Machine Learning for Advanced Emission Monitoring and Reduction Strategies in Fossil Fuel Power Plants

Fossil fuel power plants are a significant contributor to global carbon dioxide (CO2) and nitrogen oxide (NOx) emissions. Accurate monitoring and effective reduction of these emissions are crucial for mitigating climate change. This systematic review examines the current state of research on the app...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 14; no. 18; p. 8442
Main Authors Zuo, Zitu, Niu, Yongjie, Li, Jiale, Fu, Hongpeng, Zhou, Mengjie
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fossil fuel power plants are a significant contributor to global carbon dioxide (CO2) and nitrogen oxide (NOx) emissions. Accurate monitoring and effective reduction of these emissions are crucial for mitigating climate change. This systematic review examines the current state of research on the application of machine learning techniques in evaluating the emissions from fossil fuel power plants. This review first briefly introduces the continuous emission monitoring (CEM) systems and predictive emission monitoring (PEM) systems that are commonly used in power plants and highlights that machine learning models can significantly improve PEM systems through their capability to process and interpret large datasets intelligently to transform traditional emission monitoring systems by enhancing their precision, effectiveness, and cost-efficiency. Compared to previously published review articles, the key contribution and innovation in this present review is the discussion of machine learning models in CO2/NOx emissions according to the different algorithms used, including their advantages and disadvantages in a systematic way, which aims to help future researchers to develop more effective machine learning models. The most popular machine learning model includes reinforcement learning, a forward neural network, a long short-term memory neural network, and support vector regression. While each model method has its own advantages and disadvantages, we noted that training data quality, as well as the proper selection of model parameters, plays an important role. The challenges and research gaps, such as model transferability, a deep understanding of the physics of CO2/NOx emissions, and the availability of high-quality data for training machine learning models, are identified, and recommendations as well as potential future research directions to address these challenges are proposed and discussed.
AbstractList Fossil fuel power plants are a significant contributor to global carbon dioxide (CO2) and nitrogen oxide (NOx) emissions. Accurate monitoring and effective reduction of these emissions are crucial for mitigating climate change. This systematic review examines the current state of research on the application of machine learning techniques in evaluating the emissions from fossil fuel power plants. This review first briefly introduces the continuous emission monitoring (CEM) systems and predictive emission monitoring (PEM) systems that are commonly used in power plants and highlights that machine learning models can significantly improve PEM systems through their capability to process and interpret large datasets intelligently to transform traditional emission monitoring systems by enhancing their precision, effectiveness, and cost-efficiency. Compared to previously published review articles, the key contribution and innovation in this present review is the discussion of machine learning models in CO2/NOx emissions according to the different algorithms used, including their advantages and disadvantages in a systematic way, which aims to help future researchers to develop more effective machine learning models. The most popular machine learning model includes reinforcement learning, a forward neural network, a long short-term memory neural network, and support vector regression. While each model method has its own advantages and disadvantages, we noted that training data quality, as well as the proper selection of model parameters, plays an important role. The challenges and research gaps, such as model transferability, a deep understanding of the physics of CO2/NOx emissions, and the availability of high-quality data for training machine learning models, are identified, and recommendations as well as potential future research directions to address these challenges are proposed and discussed.
Fossil fuel power plants are a significant contributor to global carbon dioxide (CO[sub.2]) and nitrogen oxide (NO[sub.x]) emissions. Accurate monitoring and effective reduction of these emissions are crucial for mitigating climate change. This systematic review examines the current state of research on the application of machine learning techniques in evaluating the emissions from fossil fuel power plants. This review first briefly introduces the continuous emission monitoring (CEM) systems and predictive emission monitoring (PEM) systems that are commonly used in power plants and highlights that machine learning models can significantly improve PEM systems through their capability to process and interpret large datasets intelligently to transform traditional emission monitoring systems by enhancing their precision, effectiveness, and cost-efficiency. Compared to previously published review articles, the key contribution and innovation in this present review is the discussion of machine learning models in CO[sub.2]/NO[sub.x] emissions according to the different algorithms used, including their advantages and disadvantages in a systematic way, which aims to help future researchers to develop more effective machine learning models. The most popular machine learning model includes reinforcement learning, a forward neural network, a long short-term memory neural network, and support vector regression. While each model method has its own advantages and disadvantages, we noted that training data quality, as well as the proper selection of model parameters, plays an important role. The challenges and research gaps, such as model transferability, a deep understanding of the physics of CO[sub.2]/NO[sub.x] emissions, and the availability of high-quality data for training machine learning models, are identified, and recommendations as well as potential future research directions to address these challenges are proposed and discussed.
Audience Academic
Author Fu, Hongpeng
Niu, Yongjie
Zhou, Mengjie
Zuo, Zitu
Li, Jiale
Author_xml – sequence: 1
  givenname: Zitu
  surname: Zuo
  fullname: Zuo, Zitu
– sequence: 2
  givenname: Yongjie
  surname: Niu
  fullname: Niu, Yongjie
– sequence: 3
  givenname: Jiale
  orcidid: 0009-0005-0171-9011
  surname: Li
  fullname: Li, Jiale
– sequence: 4
  givenname: Hongpeng
  surname: Fu
  fullname: Fu, Hongpeng
– sequence: 5
  givenname: Mengjie
  surname: Zhou
  fullname: Zhou, Mengjie
BookMark eNptUV1rGzEQFCWFpmme-gcEfSxOtSfdhx5NiJuAQ0M_nsVaWrkyZ8nVySn999XFLYRS7YPE7sygnXnNzmKKxNhbEFdSavEBDwdQMAxKNS_YeSP6biEV9GfP3q_Y5TTtRD0a5ADinPl7tN9DJL4mzDHELfcp86V7xGjJ8Zt9mKaQIr9PMZSUZwBGxz-TO9oyD76UjIW2gSYeIl-lCh_56kgjf0g_KfOHEWOZ3rCXHseJLv_cF-zb6ubr9e1i_enj3fVyvbBKyLLobOd84ywqLb1yDbSWNG06PXSA7UYPjhBc3zbWai20RQTllAMi7QavUF6wu5OuS7gzhxz2mH-ZhME8NVLeGswl2JFM37Red6rFHoTqGo-ytYNE2vRWCmV11Xp30jrk9ONIUzG7dMyxft9IACFBtiAr6uqE2mIVDdGnaoit5WgfbE3Ih9pfDgB1m07NBDgRbK5mZfLGhoKzl5UYRgPCzHGaZ3FWzvt_OH9X-x_6N_q-ol8
CitedBy_id crossref_primary_10_3390_en17215397
crossref_primary_10_3390_coatings14101297
crossref_primary_10_3390_machines13020081
crossref_primary_10_1016_j_nxmate_2025_100522
crossref_primary_10_3390_app142411996
crossref_primary_10_1016_j_jag_2025_104368
crossref_primary_10_21015_vtse_v12i4_1931
Cites_doi 10.2172/1296780
10.1021/ef700451v
10.1016/j.jsm.2017.12.007
10.1016/j.energy.2015.11.020
10.1007/s42979-021-00592-x
10.3390/app14135952
10.1115/GT2016-57656
10.1609/aaai.v36i4.20393
10.1016/j.knosys.2015.01.010
10.1016/j.enpol.2015.12.017
10.1007/s10115-007-0082-6
10.1002/9781119434009
10.1016/j.renene.2018.08.089
10.1007/s10098-012-0490-5
10.1016/j.conengprac.2018.08.003
10.1109/WoWMoM51794.2021.00017
10.1166/asl.2017.8875
10.3390/su13094881
10.1016/j.inffus.2023.101805
10.1007/978-3-642-30223-7_91
10.1252/jcej.21we004
10.1016/j.rser.2015.12.166
10.3390/app14146177
10.1007/s11119-023-10060-6
10.1016/j.apenergy.2014.02.069
10.1145/3561048
10.1016/j.egypro.2014.11.1129
10.1016/B978-0-444-63428-3.50339-8
10.1016/j.energy.2013.02.062
10.1007/s11119-023-10065-1
10.1017/S026988899700101X
10.1063/1.5066893
10.1080/15435075.2021.1947827
10.1016/j.chemosphere.2024.141484
10.1016/j.ijggc.2012.05.015
10.1016/j.biortech.2020.123913
10.1016/j.conengprac.2019.104167
10.1088/1748-9326/abee4e
10.1016/j.energy.2013.04.007
10.1016/j.compchemeng.2022.107848
10.1007/978-3-642-27172-4
10.1016/j.fuel.2008.10.038
10.1016/j.energy.2008.10.010
10.1109/ACCESS.2024.3352034
10.1016/j.renene.2022.04.023
10.1038/s41558-018-0182-1
10.3390/app122010429
10.1016/j.jclepro.2020.122310
10.1115/GT2009-59419
10.1016/j.energy.2019.116597
10.1016/j.engappai.2018.07.003
10.1109/ISESD.2017.8253317
10.1016/j.chemolab.2016.09.003
10.1109/BigData.2017.8258056
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app14188442
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_725f9645a710462fa35c83aeb7c304c9
A811215643
10_3390_app14188442
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c403t-6c6df2dca493f4d215ce9eb69861a5b98dea1d752cc9909caa14d4d1ee9d8f4a3
IEDL.DBID BENPR
ISSN 2076-3417
IngestDate Wed Aug 27 01:16:51 EDT 2025
Mon Jun 30 15:45:12 EDT 2025
Tue Jun 10 21:01:30 EDT 2025
Tue Jul 01 01:31:32 EDT 2025
Thu Apr 24 23:10:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-6c6df2dca493f4d215ce9eb69861a5b98dea1d752cc9909caa14d4d1ee9d8f4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0005-0171-9011
OpenAccessLink https://www.proquest.com/docview/3110313513?pq-origsite=%requestingapplication%
PQID 3110313513
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_725f9645a710462fa35c83aeb7c304c9
proquest_journals_3110313513
gale_infotracacademiconefile_A811215643
crossref_citationtrail_10_3390_app14188442
crossref_primary_10_3390_app14188442
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Zhang (ref_59) 2016; 158
Ilamathi (ref_38) 2013; 15
Yang (ref_53) 2020; 192
Lamb (ref_1) 2021; 16
ref_13
ref_12
Si (ref_23) 2009; 88
Ghaderibaneh (ref_31) 2024; 12
ref_11
ref_55
Smrekar (ref_37) 2009; 34
Ye (ref_57) 2022; 19
Tan (ref_51) 2016; 94
Zawawi (ref_66) 2018; 2030
Dutton (ref_29) 1997; 12
ref_15
Savickas (ref_18) 2024; 25
Tan (ref_48) 2014; 61
ref_61
ref_60
Dwivedi (ref_69) 2023; 55
Tuttle (ref_54) 2019; 93
Wang (ref_63) 2021; 54
ref_25
ref_24
ref_22
Botheju (ref_64) 2012; 10
ref_21
ref_65
ref_20
Zheng (ref_47) 2008; 22
ref_28
Liu (ref_52) 2014; 130
ref_27
Lu (ref_62) 2008; 14
ref_26
Jiang (ref_32) 2019; 130
Sarker (ref_33) 2021; 2
Monteiro (ref_39) 2024; 352
ref_35
ref_34
Abbasi (ref_10) 2016; 90
ref_30
Munawer (ref_16) 2018; 17
Ali (ref_68) 2023; 99
Khodakarami (ref_17) 2016; 57
Mercure (ref_14) 2018; 8
Adams (ref_40) 2020; 270
Blackburn (ref_43) 2022; 163
Chen (ref_44) 2017; 23
Cheng (ref_36) 2018; 74
Wei (ref_58) 2013; 55
Kravanja (ref_49) 2016; Volume 38
ref_42
ref_41
ref_3
ref_2
Wang (ref_46) 2018; 80
Lv (ref_45) 2013; 55
ref_9
ref_8
AlKheder (ref_56) 2022; 191
Savickas (ref_19) 2024; 25
ref_5
ref_4
ref_7
Lu (ref_67) 2015; 80
ref_6
References_xml – ident: ref_12
  doi: 10.2172/1296780
– volume: 22
  start-page: 1034
  year: 2008
  ident: ref_47
  article-title: Combining Support Vector Regression and Ant Colony Optimization to Reduce NOx Emissions in Coal-Fired Utility Boilers
  publication-title: Energy Fuels
  doi: 10.1021/ef700451v
– volume: 17
  start-page: 87
  year: 2018
  ident: ref_16
  article-title: Human health and environmental impacts of coal combustion and post-combustion wastes
  publication-title: J. Sustain. Min.
  doi: 10.1016/j.jsm.2017.12.007
– volume: 94
  start-page: 672
  year: 2016
  ident: ref_51
  article-title: Modeling and reduction of NOX emissions for a 700 MW coal-fired boiler with the advanced machine learning method
  publication-title: Energy
  doi: 10.1016/j.energy.2015.11.020
– ident: ref_5
– volume: 2
  start-page: 160
  year: 2021
  ident: ref_33
  article-title: Machine Learning: Algorithms, Real-World Applications and Research Directions
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-021-00592-x
– ident: ref_11
  doi: 10.3390/app14135952
– ident: ref_26
– ident: ref_21
  doi: 10.1115/GT2016-57656
– ident: ref_35
  doi: 10.1609/aaai.v36i4.20393
– volume: 80
  start-page: 14
  year: 2015
  ident: ref_67
  article-title: Transfer learning using computational intelligence: A survey
  publication-title: Knowl. -Based Syst.
  doi: 10.1016/j.knosys.2015.01.010
– volume: 90
  start-page: 102
  year: 2016
  ident: ref_10
  article-title: CO2 emissions and financial development in an emerging economy: An augmented VAR approach
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2015.12.017
– ident: ref_65
– volume: 14
  start-page: 233
  year: 2008
  ident: ref_62
  article-title: Parallel randomized sampling for support vector machine (SVM) and support vector regression (SVR)
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-007-0082-6
– ident: ref_42
– ident: ref_22
  doi: 10.1002/9781119434009
– volume: 130
  start-page: 1216
  year: 2019
  ident: ref_32
  article-title: Prediction of combustion activation energy of NaOH/KOH catalyzed straw pyrolytic carbon based on machine learning
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.08.089
– volume: 15
  start-page: 125
  year: 2013
  ident: ref_38
  article-title: ANN–GA approach for predictive modeling and optimization of NOx emission in a tangentially fired boiler
  publication-title: Clean Technol. Environ. Policy
  doi: 10.1007/s10098-012-0490-5
– ident: ref_8
– volume: 80
  start-page: 26
  year: 2018
  ident: ref_46
  article-title: Prediction of NOX emission for coal-fired boilers based on deep belief network
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2018.08.003
– ident: ref_4
– ident: ref_30
  doi: 10.1109/WoWMoM51794.2021.00017
– ident: ref_27
– volume: 23
  start-page: 4518
  year: 2017
  ident: ref_44
  article-title: A Support Vector Based CO2 Gas Emission Prediction System for Generation Power Plant
  publication-title: Adv. Sci. Lett.
  doi: 10.1166/asl.2017.8875
– ident: ref_9
  doi: 10.3390/su13094881
– volume: 99
  start-page: 101805
  year: 2023
  ident: ref_68
  article-title: Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.101805
– ident: ref_61
  doi: 10.1007/978-3-642-30223-7_91
– volume: 54
  start-page: 566
  year: 2021
  ident: ref_63
  article-title: Modeling and Optimization of NOx Emission from a 660 MW Coal-Fired Boiler Based on the Deep Learning Algorithm
  publication-title: J. Chem. Eng. Jpn.
  doi: 10.1252/jcej.21we004
– volume: 57
  start-page: 965
  year: 2016
  ident: ref_17
  article-title: Urban pollution and solar radiation impacts
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.12.166
– ident: ref_20
– ident: ref_6
  doi: 10.3390/app14146177
– volume: 25
  start-page: 100
  year: 2024
  ident: ref_18
  article-title: A novel approach for analysing environmental sustainability aspects of combine harvester through telematics data. Part I: Evaluation and analysis of field tests
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-023-10060-6
– volume: 130
  start-page: 658
  year: 2014
  ident: ref_52
  article-title: Integrating multi-objective optimization with computational fluid dynamics to optimize boiler combustion process of a coal fired power plant
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.02.069
– volume: 55
  start-page: 194
  year: 2023
  ident: ref_69
  article-title: Explainable AI (XAI): Core Ideas, Techniques, and Solutions
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3561048
– volume: 61
  start-page: 377
  year: 2014
  ident: ref_48
  article-title: Modeling and Optimization of NOX Emission in a Coal-fired Power Plant using Advanced Machine Learning Methods
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.11.1129
– ident: ref_7
– ident: ref_28
– volume: Volume 38
  start-page: 2007
  year: 2016
  ident: ref_49
  article-title: Modelling of a Post-combustion CO2 Capture Process Using Bootstrap Aggregated Extreme Learning Machines
  publication-title: Computer Aided Chemical Engineering
  doi: 10.1016/B978-0-444-63428-3.50339-8
– volume: 55
  start-page: 319
  year: 2013
  ident: ref_45
  article-title: A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler
  publication-title: Energy
  doi: 10.1016/j.energy.2013.02.062
– ident: ref_3
– ident: ref_24
– volume: 25
  start-page: 221
  year: 2024
  ident: ref_19
  article-title: A novel approach for analysing environmental sustainability aspects of combine harvesters through telematics data. Part II: An IT tool for comparative analysis
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-023-10065-1
– ident: ref_34
– volume: 12
  start-page: 341
  year: 1997
  ident: ref_29
  article-title: A review of machine learning
  publication-title: Knowl. Eng. Rev.
  doi: 10.1017/S026988899700101X
– volume: 2030
  start-page: 020252
  year: 2018
  ident: ref_66
  article-title: A review: Fundamentals of computational fluid dynamics (CFD)
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.5066893
– volume: 19
  start-page: 529
  year: 2022
  ident: ref_57
  article-title: Modeling and optimization of the NOX generation characteristics of the coal-fired boiler based on interpretable machine learning algorithm
  publication-title: Int. J. Green Energy
  doi: 10.1080/15435075.2021.1947827
– volume: 352
  start-page: 141484
  year: 2024
  ident: ref_39
  article-title: Estimation of the main air pollutants from different biomasses under combustion atmospheres by artificial neural networks
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2024.141484
– volume: 10
  start-page: 33
  year: 2012
  ident: ref_64
  article-title: NOx reduction using amine reclaimer wastes (ARW) generated in post combustion CO2 capture
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2012.05.015
– ident: ref_13
  doi: 10.1016/j.biortech.2020.123913
– volume: 93
  start-page: 104167
  year: 2019
  ident: ref_54
  article-title: Sustainable NOx emission reduction at a coal-fired power station through the use of online neural network modeling and particle swarm optimization
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2019.104167
– volume: 16
  start-page: 073005
  year: 2021
  ident: ref_1
  article-title: A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/abee4e
– volume: 55
  start-page: 683
  year: 2013
  ident: ref_58
  article-title: Comparative study of computational intelligence approaches for NOx reduction of coal-fired boiler
  publication-title: Energy
  doi: 10.1016/j.energy.2013.04.007
– volume: 163
  start-page: 107848
  year: 2022
  ident: ref_43
  article-title: Development of novel dynamic machine learning-based optimization of a coal-fired power plant
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.107848
– ident: ref_60
  doi: 10.1007/978-3-642-27172-4
– volume: 88
  start-page: 806
  year: 2009
  ident: ref_23
  article-title: Optimization of coal-fired boiler SCRs based on modified support vector machine models and genetic algorithms
  publication-title: Fuel
  doi: 10.1016/j.fuel.2008.10.038
– volume: 34
  start-page: 144
  year: 2009
  ident: ref_37
  article-title: Development of artificial neural network model for a coal-fired boiler using real plant data
  publication-title: Energy
  doi: 10.1016/j.energy.2008.10.010
– ident: ref_25
– volume: 12
  start-page: 8432
  year: 2024
  ident: ref_31
  article-title: DeepAlloc: Deep Learning Approach to Spectrum Allocation in Shared Spectrum Systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3352034
– volume: 191
  start-page: 819
  year: 2022
  ident: ref_56
  article-title: Forecasting of carbon dioxide emissions from power plants in Kuwait using United States Environmental Protection Agency, Intergovernmental panel on climate change, and machine learning methods
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.04.023
– ident: ref_2
– volume: 8
  start-page: 588
  year: 2018
  ident: ref_14
  article-title: Macroeconomic impact of stranded fossil fuel assets
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/s41558-018-0182-1
– ident: ref_15
  doi: 10.3390/app122010429
– volume: 270
  start-page: 122310
  year: 2020
  ident: ref_40
  article-title: Prediction of SOx–NOx emission from a coal-fired CFB power plant with machine learning: Plant data learned by deep neural network and least square support vector machine
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.122310
– ident: ref_41
  doi: 10.1115/GT2009-59419
– volume: 192
  start-page: 116597
  year: 2020
  ident: ref_53
  article-title: Prediction of the NOx emissions from thermal power plant using long-short term memory neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116597
– volume: 74
  start-page: 303
  year: 2018
  ident: ref_36
  article-title: ThermalNet: A deep reinforcement learning-based combustion optimization system for coal-fired boiler
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.07.003
– ident: ref_50
  doi: 10.1109/ISESD.2017.8253317
– volume: 158
  start-page: 130
  year: 2016
  ident: ref_59
  article-title: A robust fuzzy tree method with outlier detection for combustion models and optimization
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2016.09.003
– ident: ref_55
  doi: 10.1109/BigData.2017.8258056
SSID ssj0000913810
Score 2.3447504
SecondaryResourceType review_article
Snippet Fossil fuel power plants are a significant contributor to global carbon dioxide (CO2) and nitrogen oxide (NOx) emissions. Accurate monitoring and effective...
Fossil fuel power plants are a significant contributor to global carbon dioxide (CO[sub.2]) and nitrogen oxide (NO[sub.x]) emissions. Accurate monitoring and...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 8442
SubjectTerms Artificial intelligence
carbon dioxide gas
Climate change
Electric power-plants
Emissions (Pollution)
Energy consumption
Energy minerals
Environmental law
Fossil fuels
Fuel industry
Greenhouse gases
Laws, regulations and rules
Machine learning
nitrogen oxides
Power plants
predictive model
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ9iq2K1Sg6CD1hsXrvZYxVLESoiCt5CXiuFsoqt_9-Z3VQqKF68LmGZzTeT-WaTfEPIieeRW6DBUJv4kEmnZKaVC5kLXMBaOChCI_Y8ucvHT_L2WT2vtPrCM2GtPHA7cZcFV1WZS2UL3I3klRXKa2GjKzxU4r65ugc5b6WYatbgkqF0VXshT0Bdj_vBTDKtpeTfUlCj1P_betwkmdE22UrskA5bqzpkLdZdsrmiGdglnRSNc3qWJKPPd0g1ac5ERprkUl8ocFE6TPv79AbAxL9itI1gfBG1daAPqNuKyNClSC28dlrTEZg9ndHRR5zRe2yjRrG30WK-S55GN4_X4yx1UMi8HIhFlvs8VDx4K0tRyQDp3ccyurzUObPKlTpEy0KhuPeQlUpvLZNBBhZjGXQlrdgj6_VrHfcJZYXVqipsDoRPymjdwEaldShEcFAVDXrkYjmpxid5cexyMTNQZiACZgWBHjjJcvBbq6rx87ArROdrCEphNw_AQUxyEPOXg_TIKWJrMGDBIG_TvQP4LJS-MkPNUGEDmFmP9JfwmxTJcyMYNsIQiomD_7DmkGxwoEXtKbU-WV-8f8QjoDULd9x48CcCNfQ-
  priority: 102
  providerName: Directory of Open Access Journals
Title Machine Learning for Advanced Emission Monitoring and Reduction Strategies in Fossil Fuel Power Plants
URI https://www.proquest.com/docview/3110313513
https://doaj.org/article/725f9645a710462fa35c83aeb7c304c9
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6azaU9lCRt6TbpokOhDzC1XrZ8KpuwTigkhNBAbkKW5BBYvGl28_87Y8tpCk2uthCyP81b-gbgkxdROHSDMTbxIVONVpnRTciaICTqwrwMPdnz6Vlxcql-XumrlHBbp2OVo07sFXVYecqRf5ecGhJIzeWP298ZdY2i6mpqobEF26iCjZnA9uHi7PziIctCrJeG58PFPInxPdWFueLGKCX-MUU9Y_9Terk3NvUOvE5eIpsPsO7Ci9jtwatH3IF7sJukcs2-JOror2-gPe3PRkaWaFOvGfqkbJ7q_GyBoFJ2jA2STBMx1wV2QfythBAbyWpx2puO1bjsmyWr7-OSnVM7NUY9jjbrt3BZL34dnWSpk0LmVS43WeGL0IrgnapkqwKaeR-r2BSVKbjTTWVCdDyUWniP1qnyznEVVOAxVsG0ysl3MOlWXXwPjJfO6LZ0BTp-SkXX5C5qY0IpQ4PRUT6Fb-NPtT7RjFO3i6XFcIMQsI8QmOJmGQffDuwa_x92SOg8DCFK7P7B6u7aJgmzpdBtVSjtSipbi9ZJ7Y10sSm9zJWvpvCZsLUkuLgg79L9A_wsosCyc8OJaQM9tCkcjPDbJNFr-3f_fXj-9T68FOj4DOfQDmCyubuPH9Fx2TQz2DL18Szt0Vkf_v8BuT3vew
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHRAuIpQV8APGQIuJX4hwQWqBhS7sVQq3Um-tXqkqrbNvdCvGn-I3MJE4pEnDrNbYsxzP-ZmzPfEPIc88jt-AGw9nEh0w6JTOtXMhc4AKwMC9DR_Y83SsmB_LLoTpcIT-HXBgMqxwwsQPqMPd4R_5WMCxIIBQT70_PMqwaha-rQwmNXi124o_vcGRbvNv-BPJ9wXm9tf9xkqWqApmXuVhmhS9Cw4O3shKNDGDyfKyiKypdMKtcpUO0LJSKew9IXXlrmQwysBiroBtpBYx7g9yUAiw5ZqbXny_vdJBjU7O8TwOE9hxfoZlkWkvJ_zB8XX2Af1mBzrTV98jd5JPSca9Ea2QltuvkzhWmwnWyljBgQV8lourX90kz7SIxI00krccUPGA6TlEFdAtUCO_iaI8bOBC1baDfkC0W9YEO1Lgw7ElLa5j2yYzWF3FGv2LxNooVlZaLB-TgWlb4IVlt5218RCgrrVZNaQtwM6WM1uU2Kq1DKYKDs1g-Im-GRTU-kZpjbY2ZgcMNSsBckcAIVHPofNpzefy92weUzmUXJODuPszPj03az6bkqqkKqWyJj-S8sUJ5LWx0pRe59NWIvETZGoQJmJC3KdsBfgsJt8xYM-T1AH9wRDYH8ZuEHwvzW9sf_7_5Gbk12Z_umt3tvZ0NcpuDy9VHwG2S1eX5RXwCLtPSPe30lJKj694YvwDvYytP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrYTggGgBsVDABxAfUtT4K3EOCG3pRi2lq1VFpd6CYztVpdVu6W6F-Gv8OmYSpxQJuPWaWJaTGT_P2OP3AF46EYTFMBhzE-cTVWuVGF37pPZCIhamuW_Jng8n2d6x-nSiT9bgZ38Xhsoqe0xsgdovHO2Rb0tOggRSc7ndxLKI6W754fxbQgpSdNLay2l0LnIQfnzH9G35fn8Xbf1KiHL85eNeEhUGEqdSuUoyl_lGeGdVIRvlcflzoQh1VpiMW10XxgfLfa6Fc4jahbOWK688D6HwplFWYr-3YD2nrGgA6zvjyfToaoeHGDcNT7tLgVIWKZ1Jc8WNUUr8sQy2agH_WhPaha68D_dihMpGnUttwFqYb8Lda7yFm7AREWHJ3kTa6rcPoDls6zIDi5StpwzjYTaKNQZsjA5FO3OsQxHqiNm5Z0fEHUvewXqiXOz2bM5KHPbZjJWXYcamJOXGSF9ptXwIxzfyjx_BYL6Yh8fAeG6NbnKbYdCpVLB1aoM2xufS15iZpUN41__UykWKc1LamFWY6pAFqmsWGKKj9o3PO2aPvzfbIetcNSE67vbB4uK0irO7yoVuikxpm9ORuWis1M5IG-rcyVS5YgivybYVgQYOyNl49wE_i-i3qpHhxPKB0eEQtnrzVxFNltVv33_y_9cv4DZOiurz_uTgKdwRGH915XBbMFhdXIZnGD-t6ufRURl8vem58QueNDDh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+for+Advanced+Emission+Monitoring+and+Reduction+Strategies+in+Fossil+Fuel+Power+Plants&rft.jtitle=Applied+sciences&rft.au=Zuo%2C+Zitu&rft.au=Niu%2C+Yongjie&rft.au=Li%2C+Jiale&rft.au=Fu%2C+Hongpeng&rft.date=2024-09-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=14&rft.issue=18&rft.spage=8442&rft_id=info:doi/10.3390%2Fapp14188442&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon