Optimal Neural Tracking Control with Metaheuristic Parameter Identification for Uncertain Nonlinear Systems with Disturbances

In this paper, we propose an inverse optimal neural control strategy for uncertain nonlinear systems subject to external disturbances. This control strategy is developed based on a neural observer for the estimation of unmeasured states and inverse optimal control theory for trajectory tracking. The...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 10; no. 20; p. 7073
Main Authors Recio-Colmenares, Roxana, Gurubel-Tun, Kelly Joel, Zúñiga-Grajeda, Virgilio
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2020
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app10207073

Cover

Loading…
Abstract In this paper, we propose an inverse optimal neural control strategy for uncertain nonlinear systems subject to external disturbances. This control strategy is developed based on a neural observer for the estimation of unmeasured states and inverse optimal control theory for trajectory tracking. The stabilization of states along the desired trajectory is ensured via a control Lyapunov function. The optimal parameters of the control law are identified by different nature-inspired metaheuristic algorithms, namely: Ant Lion Optimizer, Grey Wolf Optimizer, Harris Hawks Optimization, and Whale Optimization Algorithm. Finally, a highly nonlinear biological system subject to parameter uncertainties and external disturbances (Activated Sludge Model) is proposed to validate the control strategy. Simulation results demonstrate that the control law with Ant Lion Optimizer outperforms the other optimization methods in terms of trajectory tracking in the presence of disturbances. The control law with Harris Hawks Optimization shows a better convergence of the neural states in presence of parameter uncertainty.
AbstractList In this paper, we propose an inverse optimal neural control strategy for uncertain nonlinear systems subject to external disturbances. This control strategy is developed based on a neural observer for the estimation of unmeasured states and inverse optimal control theory for trajectory tracking. The stabilization of states along the desired trajectory is ensured via a control Lyapunov function. The optimal parameters of the control law are identified by different nature- inspired metaheuristic algorithms, namely: Ant Lion Optimizer, Grey Wolf Optimizer, Harris Hawks Optimization, and Whale Optimization Algorithm. Finally, a highly nonlinear biological system subject to parameter uncertainties and external disturbances (Activated Sludge Model) is proposed to validate the control strategy. Simulation results demonstrate that the control law with Ant Lion Optimizer outperforms the other optimization methods in terms of trajectory tracking in the presence of disturbances. The control law with Harris Hawks Optimization shows a better convergence of the neural states in presence of parameter uncertainty. Keywords: optimal control; artificial neural network; metaheuristic optimization; nonlinear systems
In this paper, we propose an inverse optimal neural control strategy for uncertain nonlinear systems subject to external disturbances. This control strategy is developed based on a neural observer for the estimation of unmeasured states and inverse optimal control theory for trajectory tracking. The stabilization of states along the desired trajectory is ensured via a control Lyapunov function. The optimal parameters of the control law are identified by different nature-inspired metaheuristic algorithms, namely: Ant Lion Optimizer, Grey Wolf Optimizer, Harris Hawks Optimization, and Whale Optimization Algorithm. Finally, a highly nonlinear biological system subject to parameter uncertainties and external disturbances (Activated Sludge Model) is proposed to validate the control strategy. Simulation results demonstrate that the control law with Ant Lion Optimizer outperforms the other optimization methods in terms of trajectory tracking in the presence of disturbances. The control law with Harris Hawks Optimization shows a better convergence of the neural states in presence of parameter uncertainty.
Audience Academic
Author Zúñiga-Grajeda, Virgilio
Gurubel-Tun, Kelly Joel
Recio-Colmenares, Roxana
Author_xml – sequence: 1
  givenname: Roxana
  surname: Recio-Colmenares
  fullname: Recio-Colmenares, Roxana
– sequence: 2
  givenname: Kelly Joel
  orcidid: 0000-0001-9999-9018
  surname: Gurubel-Tun
  fullname: Gurubel-Tun, Kelly Joel
– sequence: 3
  givenname: Virgilio
  orcidid: 0000-0002-8248-0604
  surname: Zúñiga-Grajeda
  fullname: Zúñiga-Grajeda, Virgilio
BookMark eNptUU1P3DAQtSoqlQIn_oClHqsFO3aSzRFtv1aiUAk4RxN7vHibtVPbq4pD_3sHUiFUYR9mNHrv-Y3fe3YQYkDGTqU4U6oT5zBNUlSiFa16ww6paRZKy_bgRf-OneS8FXQ6qZZSHLI_11PxOxj5Fe4TldsE5qcPG76KoaQ48t--3PPvWOCeAD4Xb_gPSLDDgomvLYbinTdQfAzcxcTvgsFUwAd-FcPoA0LiNw-54C7PWp9IZJ8GIFw-Zm8djBlP_tUjdvfl8-3q2-Ly-ut6dXG5MFqosmicBWVQAQx6qIWuRG0GaXSlNAwo684twYAWg8EGTFNVtm0aLSvdaacsWnXE1rOujbDtp0Qbp4c-gu-fBjFteki02og9DEJ1VuvWSqFNrQeNwtnKuWpoDDhDWh9mrSnFX3vMpd_GfQpkv69qpYVQUkpCnc2oDZCoDy4W-lm6FnfeUHDO0_yCXLa1FMtHwseZYFLMOaF7tilF_5hv_yJfQsv_0MaXpxDoGT--yvkLuGSs3g
CitedBy_id crossref_primary_10_3390_app11041793
crossref_primary_10_3390_s23229236
crossref_primary_10_3390_app11062870
crossref_primary_10_3390_pr11010077
Cites_doi 10.2166/wst.1999.0036
10.1080/10798587.2014.891307
10.1155/2016/4570617
10.1007/978-3-540-78289-6
10.1109/ICPS48983.2019.9067679
10.1109/SECON.2017.7925387
10.1007/978-3-030-12127-3
10.1109/5.871310
10.1002/oca.2513
10.1007/978-3-030-12127-3_3
10.1016/j.advengsoft.2016.01.008
10.3390/s20133743
10.1201/b14779
10.1016/j.neucom.2020.06.085
10.1016/j.compchemeng.2018.04.007
10.1049/iet-gtd.2015.1555
10.1016/j.ijepes.2016.01.037
10.1016/j.advengsoft.2013.12.007
10.1142/S0129065710002218
10.1016/j.aml.2008.05.003
10.1016/j.bej.2018.02.001
10.1007/s00366-019-00850-w
10.1016/j.future.2019.02.028
10.1016/j.jfranklin.2020.03.019
10.3390/robotics9020022
10.1016/j.automatica.2012.05.049
10.1016/j.energy.2020.117070
10.1016/B978-0-12-818247-5.00016-2
10.1016/j.jfranklin.2010.05.018
10.1016/j.isatra.2018.11.035
ContentType Journal Article
Copyright COPYRIGHT 2020 MDPI AG
2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2020 MDPI AG
– notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app10207073
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central - New (Subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_ab039d447d104c54b4e0fd2ff2b6cafc
A641751081
10_3390_app10207073
GeographicLocations Mexico
GeographicLocations_xml – name: Mexico
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c403t-6fda3ce3aab4b504205cb1c4234abe159f8aca40bce6ac622d766412494f3ded3
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:32:51 EDT 2025
Mon Jun 30 07:59:21 EDT 2025
Tue Jun 10 20:28:18 EDT 2025
Tue Jul 01 03:14:39 EDT 2025
Thu Apr 24 23:09:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-6fda3ce3aab4b504205cb1c4234abe159f8aca40bce6ac622d766412494f3ded3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8248-0604
0000-0001-9999-9018
OpenAccessLink https://doaj.org/article/ab039d447d104c54b4e0fd2ff2b6cafc
PQID 2534003111
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_ab039d447d104c54b4e0fd2ff2b6cafc
proquest_journals_2534003111
gale_infotracacademiconefile_A641751081
crossref_primary_10_3390_app10207073
crossref_citationtrail_10_3390_app10207073
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Nelson (ref_35) 2009; 22
Yu (ref_2) 2020; 357
Alanis (ref_29) 2010; 20
ref_34
ref_11
ref_32
ref_31
ref_30
Pradhan (ref_18) 2018; 9
ref_16
ref_15
Schmitt (ref_12) 2018; 133
Heidari (ref_27) 2019; 97
Wang (ref_33) 2012; 48
Siregar (ref_10) 2017; 1
Mirjalili (ref_22) 2014; 69
Saikia (ref_21) 2016; 80
Wu (ref_4) 2020; 196
Mcclamroch (ref_6) 2000; 88
ref_24
ref_23
ref_20
Kumar (ref_1) 2020; 53
Leon (ref_14) 2014; 20
Verma (ref_19) 2016; 10
ref_28
Ballesteros (ref_3) 2020; 413
Gurubel (ref_5) 2019; 40
Sadeghassadi (ref_13) 2018; 115
Fathy (ref_17) 2019; 87
ref_26
ref_8
Mirjalili (ref_25) 2016; 95
Alanis (ref_9) 2010; 347
ref_7
References_xml – ident: ref_34
  doi: 10.2166/wst.1999.0036
– volume: 20
  start-page: 279
  year: 2014
  ident: ref_14
  article-title: Neural Inverse Optimal Control via Passivity for Subcutaneous Blood Glucose Regulation in Type 1 Diabetes Mellitus Patients
  publication-title: Intell. Autom. Soft. Comput.
  doi: 10.1080/10798587.2014.891307
– ident: ref_20
  doi: 10.1155/2016/4570617
– ident: ref_30
– ident: ref_31
  doi: 10.1007/978-3-540-78289-6
– ident: ref_28
  doi: 10.1109/ICPS48983.2019.9067679
– ident: ref_24
  doi: 10.1109/SECON.2017.7925387
– ident: ref_15
  doi: 10.1007/978-3-030-12127-3
– volume: 88
  start-page: 1083
  year: 2000
  ident: ref_6
  article-title: Performance benefits of hybrid control design for linear and nonlinear systems
  publication-title: Proc. IEEE
  doi: 10.1109/5.871310
– volume: 9
  start-page: 45
  year: 2018
  ident: ref_18
  article-title: Antlion optimizer tuned PID controller based on Bode ideal transfer function for automobile cruise control system
  publication-title: J. Ind. Inf. Integr.
– volume: 40
  start-page: 848
  year: 2019
  ident: ref_5
  article-title: Inverse optimal neural control via passivity approach for nonlinear anaerobic bioprocesses with biofuels production
  publication-title: Optim. Contr. Appl. Methods
  doi: 10.1002/oca.2513
– ident: ref_16
  doi: 10.1007/978-3-030-12127-3_3
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_25
  article-title: The Whale Optimization Algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: ref_11
  doi: 10.3390/s20133743
– ident: ref_32
  doi: 10.1201/b14779
– volume: 413
  start-page: 134
  year: 2020
  ident: ref_3
  article-title: Robust optimal feedback control design for uncertain systems based on artificial neural network approximation of the Bellman’s value function
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.06.085
– ident: ref_8
– volume: 115
  start-page: 150
  year: 2018
  ident: ref_13
  article-title: Application of neural networks for optimal-setpoint design and MPC control in biological wastewater treatment
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2018.04.007
– volume: 10
  start-page: 2548
  year: 2016
  ident: ref_19
  article-title: Optimal real power rescheduling of generators for congestion management using a novel ant lion optimiser
  publication-title: IET Gener. Transm. Dis.
  doi: 10.1049/iet-gtd.2015.1555
– volume: 80
  start-page: 52
  year: 2016
  ident: ref_21
  article-title: Automatic generation control of a multi-area system using ant lion optimizer algorithm based PID plus second order derivative controller
  publication-title: Int. J. Electr. Power.
  doi: 10.1016/j.ijepes.2016.01.037
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_22
  article-title: Grey Wolf Optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 20
  start-page: 29
  year: 2010
  ident: ref_29
  article-title: Discrete-time reduced order neural observers for uncertain nonlinear systems
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065710002218
– volume: 22
  start-page: 629
  year: 2009
  ident: ref_35
  article-title: Analysis of the activated sludge model (number 1)
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2008.05.003
– volume: 133
  start-page: 47
  year: 2018
  ident: ref_12
  article-title: Development of artificial neural networks to predict membrane fouling in an anoxic-aerobic membrane bioreactor treating domestic wastewater
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2018.02.001
– ident: ref_26
  doi: 10.1007/s00366-019-00850-w
– volume: 97
  start-page: 849
  year: 2019
  ident: ref_27
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Generat. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 357
  start-page: 5852
  year: 2020
  ident: ref_2
  article-title: Observer-based data-driven constrained norm optimal iterative learning control for unknown non-affine non-linear systems with both available and unavailable system states
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2020.03.019
– volume: 1
  start-page: 34
  year: 2017
  ident: ref_10
  article-title: Analysis of Artificial Neural Network Accuracy Using Backpropagation Algorithm In Predicting Process (Forecasting)
  publication-title: Int. J. Inf. Syst. Technol.
– ident: ref_23
  doi: 10.3390/robotics9020022
– volume: 48
  start-page: 1825
  year: 2012
  ident: ref_33
  article-title: Optimal control of unknown nonaffine nonlinear discrete-time systems based on adaptive dynamic programming
  publication-title: Automatica
  doi: 10.1016/j.automatica.2012.05.049
– volume: 196
  start-page: 117070
  year: 2020
  ident: ref_4
  article-title: Intelligent predictive control of large-scale solvent-based CO2 capture plant using artificial neural network and particle swarm optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117070
– volume: 53
  start-page: 272
  year: 2020
  ident: ref_1
  article-title: Sub-optimal Control Design for Second Order Non-linear Systems using Krotov Sufficient Conditions
  publication-title: IFAC Pap.
– ident: ref_7
  doi: 10.1016/B978-0-12-818247-5.00016-2
– volume: 347
  start-page: 1253
  year: 2010
  ident: ref_9
  article-title: Discrete-time recurrent high order neural networks for nonlinear identification
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2010.05.018
– volume: 87
  start-page: 282
  year: 2019
  ident: ref_17
  article-title: Antlion optimizer-ANFIS load frequency control for multi-interconnected plants comprising photovoltaic and wind turbine
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2018.11.035
SSID ssj0000913810
Score 2.1807868
Snippet In this paper, we propose an inverse optimal neural control strategy for uncertain nonlinear systems subject to external disturbances. This control strategy is...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 7073
SubjectTerms Algorithms
artificial neural network
Chemical oxygen demand
Combinatorial optimization
Complex systems
Control
Distance learning
Heuristic programming
Kalman filters
metaheuristic optimization
Methods
Neural networks
nonlinear systems
optimal control
Optimization techniques
Parameter estimation
Parameter identification
Technology application
Tracking and trailing
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcABtQXEQlv5UImHFOHEjpM9VX2wrZBaOLBSb9Z4bJcD3W33ceS_dybxLq0EnCIljhN7ZjwPj78R4qAJjbLeRnJL6lAYSFgMIWBBzkhUkRwAX_PZ4YtLez42X6_qqxxwm-e0ytWa2C3UYYocI_9c1dowB5bl4e1dwVWjeHc1l9B4KjZL0jTM4e3obB1jYczLtlT9sTxN3j3vCpNGZYgb_UgRdXj9_1qVO1Uz2hIvso0oj3qibosncbIjnj9ADtwR21km5_JDBo7--FL8_kbyf0NvMuIGXUgPIUfC5Umfjy456Cov4gJ-xmWP0Cy_A2dn0eTK_shuyjE8ScasHNMXuowBedkjasBMZojzvq9T6mQ588w581diPPry4-S8yOUVCjRKLwqbAmiMGsAbX5Pwqhp9iWRfGfCRzJzUAoJRHqMFtFUVGmu7YtUm6RCDfi02JtNJfCNkgqh9QGhCoIdxCNhCFdEGUKBiaQfi02quHWbscS6B8cuRD8KEcQ8IMxAH68a3PeTG35sdM9HWTRgnu7sxnV27LHYOvNLDYEwTyO3E2ngTVQpVSpW3SIw5EO-Z5I6lmX4IIR9KoGExLpY7ogE3tGy15UDsrrjCZTGfuz9M-fb_j9-JZxU76l0W4K7YWMyWcY-smYXf71j2HjSQ-Ng
  priority: 102
  providerName: ProQuest
Title Optimal Neural Tracking Control with Metaheuristic Parameter Identification for Uncertain Nonlinear Systems with Disturbances
URI https://www.proquest.com/docview/2534003111
https://doaj.org/article/ab039d447d104c54b4e0fd2ff2b6cafc
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFH_UetGD2FZxtS45FGyFwcwkk9k9trVrKXQtxYXewssXPbSr7MfR_933JmlZQfHiaWAmk0nyvjPv_QJw0IVOGmcihSVtqDQmX40x-IqCkSgjBQCu5drhy6k5n-mLm_Zm46gvzgnL8MB54T6hk2octO4CBQ6-1U5HmUKTUuOMp65Z-5LN2wimeh08rhm6KhfkKYrr-X8w2VIGt1G_maAeqf9v-rg3MpOX8KJ4h-I4j2oHtuJ8F55vYAbuwk6RxqU4LJDRR3vw8ytJ_j29yVgbdCEL5HkPXJzmTHTB263iMq7wNq4zNrO4Qs7LomUVuVg3ld07QW6smNEX-lwBMc1YGrgQBdw89_WZOlkvHPPM8hXMJmffTs-rcrBC5bVUq8qkgMpHhei0a0lsZetd7cmz0ugiOThphB61dD4a9KZpQmdMf0y1TirEoF7D9vz7PL4BkTAqFzx2IdDDOEY_wiZ6E1CijLUZwMeHtba-oI7z4Rd3lqIPJozdIMwADh4b_8hgG39udsJEe2zCCNn9DeIbW_jG_otvBvCBSW5ZjmlAHks5Ak2LEbHsMU24I4U1qgew_8AVtgj40jat0qwQ6_rt_xjNO3jWcCDfZwnuw_ZqsY7vydtZuSE8GU2-DOHpydn06nrYs_kvnpoFiw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiBYQCwV8KOIhRTix42QPCJWWZUu7C4eu1JsZPwIH2C37EOLAX-I3MpPHUiTg1lOk2HHizHjGM575BmC3CIU0zkQyS_KQaKx80sfgEzJGooxkALicc4dHYzOc6Len-ekG_OxyYTisspOJtaAOM88-8udZrjRzYJq-PPuacNUoPl3tSmg0bHEUv38jk23x4vCA6PsoywavT_aHSVtVIPFaqmViqoDKR4XotMuJZ2XuXeppW6HRRdLuVYketXQ-GvQmy0JhTF2jWVcqxKBo3EtwWSvV5xDCcvBm7dNhjM0ylU0aILVLPoUmDc6QOuoPxVfXB_iXFqhV2-AGXG_3pGKvYaIt2IjTbbh2DqlwG7ZaGbAQT1qg6qc34cc7kjdf6ElG-KAL6T3Pnnex38S_C3byilFc4qe4ahChxXvkaDAipmhShKvWZyho8ywm9IY6QkGMGwQPnIsWUr0Z64AGWc0dc-riFkwu5Mffhs3pbBrvgKgwKhc8FiFQY-yjLzGL3gSUKGNqevCs-9fWt1jnXHLjsyWbhwljzxGmB7vrzmcNxMffu71ioq27MC53fWM2_2jbZW7RSdUPWheBzFyfa6ejrEJWVZkznhZCDx4zyS1LD_ogj20SBE2LcbjsHk24IDFZpj3Y6bjCtmJlYX8vgrv_b34IV4Yno2N7fDg-ugdXM3YS1BGIO7C5nK_ifdpJLd2Dmn0FfLjo9fIL8YU3Hw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEC0gFgr4UMRDiurEjpM9IFS6LC2lSw-s1JsZv-ih7JZ9CHHgj_HrmEmcpUjAradIieM85uUZz3zD2HblK6GtDuiWlD5TEF3WB-8ydEaCCOgA2JJqh49Gen-s3p2UJ2vsZ1cLQ2mVnU5sFLWfOoqR7xSlVMSBeb4TU1rE8WD46vxrRh2kaKe1a6fRsshh-P4N3bf5y4MB0vpJUQzffNzbz1KHgcwpIReZjh6kCxLAKlsi_4rS2dzhEkOBDWjpYw0OlLAuaHC6KHylddOvWUXpg5c47xV2tZK1oO4J9fDtKr5DeJt1LtqSQCn7gnak0ZoTvI78wwg2vQL-ZREaMze8xW6m9SnfbRlqg62FySa7cQG1cJNtJH0w588SaPXz2-zHB9Q9X_BOQvvAA9pAR1F4vtfmwnMK-PKjsIDTsGzRofkxUGYYEpa35cIxxQ85LqT5GJ_QZCvwUYvmATOe4NXbuQY4yXJmiWvnd9j4Un78XbY-mU7CPcYjBGm9g8p7vBj64GoogtMeBIiQ6x570f1r4xLuObXfODPo_xBhzAXC9Nj2avB5C_fx92GviWirIYTR3ZyYzj6bJPIGrJB9r1Tl0eV1pbIqiOiLGAurHQpFjz0lkhvSJPhCDlJBBH4WYXKZXfzgClVmnffYVscVJqmYufktEPf_f_kxu4aSYt4fjA4fsOsFxQuaZMQttr6YLcNDXFQt7KOGezn7dNni8gviRDtM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Neural+Tracking+Control+with+Metaheuristic+Parameter+Identification+for+Uncertain+Nonlinear+Systems+with+Disturbances&rft.jtitle=Applied+sciences&rft.au=Roxana+Recio-Colmenares&rft.au=Kelly+Joel+Gurubel-Tun&rft.au=Virgilio+Z%C3%BA%C3%B1iga-Grajeda&rft.date=2020-10-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=10&rft.issue=20&rft.spage=7073&rft_id=info:doi/10.3390%2Fapp10207073&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ab039d447d104c54b4e0fd2ff2b6cafc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon