016 ident: D1MH01439K/cit22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.134407 – volume: 546 start-page: 270 year: 2017 ident: D1MH01439K/cit1 publication-title: Nature doi: 10.1038/nature22391 – volume: 3 start-page: 2000017 year: 2020 ident: D1MH01439K/cit52 publication-title: Adv. Quantum Technol. doi: 10.1002/qute.202000017 – volume: 13 start-page: 289 year: 2018 ident: D1MH01439K/cit16 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0063-9 – volume: 141 start-page: 17166 year: 2019 ident: D1MH01439K/cit15 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b06929 – volume: 29 start-page: 1904734 year: 2019 ident: D1MH01439K/cit43 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201904734 – volume: 8 start-page: 1286 year: 2021 ident: D1MH01439K/cit10 publication-title: Mater. Horiz. doi: 10.1039/D1MH00009H – volume: 12 start-page: 2492 year: 2021 ident: D1MH01439K/cit2 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22777-x – volume: 30 start-page: 5148 year: 2018 ident: D1MH01439K/cit47 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01672 – volume: 32 start-page: 2004533 year: 2020 ident: D1MH01439K/cit14 publication-title: Adv. Mater. doi: 10.1002/adma.202004533 – volume: 91 start-page: 017203 year: 2003 ident: D1MH01439K/cit50 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.017203 – volume: 92 start-page: 021003 year: 2020 ident: D1MH01439K/cit6 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.92.021003 – volume: 99 start-page: 214304 year: 2019 ident: D1MH01439K/cit42 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.214304 – volume: 9 start-page: 2857 year: 2013 ident: D1MH01439K/cit46 publication-title: Small doi: 10.1002/smll.201202876 – volume: 32 start-page: 2000566 year: 2020 ident: D1MH01439K/cit51 publication-title: Adv. Mater. doi: 10.1002/adma.202000566 – volume: 12 start-page: 13501 year: 2020 ident: D1MH01439K/cit27 publication-title: Nanoscale doi: 10.1039/C9NR10171C – volume: 4 start-page: 011005 year: 2016 ident: D1MH01439K/cit29 publication-title: 2D Mater. doi: 10.1088/2053-1583/4/1/011005 – volume: 99 start-page: 184428 year: 2019 ident: D1MH01439K/cit38 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.184428 – volume: 5 start-page: 5246 year: 2014 ident: D1MH01439K/cit18 publication-title: Nat. Commun. doi: 10.1038/ncomms6246 – volume: 17 start-page: 778 year: 2018 ident: D1MH01439K/cit23 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0149-7 – volume: 13 start-page: 4436 year: 2019 ident: D1MH01439K/cit58 publication-title: ACS Nano doi: 10.1021/acsnano.8b09660 – volume: 17 start-page: 406 year: 2018 ident: D1MH01439K/cit8 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0040-6 – volume: 9 start-page: 1554 year: 2018 ident: D1MH01439K/cit24 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04018-w – volume: 93 start-page: 014411 year: 2016 ident: D1MH01439K/cit25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.014411 – volume: 96 start-page: 134428 year: 2017 ident: D1MH01439K/cit26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.134428 – volume: 125 start-page: 047202 year: 2020 ident: D1MH01439K/cit33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.047202 – volume: 546 start-page: 265 year: 2017 ident: D1MH01439K/cit3 publication-title: Nature doi: 10.1038/nature22060 – volume: 2 start-page: 2301 year: 2008 ident: D1MH01439K/cit45 publication-title: ACS Nano doi: 10.1021/nn800459e – volume: 19 start-page: 5031 year: 2019 ident: D1MH01439K/cit55 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b01287 – volume: 2 start-page: 274 year: 2019 ident: D1MH01439K/cit5 publication-title: Nat. Electron. doi: 10.1038/s41928-019-0273-7 – volume: 7 start-page: 2001159 year: 2021 ident: D1MH01439K/cit44 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202001159 – volume: 21 start-page: 1672 year: 2021 ident: D1MH01439K/cit28 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c04434 – start-page: 1561 year: 2006 ident: D1MH01439K/cit36 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.200501020 – volume: 31 start-page: 1900065 year: 2019 ident: D1MH01439K/cit12 publication-title: Adv. Mater. doi: 10.1002/adma.201900065 – volume: 31 start-page: 1805417 year: 2019 ident: D1MH01439K/cit17 publication-title: Adv. Mater. doi: 10.1002/adma.201805417 – volume: 37 start-page: 076202 year: 2020 ident: D1MH01439K/cit41 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/37/7/076202 – volume: 61 start-page: 1315 year: 2000 ident: D1MH01439K/cit49 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.61.1315 – volume: 20 start-page: 5030 year: 2020 ident: D1MH01439K/cit32 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c01149 – volume: 20 start-page: 868 year: 2020 ident: D1MH01439K/cit40 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b03453 – volume: 116 start-page: 202402 year: 2020 ident: D1MH01439K/cit59 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0006337 – volume: 11 start-page: 1151 year: 2020 ident: D1MH01439K/cit39 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15023-3 – volume: 32 start-page: 2002032 year: 2020 ident: D1MH01439K/cit31 publication-title: Adv. Mater. doi: 10.1002/adma.202002032 – volume: 18 start-page: 5974 year: 2018 ident: D1MH01439K/cit54 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b02806 – volume: 2 start-page: 639 year: 2020 ident: D1MH01439K/cit11 publication-title: InfoMat doi: 10.1002/inf2.12096 – volume: 8 start-page: 012005 year: 2020 ident: D1MH01439K/cit9 publication-title: 2D Mater. doi: 10.1088/2053-1583/abc8cb |
SSID | ssj0001345080 |
Score | 2.4395905 |
Snippet | The demand for high-performance spintronic devices has boosted intense research on the manipulation of magnetism in van der Waals (vdW) magnets. Despite great... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 336 |
SubjectTerms | Antiferromagnetism Coupling Curie temperature Ferromagnetism Magnetic anisotropy Magnetism Magnetization Magnets Phase diagrams Polymers Room temperature Spintronics Temperature Wearable technology |
Title | Polymer-buried van der Waals magnets for promising wearable room-temperature spintronics |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34751291 https://www.proquest.com/docview/2604133999 https://www.proquest.com/docview/2595568299 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gIPE7dBx0BG8IKmjCR2kuZxgqFSKEKi0ypeKt-gFWtStekD-_WcY-fisSEBL1F1bLmtz2f784nPZ0Jeap2IHFO3BFdhwHUGYy7XWRBFUsU8HYiMYYLz-FM6POOjaTLt9UbeqaVtJY_V5Y15Jf_jVbCBXzFL9h882zYKBvgM_oUneBief-Xjz-XFz6VZBxLvndP2Cl6UhjgXqIm8FN8LU1m5BTyFBf60cVdAts2WQsYcoDBVrap8tFktCnchzsZnrGNRub9yNC_Xi8smumeR4Db1ol78bPi5tMaRB7qhM32dL1amq_nFGs_NohKlH3mII0zBq8MTdoKKYUAHKXOKmcfGtznp3WaGHfhAir3pkrHUW3kZc_mk12b1kKEoqo6Wc1QjzH90a1d7orArvEV2Y9gywJy3e3I6ef-xi7gxDmwUg27tD2_0aln-umvgKkO5tu0AErJuLoexJGRyl-zVuwd64qBwj_RMcZ_c8TQlH5DpVVBQAAUFUFALClqDggIoaAsK2oCC_g4K6oHiITl7dzp5Mwzq6zMCxUNWBVkkdBQJrhmMRh0ylQguYwGMTWVa5Jprk-Fr7iTOlf6mFQsHcsB1mooEdpFAzffJTlEW5jGhKg6FVjJVIjNcyESmMoG2pUkToP9K9cmrpstmqtaWxytOLmb2jAPLZ2-j8dB274c-edHWXTlFlRtrHTY9P6tH3GYGe2_gXECp8z553hZDV-FLLlGYcgt1khxF9WKs88h5rP0a8Djy26hP9sGFrblz_cGfCp6Q290IOCQ71XprngIbreSzGma_AG8GjQM |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polymer-buried+van+der+Waals+magnets+for+promising+wearable+room-temperature+spintronics&rft.jtitle=Materials+horizons&rft.au=Hu%2C+Liang&rft.au=Zhou%2C+Jian&rft.au=Hou%2C+Zhipeng&rft.au=Su%2C+Weitao&rft.date=2021-11-29&rft.issn=2051-6347&rft.eissn=2051-6355&rft.volume=8&rft.issue=12&rft.spage=336&rft.epage=3314&rft_id=info:doi/10.1039%2Fd1mh01439k&rft.externalDocID=d1mh01439k |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-6347&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-6347&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-6347&client=summon |