Optimal Neural Tracking Control with Metaheuristic Parameter Identification for Uncertain Nonlinear Systems with Disturbances
In this paper, we propose an inverse optimal neural control strategy for uncertain nonlinear systems subject to external disturbances. This control strategy is developed based on a neural observer for the estimation of unmeasured states and inverse optimal control theory for trajectory tracking. The...
Saved in:
Published in | Applied sciences Vol. 10; no. 20; p. 7073 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2076-3417 2076-3417 |
DOI | 10.3390/app10207073 |
Cover
Loading…
Abstract | In this paper, we propose an inverse optimal neural control strategy for uncertain nonlinear systems subject to external disturbances. This control strategy is developed based on a neural observer for the estimation of unmeasured states and inverse optimal control theory for trajectory tracking. The stabilization of states along the desired trajectory is ensured via a control Lyapunov function. The optimal parameters of the control law are identified by different nature-inspired metaheuristic algorithms, namely: Ant Lion Optimizer, Grey Wolf Optimizer, Harris Hawks Optimization, and Whale Optimization Algorithm. Finally, a highly nonlinear biological system subject to parameter uncertainties and external disturbances (Activated Sludge Model) is proposed to validate the control strategy. Simulation results demonstrate that the control law with Ant Lion Optimizer outperforms the other optimization methods in terms of trajectory tracking in the presence of disturbances. The control law with Harris Hawks Optimization shows a better convergence of the neural states in presence of parameter uncertainty. |
---|---|
AbstractList | In this paper, we propose an inverse optimal neural control strategy for uncertain nonlinear systems subject to external disturbances. This control strategy is developed based on a neural observer for the estimation of unmeasured states and inverse optimal control theory for trajectory tracking. The stabilization of states along the desired trajectory is ensured via a control Lyapunov function. The optimal parameters of the control law are identified by different nature- inspired metaheuristic algorithms, namely: Ant Lion Optimizer, Grey Wolf Optimizer, Harris Hawks Optimization, and Whale Optimization Algorithm. Finally, a highly nonlinear biological system subject to parameter uncertainties and external disturbances (Activated Sludge Model) is proposed to validate the control strategy. Simulation results demonstrate that the control law with Ant Lion Optimizer outperforms the other optimization methods in terms of trajectory tracking in the presence of disturbances. The control law with Harris Hawks Optimization shows a better convergence of the neural states in presence of parameter uncertainty. Keywords: optimal control; artificial neural network; metaheuristic optimization; nonlinear systems In this paper, we propose an inverse optimal neural control strategy for uncertain nonlinear systems subject to external disturbances. This control strategy is developed based on a neural observer for the estimation of unmeasured states and inverse optimal control theory for trajectory tracking. The stabilization of states along the desired trajectory is ensured via a control Lyapunov function. The optimal parameters of the control law are identified by different nature-inspired metaheuristic algorithms, namely: Ant Lion Optimizer, Grey Wolf Optimizer, Harris Hawks Optimization, and Whale Optimization Algorithm. Finally, a highly nonlinear biological system subject to parameter uncertainties and external disturbances (Activated Sludge Model) is proposed to validate the control strategy. Simulation results demonstrate that the control law with Ant Lion Optimizer outperforms the other optimization methods in terms of trajectory tracking in the presence of disturbances. The control law with Harris Hawks Optimization shows a better convergence of the neural states in presence of parameter uncertainty. |
Audience | Academic |
Author | Zúñiga-Grajeda, Virgilio Gurubel-Tun, Kelly Joel Recio-Colmenares, Roxana |
Author_xml | – sequence: 1 givenname: Roxana surname: Recio-Colmenares fullname: Recio-Colmenares, Roxana – sequence: 2 givenname: Kelly Joel orcidid: 0000-0001-9999-9018 surname: Gurubel-Tun fullname: Gurubel-Tun, Kelly Joel – sequence: 3 givenname: Virgilio orcidid: 0000-0002-8248-0604 surname: Zúñiga-Grajeda fullname: Zúñiga-Grajeda, Virgilio |
BookMark | eNptUU1P3DAQtSoqlQIn_oClHqsFO3aSzRFtv1aiUAk4RxN7vHibtVPbq4pD_3sHUiFUYR9mNHrv-Y3fe3YQYkDGTqU4U6oT5zBNUlSiFa16ww6paRZKy_bgRf-OneS8FXQ6qZZSHLI_11PxOxj5Fe4TldsE5qcPG76KoaQ48t--3PPvWOCeAD4Xb_gPSLDDgomvLYbinTdQfAzcxcTvgsFUwAd-FcPoA0LiNw-54C7PWp9IZJ8GIFw-Zm8djBlP_tUjdvfl8-3q2-Ly-ut6dXG5MFqosmicBWVQAQx6qIWuRG0GaXSlNAwo684twYAWg8EGTFNVtm0aLSvdaacsWnXE1rOujbDtp0Qbp4c-gu-fBjFteki02og9DEJ1VuvWSqFNrQeNwtnKuWpoDDhDWh9mrSnFX3vMpd_GfQpkv69qpYVQUkpCnc2oDZCoDy4W-lm6FnfeUHDO0_yCXLa1FMtHwseZYFLMOaF7tilF_5hv_yJfQsv_0MaXpxDoGT--yvkLuGSs3g |
CitedBy_id | crossref_primary_10_3390_app11041793 crossref_primary_10_3390_s23229236 crossref_primary_10_3390_app11062870 crossref_primary_10_3390_pr11010077 |
Cites_doi | 10.2166/wst.1999.0036 10.1080/10798587.2014.891307 10.1155/2016/4570617 10.1007/978-3-540-78289-6 10.1109/ICPS48983.2019.9067679 10.1109/SECON.2017.7925387 10.1007/978-3-030-12127-3 10.1109/5.871310 10.1002/oca.2513 10.1007/978-3-030-12127-3_3 10.1016/j.advengsoft.2016.01.008 10.3390/s20133743 10.1201/b14779 10.1016/j.neucom.2020.06.085 10.1016/j.compchemeng.2018.04.007 10.1049/iet-gtd.2015.1555 10.1016/j.ijepes.2016.01.037 10.1016/j.advengsoft.2013.12.007 10.1142/S0129065710002218 10.1016/j.aml.2008.05.003 10.1016/j.bej.2018.02.001 10.1007/s00366-019-00850-w 10.1016/j.future.2019.02.028 10.1016/j.jfranklin.2020.03.019 10.3390/robotics9020022 10.1016/j.automatica.2012.05.049 10.1016/j.energy.2020.117070 10.1016/B978-0-12-818247-5.00016-2 10.1016/j.jfranklin.2010.05.018 10.1016/j.isatra.2018.11.035 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 MDPI AG 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2020 MDPI AG – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app10207073 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central - New (Subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_ab039d447d104c54b4e0fd2ff2b6cafc A641751081 10_3390_app10207073 |
GeographicLocations | Mexico |
GeographicLocations_xml | – name: Mexico |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c403t-6fda3ce3aab4b504205cb1c4234abe159f8aca40bce6ac622d766412494f3ded3 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:32:51 EDT 2025 Mon Jun 30 07:59:21 EDT 2025 Tue Jun 10 20:28:18 EDT 2025 Tue Jul 01 03:14:39 EDT 2025 Thu Apr 24 23:09:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-6fda3ce3aab4b504205cb1c4234abe159f8aca40bce6ac622d766412494f3ded3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8248-0604 0000-0001-9999-9018 |
OpenAccessLink | https://doaj.org/article/ab039d447d104c54b4e0fd2ff2b6cafc |
PQID | 2534003111 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ab039d447d104c54b4e0fd2ff2b6cafc proquest_journals_2534003111 gale_infotracacademiconefile_A641751081 crossref_primary_10_3390_app10207073 crossref_citationtrail_10_3390_app10207073 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Nelson (ref_35) 2009; 22 Yu (ref_2) 2020; 357 Alanis (ref_29) 2010; 20 ref_34 ref_11 ref_32 ref_31 ref_30 Pradhan (ref_18) 2018; 9 ref_16 ref_15 Schmitt (ref_12) 2018; 133 Heidari (ref_27) 2019; 97 Wang (ref_33) 2012; 48 Siregar (ref_10) 2017; 1 Mirjalili (ref_22) 2014; 69 Saikia (ref_21) 2016; 80 Wu (ref_4) 2020; 196 Mcclamroch (ref_6) 2000; 88 ref_24 ref_23 ref_20 Kumar (ref_1) 2020; 53 Leon (ref_14) 2014; 20 Verma (ref_19) 2016; 10 ref_28 Ballesteros (ref_3) 2020; 413 Gurubel (ref_5) 2019; 40 Sadeghassadi (ref_13) 2018; 115 Fathy (ref_17) 2019; 87 ref_26 ref_8 Mirjalili (ref_25) 2016; 95 Alanis (ref_9) 2010; 347 ref_7 |
References_xml | – ident: ref_34 doi: 10.2166/wst.1999.0036 – volume: 20 start-page: 279 year: 2014 ident: ref_14 article-title: Neural Inverse Optimal Control via Passivity for Subcutaneous Blood Glucose Regulation in Type 1 Diabetes Mellitus Patients publication-title: Intell. Autom. Soft. Comput. doi: 10.1080/10798587.2014.891307 – ident: ref_20 doi: 10.1155/2016/4570617 – ident: ref_30 – ident: ref_31 doi: 10.1007/978-3-540-78289-6 – ident: ref_28 doi: 10.1109/ICPS48983.2019.9067679 – ident: ref_24 doi: 10.1109/SECON.2017.7925387 – ident: ref_15 doi: 10.1007/978-3-030-12127-3 – volume: 88 start-page: 1083 year: 2000 ident: ref_6 article-title: Performance benefits of hybrid control design for linear and nonlinear systems publication-title: Proc. IEEE doi: 10.1109/5.871310 – volume: 9 start-page: 45 year: 2018 ident: ref_18 article-title: Antlion optimizer tuned PID controller based on Bode ideal transfer function for automobile cruise control system publication-title: J. Ind. Inf. Integr. – volume: 40 start-page: 848 year: 2019 ident: ref_5 article-title: Inverse optimal neural control via passivity approach for nonlinear anaerobic bioprocesses with biofuels production publication-title: Optim. Contr. Appl. Methods doi: 10.1002/oca.2513 – ident: ref_16 doi: 10.1007/978-3-030-12127-3_3 – volume: 95 start-page: 51 year: 2016 ident: ref_25 article-title: The Whale Optimization Algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – ident: ref_11 doi: 10.3390/s20133743 – ident: ref_32 doi: 10.1201/b14779 – volume: 413 start-page: 134 year: 2020 ident: ref_3 article-title: Robust optimal feedback control design for uncertain systems based on artificial neural network approximation of the Bellman’s value function publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.06.085 – ident: ref_8 – volume: 115 start-page: 150 year: 2018 ident: ref_13 article-title: Application of neural networks for optimal-setpoint design and MPC control in biological wastewater treatment publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2018.04.007 – volume: 10 start-page: 2548 year: 2016 ident: ref_19 article-title: Optimal real power rescheduling of generators for congestion management using a novel ant lion optimiser publication-title: IET Gener. Transm. Dis. doi: 10.1049/iet-gtd.2015.1555 – volume: 80 start-page: 52 year: 2016 ident: ref_21 article-title: Automatic generation control of a multi-area system using ant lion optimizer algorithm based PID plus second order derivative controller publication-title: Int. J. Electr. Power. doi: 10.1016/j.ijepes.2016.01.037 – volume: 69 start-page: 46 year: 2014 ident: ref_22 article-title: Grey Wolf Optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 20 start-page: 29 year: 2010 ident: ref_29 article-title: Discrete-time reduced order neural observers for uncertain nonlinear systems publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065710002218 – volume: 22 start-page: 629 year: 2009 ident: ref_35 article-title: Analysis of the activated sludge model (number 1) publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2008.05.003 – volume: 133 start-page: 47 year: 2018 ident: ref_12 article-title: Development of artificial neural networks to predict membrane fouling in an anoxic-aerobic membrane bioreactor treating domestic wastewater publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2018.02.001 – ident: ref_26 doi: 10.1007/s00366-019-00850-w – volume: 97 start-page: 849 year: 2019 ident: ref_27 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Generat. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 357 start-page: 5852 year: 2020 ident: ref_2 article-title: Observer-based data-driven constrained norm optimal iterative learning control for unknown non-affine non-linear systems with both available and unavailable system states publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2020.03.019 – volume: 1 start-page: 34 year: 2017 ident: ref_10 article-title: Analysis of Artificial Neural Network Accuracy Using Backpropagation Algorithm In Predicting Process (Forecasting) publication-title: Int. J. Inf. Syst. Technol. – ident: ref_23 doi: 10.3390/robotics9020022 – volume: 48 start-page: 1825 year: 2012 ident: ref_33 article-title: Optimal control of unknown nonaffine nonlinear discrete-time systems based on adaptive dynamic programming publication-title: Automatica doi: 10.1016/j.automatica.2012.05.049 – volume: 196 start-page: 117070 year: 2020 ident: ref_4 article-title: Intelligent predictive control of large-scale solvent-based CO2 capture plant using artificial neural network and particle swarm optimization publication-title: Energy doi: 10.1016/j.energy.2020.117070 – volume: 53 start-page: 272 year: 2020 ident: ref_1 article-title: Sub-optimal Control Design for Second Order Non-linear Systems using Krotov Sufficient Conditions publication-title: IFAC Pap. – ident: ref_7 doi: 10.1016/B978-0-12-818247-5.00016-2 – volume: 347 start-page: 1253 year: 2010 ident: ref_9 article-title: Discrete-time recurrent high order neural networks for nonlinear identification publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2010.05.018 – volume: 87 start-page: 282 year: 2019 ident: ref_17 article-title: Antlion optimizer-ANFIS load frequency control for multi-interconnected plants comprising photovoltaic and wind turbine publication-title: ISA Trans. doi: 10.1016/j.isatra.2018.11.035 |
SSID | ssj0000913810 |
Score | 2.1807868 |
Snippet | In this paper, we propose an inverse optimal neural control strategy for uncertain nonlinear systems subject to external disturbances. This control strategy is... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 7073 |
SubjectTerms | Algorithms artificial neural network Chemical oxygen demand Combinatorial optimization Complex systems Control Distance learning Heuristic programming Kalman filters metaheuristic optimization Methods Neural networks nonlinear systems optimal control Optimization techniques Parameter estimation Parameter identification Technology application Tracking and trailing |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcABtQXEQlv5UImHFOHEjpM9VX2wrZBaOLBSb9Z4bJcD3W33ceS_dybxLq0EnCIljhN7ZjwPj78R4qAJjbLeRnJL6lAYSFgMIWBBzkhUkRwAX_PZ4YtLez42X6_qqxxwm-e0ytWa2C3UYYocI_9c1dowB5bl4e1dwVWjeHc1l9B4KjZL0jTM4e3obB1jYczLtlT9sTxN3j3vCpNGZYgb_UgRdXj9_1qVO1Uz2hIvso0oj3qibosncbIjnj9ADtwR21km5_JDBo7--FL8_kbyf0NvMuIGXUgPIUfC5Umfjy456Cov4gJ-xmWP0Cy_A2dn0eTK_shuyjE8ScasHNMXuowBedkjasBMZojzvq9T6mQ588w581diPPry4-S8yOUVCjRKLwqbAmiMGsAbX5Pwqhp9iWRfGfCRzJzUAoJRHqMFtFUVGmu7YtUm6RCDfi02JtNJfCNkgqh9QGhCoIdxCNhCFdEGUKBiaQfi02quHWbscS6B8cuRD8KEcQ8IMxAH68a3PeTG35sdM9HWTRgnu7sxnV27LHYOvNLDYEwTyO3E2ngTVQpVSpW3SIw5EO-Z5I6lmX4IIR9KoGExLpY7ogE3tGy15UDsrrjCZTGfuz9M-fb_j9-JZxU76l0W4K7YWMyWcY-smYXf71j2HjSQ-Ng priority: 102 providerName: ProQuest |
Title | Optimal Neural Tracking Control with Metaheuristic Parameter Identification for Uncertain Nonlinear Systems with Disturbances |
URI | https://www.proquest.com/docview/2534003111 https://doaj.org/article/ab039d447d104c54b4e0fd2ff2b6cafc |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFH_UetGD2FZxtS45FGyFwcwkk9k9trVrKXQtxYXewssXPbSr7MfR_933JmlZQfHiaWAmk0nyvjPv_QJw0IVOGmcihSVtqDQmX40x-IqCkSgjBQCu5drhy6k5n-mLm_Zm46gvzgnL8MB54T6hk2octO4CBQ6-1U5HmUKTUuOMp65Z-5LN2wimeh08rhm6KhfkKYrr-X8w2VIGt1G_maAeqf9v-rg3MpOX8KJ4h-I4j2oHtuJ8F55vYAbuwk6RxqU4LJDRR3vw8ytJ_j29yVgbdCEL5HkPXJzmTHTB263iMq7wNq4zNrO4Qs7LomUVuVg3ld07QW6smNEX-lwBMc1YGrgQBdw89_WZOlkvHPPM8hXMJmffTs-rcrBC5bVUq8qkgMpHhei0a0lsZetd7cmz0ugiOThphB61dD4a9KZpQmdMf0y1TirEoF7D9vz7PL4BkTAqFzx2IdDDOEY_wiZ6E1CijLUZwMeHtba-oI7z4Rd3lqIPJozdIMwADh4b_8hgG39udsJEe2zCCNn9DeIbW_jG_otvBvCBSW5ZjmlAHks5Ak2LEbHsMU24I4U1qgew_8AVtgj40jat0qwQ6_rt_xjNO3jWcCDfZwnuw_ZqsY7vydtZuSE8GU2-DOHpydn06nrYs_kvnpoFiw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiBYQCwV8KOIhRTix42QPCJWWZUu7C4eu1JsZPwIH2C37EOLAX-I3MpPHUiTg1lOk2HHizHjGM575BmC3CIU0zkQyS_KQaKx80sfgEzJGooxkALicc4dHYzOc6Len-ekG_OxyYTisspOJtaAOM88-8udZrjRzYJq-PPuacNUoPl3tSmg0bHEUv38jk23x4vCA6PsoywavT_aHSVtVIPFaqmViqoDKR4XotMuJZ2XuXeppW6HRRdLuVYketXQ-GvQmy0JhTF2jWVcqxKBo3EtwWSvV5xDCcvBm7dNhjM0ylU0aILVLPoUmDc6QOuoPxVfXB_iXFqhV2-AGXG_3pGKvYaIt2IjTbbh2DqlwG7ZaGbAQT1qg6qc34cc7kjdf6ElG-KAL6T3Pnnex38S_C3byilFc4qe4ahChxXvkaDAipmhShKvWZyho8ywm9IY6QkGMGwQPnIsWUr0Z64AGWc0dc-riFkwu5Mffhs3pbBrvgKgwKhc8FiFQY-yjLzGL3gSUKGNqevCs-9fWt1jnXHLjsyWbhwljzxGmB7vrzmcNxMffu71ioq27MC53fWM2_2jbZW7RSdUPWheBzFyfa6ejrEJWVZkznhZCDx4zyS1LD_ogj20SBE2LcbjsHk24IDFZpj3Y6bjCtmJlYX8vgrv_b34IV4Yno2N7fDg-ugdXM3YS1BGIO7C5nK_ifdpJLd2Dmn0FfLjo9fIL8YU3Hw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEC0gFgr4UMRDiurEjpM9IFS6LC2lSw-s1JsZv-ih7JZ9CHHgj_HrmEmcpUjAradIieM85uUZz3zD2HblK6GtDuiWlD5TEF3WB-8ydEaCCOgA2JJqh49Gen-s3p2UJ2vsZ1cLQ2mVnU5sFLWfOoqR7xSlVMSBeb4TU1rE8WD46vxrRh2kaKe1a6fRsshh-P4N3bf5y4MB0vpJUQzffNzbz1KHgcwpIReZjh6kCxLAKlsi_4rS2dzhEkOBDWjpYw0OlLAuaHC6KHylddOvWUXpg5c47xV2tZK1oO4J9fDtKr5DeJt1LtqSQCn7gnak0ZoTvI78wwg2vQL-ZREaMze8xW6m9SnfbRlqg62FySa7cQG1cJNtJH0w588SaPXz2-zHB9Q9X_BOQvvAA9pAR1F4vtfmwnMK-PKjsIDTsGzRofkxUGYYEpa35cIxxQ85LqT5GJ_QZCvwUYvmATOe4NXbuQY4yXJmiWvnd9j4Un78XbY-mU7CPcYjBGm9g8p7vBj64GoogtMeBIiQ6x570f1r4xLuObXfODPo_xBhzAXC9Nj2avB5C_fx92GviWirIYTR3ZyYzj6bJPIGrJB9r1Tl0eV1pbIqiOiLGAurHQpFjz0lkhvSJPhCDlJBBH4WYXKZXfzgClVmnffYVscVJqmYufktEPf_f_kxu4aSYt4fjA4fsOsFxQuaZMQttr6YLcNDXFQt7KOGezn7dNni8gviRDtM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Neural+Tracking+Control+with+Metaheuristic+Parameter+Identification+for+Uncertain+Nonlinear+Systems+with+Disturbances&rft.jtitle=Applied+sciences&rft.au=Roxana+Recio-Colmenares&rft.au=Kelly+Joel+Gurubel-Tun&rft.au=Virgilio+Z%C3%BA%C3%B1iga-Grajeda&rft.date=2020-10-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=10&rft.issue=20&rft.spage=7073&rft_id=info:doi/10.3390%2Fapp10207073&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ab039d447d104c54b4e0fd2ff2b6cafc |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |