Machine Learning for Advanced Emission Monitoring and Reduction Strategies in Fossil Fuel Power Plants
Fossil fuel power plants are a significant contributor to global carbon dioxide (CO2) and nitrogen oxide (NOx) emissions. Accurate monitoring and effective reduction of these emissions are crucial for mitigating climate change. This systematic review examines the current state of research on the app...
Saved in:
Published in | Applied sciences Vol. 14; no. 18; p. 8442 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fossil fuel power plants are a significant contributor to global carbon dioxide (CO2) and nitrogen oxide (NOx) emissions. Accurate monitoring and effective reduction of these emissions are crucial for mitigating climate change. This systematic review examines the current state of research on the application of machine learning techniques in evaluating the emissions from fossil fuel power plants. This review first briefly introduces the continuous emission monitoring (CEM) systems and predictive emission monitoring (PEM) systems that are commonly used in power plants and highlights that machine learning models can significantly improve PEM systems through their capability to process and interpret large datasets intelligently to transform traditional emission monitoring systems by enhancing their precision, effectiveness, and cost-efficiency. Compared to previously published review articles, the key contribution and innovation in this present review is the discussion of machine learning models in CO2/NOx emissions according to the different algorithms used, including their advantages and disadvantages in a systematic way, which aims to help future researchers to develop more effective machine learning models. The most popular machine learning model includes reinforcement learning, a forward neural network, a long short-term memory neural network, and support vector regression. While each model method has its own advantages and disadvantages, we noted that training data quality, as well as the proper selection of model parameters, plays an important role. The challenges and research gaps, such as model transferability, a deep understanding of the physics of CO2/NOx emissions, and the availability of high-quality data for training machine learning models, are identified, and recommendations as well as potential future research directions to address these challenges are proposed and discussed. |
---|---|
AbstractList | Fossil fuel power plants are a significant contributor to global carbon dioxide (CO2) and nitrogen oxide (NOx) emissions. Accurate monitoring and effective reduction of these emissions are crucial for mitigating climate change. This systematic review examines the current state of research on the application of machine learning techniques in evaluating the emissions from fossil fuel power plants. This review first briefly introduces the continuous emission monitoring (CEM) systems and predictive emission monitoring (PEM) systems that are commonly used in power plants and highlights that machine learning models can significantly improve PEM systems through their capability to process and interpret large datasets intelligently to transform traditional emission monitoring systems by enhancing their precision, effectiveness, and cost-efficiency. Compared to previously published review articles, the key contribution and innovation in this present review is the discussion of machine learning models in CO2/NOx emissions according to the different algorithms used, including their advantages and disadvantages in a systematic way, which aims to help future researchers to develop more effective machine learning models. The most popular machine learning model includes reinforcement learning, a forward neural network, a long short-term memory neural network, and support vector regression. While each model method has its own advantages and disadvantages, we noted that training data quality, as well as the proper selection of model parameters, plays an important role. The challenges and research gaps, such as model transferability, a deep understanding of the physics of CO2/NOx emissions, and the availability of high-quality data for training machine learning models, are identified, and recommendations as well as potential future research directions to address these challenges are proposed and discussed. Fossil fuel power plants are a significant contributor to global carbon dioxide (CO[sub.2]) and nitrogen oxide (NO[sub.x]) emissions. Accurate monitoring and effective reduction of these emissions are crucial for mitigating climate change. This systematic review examines the current state of research on the application of machine learning techniques in evaluating the emissions from fossil fuel power plants. This review first briefly introduces the continuous emission monitoring (CEM) systems and predictive emission monitoring (PEM) systems that are commonly used in power plants and highlights that machine learning models can significantly improve PEM systems through their capability to process and interpret large datasets intelligently to transform traditional emission monitoring systems by enhancing their precision, effectiveness, and cost-efficiency. Compared to previously published review articles, the key contribution and innovation in this present review is the discussion of machine learning models in CO[sub.2]/NO[sub.x] emissions according to the different algorithms used, including their advantages and disadvantages in a systematic way, which aims to help future researchers to develop more effective machine learning models. The most popular machine learning model includes reinforcement learning, a forward neural network, a long short-term memory neural network, and support vector regression. While each model method has its own advantages and disadvantages, we noted that training data quality, as well as the proper selection of model parameters, plays an important role. The challenges and research gaps, such as model transferability, a deep understanding of the physics of CO[sub.2]/NO[sub.x] emissions, and the availability of high-quality data for training machine learning models, are identified, and recommendations as well as potential future research directions to address these challenges are proposed and discussed. |
Audience | Academic |
Author | Fu, Hongpeng Niu, Yongjie Zhou, Mengjie Zuo, Zitu Li, Jiale |
Author_xml | – sequence: 1 givenname: Zitu surname: Zuo fullname: Zuo, Zitu – sequence: 2 givenname: Yongjie surname: Niu fullname: Niu, Yongjie – sequence: 3 givenname: Jiale orcidid: 0009-0005-0171-9011 surname: Li fullname: Li, Jiale – sequence: 4 givenname: Hongpeng surname: Fu fullname: Fu, Hongpeng – sequence: 5 givenname: Mengjie surname: Zhou fullname: Zhou, Mengjie |
BookMark | eNptUV1rGzEQFCWFpmme-gcEfSxOtSfdhx5NiJuAQ0M_nsVaWrkyZ8nVySn999XFLYRS7YPE7sygnXnNzmKKxNhbEFdSavEBDwdQMAxKNS_YeSP6biEV9GfP3q_Y5TTtRD0a5ADinPl7tN9DJL4mzDHELfcp86V7xGjJ8Zt9mKaQIr9PMZSUZwBGxz-TO9oyD76UjIW2gSYeIl-lCh_56kgjf0g_KfOHEWOZ3rCXHseJLv_cF-zb6ubr9e1i_enj3fVyvbBKyLLobOd84ywqLb1yDbSWNG06PXSA7UYPjhBc3zbWai20RQTllAMi7QavUF6wu5OuS7gzhxz2mH-ZhME8NVLeGswl2JFM37Red6rFHoTqGo-ytYNE2vRWCmV11Xp30jrk9ONIUzG7dMyxft9IACFBtiAr6uqE2mIVDdGnaoit5WgfbE3Ih9pfDgB1m07NBDgRbK5mZfLGhoKzl5UYRgPCzHGaZ3FWzvt_OH9X-x_6N_q-ol8 |
CitedBy_id | crossref_primary_10_3390_en17215397 crossref_primary_10_3390_coatings14101297 crossref_primary_10_3390_machines13020081 crossref_primary_10_1016_j_nxmate_2025_100522 crossref_primary_10_3390_app142411996 crossref_primary_10_1016_j_jag_2025_104368 crossref_primary_10_21015_vtse_v12i4_1931 |
Cites_doi | 10.2172/1296780 10.1021/ef700451v 10.1016/j.jsm.2017.12.007 10.1016/j.energy.2015.11.020 10.1007/s42979-021-00592-x 10.3390/app14135952 10.1115/GT2016-57656 10.1609/aaai.v36i4.20393 10.1016/j.knosys.2015.01.010 10.1016/j.enpol.2015.12.017 10.1007/s10115-007-0082-6 10.1002/9781119434009 10.1016/j.renene.2018.08.089 10.1007/s10098-012-0490-5 10.1016/j.conengprac.2018.08.003 10.1109/WoWMoM51794.2021.00017 10.1166/asl.2017.8875 10.3390/su13094881 10.1016/j.inffus.2023.101805 10.1007/978-3-642-30223-7_91 10.1252/jcej.21we004 10.1016/j.rser.2015.12.166 10.3390/app14146177 10.1007/s11119-023-10060-6 10.1016/j.apenergy.2014.02.069 10.1145/3561048 10.1016/j.egypro.2014.11.1129 10.1016/B978-0-444-63428-3.50339-8 10.1016/j.energy.2013.02.062 10.1007/s11119-023-10065-1 10.1017/S026988899700101X 10.1063/1.5066893 10.1080/15435075.2021.1947827 10.1016/j.chemosphere.2024.141484 10.1016/j.ijggc.2012.05.015 10.1016/j.biortech.2020.123913 10.1016/j.conengprac.2019.104167 10.1088/1748-9326/abee4e 10.1016/j.energy.2013.04.007 10.1016/j.compchemeng.2022.107848 10.1007/978-3-642-27172-4 10.1016/j.fuel.2008.10.038 10.1016/j.energy.2008.10.010 10.1109/ACCESS.2024.3352034 10.1016/j.renene.2022.04.023 10.1038/s41558-018-0182-1 10.3390/app122010429 10.1016/j.jclepro.2020.122310 10.1115/GT2009-59419 10.1016/j.energy.2019.116597 10.1016/j.engappai.2018.07.003 10.1109/ISESD.2017.8253317 10.1016/j.chemolab.2016.09.003 10.1109/BigData.2017.8258056 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app14188442 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_725f9645a710462fa35c83aeb7c304c9 A811215643 10_3390_app14188442 |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c403t-6c6df2dca493f4d215ce9eb69861a5b98dea1d752cc9909caa14d4d1ee9d8f4a3 |
IEDL.DBID | BENPR |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:16:51 EDT 2025 Mon Jun 30 15:45:12 EDT 2025 Tue Jun 10 21:01:30 EDT 2025 Tue Jul 01 01:31:32 EDT 2025 Thu Apr 24 23:10:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-6c6df2dca493f4d215ce9eb69861a5b98dea1d752cc9909caa14d4d1ee9d8f4a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0005-0171-9011 |
OpenAccessLink | https://www.proquest.com/docview/3110313513?pq-origsite=%requestingapplication% |
PQID | 3110313513 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_725f9645a710462fa35c83aeb7c304c9 proquest_journals_3110313513 gale_infotracacademiconefile_A811215643 crossref_citationtrail_10_3390_app14188442 crossref_primary_10_3390_app14188442 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Zhang (ref_59) 2016; 158 Ilamathi (ref_38) 2013; 15 Yang (ref_53) 2020; 192 Lamb (ref_1) 2021; 16 ref_13 ref_12 Si (ref_23) 2009; 88 Ghaderibaneh (ref_31) 2024; 12 ref_11 ref_55 Smrekar (ref_37) 2009; 34 Ye (ref_57) 2022; 19 Tan (ref_51) 2016; 94 Zawawi (ref_66) 2018; 2030 Dutton (ref_29) 1997; 12 ref_15 Savickas (ref_18) 2024; 25 Tan (ref_48) 2014; 61 ref_61 ref_60 Dwivedi (ref_69) 2023; 55 Tuttle (ref_54) 2019; 93 Wang (ref_63) 2021; 54 ref_25 ref_24 ref_22 Botheju (ref_64) 2012; 10 ref_21 ref_65 ref_20 Zheng (ref_47) 2008; 22 ref_28 Liu (ref_52) 2014; 130 ref_27 Lu (ref_62) 2008; 14 ref_26 Jiang (ref_32) 2019; 130 Sarker (ref_33) 2021; 2 Monteiro (ref_39) 2024; 352 ref_35 ref_34 Abbasi (ref_10) 2016; 90 ref_30 Munawer (ref_16) 2018; 17 Ali (ref_68) 2023; 99 Khodakarami (ref_17) 2016; 57 Mercure (ref_14) 2018; 8 Adams (ref_40) 2020; 270 Blackburn (ref_43) 2022; 163 Chen (ref_44) 2017; 23 Cheng (ref_36) 2018; 74 Wei (ref_58) 2013; 55 Kravanja (ref_49) 2016; Volume 38 ref_42 ref_41 ref_3 ref_2 Wang (ref_46) 2018; 80 Lv (ref_45) 2013; 55 ref_9 ref_8 AlKheder (ref_56) 2022; 191 Savickas (ref_19) 2024; 25 ref_5 ref_4 ref_7 Lu (ref_67) 2015; 80 ref_6 |
References_xml | – ident: ref_12 doi: 10.2172/1296780 – volume: 22 start-page: 1034 year: 2008 ident: ref_47 article-title: Combining Support Vector Regression and Ant Colony Optimization to Reduce NOx Emissions in Coal-Fired Utility Boilers publication-title: Energy Fuels doi: 10.1021/ef700451v – volume: 17 start-page: 87 year: 2018 ident: ref_16 article-title: Human health and environmental impacts of coal combustion and post-combustion wastes publication-title: J. Sustain. Min. doi: 10.1016/j.jsm.2017.12.007 – volume: 94 start-page: 672 year: 2016 ident: ref_51 article-title: Modeling and reduction of NOX emissions for a 700 MW coal-fired boiler with the advanced machine learning method publication-title: Energy doi: 10.1016/j.energy.2015.11.020 – ident: ref_5 – volume: 2 start-page: 160 year: 2021 ident: ref_33 article-title: Machine Learning: Algorithms, Real-World Applications and Research Directions publication-title: SN Comput. Sci. doi: 10.1007/s42979-021-00592-x – ident: ref_11 doi: 10.3390/app14135952 – ident: ref_26 – ident: ref_21 doi: 10.1115/GT2016-57656 – ident: ref_35 doi: 10.1609/aaai.v36i4.20393 – volume: 80 start-page: 14 year: 2015 ident: ref_67 article-title: Transfer learning using computational intelligence: A survey publication-title: Knowl. -Based Syst. doi: 10.1016/j.knosys.2015.01.010 – volume: 90 start-page: 102 year: 2016 ident: ref_10 article-title: CO2 emissions and financial development in an emerging economy: An augmented VAR approach publication-title: Energy Policy doi: 10.1016/j.enpol.2015.12.017 – ident: ref_65 – volume: 14 start-page: 233 year: 2008 ident: ref_62 article-title: Parallel randomized sampling for support vector machine (SVM) and support vector regression (SVR) publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-007-0082-6 – ident: ref_42 – ident: ref_22 doi: 10.1002/9781119434009 – volume: 130 start-page: 1216 year: 2019 ident: ref_32 article-title: Prediction of combustion activation energy of NaOH/KOH catalyzed straw pyrolytic carbon based on machine learning publication-title: Renew. Energy doi: 10.1016/j.renene.2018.08.089 – volume: 15 start-page: 125 year: 2013 ident: ref_38 article-title: ANN–GA approach for predictive modeling and optimization of NOx emission in a tangentially fired boiler publication-title: Clean Technol. Environ. Policy doi: 10.1007/s10098-012-0490-5 – ident: ref_8 – volume: 80 start-page: 26 year: 2018 ident: ref_46 article-title: Prediction of NOX emission for coal-fired boilers based on deep belief network publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2018.08.003 – ident: ref_4 – ident: ref_30 doi: 10.1109/WoWMoM51794.2021.00017 – ident: ref_27 – volume: 23 start-page: 4518 year: 2017 ident: ref_44 article-title: A Support Vector Based CO2 Gas Emission Prediction System for Generation Power Plant publication-title: Adv. Sci. Lett. doi: 10.1166/asl.2017.8875 – ident: ref_9 doi: 10.3390/su13094881 – volume: 99 start-page: 101805 year: 2023 ident: ref_68 article-title: Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.101805 – ident: ref_61 doi: 10.1007/978-3-642-30223-7_91 – volume: 54 start-page: 566 year: 2021 ident: ref_63 article-title: Modeling and Optimization of NOx Emission from a 660 MW Coal-Fired Boiler Based on the Deep Learning Algorithm publication-title: J. Chem. Eng. Jpn. doi: 10.1252/jcej.21we004 – volume: 57 start-page: 965 year: 2016 ident: ref_17 article-title: Urban pollution and solar radiation impacts publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.12.166 – ident: ref_20 – ident: ref_6 doi: 10.3390/app14146177 – volume: 25 start-page: 100 year: 2024 ident: ref_18 article-title: A novel approach for analysing environmental sustainability aspects of combine harvester through telematics data. Part I: Evaluation and analysis of field tests publication-title: Precis. Agric. doi: 10.1007/s11119-023-10060-6 – volume: 130 start-page: 658 year: 2014 ident: ref_52 article-title: Integrating multi-objective optimization with computational fluid dynamics to optimize boiler combustion process of a coal fired power plant publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.02.069 – volume: 55 start-page: 194 year: 2023 ident: ref_69 article-title: Explainable AI (XAI): Core Ideas, Techniques, and Solutions publication-title: ACM Comput. Surv. doi: 10.1145/3561048 – volume: 61 start-page: 377 year: 2014 ident: ref_48 article-title: Modeling and Optimization of NOX Emission in a Coal-fired Power Plant using Advanced Machine Learning Methods publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.11.1129 – ident: ref_7 – ident: ref_28 – volume: Volume 38 start-page: 2007 year: 2016 ident: ref_49 article-title: Modelling of a Post-combustion CO2 Capture Process Using Bootstrap Aggregated Extreme Learning Machines publication-title: Computer Aided Chemical Engineering doi: 10.1016/B978-0-444-63428-3.50339-8 – volume: 55 start-page: 319 year: 2013 ident: ref_45 article-title: A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler publication-title: Energy doi: 10.1016/j.energy.2013.02.062 – ident: ref_3 – ident: ref_24 – volume: 25 start-page: 221 year: 2024 ident: ref_19 article-title: A novel approach for analysing environmental sustainability aspects of combine harvesters through telematics data. Part II: An IT tool for comparative analysis publication-title: Precis. Agric. doi: 10.1007/s11119-023-10065-1 – ident: ref_34 – volume: 12 start-page: 341 year: 1997 ident: ref_29 article-title: A review of machine learning publication-title: Knowl. Eng. Rev. doi: 10.1017/S026988899700101X – volume: 2030 start-page: 020252 year: 2018 ident: ref_66 article-title: A review: Fundamentals of computational fluid dynamics (CFD) publication-title: AIP Conf. Proc. doi: 10.1063/1.5066893 – volume: 19 start-page: 529 year: 2022 ident: ref_57 article-title: Modeling and optimization of the NOX generation characteristics of the coal-fired boiler based on interpretable machine learning algorithm publication-title: Int. J. Green Energy doi: 10.1080/15435075.2021.1947827 – volume: 352 start-page: 141484 year: 2024 ident: ref_39 article-title: Estimation of the main air pollutants from different biomasses under combustion atmospheres by artificial neural networks publication-title: Chemosphere doi: 10.1016/j.chemosphere.2024.141484 – volume: 10 start-page: 33 year: 2012 ident: ref_64 article-title: NOx reduction using amine reclaimer wastes (ARW) generated in post combustion CO2 capture publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2012.05.015 – ident: ref_13 doi: 10.1016/j.biortech.2020.123913 – volume: 93 start-page: 104167 year: 2019 ident: ref_54 article-title: Sustainable NOx emission reduction at a coal-fired power station through the use of online neural network modeling and particle swarm optimization publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2019.104167 – volume: 16 start-page: 073005 year: 2021 ident: ref_1 article-title: A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/abee4e – volume: 55 start-page: 683 year: 2013 ident: ref_58 article-title: Comparative study of computational intelligence approaches for NOx reduction of coal-fired boiler publication-title: Energy doi: 10.1016/j.energy.2013.04.007 – volume: 163 start-page: 107848 year: 2022 ident: ref_43 article-title: Development of novel dynamic machine learning-based optimization of a coal-fired power plant publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2022.107848 – ident: ref_60 doi: 10.1007/978-3-642-27172-4 – volume: 88 start-page: 806 year: 2009 ident: ref_23 article-title: Optimization of coal-fired boiler SCRs based on modified support vector machine models and genetic algorithms publication-title: Fuel doi: 10.1016/j.fuel.2008.10.038 – volume: 34 start-page: 144 year: 2009 ident: ref_37 article-title: Development of artificial neural network model for a coal-fired boiler using real plant data publication-title: Energy doi: 10.1016/j.energy.2008.10.010 – ident: ref_25 – volume: 12 start-page: 8432 year: 2024 ident: ref_31 article-title: DeepAlloc: Deep Learning Approach to Spectrum Allocation in Shared Spectrum Systems publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3352034 – volume: 191 start-page: 819 year: 2022 ident: ref_56 article-title: Forecasting of carbon dioxide emissions from power plants in Kuwait using United States Environmental Protection Agency, Intergovernmental panel on climate change, and machine learning methods publication-title: Renew. Energy doi: 10.1016/j.renene.2022.04.023 – ident: ref_2 – volume: 8 start-page: 588 year: 2018 ident: ref_14 article-title: Macroeconomic impact of stranded fossil fuel assets publication-title: Nat. Clim. Chang. doi: 10.1038/s41558-018-0182-1 – ident: ref_15 doi: 10.3390/app122010429 – volume: 270 start-page: 122310 year: 2020 ident: ref_40 article-title: Prediction of SOx–NOx emission from a coal-fired CFB power plant with machine learning: Plant data learned by deep neural network and least square support vector machine publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.122310 – ident: ref_41 doi: 10.1115/GT2009-59419 – volume: 192 start-page: 116597 year: 2020 ident: ref_53 article-title: Prediction of the NOx emissions from thermal power plant using long-short term memory neural network publication-title: Energy doi: 10.1016/j.energy.2019.116597 – volume: 74 start-page: 303 year: 2018 ident: ref_36 article-title: ThermalNet: A deep reinforcement learning-based combustion optimization system for coal-fired boiler publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.07.003 – ident: ref_50 doi: 10.1109/ISESD.2017.8253317 – volume: 158 start-page: 130 year: 2016 ident: ref_59 article-title: A robust fuzzy tree method with outlier detection for combustion models and optimization publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2016.09.003 – ident: ref_55 doi: 10.1109/BigData.2017.8258056 |
SSID | ssj0000913810 |
Score | 2.3447504 |
SecondaryResourceType | review_article |
Snippet | Fossil fuel power plants are a significant contributor to global carbon dioxide (CO2) and nitrogen oxide (NOx) emissions. Accurate monitoring and effective... Fossil fuel power plants are a significant contributor to global carbon dioxide (CO[sub.2]) and nitrogen oxide (NO[sub.x]) emissions. Accurate monitoring and... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 8442 |
SubjectTerms | Artificial intelligence carbon dioxide gas Climate change Electric power-plants Emissions (Pollution) Energy consumption Energy minerals Environmental law Fossil fuels Fuel industry Greenhouse gases Laws, regulations and rules Machine learning nitrogen oxides Power plants predictive model |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ9iq2K1Sg6CD1hsXrvZYxVLESoiCt5CXiuFsoqt_9-Z3VQqKF68LmGZzTeT-WaTfEPIieeRW6DBUJv4kEmnZKaVC5kLXMBaOChCI_Y8ucvHT_L2WT2vtPrCM2GtPHA7cZcFV1WZS2UL3I3klRXKa2GjKzxU4r65ugc5b6WYatbgkqF0VXshT0Bdj_vBTDKtpeTfUlCj1P_betwkmdE22UrskA5bqzpkLdZdsrmiGdglnRSNc3qWJKPPd0g1ac5ERprkUl8ocFE6TPv79AbAxL9itI1gfBG1daAPqNuKyNClSC28dlrTEZg9ndHRR5zRe2yjRrG30WK-S55GN4_X4yx1UMi8HIhFlvs8VDx4K0tRyQDp3ccyurzUObPKlTpEy0KhuPeQlUpvLZNBBhZjGXQlrdgj6_VrHfcJZYXVqipsDoRPymjdwEaldShEcFAVDXrkYjmpxid5cexyMTNQZiACZgWBHjjJcvBbq6rx87ArROdrCEphNw_AQUxyEPOXg_TIKWJrMGDBIG_TvQP4LJS-MkPNUGEDmFmP9JfwmxTJcyMYNsIQiomD_7DmkGxwoEXtKbU-WV-8f8QjoDULd9x48CcCNfQ- priority: 102 providerName: Directory of Open Access Journals |
Title | Machine Learning for Advanced Emission Monitoring and Reduction Strategies in Fossil Fuel Power Plants |
URI | https://www.proquest.com/docview/3110313513 https://doaj.org/article/725f9645a710462fa35c83aeb7c304c9 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6azaU9lCRt6TbpokOhDzC1XrZ8KpuwTigkhNBAbkKW5BBYvGl28_87Y8tpCk2uthCyP81b-gbgkxdROHSDMTbxIVONVpnRTciaICTqwrwMPdnz6Vlxcql-XumrlHBbp2OVo07sFXVYecqRf5ecGhJIzeWP298ZdY2i6mpqobEF26iCjZnA9uHi7PziIctCrJeG58PFPInxPdWFueLGKCX-MUU9Y_9Terk3NvUOvE5eIpsPsO7Ci9jtwatH3IF7sJukcs2-JOror2-gPe3PRkaWaFOvGfqkbJ7q_GyBoFJ2jA2STBMx1wV2QfythBAbyWpx2puO1bjsmyWr7-OSnVM7NUY9jjbrt3BZL34dnWSpk0LmVS43WeGL0IrgnapkqwKaeR-r2BSVKbjTTWVCdDyUWniP1qnyznEVVOAxVsG0ysl3MOlWXXwPjJfO6LZ0BTp-SkXX5C5qY0IpQ4PRUT6Fb-NPtT7RjFO3i6XFcIMQsI8QmOJmGQffDuwa_x92SOg8DCFK7P7B6u7aJgmzpdBtVSjtSipbi9ZJ7Y10sSm9zJWvpvCZsLUkuLgg79L9A_wsosCyc8OJaQM9tCkcjPDbJNFr-3f_fXj-9T68FOj4DOfQDmCyubuPH9Fx2TQz2DL18Szt0Vkf_v8BuT3vew |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHRAuIpQV8APGQIuJX4hwQWqBhS7sVQq3Um-tXqkqrbNvdCvGn-I3MJE4pEnDrNbYsxzP-ZmzPfEPIc88jt-AGw9nEh0w6JTOtXMhc4AKwMC9DR_Y83SsmB_LLoTpcIT-HXBgMqxwwsQPqMPd4R_5WMCxIIBQT70_PMqwaha-rQwmNXi124o_vcGRbvNv-BPJ9wXm9tf9xkqWqApmXuVhmhS9Cw4O3shKNDGDyfKyiKypdMKtcpUO0LJSKew9IXXlrmQwysBiroBtpBYx7g9yUAiw5ZqbXny_vdJBjU7O8TwOE9hxfoZlkWkvJ_zB8XX2Af1mBzrTV98jd5JPSca9Ea2QltuvkzhWmwnWyljBgQV8lourX90kz7SIxI00krccUPGA6TlEFdAtUCO_iaI8bOBC1baDfkC0W9YEO1Lgw7ElLa5j2yYzWF3FGv2LxNooVlZaLB-TgWlb4IVlt5218RCgrrVZNaQtwM6WM1uU2Kq1DKYKDs1g-Im-GRTU-kZpjbY2ZgcMNSsBckcAIVHPofNpzefy92weUzmUXJODuPszPj03az6bkqqkKqWyJj-S8sUJ5LWx0pRe59NWIvETZGoQJmJC3KdsBfgsJt8xYM-T1AH9wRDYH8ZuEHwvzW9sf_7_5Gbk12Z_umt3tvZ0NcpuDy9VHwG2S1eX5RXwCLtPSPe30lJKj694YvwDvYytP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrYTggGgBsVDABxAfUtT4K3EOCG3pRi2lq1VFpd6CYztVpdVu6W6F-Gv8OmYSpxQJuPWaWJaTGT_P2OP3AF46EYTFMBhzE-cTVWuVGF37pPZCIhamuW_Jng8n2d6x-nSiT9bgZ38Xhsoqe0xsgdovHO2Rb0tOggRSc7ndxLKI6W754fxbQgpSdNLay2l0LnIQfnzH9G35fn8Xbf1KiHL85eNeEhUGEqdSuUoyl_lGeGdVIRvlcflzoQh1VpiMW10XxgfLfa6Fc4jahbOWK688D6HwplFWYr-3YD2nrGgA6zvjyfToaoeHGDcNT7tLgVIWKZ1Jc8WNUUr8sQy2agH_WhPaha68D_dihMpGnUttwFqYb8Lda7yFm7AREWHJ3kTa6rcPoDls6zIDi5StpwzjYTaKNQZsjA5FO3OsQxHqiNm5Z0fEHUvewXqiXOz2bM5KHPbZjJWXYcamJOXGSF9ptXwIxzfyjx_BYL6Yh8fAeG6NbnKbYdCpVLB1aoM2xufS15iZpUN41__UykWKc1LamFWY6pAFqmsWGKKj9o3PO2aPvzfbIetcNSE67vbB4uK0irO7yoVuikxpm9ORuWis1M5IG-rcyVS5YgivybYVgQYOyNl49wE_i-i3qpHhxPKB0eEQtnrzVxFNltVv33_y_9cv4DZOiurz_uTgKdwRGH915XBbMFhdXIZnGD-t6ufRURl8vem58QueNDDh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+for+Advanced+Emission+Monitoring+and+Reduction+Strategies+in+Fossil+Fuel+Power+Plants&rft.jtitle=Applied+sciences&rft.au=Zuo%2C+Zitu&rft.au=Niu%2C+Yongjie&rft.au=Li%2C+Jiale&rft.au=Fu%2C+Hongpeng&rft.date=2024-09-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=14&rft.issue=18&rft.spage=8442&rft_id=info:doi/10.3390%2Fapp14188442&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |