False Negative Rates in Benign Thyroid Nodule Diagnosis: Machine Learning for Detecting Malignancy

Thyroid nodules are common; up to 67% of adults will show nodules on high-quality ultrasound, and 95% of these nodules are benign. FNA cytology is a crucial step in determining the risk of malignancy, and a false negative diagnosis at this stage delays cancer treatment. The purpose of this study is...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of surgical research Vol. 268; pp. 562 - 569
Main Authors Idarraga, Alexander J., Luong, George, Hsiao, Vivian, Schneider, David F.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.12.2021
Subjects
Online AccessGet full text
ISSN0022-4804
1095-8673
1095-8673
DOI10.1016/j.jss.2021.06.076

Cover

Loading…
Abstract Thyroid nodules are common; up to 67% of adults will show nodules on high-quality ultrasound, and 95% of these nodules are benign. FNA cytology is a crucial step in determining the risk of malignancy, and a false negative diagnosis at this stage delays cancer treatment. The purpose of this study is to develop a predictive model using machine learning which can identify false negative FNA results based on less-invasive clinical data. We conducted a retrospective medical record review at one academic and one community center. Inclusion criteria were thyroid nodules evaluated by ultrasound and FNA with a Bethesda II (benign) result or malignancy detected on pathology or FNA. Linear, non–linear, and ensemble models were generated with scikit-learn using 10-fold cross validation with repetition and compared with AUROC. The classification task was the prediction of malignancy using information acquired from less-invasive ultrasound and FNA. A total of 604 subjects met inclusion criteria; 38 were diagnosed with malignancy. Of all algorithms tested, a Random Forest method achieved the best AUROC (0.64) in separating benign and malignant nodules, though the improvement over other tested algorithms was not statistically significant. A Random Forest model performed better than random chance using readily available data obtained via standard evaluation of thyroid nodules. The diagnostic probability threshold of this model can be varied to minimize false positives at the cost of increasing the number of false negatives. Future studies will prospectively evaluate the model's performance.
AbstractList Thyroid nodules are common; up to 67% of adults will show nodules on high-quality ultrasound, and 95% of these nodules are benign. FNA cytology is a crucial step in determining the risk of malignancy, and a false negative diagnosis at this stage delays cancer treatment. The purpose of this study is to develop a predictive model using machine learning which can identify false negative FNA results based on less-invasive clinical data.BACKGROUNDThyroid nodules are common; up to 67% of adults will show nodules on high-quality ultrasound, and 95% of these nodules are benign. FNA cytology is a crucial step in determining the risk of malignancy, and a false negative diagnosis at this stage delays cancer treatment. The purpose of this study is to develop a predictive model using machine learning which can identify false negative FNA results based on less-invasive clinical data.We conducted a retrospective medical record review at one academic and one community center. Inclusion criteria were thyroid nodules evaluated by ultrasound and FNA with a Bethesda II (benign) result or malignancy detected on pathology or FNA. Linear, non-linear, and ensemble models were generated with scikit-learn using 10-fold cross validation with repetition and compared with AUROC. The classification task was the prediction of malignancy using information acquired from less-invasive ultrasound and FNA.MATERIALS AND METHODSWe conducted a retrospective medical record review at one academic and one community center. Inclusion criteria were thyroid nodules evaluated by ultrasound and FNA with a Bethesda II (benign) result or malignancy detected on pathology or FNA. Linear, non-linear, and ensemble models were generated with scikit-learn using 10-fold cross validation with repetition and compared with AUROC. The classification task was the prediction of malignancy using information acquired from less-invasive ultrasound and FNA.A total of 604 subjects met inclusion criteria; 38 were diagnosed with malignancy. Of all algorithms tested, a Random Forest method achieved the best AUROC (0.64) in separating benign and malignant nodules, though the improvement over other tested algorithms was not statistically significant.RESULTSA total of 604 subjects met inclusion criteria; 38 were diagnosed with malignancy. Of all algorithms tested, a Random Forest method achieved the best AUROC (0.64) in separating benign and malignant nodules, though the improvement over other tested algorithms was not statistically significant.A Random Forest model performed better than random chance using readily available data obtained via standard evaluation of thyroid nodules. The diagnostic probability threshold of this model can be varied to minimize false positives at the cost of increasing the number of false negatives. Future studies will prospectively evaluate the model's performance.CONCLUSIONSA Random Forest model performed better than random chance using readily available data obtained via standard evaluation of thyroid nodules. The diagnostic probability threshold of this model can be varied to minimize false positives at the cost of increasing the number of false negatives. Future studies will prospectively evaluate the model's performance.
Thyroid nodules are common; up to 67% of adults will show nodules on high-quality ultrasound, and 95% of these nodules are benign. FNA cytology is a crucial step in determining the risk of malignancy, and a false negative diagnosis at this stage delays cancer treatment. The purpose of this study is to develop a predictive model using machine learning which can identify false negative FNA results based on less-invasive clinical data. We conducted a retrospective medical record review at one academic and one community center. Inclusion criteria were thyroid nodules evaluated by ultrasound and FNA with a Bethesda II (benign) result or malignancy detected on pathology or FNA. Linear, non–linear, and ensemble models were generated with scikit-learn using 10-fold cross validation with repetition and compared with AUROC. The classification task was the prediction of malignancy using information acquired from less-invasive ultrasound and FNA. A total of 604 subjects met inclusion criteria; 38 were diagnosed with malignancy. Of all algorithms tested, a Random Forest method achieved the best AUROC (0.64) in separating benign and malignant nodules, though the improvement over other tested algorithms was not statistically significant. A Random Forest model performed better than random chance using readily available data obtained via standard evaluation of thyroid nodules. The diagnostic probability threshold of this model can be varied to minimize false positives at the cost of increasing the number of false negatives. Future studies will prospectively evaluate the model's performance.
Author Schneider, David F.
Idarraga, Alexander J.
Hsiao, Vivian
Luong, George
Author_xml – sequence: 1
  givenname: Alexander J.
  surname: Idarraga
  fullname: Idarraga, Alexander J.
  email: idarraga@wisc.edu
– sequence: 2
  givenname: George
  surname: Luong
  fullname: Luong, George
– sequence: 3
  givenname: Vivian
  surname: Hsiao
  fullname: Hsiao, Vivian
– sequence: 4
  givenname: David F.
  surname: Schneider
  fullname: Schneider, David F.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34464894$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFvEzEQhS1URNPCD-CCfOSS7djrtXfhBC0tSGmRUDlbjnc2nbCxi72plH-Po7SXHspp9KT3zWjeO2FHIQZk7L2ASoDQZ-tqnXMlQYoKdAVGv2IzAV0zb7Wpj9gMQMq5akEds5Oc11B0Z-o37LhWSqu2UzO2vHRjRn6DKzfRA_JfbsLMKfCvGGgV-O3dLkXq-U3styPyC3KrEDPlT_za-TsKyBfoUqCw4kNM_AIn9NNeXbux8C743Vv2etgfefc4T9nvy2-359_ni59XP86_LOZeQT3NDcjWOAfedCCER2xgcIMxqFS7XDZyaMCJogbUHlUjy6MdGIl60H0nalWfso-Hvfcp_t1inuyGssdxdAHjNlvZ6FaqrjWyWD88WrfLDfb2PtHGpZ19yqUYzMHgU8w54WA9TSWhGKbkaLQC7L4Bu7alAbtvwIK2pYFCimfk0_KXmM8HBks8D4TJZk8YPPaUSpy2j_Qi3T2j_UiBvBv_4O4_7D-QWLCm
CitedBy_id crossref_primary_10_1097_MD_0000000000032546
crossref_primary_10_1007_s44196_023_00388_2
crossref_primary_10_3390_cancers14163914
crossref_primary_10_31083_j_fbl2703101
crossref_primary_10_1055_s_0042_1748144
crossref_primary_10_54392_irjmt2439
crossref_primary_10_1089_thy_2023_0132
crossref_primary_10_1016_j_mcpdig_2024_03_007
crossref_primary_10_3390_s23156836
Cites_doi 10.1089/thy.2004.14.926
10.1002/cncr.23116
10.1210/jc.2015-3100
10.1186/1471-2105-10-213
10.1089/thy.2009.0110
10.1155/2019/6328329
10.1016/j.jbi.2018.12.003
10.1093/bioinformatics/btr597
10.1089/thy.2017.0500
10.1016/j.ejrad.2019.02.029
10.1089/thy.2018.0380
10.1016/j.ejrad.2017.12.004
10.1148/radiol.2019181343
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.jss.2021.06.076
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1095-8673
EndPage 569
ExternalDocumentID 34464894
10_1016_j_jss_2021_06_076
S0022480421004686
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29L
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEK
HMK
HMO
HVGLF
HZ~
IHE
J1W
J5H
KOM
LG5
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OK-
OW-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
UHS
WUQ
X7M
XPP
Z5R
ZGI
ZMT
ZU3
ZXP
~G-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
ZA5
AAYXX
AGRNS
CITATION
NPM
PKN
7X8
ID FETCH-LOGICAL-c403t-70287aa0c79011cee50faf77e448bb52f50a17e4fe6ce4521099072e6f6d91343
IEDL.DBID .~1
ISSN 0022-4804
1095-8673
IngestDate Mon Jul 21 10:42:24 EDT 2025
Wed Feb 19 02:27:29 EST 2025
Tue Jul 01 02:52:58 EDT 2025
Thu Apr 24 23:06:08 EDT 2025
Fri Feb 23 02:42:00 EST 2024
Tue Aug 26 16:33:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Bethesda II
Random forest
False negative
Thyroid nodules
Machine learning
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-70287aa0c79011cee50faf77e448bb52f50a17e4fe6ce4521099072e6f6d91343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 34464894
PQID 2568249872
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2568249872
pubmed_primary_34464894
crossref_citationtrail_10_1016_j_jss_2021_06_076
crossref_primary_10_1016_j_jss_2021_06_076
elsevier_sciencedirect_doi_10_1016_j_jss_2021_06_076
elsevier_clinicalkey_doi_10_1016_j_jss_2021_06_076
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of surgical research
PublicationTitleAlternate J Surg Res
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kwong, Medici, Angell (bib0002) 2015; 100
Cibas, Ali (bib0005) 2017; 27
Stekhoven, Bühlmann (bib0007) 2011; 28
He, Bai, Garcia, Li (bib0009) 2008
Han, Kim (bib0014) 2019
Yassa, Cibas, Benson (bib0004) 2007; 111
Ouyang, Guo, Ouyang (bib0012) 2019; 113
Sollini, Cozzi, Chiti, Kirienko (bib0006) 2018; 99
Fotouhi, Asadi, Kattan (bib0016) 2019; 90
Zhang, Tian, Pei (bib0013) 2019; 29
Menze, Kelm, Masuch (bib0010) 2009; 10
Buda, Wildman-Tobriner, Hoang (bib0011) 2019; 292
Colakoglu, Alis, Yergin (bib0015) 2019; 2019
Pedregosa, Varoquaux, Gramfort (bib0008) 2011; 12
Reiners, Wegscheider, Schicha (bib0001) 2004; 14
Cooper, Doherty, Haugen (bib0003) 2009; 19
Kwong (10.1016/j.jss.2021.06.076_bib0002) 2015; 100
Han (10.1016/j.jss.2021.06.076_bib0014) 2019
Colakoglu (10.1016/j.jss.2021.06.076_bib0015) 2019; 2019
Fotouhi (10.1016/j.jss.2021.06.076_bib0016) 2019; 90
Buda (10.1016/j.jss.2021.06.076_bib0011) 2019; 292
Yassa (10.1016/j.jss.2021.06.076_bib0004) 2007; 111
Stekhoven (10.1016/j.jss.2021.06.076_bib0007) 2011; 28
Cibas (10.1016/j.jss.2021.06.076_bib0005) 2017; 27
He (10.1016/j.jss.2021.06.076_bib0009) 2008
Sollini (10.1016/j.jss.2021.06.076_bib0006) 2018; 99
Cooper (10.1016/j.jss.2021.06.076_bib0003) 2009; 19
Zhang (10.1016/j.jss.2021.06.076_bib0013) 2019; 29
Ouyang (10.1016/j.jss.2021.06.076_bib0012) 2019; 113
Menze (10.1016/j.jss.2021.06.076_bib0010) 2009; 10
Reiners (10.1016/j.jss.2021.06.076_bib0001) 2004; 14
Pedregosa (10.1016/j.jss.2021.06.076_bib0008) 2011; 12
References_xml – volume: 19
  start-page: 1167
  year: 2009
  end-page: 1214
  ident: bib0003
  article-title: Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer
  publication-title: Thyroid
– volume: 27
  start-page: 1341
  year: 2017
  end-page: 1346
  ident: bib0005
  article-title: The 2017 bethesda system for reporting thyroid cytopathology
  publication-title: Thyroid
– volume: 90
  year: 2019
  ident: bib0016
  article-title: A comprehensive data level analysis for cancer diagnosis on imbalanced data
  publication-title: J Biomed Inform
– volume: 10
  start-page: 213
  year: 2009
  ident: bib0010
  article-title: A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data
  publication-title: BMC Bioinformatics
– volume: 100
  start-page: 4434
  year: 2015
  end-page: 4440
  ident: bib0002
  article-title: The influence of patient age on thyroid nodule formation, multinodularity, and thyroid cancer risk
  publication-title: J Clin Endocrinol Metab
– volume: 111
  start-page: 508
  year: 2007
  end-page: 516
  ident: bib0004
  article-title: Long-term assessment of a multidisciplinary approach to thyroid nodule diagnostic evaluation
  publication-title: Cancer
– volume: 99
  start-page: 1
  year: 2018
  end-page: 8
  ident: bib0006
  article-title: Texture analysis and machine learning to characterize suspected thyroid nodules and differentiated thyroid cancer: where do we stand?
  publication-title: Eur J Radiol
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib0008
  article-title: Scikit-learn: machine learning in python
  publication-title: J Mach Learn Res
– volume: 28
  start-page: 112
  year: 2011
  end-page: 118
  ident: bib0007
  article-title: MissForest—non-parametric missing value imputation for mixed-type data
  publication-title: Bioinformatics
– volume: 14
  start-page: 926
  year: 2004
  end-page: 932
  ident: bib0001
  article-title: Prevalence of thyroid disorders in the working population of Germany: ultrasonography screening in 96,278 unselected employees
  publication-title: Thyroid
– volume: 113
  start-page: 251
  year: 2019
  end-page: 257
  ident: bib0012
  article-title: Comparison between linear and nonlinear machine-learning algorithms for the classification of thyroid nodules
  publication-title: Eur J Radiol
– start-page: 1322
  year: 2008
  end-page: 1328
  ident: bib0009
  article-title: ADASYN: Adaptive synthetic sampling approach for imbalanced learning
  publication-title: Proceedings of the 5th IEEE International Joint Conference on Neural Networks
– volume: 29
  start-page: 858
  year: 2019
  end-page: 867
  ident: bib0013
  article-title: Machine learning-assisted system for thyroid nodule diagnosis
  publication-title: Thyroid
– volume: 292
  start-page: 695
  year: 2019
  end-page: 701
  ident: bib0011
  article-title: Management of thyroid nodules seen on US images: deep learning may match performance of radiologists
  publication-title: Radiology
– year: 2019
  ident: bib0014
  article-title: On the Optimal size of Candidate Feature Set in Random forest
– volume: 2019
  start-page: 6328329
  year: 2019
  ident: bib0015
  article-title: Diagnostic value of machine learning-based quantitative texture analysis in differentiation benign and malignant thyroid nodules
  publication-title: J Oncol
– volume: 14
  start-page: 926
  year: 2004
  ident: 10.1016/j.jss.2021.06.076_bib0001
  article-title: Prevalence of thyroid disorders in the working population of Germany: ultrasonography screening in 96,278 unselected employees
  publication-title: Thyroid
  doi: 10.1089/thy.2004.14.926
– volume: 111
  start-page: 508
  year: 2007
  ident: 10.1016/j.jss.2021.06.076_bib0004
  article-title: Long-term assessment of a multidisciplinary approach to thyroid nodule diagnostic evaluation
  publication-title: Cancer
  doi: 10.1002/cncr.23116
– volume: 100
  start-page: 4434
  year: 2015
  ident: 10.1016/j.jss.2021.06.076_bib0002
  article-title: The influence of patient age on thyroid nodule formation, multinodularity, and thyroid cancer risk
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2015-3100
– volume: 10
  start-page: 213
  year: 2009
  ident: 10.1016/j.jss.2021.06.076_bib0010
  article-title: A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-213
– volume: 19
  start-page: 1167
  year: 2009
  ident: 10.1016/j.jss.2021.06.076_bib0003
  article-title: Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer
  publication-title: Thyroid
  doi: 10.1089/thy.2009.0110
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.jss.2021.06.076_bib0008
  article-title: Scikit-learn: machine learning in python
  publication-title: J Mach Learn Res
– start-page: 1322
  year: 2008
  ident: 10.1016/j.jss.2021.06.076_bib0009
  article-title: ADASYN: Adaptive synthetic sampling approach for imbalanced learning
– volume: 2019
  start-page: 6328329
  year: 2019
  ident: 10.1016/j.jss.2021.06.076_bib0015
  article-title: Diagnostic value of machine learning-based quantitative texture analysis in differentiation benign and malignant thyroid nodules
  publication-title: J Oncol
  doi: 10.1155/2019/6328329
– volume: 90
  year: 2019
  ident: 10.1016/j.jss.2021.06.076_bib0016
  article-title: A comprehensive data level analysis for cancer diagnosis on imbalanced data
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2018.12.003
– volume: 28
  start-page: 112
  year: 2011
  ident: 10.1016/j.jss.2021.06.076_bib0007
  article-title: MissForest—non-parametric missing value imputation for mixed-type data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr597
– volume: 27
  start-page: 1341
  year: 2017
  ident: 10.1016/j.jss.2021.06.076_bib0005
  article-title: The 2017 bethesda system for reporting thyroid cytopathology
  publication-title: Thyroid
  doi: 10.1089/thy.2017.0500
– volume: 113
  start-page: 251
  year: 2019
  ident: 10.1016/j.jss.2021.06.076_bib0012
  article-title: Comparison between linear and nonlinear machine-learning algorithms for the classification of thyroid nodules
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2019.02.029
– volume: 29
  start-page: 858
  year: 2019
  ident: 10.1016/j.jss.2021.06.076_bib0013
  article-title: Machine learning-assisted system for thyroid nodule diagnosis
  publication-title: Thyroid
  doi: 10.1089/thy.2018.0380
– year: 2019
  ident: 10.1016/j.jss.2021.06.076_bib0014
– volume: 99
  start-page: 1
  year: 2018
  ident: 10.1016/j.jss.2021.06.076_bib0006
  article-title: Texture analysis and machine learning to characterize suspected thyroid nodules and differentiated thyroid cancer: where do we stand?
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2017.12.004
– volume: 292
  start-page: 695
  year: 2019
  ident: 10.1016/j.jss.2021.06.076_bib0011
  article-title: Management of thyroid nodules seen on US images: deep learning may match performance of radiologists
  publication-title: Radiology
  doi: 10.1148/radiol.2019181343
SSID ssj0002973
Score 2.3826232
Snippet Thyroid nodules are common; up to 67% of adults will show nodules on high-quality ultrasound, and 95% of these nodules are benign. FNA cytology is a crucial...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 562
SubjectTerms Bethesda II
False negative
Machine learning
Random forest
Thyroid nodules
Title False Negative Rates in Benign Thyroid Nodule Diagnosis: Machine Learning for Detecting Malignancy
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0022480421004686
https://dx.doi.org/10.1016/j.jss.2021.06.076
https://www.ncbi.nlm.nih.gov/pubmed/34464894
https://www.proquest.com/docview/2568249872
Volume 268
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kXryI4qu-WMGTEE2TzW7qrT5KVdqDVPAWdpPZmlLS0sehF3-7M3lUPFTB44ZdEmYnM98y33zL2KXbsMYaTzt-kghHWAgcTY3AYWKbvg3AxEmu9tmTnTfx_B68b7D7qheGaJVl7C9ieh6tyyc3pTVvJmlKPb6YfkJ0OhI9kyHJbpN6Hfr09ec3zYPuZqoUw2l2VdnMOV7DGSl2e41CwlOuy03rsGeeg9o7bLsEj7xVfN8u24Bsj5k2ehDwHgxyDW_-SuiRpxm_gywdZLz_sZyO04T3xsliBPyh4Nals1vezYmUwEuN1QFHAMsfgMoKNOoiRB-QHsdyn721H_v3Hae8OcGJhevPHYWoQWntxoo6SzEPBq7VVinAw5gxgWcDVzdwZEHGIDCDU3lMeSCtTKgU7x-wWjbO4IhxpREiKRvHoURTJyKMrbU6kGCk0crYOnMrm0VxKStOt1uMooo_NozQzBGZOSIOnZJ1drVaMik0NX6b7FUbEVXNohjeIoz4vy0Sq0U_vOmvZRfVTkf4l1HpRGcwXuCkQIZ4UA2VV2eHhQusPt3HE7UIm-L4fy89YVs0Kigyp6w2ny7gDIHO3JznnnzONltPL53eF9RW_Mc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6x5bB7QYuWhS77MBKnlSLSxLEDNxaoyqM5rIrEzbKTcTcIpYi2h_57ZvKotAdA4ujEo1jjycxnzcxngMNw4J13kQ3iopCB9JgElhuB08Ifxz5Blxc122emRrfy6i6524CzrheGyypb39_49Npbt0-OWm0ePZYl9_hS-EnJ6Jj0TKXqA2wyO5Xswebp5fUoWztkvp6pIw1ngS65WZd53c-ZtDsaNCye6qXw9BL8rMPQ8DNstfhRnDZL3IYNrL6AG5IRochwWtN4i78MIEVZiT9YldNKTP6tnmZlIbJZsXxAcd6U15XzEzGuaylRtDSrU0EYVpwjZxZ4NCaUPmVKjtUO3A4vJmejoL08IchlGC8CTcBBWxvmmptLKRQmobdea6TzmHNJ5JPQDmjkUeUoKYhzhkxHqLwqOBsff4VeNatwD4S2hJK0z_NUkbYLmebee5sodMpZ7Xwfwk5nJm-ZxfmCiwfTlZDdG1KzYTUbLqPTqg-_1yKPDa3Ga5OjbiNM1y9KHs6Q039NSK6F_jOot8QOup029KNx9sRWOFvSpESldFZNddSH3cYE1kuP6VAt02P57X0f_QUfR5Pxjbm5zK734RO_aSpmvkNv8bTEH4R7Fu5na9fPfh__eA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=False+Negative+Rates+in+Benign+Thyroid+Nodule+Diagnosis%3A+Machine+Learning+for+Detecting+Malignancy&rft.jtitle=The+Journal+of+surgical+research&rft.au=Idarraga%2C+Alexander+J.&rft.au=Luong%2C+George&rft.au=Hsiao%2C+Vivian&rft.au=Schneider%2C+David+F.&rft.date=2021-12-01&rft.issn=0022-4804&rft.volume=268&rft.spage=562&rft.epage=569&rft_id=info:doi/10.1016%2Fj.jss.2021.06.076&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jss_2021_06_076
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4804&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4804&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4804&client=summon