Robust prediction of chaotic systems with random errors using dynamical system deep learning
To predict nonlinear dynamical systems, a novel method called the dynamical system deep learning (DSDL), which is based on the state space reconstruction (SSR) theory and utilizes time series data for model training, was recently proposed. In the real world, observational data of chaotic systems are...
Saved in:
Published in | Machine learning: science and technology Vol. 6; no. 2; pp. 25009 - 25030 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
30.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To predict nonlinear dynamical systems, a novel method called the dynamical system deep learning (DSDL), which is based on the state space reconstruction (SSR) theory and utilizes time series data for model training, was recently proposed. In the real world, observational data of chaotic systems are subject to random errors. Given the high nonlinearity and sensitivity of chaotic systems, the impact of random errors poses a significant challenge to the prediction. Mitigating the impact of random errors in the prediction of chaotic systems is a significant practical challenge. Traditional data-driven methods exhibit insufficient robustness against superimposed random errors, due to little consideration for temporal dynamic evolutionary of chaotic systems. Therefore, reducing the impact of random errors in the prediction of chaotic systems remains a difficult issue. In previous work, the DSDL demonstrated superiority in the noise-free scenario. This study primarily introduces the delay embedding theorem under noisy conditions and investigates the predictive capability of the DSDL in the presence of random errors in the training data. The performance of the DSDL is tested on three example systems, namely the Lorenz system, hyperchaotic Lorenz system and conceptual ocean–atmosphere coupled Lorenz system. The results show that the DSDL exhibits high accuracy and stability compared to various traditional machine learning methods and previous dynamic methods. Notably, as the magnitude of errors decreases, the advantage of the DSDL over traditional machine learning methods becomes more pronounced, highlighting the DSDL’s capacity to effectively extract the temporal evolution characteristics of chaotic systems from time series and to identify the true system state within observational error bands, significantly mitigating the impact of random errors. Moreover, unlike other contemporary deep learning methods, the DSDL requires faster hyperparameter tuning by using fewer parameters for improving accuracy, and based on the advantage of the SSR theoretical framework, the DSDL does not require prior knowledge of the original governing equations. Our work extends the theoretical applicability of the DSDL under random error conditions and points to the new and superior data-driven method DSDL based on the dynamic framework, holding significant potential for mitigating the impact of random errors and achieving robust predictions of real-world systems. |
---|---|
AbstractList | To predict nonlinear dynamical systems, a novel method called the dynamical system deep learning (DSDL), which is based on the state space reconstruction (SSR) theory and utilizes time series data for model training, was recently proposed. In the real world, observational data of chaotic systems are subject to random errors. Given the high nonlinearity and sensitivity of chaotic systems, the impact of random errors poses a significant challenge to the prediction. Mitigating the impact of random errors in the prediction of chaotic systems is a significant practical challenge. Traditional data-driven methods exhibit insufficient robustness against superimposed random errors, due to little consideration for temporal dynamic evolutionary of chaotic systems. Therefore, reducing the impact of random errors in the prediction of chaotic systems remains a difficult issue. In previous work, the DSDL demonstrated superiority in the noise-free scenario. This study primarily introduces the delay embedding theorem under noisy conditions and investigates the predictive capability of the DSDL in the presence of random errors in the training data. The performance of the DSDL is tested on three example systems, namely the Lorenz system, hyperchaotic Lorenz system and conceptual ocean–atmosphere coupled Lorenz system. The results show that the DSDL exhibits high accuracy and stability compared to various traditional machine learning methods and previous dynamic methods. Notably, as the magnitude of errors decreases, the advantage of the DSDL over traditional machine learning methods becomes more pronounced, highlighting the DSDL’s capacity to effectively extract the temporal evolution characteristics of chaotic systems from time series and to identify the true system state within observational error bands, significantly mitigating the impact of random errors. Moreover, unlike other contemporary deep learning methods, the DSDL requires faster hyperparameter tuning by using fewer parameters for improving accuracy, and based on the advantage of the SSR theoretical framework, the DSDL does not require prior knowledge of the original governing equations. Our work extends the theoretical applicability of the DSDL under random error conditions and points to the new and superior data-driven method DSDL based on the dynamic framework, holding significant potential for mitigating the impact of random errors and achieving robust predictions of real-world systems. |
Author | Wang, Ning Wang, Mingyu Li, Jianping Wu, Zixiang Liu, Guangcan Li, Hao |
Author_xml | – sequence: 1 givenname: Zixiang surname: Wu fullname: Wu, Zixiang organization: Qingdao Marine Science and Technology Center Laboratory for Ocean Dynamics and Climate, Qingdao 266237, People’s Republic of China – sequence: 2 givenname: Jianping orcidid: 0000-0003-0625-1575 surname: Li fullname: Li, Jianping organization: Qingdao Marine Science and Technology Center Laboratory for Ocean Dynamics and Climate, Qingdao 266237, People’s Republic of China – sequence: 3 givenname: Hao surname: Li fullname: Li, Hao organization: Qingdao Marine Science and Technology Center Laboratory for Ocean Dynamics and Climate, Qingdao 266237, People’s Republic of China – sequence: 4 givenname: Mingyu orcidid: 0000-0002-3246-1464 surname: Wang fullname: Wang, Mingyu organization: Ocean University of China Frontiers Science Center for Deep Ocean Multi-spheres and Earth System (DOMES)/Key Laboratory of Physical Oceanography/Academy of Future Ocean/College of Oceanic and Atmospheric Sciences/Center for Ocean Carbon Neutrality, Qingdao 266100, People’s Republic of China – sequence: 5 givenname: Ning surname: Wang fullname: Wang, Ning organization: Ocean University of China Frontiers Science Center for Deep Ocean Multi-spheres and Earth System (DOMES)/Key Laboratory of Physical Oceanography/Academy of Future Ocean/College of Oceanic and Atmospheric Sciences/Center for Ocean Carbon Neutrality, Qingdao 266100, People’s Republic of China – sequence: 6 givenname: Guangcan orcidid: 0009-0008-5736-1970 surname: Liu fullname: Liu, Guangcan organization: Ocean University of China Frontiers Science Center for Deep Ocean Multi-spheres and Earth System (DOMES)/Key Laboratory of Physical Oceanography/Academy of Future Ocean/College of Oceanic and Atmospheric Sciences/Center for Ocean Carbon Neutrality, Qingdao 266100, People’s Republic of China |
BookMark | eNp1kc9LHTEQx0NRqFXvPQZ68NKnM_mxG49F1D4QCkVvhZDND81jd7NN9iHvv29eV6wHe5ph8p3PTOb7iRyMafSEfEY4R1DqgjWcrRhKfmGcVS3_QI5eSwdv8o_ktJQNADCJXDI4Ir9-pm5bZjpl76KdYxppCtQ-mTRHS8uuzH4o9DnOTzSb0aWB-pxTLnRb4vhI3W40Q7Smf5FS5_1Ee2_yWJ9PyGEwffGnL_GYPNxc3199X939uF1ffbtbWQF8XjWNY14iio6H1lsZOo8tKGTQBG4kMAsIAi1Hp7AzyjjWsNaKxgtkLDh-TNYL1yWz0VOOg8k7nUzUfwspP2qT6396r0VnvGhd5QcQjolL7CQ2wnPTSqUkVNaXhTXl9Hvry6w3aZvHur7mqJSCVnJRVbCobE6lZB9epyLovSV6f3O9v7leLKktZ0tLTNM_5tDXCY1muloCcKknF6ry6zvK_4L_AJRnmwE |
CODEN | MLSTCK |
Cites_doi | 10.1371/journal.pone.0018295 10.1098/rspa.2021.0830 10.1016/j.chaos.2021.111304 10.1038/s41467-020-18381-0 10.1016/0306-4549(90)90094-T 10.1016/0167-2789(91)90222-U 10.3934/jcd.2014.1.391 10.5194/npg-27-373-2020 10.1155/2015/145874 10.1016/j.chaos.2024.114958 10.1038/s41586-023-06185-3 10.1038/s41586-019-0912-1 10.1038/s41598-024-53169-y 10.1016/j.chaos.2024.114959 10.1175/JCLI-D-10-05003.1 10.1111/j.2517-6161.1992.tb01884.x 10.1103/PhysRevLett.45.712 10.1016/j.crvi.2003.09.011 10.1038/s41467-024-46852-1 10.1103/PhysRevE.97.022222 10.1016/j.chaos.2021.111570 10.1175/1520-0477(1993)074<0049:ERAPAT>2.0.CO;2 10.1088/2632-2153/adc53b 10.1080/07350015.1987.10509609 10.1162/neco.1997.9.8.1735 10.1126/science.1091277 10.1038/s41467-021-25801-2 10.1017/S0022112010001217 10.1016/j.ins.2022.06.021 10.1088/1361-6544/aa9464 10.1038/s41467-024-45323-x 10.1038/s41598-024-74600-4 10.1038/s41586-023-06184-4 10.1073/pnas.1802987115 10.1007/BF02878381 10.1175/JCLI-D-22-0880.1 10.1007/BF03184222 10.1038/nature06512 10.1109/TCYB.2018.2816657 10.1088/2632-2153/ad8983 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 10.1103/PhysRevE.47.3057 10.1175/JCLI-D-11-00014.1 10.1016/j.ins.2022.11.121 10.1103/PhysRevLett.120.024102 10.1016/j.energy.2023.126980 10.5194/npg-19-569-2012 10.1038/s43017-023-00450-9 10.1016/j.physrep.2016.06.004 10.1140/epjb/s10051-021-00167-y 10.1109/ACCESS.2021.3096825 10.1002/cta.318 10.1038/s41467-024-46598-w 10.1098/rspa.2017.0844 10.1007/BF01053745 10.1038/s41467-021-26434-1 10.1016/j.neucom.2011.11.021 10.1088/1742-6596/720/1/012002 10.1038/nature14539 10.1142/S021812741430033X 10.1103/PhysRevLett.59.845 10.1126/science.aag0863 10.1016/j.apm.2024.06.016 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Published by IOP Publishing Ltd 2025 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025 The Author(s). Published by IOP Publishing Ltd – notice: 2025 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M2P P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1088/2632-2153/adc873 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Science Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2632-2153 |
ExternalDocumentID | oai_doaj_org_article_4bae47d170f04d2491b5164e3a758850 10_1088_2632_2153_adc873 mlstadc873 |
GrantInformation_xml | – fundername: Laoshan Laboratory grantid: LSKJ202202600 – fundername: National Natural Science Foundation of China grantid: 42288101 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Shandong Natural Science Foundation Project grantid: ZR2019ZD12 |
GroupedDBID | 88I ABHWH ABUWG ACHIP AFKRA AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CJUJL DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ IOP K7- M2P M~E N5L O3W OK1 PHGZT PIMPY TSCCA AAYXX CITATION PHGZM 3V. 7XB 8FE 8FG 8FK AEINN JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c403t-66d2e5114b3f7ec5fbe17081206f3a502c01041c31d81ba8ad2627c46e4122fd3 |
IEDL.DBID | DOA |
ISSN | 2632-2153 |
IngestDate | Wed Aug 27 01:30:31 EDT 2025 Wed Aug 13 03:16:58 EDT 2025 Tue Jul 01 05:00:05 EDT 2025 Wed Apr 16 04:14:25 EDT 2025 Wed Apr 16 04:15:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-66d2e5114b3f7ec5fbe17081206f3a502c01041c31d81ba8ad2627c46e4122fd3 |
Notes | MLST-103161.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0625-1575 0009-0008-5736-1970 0000-0002-3246-1464 |
OpenAccessLink | https://doaj.org/article/4bae47d170f04d2491b5164e3a758850 |
PQID | 3188807534 |
PQPubID | 4916454 |
PageCount | 22 |
ParticipantIDs | iop_journals_10_1088_2632_2153_adc873 doaj_primary_oai_doaj_org_article_4bae47d170f04d2491b5164e3a758850 crossref_primary_10_1088_2632_2153_adc873 proquest_journals_3188807534 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-06-30 |
PublicationDateYYYYMMDD | 2025-06-30 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Machine learning: science and technology |
PublicationTitleAbbrev | MLST |
PublicationTitleAlternate | Mach. Learn.: Sci. Technol |
PublicationYear | 2025 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Farmer (mlstadc873bib17) 1987; 59 Runkle (mlstadc873bib57) 1987; 5 Wang (mlstadc873bib37) 2022; 607 Benincà (mlstadc873bib1) 2008; 451 Duan (mlstadc873bib33) 2023; 271 Nelson (mlstadc873bib2) 2017 Korn (mlstadc873bib4) 2003; 326 Gauthier (mlstadc873bib59) 2021; 12 Ye (mlstadc873bib8) 2016; 353 Packard (mlstadc873bib15) 1980; 45 Casdagli (mlstadc873bib50) 1992; 54 Gao (mlstadc873bib7) 2024; 183 Chen (mlstadc873bib39) 2021; 12 Vlachas (mlstadc873bib12) 2018; 474 López-Caraballo (mlstadc873bib45) 2015; 2015 Eftekhari (mlstadc873bib52) 2018; 97 Takens (mlstadc873bib16) 1981; vol 898 Li (mlstadc873bib64) 2003; 48 Gao (mlstadc873bib29) 2024; 134 López-Caraballo (mlstadc873bib46) 2016; 720 Regazzoni (mlstadc873bib11) 2024; 15 Bi (mlstadc873bib28) 2023; 619 Pathak (mlstadc873bib10) 2018; 120 Vapnik (mlstadc873bib56) 1996 Guo (mlstadc873bib55) 2012; 25 Ma (mlstadc873bib22) 2018; 115 Zhang (mlstadc873bib27) 2023; 619 Jaeger (mlstadc873bib34) 2004; 304 LeCun (mlstadc873bib25) 2015; 521 Ichinaga (mlstadc873bib68) 2024; 25 Shen (mlstadc873bib38) 2023; 4 Chen (mlstadc873bib40) 2024; 14 Li (mlstadc873bib63) 1997; 40 Palmer (mlstadc873bib3) 1993; 74 Wang (mlstadc873bib6) 2024; 183 Meiyazhagan (mlstadc873bib32) 2021; 94 Wang (mlstadc873bib9) 2016; 644 Gutman (mlstadc873bib20) 2018; 31 Chen (mlstadc873bib23) 2020; 11 Baddoo (mlstadc873bib62) 2022; 478 Wang (mlstadc873bib42) 2024; 5 Yap (mlstadc873bib51) 2014 Li (mlstadc873bib66) 2025 Abarbanel (mlstadc873bib13) 1993; 47 Kishida (mlstadc873bib58) 1990; 17 Han (mlstadc873bib14) 2019; 49 Gao (mlstadc873bib5) 2023; 621 Wang (mlstadc873bib41) 2024; 14 Lin (mlstadc873bib26) 2021; 9 Zhang (mlstadc873bib54) 2011; 23 Reichstein (mlstadc873bib36) 2019; 566 Sardeshmukh (mlstadc873bib44) 2023; 36 Li (mlstadc873bib53) 2005; 33 Schmid (mlstadc873bib60) 2010; 656 Chattopadhyay (mlstadc873bib67) 2020; 27 Ma (mlstadc873bib21) 2014; 24 Hochreiter (mlstadc873bib30) 1997; 9 Basnarkov (mlstadc873bib65) 2012; 19 Cheng (mlstadc873bib31) 2021; 152 Sheng (mlstadc873bib48) 2012; 82 Sangiorgio (mlstadc873bib47) 2021; 153 Wu (mlstadc873bib24) 2024; 15 Li (mlstadc873bib35) 2024; 15 Tu (mlstadc873bib61) 2014; 1 Sauer (mlstadc873bib18) 1991; 65 Casdagli (mlstadc873bib49) 1991; 51 Lorenz (mlstadc873bib43) 1963; 20 Deyle (mlstadc873bib19) 2011; 6 |
References_xml | – volume: 6 year: 2011 ident: mlstadc873bib19 article-title: Generalized theorems for nonlinear state space reconstruction publication-title: PLoS One doi: 10.1371/journal.pone.0018295 – volume: 478 year: 2022 ident: mlstadc873bib62 article-title: Kernel learning for robust dynamic mode decomposition: linear and nonlinear disambiguation optimization publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2021.0830 – volume: 152 year: 2021 ident: mlstadc873bib31 article-title: High-efficiency chaotic time series prediction based on time convolution neural network publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.111304 – start-page: 281 year: 1996 ident: mlstadc873bib56 article-title: Support vector method for function approximation, regression estimation and signal processing – volume: 11 start-page: 4568 year: 2020 ident: mlstadc873bib23 article-title: Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation publication-title: Nat. Commun. doi: 10.1038/s41467-020-18381-0 – volume: 17 start-page: 157 year: 1990 ident: mlstadc873bib58 article-title: Autoregressive model analysis and decay ratio publication-title: Ann. Nucl. Energy doi: 10.1016/0306-4549(90)90094-T – volume: 51 start-page: 52 year: 1991 ident: mlstadc873bib49 article-title: State space reconstruction in the presence of noise publication-title: Physica D doi: 10.1016/0167-2789(91)90222-U – volume: 1 start-page: 391 year: 2014 ident: mlstadc873bib61 article-title: On dynamic mode decomposition: theory and applications publication-title: J. Comput. Dyn. doi: 10.3934/jcd.2014.1.391 – volume: 27 start-page: 373 year: 2020 ident: mlstadc873bib67 article-title: Data-driven predictions of a multiscale Lorenz 96 chaotic system using machine-learning methods: reservoir computing, artificial neural network, and long short-term memory network publication-title: Nonlinear Process. Geophys. doi: 10.5194/npg-27-373-2020 – volume: 2015 year: 2015 ident: mlstadc873bib45 article-title: Impact of noise on a dynamical system: prediction and uncertainties from a swarm-optimized neural network publication-title: Comput. Intell. Neurosci. doi: 10.1155/2015/145874 – start-page: 404 year: 2014 ident: mlstadc873bib51 article-title: A first analysis of the stability of Takens’ embedding – volume: 183 year: 2024 ident: mlstadc873bib7 article-title: Temporal action segmentation for video encryption publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2024.114958 – volume: 619 start-page: 533 year: 2023 ident: mlstadc873bib28 article-title: Accurate medium-range global weather forecasting with 3D neural networks publication-title: Nature doi: 10.1038/s41586-023-06185-3 – volume: 566 start-page: 195 year: 2019 ident: mlstadc873bib36 article-title: Deep learning and process understanding for data-driven Earth system science publication-title: Nature doi: 10.1038/s41586-019-0912-1 – volume: 14 start-page: 3143 year: 2024 ident: mlstadc873bib41 article-title: Interpretable predictions of chaotic dynamical systems using dynamical system deep learning publication-title: Sci. Rep. doi: 10.1038/s41598-024-53169-y – volume: 183 year: 2024 ident: mlstadc873bib6 article-title: A new 2D-HELS hyperchaotic map and its application on image encryption using RNA operation and dynamic confusion publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2024.114959 – volume: 23 start-page: 6210 year: 2011 ident: mlstadc873bib54 article-title: A study of impacts of coupled model initial shocks and state–parameter optimization on climate predictions using a simple pycnocline prediction model publication-title: J. Clim. doi: 10.1175/JCLI-D-10-05003.1 – volume: 54 start-page: 303 year: 1992 ident: mlstadc873bib50 article-title: Chaos and deterministic versus stochastic non-linear modeling publication-title: J. R. Stat. Soc. B doi: 10.1111/j.2517-6161.1992.tb01884.x – volume: 45 start-page: 712 year: 1980 ident: mlstadc873bib15 article-title: Geometry from a Time Series publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.712 – volume: 326 start-page: 787 year: 2003 ident: mlstadc873bib4 article-title: Is there chaos in the brain? II. Experimental evidence and related models publication-title: C. R. Biol. doi: 10.1016/j.crvi.2003.09.011 – volume: 15 start-page: 2506 year: 2024 ident: mlstadc873bib35 article-title: Higher-order Granger reservoir computing: simultaneously achieving scalable complex structures inference and accurate dynamics prediction publication-title: Nat. Commun. doi: 10.1038/s41467-024-46852-1 – volume: 97 year: 2018 ident: mlstadc873bib52 article-title: Stabilizing embedology: geometry-preserving delay-coordinate maps publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.97.022222 – volume: 153 year: 2021 ident: mlstadc873bib47 article-title: Forecasting of noisy chaotic systems with deep neural networks publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.111570 – volume: 25 start-page: 1 year: 2024 ident: mlstadc873bib68 article-title: PyDMD: a python package for robust dynamic mode decomposition publication-title: J. Mach. Learn. Res. – volume: 74 start-page: 49 year: 1993 ident: mlstadc873bib3 article-title: Extended-range atmospheric prediction and the Lorenz Model publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/1520-0477(1993)074<0049:ERAPAT>2.0.CO;2 – year: 2025 ident: mlstadc873bib66 article-title: Dynamics-based predictions of infinite-dimensional complex systems using Dynamical System Deep Learning method publication-title: Mach Learn : Sci Technol. doi: 10.1088/2632-2153/adc53b – volume: 5 start-page: 437 year: 1987 ident: mlstadc873bib57 article-title: Vector autoregressions and reality publication-title: J. Bus. Econ. Stat. doi: 10.1080/07350015.1987.10509609 – volume: 9 start-page: 1735 year: 1997 ident: mlstadc873bib30 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 304 start-page: 78 year: 2004 ident: mlstadc873bib34 article-title: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication publication-title: Science doi: 10.1126/science.1091277 – volume: 12 start-page: 5564 year: 2021 ident: mlstadc873bib59 article-title: Next generation reservoir computing publication-title: Nat. Commun. doi: 10.1038/s41467-021-25801-2 – volume: 656 start-page: 5 year: 2010 ident: mlstadc873bib60 article-title: Dynamic mode decomposition of numerical and experimental data publication-title: J. Fluid Mech. doi: 10.1017/S0022112010001217 – volume: 607 start-page: 477 year: 2022 ident: mlstadc873bib37 article-title: Predicting high-dimensional time series data with spatial, temporal and global information publication-title: Inform. Sci. doi: 10.1016/j.ins.2022.06.021 – volume: 31 start-page: 597 year: 2018 ident: mlstadc873bib20 article-title: The embedding problem in topological dynamics and Takens’ theorem publication-title: Nonlinearity doi: 10.1088/1361-6544/aa9464 – volume: 15 start-page: 1834 year: 2024 ident: mlstadc873bib11 article-title: Learning the intrinsic dynamics of spatio-temporal processes through Latent Dynamics Networks publication-title: Nat. Commun. doi: 10.1038/s41467-024-45323-x – volume: vol 898 start-page: 366 year: 1981 ident: mlstadc873bib16 article-title: Detecting strange attractors in turbulence – volume: 14 year: 2024 ident: mlstadc873bib40 article-title: Data-driven solutions and parameter estimations of a family of higher-order KdV equations based on physics informed neural networks publication-title: Sci. Rep. doi: 10.1038/s41598-024-74600-4 – volume: 619 start-page: 526 year: 2023 ident: mlstadc873bib27 article-title: Skilful nowcasting of extreme precipitation with NowcastNet publication-title: Nature doi: 10.1038/s41586-023-06184-4 – volume: 115 start-page: E9994 year: 2018 ident: mlstadc873bib22 article-title: Randomly distributed embedding making short-term high-dimensional data predictable publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1802987115 – volume: 40 start-page: 215 year: 1997 ident: mlstadc873bib63 article-title: Existence of the atmosphere attractor publication-title: Sci. China D doi: 10.1007/BF02878381 – volume: 36 start-page: 5569 year: 2023 ident: mlstadc873bib44 article-title: Improving atmospheric models by accounting for chaotic physics publication-title: J. Clim. doi: 10.1175/JCLI-D-22-0880.1 – volume: 48 start-page: 1034 year: 2003 ident: mlstadc873bib64 article-title: Global analysis theory of climate system and its applications publication-title: Chin. Sci. Bull. doi: 10.1007/BF03184222 – volume: 451 start-page: 822 year: 2008 ident: mlstadc873bib1 article-title: Chaos in a long-term experiment with a plankton community publication-title: Nature doi: 10.1038/nature06512 – volume: 49 start-page: 1885 year: 2019 ident: mlstadc873bib14 article-title: Nonuniform state space reconstruction for multivariate chaotic time series publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2816657 – volume: 5 year: 2024 ident: mlstadc873bib42 article-title: Exploring the potential of contemporary deep learning methods in purifying polluted information publication-title: Mach. Learn : Sci Technol. doi: 10.1088/2632-2153/ad8983 – volume: 20 start-page: 130 year: 1963 ident: mlstadc873bib43 article-title: Deterministic nonperiodic flow publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 – volume: 47 start-page: 3057 year: 1993 ident: mlstadc873bib13 article-title: Local false nearest neighbors and dynamical dimensions from observed chaotic data publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.47.3057 – start-page: 1419 year: 2017 ident: mlstadc873bib2 article-title: Stock market’s price movement prediction with LSTM neural networks – volume: 25 start-page: 572 year: 2012 ident: mlstadc873bib55 article-title: A time-scale decomposition approach to statistically downscale summer rainfall over north China publication-title: J. Clim. doi: 10.1175/JCLI-D-11-00014.1 – volume: 621 start-page: 766 year: 2023 ident: mlstadc873bib5 article-title: EFR-CSTP: encryption for face recognition based on the chaos and semi-tensor product theory publication-title: Inform. Sci. doi: 10.1016/j.ins.2022.11.121 – volume: 120 year: 2018 ident: mlstadc873bib10 article-title: Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.024102 – volume: 271 year: 2023 ident: mlstadc873bib33 article-title: A multistep short-term solar radiation forecasting model using fully convolutional neural networks and chaotic aquila optimization combining WRF-Solar model results publication-title: Energy doi: 10.1016/j.energy.2023.126980 – volume: 19 start-page: 569 year: 2012 ident: mlstadc873bib65 article-title: Forecast improvement in Lorenz 96 system publication-title: Nonlinear Process. Geophys. doi: 10.5194/npg-19-569-2012 – volume: 4 start-page: 552 year: 2023 ident: mlstadc873bib38 article-title: Differentiable modelling to unify machine learning and physical models for geosciences publication-title: Nat. Rev. Earth Environ. doi: 10.1038/s43017-023-00450-9 – volume: 644 start-page: 1 year: 2016 ident: mlstadc873bib9 article-title: Data based identification and prediction of nonlinear and complex dynamical systems publication-title: Phys. Rep. Rev. doi: 10.1016/j.physrep.2016.06.004 – volume: 94 start-page: 156 year: 2021 ident: mlstadc873bib32 article-title: Model-free prediction of emergence of extreme events in a parametrically driven nonlinear dynamical system by deep learning publication-title: Eur. Phys. J. B doi: 10.1140/epjb/s10051-021-00167-y – volume: 9 start-page: 101433 year: 2021 ident: mlstadc873bib26 article-title: Stock trend prediction using candlestick charting and ensemble machine learning techniques with a novelty feature engineering scheme publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3096825 – volume: 33 start-page: 235 year: 2005 ident: mlstadc873bib53 article-title: Hyperchaos evolved from the generalized Lorenz equation publication-title: Int. J. Circuit Theory Appl. doi: 10.1002/cta.318 – volume: 15 start-page: 2242 year: 2024 ident: mlstadc873bib24 article-title: Predicting multiple observations in complex systems through low-dimensional embeddings publication-title: Nat. Commun. doi: 10.1038/s41467-024-46598-w – volume: 474 year: 2018 ident: mlstadc873bib12 article-title: Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks publication-title: Proc. Math. Phys. Eng. Sci. doi: 10.1098/rspa.2017.0844 – volume: 65 start-page: 579 year: 1991 ident: mlstadc873bib18 article-title: Embedology publication-title: J. Stat. Phys. doi: 10.1007/BF01053745 – volume: 12 start-page: 6136 year: 2021 ident: mlstadc873bib39 article-title: Physics-informed learning of governing equations from scarce data publication-title: Nat. Commun. doi: 10.1038/s41467-021-26434-1 – volume: 82 start-page: 186 year: 2012 ident: mlstadc873bib48 article-title: Prediction for noisy nonlinear time series by echo state network based on dual estimation publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.11.021 – volume: 720 year: 2016 ident: mlstadc873bib46 article-title: Mackey-Glass noisy chaotic time series prediction by a swarm-optimized neural network publication-title: J. Phys.: Conf. Ser. doi: 10.1088/1742-6596/720/1/012002 – volume: 521 start-page: 436 year: 2015 ident: mlstadc873bib25 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 24 year: 2014 ident: mlstadc873bib21 article-title: Predicting time series from short-term high-dimensional data publication-title: Int. J. Bifurcation Chaos doi: 10.1142/S021812741430033X – volume: 59 start-page: 845 year: 1987 ident: mlstadc873bib17 article-title: Predicting chaotic time series publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.59.845 – volume: 353 start-page: 922 year: 2016 ident: mlstadc873bib8 article-title: Information leverage in interconnected ecosystems: overcoming the curse of dimensionality publication-title: Science doi: 10.1126/science.aag0863 – volume: 134 start-page: 520 year: 2024 ident: mlstadc873bib29 article-title: Development of a video encryption algorithm for critical areas using 2D extended Schaffer function map and neural networks publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2024.06.016 |
SSID | ssj0002513520 |
Score | 2.295973 |
Snippet | To predict nonlinear dynamical systems, a novel method called the dynamical system deep learning (DSDL), which is based on the state space reconstruction (SSR)... |
SourceID | doaj proquest crossref iop |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 25009 |
SubjectTerms | Deep learning dynamical system deep learning Dynamical systems Lorenz system Machine learning Nonlinear systems Nonlinearity predictive robustness Random errors Robustness Time series |
SummonAdditionalLinks | – databaseName: Institute of Physics Open Access Journal Titles dbid: O3W link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9UwDI_GduHC10C8baAc4LBDWfPRNE87wbRpQmJIiIkdkKI0TrbD9lq13f-P3eY9NIEQt6py5OjnJrbj9GfG3iWRGqWWvgAwqtBe2MJXJRRRgapiILIAquh-uTDnl_rzVXW1xY43_8K0Xd76P-DjTBQ8Q5gvxNkjYhgv0FOpIw_B1uoR21HWWMq8vqofmwMWdNwYXJS5NPm3gQ9c0cTYjw4Gtf6xLU--5uwZe5KDRP5xntJzthVXL9jTdQMGntfjLvv5rW3uh5F3PZVbCGLeJh5ufIsD-UzSPHA6auXokqC947Hv237gdNv9msPcjR41zaIcYux47iNx_ZJdnp1-PzkvcruEIuhSjYUxICPGT7pRqY6hSk0UNXp8WZqk0AAyUO4lghKAsaq3HqSRddAmaiFlAvWKba_aVXzNeIqCYhcTgyo1yGSFCGUDVoqmCsLDgh2ukXPdzIrhpmq2tY5QdoSym1FesE8E7UaO-KynF2hbl23rdOOjrgHnm0ihXqIiTOSi8pjP2KpcsPdoGJfX1_APZfyB3N3tMDrjpKNQr1y6DtKCHayt-1sOdzZLtMxK7_2npn32WFIr4Onq4AHbHvv7-Abjk7F5O32HvwDTot7N priority: 102 providerName: IOP Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na90wDDdbe9llW_fB3tYNH7rDDubFH3H8TmMdLaXQMsoKPQyM44-3QfucJen_PynxaymDXhMFBcmSfpKMRMhB4qmVcuVYCFoy5bhhrq4CizLIOnocFoAd3bNzfXKpTq_qq1JwG8q1yq1PnBx1yB5r5Es4ewYH50r1tfvLcGsUdlfLCo2nZBdcsIHka_fw6PzHxV2VBaI3IIyq9CfBopY4n5xBnJNLF7xp5IN4NI3thyjzJ3f_-eYp4By_JM8LUqTfZtXukSdx84q82G5hoMUoX5NfF7m9HUba9dhzQTnTnKj_7TJ8SOdJzQPFeiuFuBTyDY19n_uB4pX3NQ3zSnrgNJPSEGNHyzKJ9RtyeXz08_sJKzsTmFeVHJnWQUQAUaqVqYm-Tm3kDYR9UekkQQvCYwLGveQBAKszLggtGq90VFyIFORbsrPJm_iO0BQ5AhgdvaxUEMlw7qs2GMHb2nMXFuTLVnK2m0dj2KmlbYxFKVuUsp2lvCCHKNo7OhxqPT3I_doWG7GqdVE1Af43IUO1AkaQzUXpIKkxdbUgn0ExthjZ8Agz-oDu5noYrbbCIt6rVrYLaUH2t9q9p7s_Yu8ff_2BPBO4Bni6NrhPdsb-Nn4EbDK2n8oB_AffGeII priority: 102 providerName: ProQuest |
Title | Robust prediction of chaotic systems with random errors using dynamical system deep learning |
URI | https://iopscience.iop.org/article/10.1088/2632-2153/adc873 https://www.proquest.com/docview/3188807534 https://doaj.org/article/4bae47d170f04d2491b5164e3a758850 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKuXABykMstCsf2kMP0caPOO6RVrstlfpQRUUPSJbjR0GimyhJr_x2ZuJsH0IqFy4-RBPZ-ib2fJOxviFkO7JYCbFnM--VyKRlOrNF7rMgvCiCQ7EArOienKqjS3l8VVw9aPWFd8KSPHACbiYrG2TpWZnHXHpIFlhVAMUPwgLT1Slbh5j3IJnCMxiiNjCLfKxLwk6aoS55BvFNzKx3uhSP4tAg1w_R5Wfd_HUmD4Fm8Zq8HBki_ZxWtkHWwvINebXqvkDHzfiWfL-oq9uup02LtRbEl9aRuh-2hhdpUmjuKP5npRCPfH1DQ9vWbUfxqvs19akVPcyUTKkPoaFjE4nrd-RyMf96cJSNvRIyJ3PRZ0p5HoA8yUrEMrgiVgEgg-idqygAfe4w8WJOMA9E1WrrueKlkypIxnn04j1ZX9bL8IHQGBgSFxWcQMSjZszlldcckHfM-gnZXSFnmiSJYYZSttYGUTaIskkoT8g-Qntnh2LWwwNwsRldbP7l4gnZAceYcXN1T0xGH9nd_Op6oww3yPPyPdP4OCGbK-_e28GxplGTWciP_2O5n8gLjk2Ch0uFm2S9b2_DFjCXvpqSZ3pxOCXP9-en5xfT4ZOF8cvZOYwnv-cwnolvfwDVaO27 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALb8RCAR_ogUO08SNZ7wEhXsuWPg6olXpAMo4fCxLdhCQV6p_iNzKTR6sKqbdek0nszMPzjceZAXgVeSyknNvE-1wmynKd2Cz1SZBeZsFRsQDK6O4f5Msj9eU4O96Av-O_MHSsclwTu4Xal472yKeoe5oK50r1tvqdUNcoyq6OLTR6tdgNZ38wZGve7HxE-W4Lsfh0-GGZDF0FEqdS2SZ57kVAmKEKGWfBZbEIfIaOUaR5lDhP4ShE4U5yj5DOautFLmZO5UFxIaKX-N4bcFPhF5JF6cXn8z0dxAqIZ9IhG4r2O6Vq6Al6VTm13umZvOT9uiYB6NN-ltV_nqBzb4t7cGfApexdr0j3YSOsH8DdsecDG5aAh_Dta1mcNi2rasrwkFRZGZn7YUt8kPV1oRtGu7sMvaAvT1io67JuGB2wXzF_trZdgYKBlPkQKja0rlg9gqNr4eVj2FyX6_AEWAyc4FIenEyVF1Fz7tLCa8GLzHHrJ_B65Jyp-kIcpkuga22Iy4a4bHouT-A9sfacjkpodxfKemUGizSqsEHNPM430oBqjgNh7BikxRBKZ-kEtlEwZjDp5orB2CW6k19Na3IjDKHLdG4qHyewNUr3gu5CoZ9effsl3Foe7u-ZvZ2D3WdwW1AD4u7A4hZstvVpeI6oqC1edKrI4Pt16_4_L28cPw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSIgL5akuLeADHDiEjT2O4z3yWpVXQYiKHpAsx49yoJsoSf8_M4m3qAIhblE01ljf2J6xx_6GsSdJpAZg5YoQNBTKCVO4qgxFhABV9EQWQBndj0f68Fi9O6lOcp3T6S1M2-Wl_zl-zkTBM4T5QpxZEsN4gZ4Kli54U8OyC-kqu1aB1lS74RN8uzhkQeeNAUaZ05N_a3zJHU2s_ehkUPMfS_Pkb9a32M0cKPIXc7dusytxc4ftbosw8Dwn77LvX9rmfBh511PKhWDmbeL-h2uxIZ-JmgdOx60c3VJoz3js-7YfON14P-VhrkiPmmZRHmLseK4lcXqPHa_ffH11WOSSCYVXJYyF1kFGjKFUA6mOvkpNFDV6fVnqBGgE6Wn_JTyIgPGqMy5ILWuvdFRCyhTgPtvZtJu4x3iKguIXHT2UKshkhPBlE4wUTeWFCwv2bIuc7WZmDDtltI2xhLIllO2M8oK9JGgv5IjTevqB9rXZvlY1Lqo6YH8TKVQrVISbuQgO9zSmKhfsKRrG5jk2_EMZvyR39nMYrbbSUrhXriwOlwU72Fr3txyuboaomUE9-E9Nj9n1z6_X9sPbo_f77IakysDTTcIDtjP25_Ehhitj82gakr8AoTHivA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+prediction+of+chaotic+systems+with+random+errors+using+dynamical+system+deep+learning&rft.jtitle=Machine+learning%3A+science+and+technology&rft.au=Zixiang+Wu&rft.au=Jianping+Li&rft.au=Hao+Li&rft.au=Mingyu+Wang&rft.date=2025-06-30&rft.pub=IOP+Publishing&rft.eissn=2632-2153&rft.volume=6&rft.issue=2&rft.spage=025009&rft_id=info:doi/10.1088%2F2632-2153%2Fadc873&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4bae47d170f04d2491b5164e3a758850 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-2153&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-2153&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-2153&client=summon |