False Negative Rates in Benign Thyroid Nodule Diagnosis: Machine Learning for Detecting Malignancy
Thyroid nodules are common; up to 67% of adults will show nodules on high-quality ultrasound, and 95% of these nodules are benign. FNA cytology is a crucial step in determining the risk of malignancy, and a false negative diagnosis at this stage delays cancer treatment. The purpose of this study is...
Saved in:
Published in | The Journal of surgical research Vol. 268; pp. 562 - 569 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.12.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-4804 1095-8673 1095-8673 |
DOI | 10.1016/j.jss.2021.06.076 |
Cover
Loading…
Abstract | Thyroid nodules are common; up to 67% of adults will show nodules on high-quality ultrasound, and 95% of these nodules are benign. FNA cytology is a crucial step in determining the risk of malignancy, and a false negative diagnosis at this stage delays cancer treatment. The purpose of this study is to develop a predictive model using machine learning which can identify false negative FNA results based on less-invasive clinical data.
We conducted a retrospective medical record review at one academic and one community center. Inclusion criteria were thyroid nodules evaluated by ultrasound and FNA with a Bethesda II (benign) result or malignancy detected on pathology or FNA. Linear, non–linear, and ensemble models were generated with scikit-learn using 10-fold cross validation with repetition and compared with AUROC. The classification task was the prediction of malignancy using information acquired from less-invasive ultrasound and FNA.
A total of 604 subjects met inclusion criteria; 38 were diagnosed with malignancy. Of all algorithms tested, a Random Forest method achieved the best AUROC (0.64) in separating benign and malignant nodules, though the improvement over other tested algorithms was not statistically significant.
A Random Forest model performed better than random chance using readily available data obtained via standard evaluation of thyroid nodules. The diagnostic probability threshold of this model can be varied to minimize false positives at the cost of increasing the number of false negatives. Future studies will prospectively evaluate the model's performance. |
---|---|
AbstractList | Thyroid nodules are common; up to 67% of adults will show nodules on high-quality ultrasound, and 95% of these nodules are benign. FNA cytology is a crucial step in determining the risk of malignancy, and a false negative diagnosis at this stage delays cancer treatment. The purpose of this study is to develop a predictive model using machine learning which can identify false negative FNA results based on less-invasive clinical data.BACKGROUNDThyroid nodules are common; up to 67% of adults will show nodules on high-quality ultrasound, and 95% of these nodules are benign. FNA cytology is a crucial step in determining the risk of malignancy, and a false negative diagnosis at this stage delays cancer treatment. The purpose of this study is to develop a predictive model using machine learning which can identify false negative FNA results based on less-invasive clinical data.We conducted a retrospective medical record review at one academic and one community center. Inclusion criteria were thyroid nodules evaluated by ultrasound and FNA with a Bethesda II (benign) result or malignancy detected on pathology or FNA. Linear, non-linear, and ensemble models were generated with scikit-learn using 10-fold cross validation with repetition and compared with AUROC. The classification task was the prediction of malignancy using information acquired from less-invasive ultrasound and FNA.MATERIALS AND METHODSWe conducted a retrospective medical record review at one academic and one community center. Inclusion criteria were thyroid nodules evaluated by ultrasound and FNA with a Bethesda II (benign) result or malignancy detected on pathology or FNA. Linear, non-linear, and ensemble models were generated with scikit-learn using 10-fold cross validation with repetition and compared with AUROC. The classification task was the prediction of malignancy using information acquired from less-invasive ultrasound and FNA.A total of 604 subjects met inclusion criteria; 38 were diagnosed with malignancy. Of all algorithms tested, a Random Forest method achieved the best AUROC (0.64) in separating benign and malignant nodules, though the improvement over other tested algorithms was not statistically significant.RESULTSA total of 604 subjects met inclusion criteria; 38 were diagnosed with malignancy. Of all algorithms tested, a Random Forest method achieved the best AUROC (0.64) in separating benign and malignant nodules, though the improvement over other tested algorithms was not statistically significant.A Random Forest model performed better than random chance using readily available data obtained via standard evaluation of thyroid nodules. The diagnostic probability threshold of this model can be varied to minimize false positives at the cost of increasing the number of false negatives. Future studies will prospectively evaluate the model's performance.CONCLUSIONSA Random Forest model performed better than random chance using readily available data obtained via standard evaluation of thyroid nodules. The diagnostic probability threshold of this model can be varied to minimize false positives at the cost of increasing the number of false negatives. Future studies will prospectively evaluate the model's performance. Thyroid nodules are common; up to 67% of adults will show nodules on high-quality ultrasound, and 95% of these nodules are benign. FNA cytology is a crucial step in determining the risk of malignancy, and a false negative diagnosis at this stage delays cancer treatment. The purpose of this study is to develop a predictive model using machine learning which can identify false negative FNA results based on less-invasive clinical data. We conducted a retrospective medical record review at one academic and one community center. Inclusion criteria were thyroid nodules evaluated by ultrasound and FNA with a Bethesda II (benign) result or malignancy detected on pathology or FNA. Linear, non–linear, and ensemble models were generated with scikit-learn using 10-fold cross validation with repetition and compared with AUROC. The classification task was the prediction of malignancy using information acquired from less-invasive ultrasound and FNA. A total of 604 subjects met inclusion criteria; 38 were diagnosed with malignancy. Of all algorithms tested, a Random Forest method achieved the best AUROC (0.64) in separating benign and malignant nodules, though the improvement over other tested algorithms was not statistically significant. A Random Forest model performed better than random chance using readily available data obtained via standard evaluation of thyroid nodules. The diagnostic probability threshold of this model can be varied to minimize false positives at the cost of increasing the number of false negatives. Future studies will prospectively evaluate the model's performance. |
Author | Schneider, David F. Idarraga, Alexander J. Hsiao, Vivian Luong, George |
Author_xml | – sequence: 1 givenname: Alexander J. surname: Idarraga fullname: Idarraga, Alexander J. email: idarraga@wisc.edu – sequence: 2 givenname: George surname: Luong fullname: Luong, George – sequence: 3 givenname: Vivian surname: Hsiao fullname: Hsiao, Vivian – sequence: 4 givenname: David F. surname: Schneider fullname: Schneider, David F. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34464894$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFvEzEQhS1URNPCD-CCfOSS7djrtXfhBC0tSGmRUDlbjnc2nbCxi72plH-Po7SXHspp9KT3zWjeO2FHIQZk7L2ASoDQZ-tqnXMlQYoKdAVGv2IzAV0zb7Wpj9gMQMq5akEds5Oc11B0Z-o37LhWSqu2UzO2vHRjRn6DKzfRA_JfbsLMKfCvGGgV-O3dLkXq-U3styPyC3KrEDPlT_za-TsKyBfoUqCw4kNM_AIn9NNeXbux8C743Vv2etgfefc4T9nvy2-359_ni59XP86_LOZeQT3NDcjWOAfedCCER2xgcIMxqFS7XDZyaMCJogbUHlUjy6MdGIl60H0nalWfso-Hvfcp_t1inuyGssdxdAHjNlvZ6FaqrjWyWD88WrfLDfb2PtHGpZ19yqUYzMHgU8w54WA9TSWhGKbkaLQC7L4Bu7alAbtvwIK2pYFCimfk0_KXmM8HBks8D4TJZk8YPPaUSpy2j_Qi3T2j_UiBvBv_4O4_7D-QWLCm |
CitedBy_id | crossref_primary_10_1097_MD_0000000000032546 crossref_primary_10_1007_s44196_023_00388_2 crossref_primary_10_3390_cancers14163914 crossref_primary_10_31083_j_fbl2703101 crossref_primary_10_1055_s_0042_1748144 crossref_primary_10_54392_irjmt2439 crossref_primary_10_1089_thy_2023_0132 crossref_primary_10_1016_j_mcpdig_2024_03_007 crossref_primary_10_3390_s23156836 |
Cites_doi | 10.1089/thy.2004.14.926 10.1002/cncr.23116 10.1210/jc.2015-3100 10.1186/1471-2105-10-213 10.1089/thy.2009.0110 10.1155/2019/6328329 10.1016/j.jbi.2018.12.003 10.1093/bioinformatics/btr597 10.1089/thy.2017.0500 10.1016/j.ejrad.2019.02.029 10.1089/thy.2018.0380 10.1016/j.ejrad.2017.12.004 10.1148/radiol.2019181343 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.jss.2021.06.076 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1095-8673 |
EndPage | 569 |
ExternalDocumentID | 34464894 10_1016_j_jss_2021_06_076 S0022480421004686 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29L 3O- 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 DM4 DU5 EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEK HMK HMO HVGLF HZ~ IHE J1W J5H KOM LG5 M29 M41 MO0 N9A O-L O9- OAUVE OK- OW- OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K UHS WUQ X7M XPP Z5R ZGI ZMT ZU3 ZXP ~G- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AHPSJ AJBFU AJOXV AMFUW EFLBG LCYCR RIG ZA5 AAYXX AGRNS CITATION NPM PKN 7X8 |
ID | FETCH-LOGICAL-c403t-70287aa0c79011cee50faf77e448bb52f50a17e4fe6ce4521099072e6f6d91343 |
IEDL.DBID | .~1 |
ISSN | 0022-4804 1095-8673 |
IngestDate | Mon Jul 21 10:42:24 EDT 2025 Wed Feb 19 02:27:29 EST 2025 Tue Jul 01 02:52:58 EDT 2025 Thu Apr 24 23:06:08 EDT 2025 Fri Feb 23 02:42:00 EST 2024 Tue Aug 26 16:33:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bethesda II Random forest False negative Thyroid nodules Machine learning |
Language | English |
License | Copyright © 2021 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-70287aa0c79011cee50faf77e448bb52f50a17e4fe6ce4521099072e6f6d91343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 34464894 |
PQID | 2568249872 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2568249872 pubmed_primary_34464894 crossref_citationtrail_10_1016_j_jss_2021_06_076 crossref_primary_10_1016_j_jss_2021_06_076 elsevier_sciencedirect_doi_10_1016_j_jss_2021_06_076 elsevier_clinicalkey_doi_10_1016_j_jss_2021_06_076 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of surgical research |
PublicationTitleAlternate | J Surg Res |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Kwong, Medici, Angell (bib0002) 2015; 100 Cibas, Ali (bib0005) 2017; 27 Stekhoven, Bühlmann (bib0007) 2011; 28 He, Bai, Garcia, Li (bib0009) 2008 Han, Kim (bib0014) 2019 Yassa, Cibas, Benson (bib0004) 2007; 111 Ouyang, Guo, Ouyang (bib0012) 2019; 113 Sollini, Cozzi, Chiti, Kirienko (bib0006) 2018; 99 Fotouhi, Asadi, Kattan (bib0016) 2019; 90 Zhang, Tian, Pei (bib0013) 2019; 29 Menze, Kelm, Masuch (bib0010) 2009; 10 Buda, Wildman-Tobriner, Hoang (bib0011) 2019; 292 Colakoglu, Alis, Yergin (bib0015) 2019; 2019 Pedregosa, Varoquaux, Gramfort (bib0008) 2011; 12 Reiners, Wegscheider, Schicha (bib0001) 2004; 14 Cooper, Doherty, Haugen (bib0003) 2009; 19 Kwong (10.1016/j.jss.2021.06.076_bib0002) 2015; 100 Han (10.1016/j.jss.2021.06.076_bib0014) 2019 Colakoglu (10.1016/j.jss.2021.06.076_bib0015) 2019; 2019 Fotouhi (10.1016/j.jss.2021.06.076_bib0016) 2019; 90 Buda (10.1016/j.jss.2021.06.076_bib0011) 2019; 292 Yassa (10.1016/j.jss.2021.06.076_bib0004) 2007; 111 Stekhoven (10.1016/j.jss.2021.06.076_bib0007) 2011; 28 Cibas (10.1016/j.jss.2021.06.076_bib0005) 2017; 27 He (10.1016/j.jss.2021.06.076_bib0009) 2008 Sollini (10.1016/j.jss.2021.06.076_bib0006) 2018; 99 Cooper (10.1016/j.jss.2021.06.076_bib0003) 2009; 19 Zhang (10.1016/j.jss.2021.06.076_bib0013) 2019; 29 Ouyang (10.1016/j.jss.2021.06.076_bib0012) 2019; 113 Menze (10.1016/j.jss.2021.06.076_bib0010) 2009; 10 Reiners (10.1016/j.jss.2021.06.076_bib0001) 2004; 14 Pedregosa (10.1016/j.jss.2021.06.076_bib0008) 2011; 12 |
References_xml | – volume: 19 start-page: 1167 year: 2009 end-page: 1214 ident: bib0003 article-title: Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer publication-title: Thyroid – volume: 27 start-page: 1341 year: 2017 end-page: 1346 ident: bib0005 article-title: The 2017 bethesda system for reporting thyroid cytopathology publication-title: Thyroid – volume: 90 year: 2019 ident: bib0016 article-title: A comprehensive data level analysis for cancer diagnosis on imbalanced data publication-title: J Biomed Inform – volume: 10 start-page: 213 year: 2009 ident: bib0010 article-title: A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data publication-title: BMC Bioinformatics – volume: 100 start-page: 4434 year: 2015 end-page: 4440 ident: bib0002 article-title: The influence of patient age on thyroid nodule formation, multinodularity, and thyroid cancer risk publication-title: J Clin Endocrinol Metab – volume: 111 start-page: 508 year: 2007 end-page: 516 ident: bib0004 article-title: Long-term assessment of a multidisciplinary approach to thyroid nodule diagnostic evaluation publication-title: Cancer – volume: 99 start-page: 1 year: 2018 end-page: 8 ident: bib0006 article-title: Texture analysis and machine learning to characterize suspected thyroid nodules and differentiated thyroid cancer: where do we stand? publication-title: Eur J Radiol – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib0008 article-title: Scikit-learn: machine learning in python publication-title: J Mach Learn Res – volume: 28 start-page: 112 year: 2011 end-page: 118 ident: bib0007 article-title: MissForest—non-parametric missing value imputation for mixed-type data publication-title: Bioinformatics – volume: 14 start-page: 926 year: 2004 end-page: 932 ident: bib0001 article-title: Prevalence of thyroid disorders in the working population of Germany: ultrasonography screening in 96,278 unselected employees publication-title: Thyroid – volume: 113 start-page: 251 year: 2019 end-page: 257 ident: bib0012 article-title: Comparison between linear and nonlinear machine-learning algorithms for the classification of thyroid nodules publication-title: Eur J Radiol – start-page: 1322 year: 2008 end-page: 1328 ident: bib0009 article-title: ADASYN: Adaptive synthetic sampling approach for imbalanced learning publication-title: Proceedings of the 5th IEEE International Joint Conference on Neural Networks – volume: 29 start-page: 858 year: 2019 end-page: 867 ident: bib0013 article-title: Machine learning-assisted system for thyroid nodule diagnosis publication-title: Thyroid – volume: 292 start-page: 695 year: 2019 end-page: 701 ident: bib0011 article-title: Management of thyroid nodules seen on US images: deep learning may match performance of radiologists publication-title: Radiology – year: 2019 ident: bib0014 article-title: On the Optimal size of Candidate Feature Set in Random forest – volume: 2019 start-page: 6328329 year: 2019 ident: bib0015 article-title: Diagnostic value of machine learning-based quantitative texture analysis in differentiation benign and malignant thyroid nodules publication-title: J Oncol – volume: 14 start-page: 926 year: 2004 ident: 10.1016/j.jss.2021.06.076_bib0001 article-title: Prevalence of thyroid disorders in the working population of Germany: ultrasonography screening in 96,278 unselected employees publication-title: Thyroid doi: 10.1089/thy.2004.14.926 – volume: 111 start-page: 508 year: 2007 ident: 10.1016/j.jss.2021.06.076_bib0004 article-title: Long-term assessment of a multidisciplinary approach to thyroid nodule diagnostic evaluation publication-title: Cancer doi: 10.1002/cncr.23116 – volume: 100 start-page: 4434 year: 2015 ident: 10.1016/j.jss.2021.06.076_bib0002 article-title: The influence of patient age on thyroid nodule formation, multinodularity, and thyroid cancer risk publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2015-3100 – volume: 10 start-page: 213 year: 2009 ident: 10.1016/j.jss.2021.06.076_bib0010 article-title: A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-213 – volume: 19 start-page: 1167 year: 2009 ident: 10.1016/j.jss.2021.06.076_bib0003 article-title: Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer publication-title: Thyroid doi: 10.1089/thy.2009.0110 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.jss.2021.06.076_bib0008 article-title: Scikit-learn: machine learning in python publication-title: J Mach Learn Res – start-page: 1322 year: 2008 ident: 10.1016/j.jss.2021.06.076_bib0009 article-title: ADASYN: Adaptive synthetic sampling approach for imbalanced learning – volume: 2019 start-page: 6328329 year: 2019 ident: 10.1016/j.jss.2021.06.076_bib0015 article-title: Diagnostic value of machine learning-based quantitative texture analysis in differentiation benign and malignant thyroid nodules publication-title: J Oncol doi: 10.1155/2019/6328329 – volume: 90 year: 2019 ident: 10.1016/j.jss.2021.06.076_bib0016 article-title: A comprehensive data level analysis for cancer diagnosis on imbalanced data publication-title: J Biomed Inform doi: 10.1016/j.jbi.2018.12.003 – volume: 28 start-page: 112 year: 2011 ident: 10.1016/j.jss.2021.06.076_bib0007 article-title: MissForest—non-parametric missing value imputation for mixed-type data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr597 – volume: 27 start-page: 1341 year: 2017 ident: 10.1016/j.jss.2021.06.076_bib0005 article-title: The 2017 bethesda system for reporting thyroid cytopathology publication-title: Thyroid doi: 10.1089/thy.2017.0500 – volume: 113 start-page: 251 year: 2019 ident: 10.1016/j.jss.2021.06.076_bib0012 article-title: Comparison between linear and nonlinear machine-learning algorithms for the classification of thyroid nodules publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2019.02.029 – volume: 29 start-page: 858 year: 2019 ident: 10.1016/j.jss.2021.06.076_bib0013 article-title: Machine learning-assisted system for thyroid nodule diagnosis publication-title: Thyroid doi: 10.1089/thy.2018.0380 – year: 2019 ident: 10.1016/j.jss.2021.06.076_bib0014 – volume: 99 start-page: 1 year: 2018 ident: 10.1016/j.jss.2021.06.076_bib0006 article-title: Texture analysis and machine learning to characterize suspected thyroid nodules and differentiated thyroid cancer: where do we stand? publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2017.12.004 – volume: 292 start-page: 695 year: 2019 ident: 10.1016/j.jss.2021.06.076_bib0011 article-title: Management of thyroid nodules seen on US images: deep learning may match performance of radiologists publication-title: Radiology doi: 10.1148/radiol.2019181343 |
SSID | ssj0002973 |
Score | 2.3826232 |
Snippet | Thyroid nodules are common; up to 67% of adults will show nodules on high-quality ultrasound, and 95% of these nodules are benign. FNA cytology is a crucial... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 562 |
SubjectTerms | Bethesda II False negative Machine learning Random forest Thyroid nodules |
Title | False Negative Rates in Benign Thyroid Nodule Diagnosis: Machine Learning for Detecting Malignancy |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0022480421004686 https://dx.doi.org/10.1016/j.jss.2021.06.076 https://www.ncbi.nlm.nih.gov/pubmed/34464894 https://www.proquest.com/docview/2568249872 |
Volume | 268 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kXryI4qu-WMGTEE2TzW7qrT5KVdqDVPAWdpPZmlLS0sehF3-7M3lUPFTB44ZdEmYnM98y33zL2KXbsMYaTzt-kghHWAgcTY3AYWKbvg3AxEmu9tmTnTfx_B68b7D7qheGaJVl7C9ieh6tyyc3pTVvJmlKPb6YfkJ0OhI9kyHJbpN6Hfr09ec3zYPuZqoUw2l2VdnMOV7DGSl2e41CwlOuy03rsGeeg9o7bLsEj7xVfN8u24Bsj5k2ehDwHgxyDW_-SuiRpxm_gywdZLz_sZyO04T3xsliBPyh4Nals1vezYmUwEuN1QFHAMsfgMoKNOoiRB-QHsdyn721H_v3Hae8OcGJhevPHYWoQWntxoo6SzEPBq7VVinAw5gxgWcDVzdwZEHGIDCDU3lMeSCtTKgU7x-wWjbO4IhxpREiKRvHoURTJyKMrbU6kGCk0crYOnMrm0VxKStOt1uMooo_NozQzBGZOSIOnZJ1drVaMik0NX6b7FUbEVXNohjeIoz4vy0Sq0U_vOmvZRfVTkf4l1HpRGcwXuCkQIZ4UA2VV2eHhQusPt3HE7UIm-L4fy89YVs0Kigyp6w2ny7gDIHO3JznnnzONltPL53eF9RW_Mc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6x5bB7QYuWhS77MBKnlSLSxLEDNxaoyqM5rIrEzbKTcTcIpYi2h_57ZvKotAdA4ujEo1jjycxnzcxngMNw4J13kQ3iopCB9JgElhuB08Ifxz5Blxc122emRrfy6i6524CzrheGyypb39_49Npbt0-OWm0ePZYl9_hS-EnJ6Jj0TKXqA2wyO5Xswebp5fUoWztkvp6pIw1ngS65WZd53c-ZtDsaNCye6qXw9BL8rMPQ8DNstfhRnDZL3IYNrL6AG5IRochwWtN4i78MIEVZiT9YldNKTP6tnmZlIbJZsXxAcd6U15XzEzGuaylRtDSrU0EYVpwjZxZ4NCaUPmVKjtUO3A4vJmejoL08IchlGC8CTcBBWxvmmptLKRQmobdea6TzmHNJ5JPQDmjkUeUoKYhzhkxHqLwqOBsff4VeNatwD4S2hJK0z_NUkbYLmebee5sodMpZ7Xwfwk5nJm-ZxfmCiwfTlZDdG1KzYTUbLqPTqg-_1yKPDa3Ga5OjbiNM1y9KHs6Q039NSK6F_jOot8QOup029KNx9sRWOFvSpESldFZNddSH3cYE1kuP6VAt02P57X0f_QUfR5Pxjbm5zK734RO_aSpmvkNv8bTEH4R7Fu5na9fPfh__eA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=False+Negative+Rates+in+Benign+Thyroid+Nodule+Diagnosis%3A+Machine+Learning+for+Detecting+Malignancy&rft.jtitle=The+Journal+of+surgical+research&rft.au=Idarraga%2C+Alexander+J.&rft.au=Luong%2C+George&rft.au=Hsiao%2C+Vivian&rft.au=Schneider%2C+David+F.&rft.date=2021-12-01&rft.issn=0022-4804&rft.volume=268&rft.spage=562&rft.epage=569&rft_id=info:doi/10.1016%2Fj.jss.2021.06.076&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jss_2021_06_076 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4804&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4804&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4804&client=summon |