Robust prediction of chaotic systems with random errors using dynamical system deep learning

To predict nonlinear dynamical systems, a novel method called the dynamical system deep learning (DSDL), which is based on the state space reconstruction (SSR) theory and utilizes time series data for model training, was recently proposed. In the real world, observational data of chaotic systems are...

Full description

Saved in:
Bibliographic Details
Published inMachine learning: science and technology Vol. 6; no. 2; pp. 25009 - 25030
Main Authors Wu, Zixiang, Li, Jianping, Li, Hao, Wang, Mingyu, Wang, Ning, Liu, Guangcan
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 30.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To predict nonlinear dynamical systems, a novel method called the dynamical system deep learning (DSDL), which is based on the state space reconstruction (SSR) theory and utilizes time series data for model training, was recently proposed. In the real world, observational data of chaotic systems are subject to random errors. Given the high nonlinearity and sensitivity of chaotic systems, the impact of random errors poses a significant challenge to the prediction. Mitigating the impact of random errors in the prediction of chaotic systems is a significant practical challenge. Traditional data-driven methods exhibit insufficient robustness against superimposed random errors, due to little consideration for temporal dynamic evolutionary of chaotic systems. Therefore, reducing the impact of random errors in the prediction of chaotic systems remains a difficult issue. In previous work, the DSDL demonstrated superiority in the noise-free scenario. This study primarily introduces the delay embedding theorem under noisy conditions and investigates the predictive capability of the DSDL in the presence of random errors in the training data. The performance of the DSDL is tested on three example systems, namely the Lorenz system, hyperchaotic Lorenz system and conceptual ocean–atmosphere coupled Lorenz system. The results show that the DSDL exhibits high accuracy and stability compared to various traditional machine learning methods and previous dynamic methods. Notably, as the magnitude of errors decreases, the advantage of the DSDL over traditional machine learning methods becomes more pronounced, highlighting the DSDL’s capacity to effectively extract the temporal evolution characteristics of chaotic systems from time series and to identify the true system state within observational error bands, significantly mitigating the impact of random errors. Moreover, unlike other contemporary deep learning methods, the DSDL requires faster hyperparameter tuning by using fewer parameters for improving accuracy, and based on the advantage of the SSR theoretical framework, the DSDL does not require prior knowledge of the original governing equations. Our work extends the theoretical applicability of the DSDL under random error conditions and points to the new and superior data-driven method DSDL based on the dynamic framework, holding significant potential for mitigating the impact of random errors and achieving robust predictions of real-world systems.
AbstractList To predict nonlinear dynamical systems, a novel method called the dynamical system deep learning (DSDL), which is based on the state space reconstruction (SSR) theory and utilizes time series data for model training, was recently proposed. In the real world, observational data of chaotic systems are subject to random errors. Given the high nonlinearity and sensitivity of chaotic systems, the impact of random errors poses a significant challenge to the prediction. Mitigating the impact of random errors in the prediction of chaotic systems is a significant practical challenge. Traditional data-driven methods exhibit insufficient robustness against superimposed random errors, due to little consideration for temporal dynamic evolutionary of chaotic systems. Therefore, reducing the impact of random errors in the prediction of chaotic systems remains a difficult issue. In previous work, the DSDL demonstrated superiority in the noise-free scenario. This study primarily introduces the delay embedding theorem under noisy conditions and investigates the predictive capability of the DSDL in the presence of random errors in the training data. The performance of the DSDL is tested on three example systems, namely the Lorenz system, hyperchaotic Lorenz system and conceptual ocean–atmosphere coupled Lorenz system. The results show that the DSDL exhibits high accuracy and stability compared to various traditional machine learning methods and previous dynamic methods. Notably, as the magnitude of errors decreases, the advantage of the DSDL over traditional machine learning methods becomes more pronounced, highlighting the DSDL’s capacity to effectively extract the temporal evolution characteristics of chaotic systems from time series and to identify the true system state within observational error bands, significantly mitigating the impact of random errors. Moreover, unlike other contemporary deep learning methods, the DSDL requires faster hyperparameter tuning by using fewer parameters for improving accuracy, and based on the advantage of the SSR theoretical framework, the DSDL does not require prior knowledge of the original governing equations. Our work extends the theoretical applicability of the DSDL under random error conditions and points to the new and superior data-driven method DSDL based on the dynamic framework, holding significant potential for mitigating the impact of random errors and achieving robust predictions of real-world systems.
Author Wang, Ning
Wang, Mingyu
Li, Jianping
Wu, Zixiang
Liu, Guangcan
Li, Hao
Author_xml – sequence: 1
  givenname: Zixiang
  surname: Wu
  fullname: Wu, Zixiang
  organization: Qingdao Marine Science and Technology Center Laboratory for Ocean Dynamics and Climate, Qingdao 266237, People’s Republic of China
– sequence: 2
  givenname: Jianping
  orcidid: 0000-0003-0625-1575
  surname: Li
  fullname: Li, Jianping
  organization: Qingdao Marine Science and Technology Center Laboratory for Ocean Dynamics and Climate, Qingdao 266237, People’s Republic of China
– sequence: 3
  givenname: Hao
  surname: Li
  fullname: Li, Hao
  organization: Qingdao Marine Science and Technology Center Laboratory for Ocean Dynamics and Climate, Qingdao 266237, People’s Republic of China
– sequence: 4
  givenname: Mingyu
  orcidid: 0000-0002-3246-1464
  surname: Wang
  fullname: Wang, Mingyu
  organization: Ocean University of China Frontiers Science Center for Deep Ocean Multi-spheres and Earth System (DOMES)/Key Laboratory of Physical Oceanography/Academy of Future Ocean/College of Oceanic and Atmospheric Sciences/Center for Ocean Carbon Neutrality, Qingdao 266100, People’s Republic of China
– sequence: 5
  givenname: Ning
  surname: Wang
  fullname: Wang, Ning
  organization: Ocean University of China Frontiers Science Center for Deep Ocean Multi-spheres and Earth System (DOMES)/Key Laboratory of Physical Oceanography/Academy of Future Ocean/College of Oceanic and Atmospheric Sciences/Center for Ocean Carbon Neutrality, Qingdao 266100, People’s Republic of China
– sequence: 6
  givenname: Guangcan
  orcidid: 0009-0008-5736-1970
  surname: Liu
  fullname: Liu, Guangcan
  organization: Ocean University of China Frontiers Science Center for Deep Ocean Multi-spheres and Earth System (DOMES)/Key Laboratory of Physical Oceanography/Academy of Future Ocean/College of Oceanic and Atmospheric Sciences/Center for Ocean Carbon Neutrality, Qingdao 266100, People’s Republic of China
BookMark eNp1kc9LHTEQx0NRqFXvPQZ68NKnM_mxG49F1D4QCkVvhZDND81jd7NN9iHvv29eV6wHe5ph8p3PTOb7iRyMafSEfEY4R1DqgjWcrRhKfmGcVS3_QI5eSwdv8o_ktJQNADCJXDI4Ir9-pm5bZjpl76KdYxppCtQ-mTRHS8uuzH4o9DnOTzSb0aWB-pxTLnRb4vhI3W40Q7Smf5FS5_1Ee2_yWJ9PyGEwffGnL_GYPNxc3199X939uF1ffbtbWQF8XjWNY14iio6H1lsZOo8tKGTQBG4kMAsIAi1Hp7AzyjjWsNaKxgtkLDh-TNYL1yWz0VOOg8k7nUzUfwspP2qT6396r0VnvGhd5QcQjolL7CQ2wnPTSqUkVNaXhTXl9Hvry6w3aZvHur7mqJSCVnJRVbCobE6lZB9epyLovSV6f3O9v7leLKktZ0tLTNM_5tDXCY1muloCcKknF6ry6zvK_4L_AJRnmwE
CODEN MLSTCK
Cites_doi 10.1371/journal.pone.0018295
10.1098/rspa.2021.0830
10.1016/j.chaos.2021.111304
10.1038/s41467-020-18381-0
10.1016/0306-4549(90)90094-T
10.1016/0167-2789(91)90222-U
10.3934/jcd.2014.1.391
10.5194/npg-27-373-2020
10.1155/2015/145874
10.1016/j.chaos.2024.114958
10.1038/s41586-023-06185-3
10.1038/s41586-019-0912-1
10.1038/s41598-024-53169-y
10.1016/j.chaos.2024.114959
10.1175/JCLI-D-10-05003.1
10.1111/j.2517-6161.1992.tb01884.x
10.1103/PhysRevLett.45.712
10.1016/j.crvi.2003.09.011
10.1038/s41467-024-46852-1
10.1103/PhysRevE.97.022222
10.1016/j.chaos.2021.111570
10.1175/1520-0477(1993)074<0049:ERAPAT>2.0.CO;2
10.1088/2632-2153/adc53b
10.1080/07350015.1987.10509609
10.1162/neco.1997.9.8.1735
10.1126/science.1091277
10.1038/s41467-021-25801-2
10.1017/S0022112010001217
10.1016/j.ins.2022.06.021
10.1088/1361-6544/aa9464
10.1038/s41467-024-45323-x
10.1038/s41598-024-74600-4
10.1038/s41586-023-06184-4
10.1073/pnas.1802987115
10.1007/BF02878381
10.1175/JCLI-D-22-0880.1
10.1007/BF03184222
10.1038/nature06512
10.1109/TCYB.2018.2816657
10.1088/2632-2153/ad8983
10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
10.1103/PhysRevE.47.3057
10.1175/JCLI-D-11-00014.1
10.1016/j.ins.2022.11.121
10.1103/PhysRevLett.120.024102
10.1016/j.energy.2023.126980
10.5194/npg-19-569-2012
10.1038/s43017-023-00450-9
10.1016/j.physrep.2016.06.004
10.1140/epjb/s10051-021-00167-y
10.1109/ACCESS.2021.3096825
10.1002/cta.318
10.1038/s41467-024-46598-w
10.1098/rspa.2017.0844
10.1007/BF01053745
10.1038/s41467-021-26434-1
10.1016/j.neucom.2011.11.021
10.1088/1742-6596/720/1/012002
10.1038/nature14539
10.1142/S021812741430033X
10.1103/PhysRevLett.59.845
10.1126/science.aag0863
10.1016/j.apm.2024.06.016
ContentType Journal Article
Copyright 2025 The Author(s). Published by IOP Publishing Ltd
2025 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). Published by IOP Publishing Ltd
– notice: 2025 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M2P
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1088/2632-2153/adc873
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Science Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2632-2153
ExternalDocumentID oai_doaj_org_article_4bae47d170f04d2491b5164e3a758850
10_1088_2632_2153_adc873
mlstadc873
GrantInformation_xml – fundername: Laoshan Laboratory
  grantid: LSKJ202202600
– fundername: National Natural Science Foundation of China
  grantid: 42288101
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Shandong Natural Science Foundation Project
  grantid: ZR2019ZD12
GroupedDBID 88I
ABHWH
ABUWG
ACHIP
AFKRA
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CJUJL
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
IOP
K7-
M2P
M~E
N5L
O3W
OK1
PHGZT
PIMPY
TSCCA
AAYXX
CITATION
PHGZM
3V.
7XB
8FE
8FG
8FK
AEINN
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c403t-66d2e5114b3f7ec5fbe17081206f3a502c01041c31d81ba8ad2627c46e4122fd3
IEDL.DBID DOA
ISSN 2632-2153
IngestDate Wed Aug 27 01:30:31 EDT 2025
Wed Aug 13 03:16:58 EDT 2025
Tue Jul 01 05:00:05 EDT 2025
Wed Apr 16 04:14:25 EDT 2025
Wed Apr 16 04:15:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-66d2e5114b3f7ec5fbe17081206f3a502c01041c31d81ba8ad2627c46e4122fd3
Notes MLST-103161.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0625-1575
0009-0008-5736-1970
0000-0002-3246-1464
OpenAccessLink https://doaj.org/article/4bae47d170f04d2491b5164e3a758850
PQID 3188807534
PQPubID 4916454
PageCount 22
ParticipantIDs iop_journals_10_1088_2632_2153_adc873
doaj_primary_oai_doaj_org_article_4bae47d170f04d2491b5164e3a758850
crossref_primary_10_1088_2632_2153_adc873
proquest_journals_3188807534
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-30
PublicationDateYYYYMMDD 2025-06-30
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-30
  day: 30
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Machine learning: science and technology
PublicationTitleAbbrev MLST
PublicationTitleAlternate Mach. Learn.: Sci. Technol
PublicationYear 2025
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Farmer (mlstadc873bib17) 1987; 59
Runkle (mlstadc873bib57) 1987; 5
Wang (mlstadc873bib37) 2022; 607
Benincà (mlstadc873bib1) 2008; 451
Duan (mlstadc873bib33) 2023; 271
Nelson (mlstadc873bib2) 2017
Korn (mlstadc873bib4) 2003; 326
Gauthier (mlstadc873bib59) 2021; 12
Ye (mlstadc873bib8) 2016; 353
Packard (mlstadc873bib15) 1980; 45
Casdagli (mlstadc873bib50) 1992; 54
Gao (mlstadc873bib7) 2024; 183
Chen (mlstadc873bib39) 2021; 12
Vlachas (mlstadc873bib12) 2018; 474
López-Caraballo (mlstadc873bib45) 2015; 2015
Eftekhari (mlstadc873bib52) 2018; 97
Takens (mlstadc873bib16) 1981; vol 898
Li (mlstadc873bib64) 2003; 48
Gao (mlstadc873bib29) 2024; 134
López-Caraballo (mlstadc873bib46) 2016; 720
Regazzoni (mlstadc873bib11) 2024; 15
Bi (mlstadc873bib28) 2023; 619
Pathak (mlstadc873bib10) 2018; 120
Vapnik (mlstadc873bib56) 1996
Guo (mlstadc873bib55) 2012; 25
Ma (mlstadc873bib22) 2018; 115
Zhang (mlstadc873bib27) 2023; 619
Jaeger (mlstadc873bib34) 2004; 304
LeCun (mlstadc873bib25) 2015; 521
Ichinaga (mlstadc873bib68) 2024; 25
Shen (mlstadc873bib38) 2023; 4
Chen (mlstadc873bib40) 2024; 14
Li (mlstadc873bib63) 1997; 40
Palmer (mlstadc873bib3) 1993; 74
Wang (mlstadc873bib6) 2024; 183
Meiyazhagan (mlstadc873bib32) 2021; 94
Wang (mlstadc873bib9) 2016; 644
Gutman (mlstadc873bib20) 2018; 31
Chen (mlstadc873bib23) 2020; 11
Baddoo (mlstadc873bib62) 2022; 478
Wang (mlstadc873bib42) 2024; 5
Yap (mlstadc873bib51) 2014
Li (mlstadc873bib66) 2025
Abarbanel (mlstadc873bib13) 1993; 47
Kishida (mlstadc873bib58) 1990; 17
Han (mlstadc873bib14) 2019; 49
Gao (mlstadc873bib5) 2023; 621
Wang (mlstadc873bib41) 2024; 14
Lin (mlstadc873bib26) 2021; 9
Zhang (mlstadc873bib54) 2011; 23
Reichstein (mlstadc873bib36) 2019; 566
Sardeshmukh (mlstadc873bib44) 2023; 36
Li (mlstadc873bib53) 2005; 33
Schmid (mlstadc873bib60) 2010; 656
Chattopadhyay (mlstadc873bib67) 2020; 27
Ma (mlstadc873bib21) 2014; 24
Hochreiter (mlstadc873bib30) 1997; 9
Basnarkov (mlstadc873bib65) 2012; 19
Cheng (mlstadc873bib31) 2021; 152
Sheng (mlstadc873bib48) 2012; 82
Sangiorgio (mlstadc873bib47) 2021; 153
Wu (mlstadc873bib24) 2024; 15
Li (mlstadc873bib35) 2024; 15
Tu (mlstadc873bib61) 2014; 1
Sauer (mlstadc873bib18) 1991; 65
Casdagli (mlstadc873bib49) 1991; 51
Lorenz (mlstadc873bib43) 1963; 20
Deyle (mlstadc873bib19) 2011; 6
References_xml – volume: 6
  year: 2011
  ident: mlstadc873bib19
  article-title: Generalized theorems for nonlinear state space reconstruction
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0018295
– volume: 478
  year: 2022
  ident: mlstadc873bib62
  article-title: Kernel learning for robust dynamic mode decomposition: linear and nonlinear disambiguation optimization
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2021.0830
– volume: 152
  year: 2021
  ident: mlstadc873bib31
  article-title: High-efficiency chaotic time series prediction based on time convolution neural network
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.111304
– start-page: 281
  year: 1996
  ident: mlstadc873bib56
  article-title: Support vector method for function approximation, regression estimation and signal processing
– volume: 11
  start-page: 4568
  year: 2020
  ident: mlstadc873bib23
  article-title: Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18381-0
– volume: 17
  start-page: 157
  year: 1990
  ident: mlstadc873bib58
  article-title: Autoregressive model analysis and decay ratio
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/0306-4549(90)90094-T
– volume: 51
  start-page: 52
  year: 1991
  ident: mlstadc873bib49
  article-title: State space reconstruction in the presence of noise
  publication-title: Physica D
  doi: 10.1016/0167-2789(91)90222-U
– volume: 1
  start-page: 391
  year: 2014
  ident: mlstadc873bib61
  article-title: On dynamic mode decomposition: theory and applications
  publication-title: J. Comput. Dyn.
  doi: 10.3934/jcd.2014.1.391
– volume: 27
  start-page: 373
  year: 2020
  ident: mlstadc873bib67
  article-title: Data-driven predictions of a multiscale Lorenz 96 chaotic system using machine-learning methods: reservoir computing, artificial neural network, and long short-term memory network
  publication-title: Nonlinear Process. Geophys.
  doi: 10.5194/npg-27-373-2020
– volume: 2015
  year: 2015
  ident: mlstadc873bib45
  article-title: Impact of noise on a dynamical system: prediction and uncertainties from a swarm-optimized neural network
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2015/145874
– start-page: 404
  year: 2014
  ident: mlstadc873bib51
  article-title: A first analysis of the stability of Takens’ embedding
– volume: 183
  year: 2024
  ident: mlstadc873bib7
  article-title: Temporal action segmentation for video encryption
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2024.114958
– volume: 619
  start-page: 533
  year: 2023
  ident: mlstadc873bib28
  article-title: Accurate medium-range global weather forecasting with 3D neural networks
  publication-title: Nature
  doi: 10.1038/s41586-023-06185-3
– volume: 566
  start-page: 195
  year: 2019
  ident: mlstadc873bib36
  article-title: Deep learning and process understanding for data-driven Earth system science
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
– volume: 14
  start-page: 3143
  year: 2024
  ident: mlstadc873bib41
  article-title: Interpretable predictions of chaotic dynamical systems using dynamical system deep learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-53169-y
– volume: 183
  year: 2024
  ident: mlstadc873bib6
  article-title: A new 2D-HELS hyperchaotic map and its application on image encryption using RNA operation and dynamic confusion
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2024.114959
– volume: 23
  start-page: 6210
  year: 2011
  ident: mlstadc873bib54
  article-title: A study of impacts of coupled model initial shocks and state–parameter optimization on climate predictions using a simple pycnocline prediction model
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-10-05003.1
– volume: 54
  start-page: 303
  year: 1992
  ident: mlstadc873bib50
  article-title: Chaos and deterministic versus stochastic non-linear modeling
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1992.tb01884.x
– volume: 45
  start-page: 712
  year: 1980
  ident: mlstadc873bib15
  article-title: Geometry from a Time Series
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.712
– volume: 326
  start-page: 787
  year: 2003
  ident: mlstadc873bib4
  article-title: Is there chaos in the brain? II. Experimental evidence and related models
  publication-title: C. R. Biol.
  doi: 10.1016/j.crvi.2003.09.011
– volume: 15
  start-page: 2506
  year: 2024
  ident: mlstadc873bib35
  article-title: Higher-order Granger reservoir computing: simultaneously achieving scalable complex structures inference and accurate dynamics prediction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-46852-1
– volume: 97
  year: 2018
  ident: mlstadc873bib52
  article-title: Stabilizing embedology: geometry-preserving delay-coordinate maps
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.97.022222
– volume: 153
  year: 2021
  ident: mlstadc873bib47
  article-title: Forecasting of noisy chaotic systems with deep neural networks
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.111570
– volume: 25
  start-page: 1
  year: 2024
  ident: mlstadc873bib68
  article-title: PyDMD: a python package for robust dynamic mode decomposition
  publication-title: J. Mach. Learn. Res.
– volume: 74
  start-page: 49
  year: 1993
  ident: mlstadc873bib3
  article-title: Extended-range atmospheric prediction and the Lorenz Model
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477(1993)074<0049:ERAPAT>2.0.CO;2
– year: 2025
  ident: mlstadc873bib66
  article-title: Dynamics-based predictions of infinite-dimensional complex systems using Dynamical System Deep Learning method
  publication-title: Mach Learn : Sci Technol.
  doi: 10.1088/2632-2153/adc53b
– volume: 5
  start-page: 437
  year: 1987
  ident: mlstadc873bib57
  article-title: Vector autoregressions and reality
  publication-title: J. Bus. Econ. Stat.
  doi: 10.1080/07350015.1987.10509609
– volume: 9
  start-page: 1735
  year: 1997
  ident: mlstadc873bib30
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 304
  start-page: 78
  year: 2004
  ident: mlstadc873bib34
  article-title: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication
  publication-title: Science
  doi: 10.1126/science.1091277
– volume: 12
  start-page: 5564
  year: 2021
  ident: mlstadc873bib59
  article-title: Next generation reservoir computing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25801-2
– volume: 656
  start-page: 5
  year: 2010
  ident: mlstadc873bib60
  article-title: Dynamic mode decomposition of numerical and experimental data
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112010001217
– volume: 607
  start-page: 477
  year: 2022
  ident: mlstadc873bib37
  article-title: Predicting high-dimensional time series data with spatial, temporal and global information
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2022.06.021
– volume: 31
  start-page: 597
  year: 2018
  ident: mlstadc873bib20
  article-title: The embedding problem in topological dynamics and Takens’ theorem
  publication-title: Nonlinearity
  doi: 10.1088/1361-6544/aa9464
– volume: 15
  start-page: 1834
  year: 2024
  ident: mlstadc873bib11
  article-title: Learning the intrinsic dynamics of spatio-temporal processes through Latent Dynamics Networks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-45323-x
– volume: vol 898
  start-page: 366
  year: 1981
  ident: mlstadc873bib16
  article-title: Detecting strange attractors in turbulence
– volume: 14
  year: 2024
  ident: mlstadc873bib40
  article-title: Data-driven solutions and parameter estimations of a family of higher-order KdV equations based on physics informed neural networks
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-74600-4
– volume: 619
  start-page: 526
  year: 2023
  ident: mlstadc873bib27
  article-title: Skilful nowcasting of extreme precipitation with NowcastNet
  publication-title: Nature
  doi: 10.1038/s41586-023-06184-4
– volume: 115
  start-page: E9994
  year: 2018
  ident: mlstadc873bib22
  article-title: Randomly distributed embedding making short-term high-dimensional data predictable
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1802987115
– volume: 40
  start-page: 215
  year: 1997
  ident: mlstadc873bib63
  article-title: Existence of the atmosphere attractor
  publication-title: Sci. China D
  doi: 10.1007/BF02878381
– volume: 36
  start-page: 5569
  year: 2023
  ident: mlstadc873bib44
  article-title: Improving atmospheric models by accounting for chaotic physics
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-22-0880.1
– volume: 48
  start-page: 1034
  year: 2003
  ident: mlstadc873bib64
  article-title: Global analysis theory of climate system and its applications
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/BF03184222
– volume: 451
  start-page: 822
  year: 2008
  ident: mlstadc873bib1
  article-title: Chaos in a long-term experiment with a plankton community
  publication-title: Nature
  doi: 10.1038/nature06512
– volume: 49
  start-page: 1885
  year: 2019
  ident: mlstadc873bib14
  article-title: Nonuniform state space reconstruction for multivariate chaotic time series
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2816657
– volume: 5
  year: 2024
  ident: mlstadc873bib42
  article-title: Exploring the potential of contemporary deep learning methods in purifying polluted information
  publication-title: Mach. Learn : Sci Technol.
  doi: 10.1088/2632-2153/ad8983
– volume: 20
  start-page: 130
  year: 1963
  ident: mlstadc873bib43
  article-title: Deterministic nonperiodic flow
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
– volume: 47
  start-page: 3057
  year: 1993
  ident: mlstadc873bib13
  article-title: Local false nearest neighbors and dynamical dimensions from observed chaotic data
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.47.3057
– start-page: 1419
  year: 2017
  ident: mlstadc873bib2
  article-title: Stock market’s price movement prediction with LSTM neural networks
– volume: 25
  start-page: 572
  year: 2012
  ident: mlstadc873bib55
  article-title: A time-scale decomposition approach to statistically downscale summer rainfall over north China
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-11-00014.1
– volume: 621
  start-page: 766
  year: 2023
  ident: mlstadc873bib5
  article-title: EFR-CSTP: encryption for face recognition based on the chaos and semi-tensor product theory
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2022.11.121
– volume: 120
  year: 2018
  ident: mlstadc873bib10
  article-title: Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.024102
– volume: 271
  year: 2023
  ident: mlstadc873bib33
  article-title: A multistep short-term solar radiation forecasting model using fully convolutional neural networks and chaotic aquila optimization combining WRF-Solar model results
  publication-title: Energy
  doi: 10.1016/j.energy.2023.126980
– volume: 19
  start-page: 569
  year: 2012
  ident: mlstadc873bib65
  article-title: Forecast improvement in Lorenz 96 system
  publication-title: Nonlinear Process. Geophys.
  doi: 10.5194/npg-19-569-2012
– volume: 4
  start-page: 552
  year: 2023
  ident: mlstadc873bib38
  article-title: Differentiable modelling to unify machine learning and physical models for geosciences
  publication-title: Nat. Rev. Earth Environ.
  doi: 10.1038/s43017-023-00450-9
– volume: 644
  start-page: 1
  year: 2016
  ident: mlstadc873bib9
  article-title: Data based identification and prediction of nonlinear and complex dynamical systems
  publication-title: Phys. Rep. Rev.
  doi: 10.1016/j.physrep.2016.06.004
– volume: 94
  start-page: 156
  year: 2021
  ident: mlstadc873bib32
  article-title: Model-free prediction of emergence of extreme events in a parametrically driven nonlinear dynamical system by deep learning
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/s10051-021-00167-y
– volume: 9
  start-page: 101433
  year: 2021
  ident: mlstadc873bib26
  article-title: Stock trend prediction using candlestick charting and ensemble machine learning techniques with a novelty feature engineering scheme
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3096825
– volume: 33
  start-page: 235
  year: 2005
  ident: mlstadc873bib53
  article-title: Hyperchaos evolved from the generalized Lorenz equation
  publication-title: Int. J. Circuit Theory Appl.
  doi: 10.1002/cta.318
– volume: 15
  start-page: 2242
  year: 2024
  ident: mlstadc873bib24
  article-title: Predicting multiple observations in complex systems through low-dimensional embeddings
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-46598-w
– volume: 474
  year: 2018
  ident: mlstadc873bib12
  article-title: Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks
  publication-title: Proc. Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.2017.0844
– volume: 65
  start-page: 579
  year: 1991
  ident: mlstadc873bib18
  article-title: Embedology
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01053745
– volume: 12
  start-page: 6136
  year: 2021
  ident: mlstadc873bib39
  article-title: Physics-informed learning of governing equations from scarce data
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26434-1
– volume: 82
  start-page: 186
  year: 2012
  ident: mlstadc873bib48
  article-title: Prediction for noisy nonlinear time series by echo state network based on dual estimation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.11.021
– volume: 720
  year: 2016
  ident: mlstadc873bib46
  article-title: Mackey-Glass noisy chaotic time series prediction by a swarm-optimized neural network
  publication-title: J. Phys.: Conf. Ser.
  doi: 10.1088/1742-6596/720/1/012002
– volume: 521
  start-page: 436
  year: 2015
  ident: mlstadc873bib25
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 24
  year: 2014
  ident: mlstadc873bib21
  article-title: Predicting time series from short-term high-dimensional data
  publication-title: Int. J. Bifurcation Chaos
  doi: 10.1142/S021812741430033X
– volume: 59
  start-page: 845
  year: 1987
  ident: mlstadc873bib17
  article-title: Predicting chaotic time series
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.59.845
– volume: 353
  start-page: 922
  year: 2016
  ident: mlstadc873bib8
  article-title: Information leverage in interconnected ecosystems: overcoming the curse of dimensionality
  publication-title: Science
  doi: 10.1126/science.aag0863
– volume: 134
  start-page: 520
  year: 2024
  ident: mlstadc873bib29
  article-title: Development of a video encryption algorithm for critical areas using 2D extended Schaffer function map and neural networks
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2024.06.016
SSID ssj0002513520
Score 2.295973
Snippet To predict nonlinear dynamical systems, a novel method called the dynamical system deep learning (DSDL), which is based on the state space reconstruction (SSR)...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 25009
SubjectTerms Deep learning
dynamical system deep learning
Dynamical systems
Lorenz system
Machine learning
Nonlinear systems
Nonlinearity
predictive robustness
Random errors
Robustness
Time series
SummonAdditionalLinks – databaseName: Institute of Physics Open Access Journal Titles
  dbid: O3W
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9UwDI_GduHC10C8baAc4LBDWfPRNE87wbRpQmJIiIkdkKI0TrbD9lq13f-P3eY9NIEQt6py5OjnJrbj9GfG3iWRGqWWvgAwqtBe2MJXJRRRgapiILIAquh-uTDnl_rzVXW1xY43_8K0Xd76P-DjTBQ8Q5gvxNkjYhgv0FOpIw_B1uoR21HWWMq8vqofmwMWdNwYXJS5NPm3gQ9c0cTYjw4Gtf6xLU--5uwZe5KDRP5xntJzthVXL9jTdQMGntfjLvv5rW3uh5F3PZVbCGLeJh5ufIsD-UzSPHA6auXokqC947Hv237gdNv9msPcjR41zaIcYux47iNx_ZJdnp1-PzkvcruEIuhSjYUxICPGT7pRqY6hSk0UNXp8WZqk0AAyUO4lghKAsaq3HqSRddAmaiFlAvWKba_aVXzNeIqCYhcTgyo1yGSFCGUDVoqmCsLDgh2ukXPdzIrhpmq2tY5QdoSym1FesE8E7UaO-KynF2hbl23rdOOjrgHnm0ihXqIiTOSi8pjP2KpcsPdoGJfX1_APZfyB3N3tMDrjpKNQr1y6DtKCHayt-1sOdzZLtMxK7_2npn32WFIr4Onq4AHbHvv7-Abjk7F5O32HvwDTot7N
  priority: 102
  providerName: IOP Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na90wDDdbe9llW_fB3tYNH7rDDubFH3H8TmMdLaXQMsoKPQyM44-3QfucJen_PynxaymDXhMFBcmSfpKMRMhB4qmVcuVYCFoy5bhhrq4CizLIOnocFoAd3bNzfXKpTq_qq1JwG8q1yq1PnBx1yB5r5Es4ewYH50r1tfvLcGsUdlfLCo2nZBdcsIHka_fw6PzHxV2VBaI3IIyq9CfBopY4n5xBnJNLF7xp5IN4NI3thyjzJ3f_-eYp4By_JM8LUqTfZtXukSdx84q82G5hoMUoX5NfF7m9HUba9dhzQTnTnKj_7TJ8SOdJzQPFeiuFuBTyDY19n_uB4pX3NQ3zSnrgNJPSEGNHyzKJ9RtyeXz08_sJKzsTmFeVHJnWQUQAUaqVqYm-Tm3kDYR9UekkQQvCYwLGveQBAKszLggtGq90VFyIFORbsrPJm_iO0BQ5AhgdvaxUEMlw7qs2GMHb2nMXFuTLVnK2m0dj2KmlbYxFKVuUsp2lvCCHKNo7OhxqPT3I_doWG7GqdVE1Af43IUO1AkaQzUXpIKkxdbUgn0ExthjZ8Agz-oDu5noYrbbCIt6rVrYLaUH2t9q9p7s_Yu8ff_2BPBO4Bni6NrhPdsb-Nn4EbDK2n8oB_AffGeII
  priority: 102
  providerName: ProQuest
Title Robust prediction of chaotic systems with random errors using dynamical system deep learning
URI https://iopscience.iop.org/article/10.1088/2632-2153/adc873
https://www.proquest.com/docview/3188807534
https://doaj.org/article/4bae47d170f04d2491b5164e3a758850
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKuXABykMstCsf2kMP0caPOO6RVrstlfpQRUUPSJbjR0GimyhJr_x2ZuJsH0IqFy4-RBPZ-ib2fJOxviFkO7JYCbFnM--VyKRlOrNF7rMgvCiCQ7EArOienKqjS3l8VVw9aPWFd8KSPHACbiYrG2TpWZnHXHpIFlhVAMUPwgLT1Slbh5j3IJnCMxiiNjCLfKxLwk6aoS55BvFNzKx3uhSP4tAg1w_R5Wfd_HUmD4Fm8Zq8HBki_ZxWtkHWwvINebXqvkDHzfiWfL-oq9uup02LtRbEl9aRuh-2hhdpUmjuKP5npRCPfH1DQ9vWbUfxqvs19akVPcyUTKkPoaFjE4nrd-RyMf96cJSNvRIyJ3PRZ0p5HoA8yUrEMrgiVgEgg-idqygAfe4w8WJOMA9E1WrrueKlkypIxnn04j1ZX9bL8IHQGBgSFxWcQMSjZszlldcckHfM-gnZXSFnmiSJYYZSttYGUTaIskkoT8g-Qntnh2LWwwNwsRldbP7l4gnZAceYcXN1T0xGH9nd_Op6oww3yPPyPdP4OCGbK-_e28GxplGTWciP_2O5n8gLjk2Ch0uFm2S9b2_DFjCXvpqSZ3pxOCXP9-en5xfT4ZOF8cvZOYwnv-cwnolvfwDVaO27
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALb8RCAR_ogUO08SNZ7wEhXsuWPg6olXpAMo4fCxLdhCQV6p_iNzKTR6sKqbdek0nszMPzjceZAXgVeSyknNvE-1wmynKd2Cz1SZBeZsFRsQDK6O4f5Msj9eU4O96Av-O_MHSsclwTu4Xal472yKeoe5oK50r1tvqdUNcoyq6OLTR6tdgNZ38wZGve7HxE-W4Lsfh0-GGZDF0FEqdS2SZ57kVAmKEKGWfBZbEIfIaOUaR5lDhP4ShE4U5yj5DOautFLmZO5UFxIaKX-N4bcFPhF5JF6cXn8z0dxAqIZ9IhG4r2O6Vq6Al6VTm13umZvOT9uiYB6NN-ltV_nqBzb4t7cGfApexdr0j3YSOsH8DdsecDG5aAh_Dta1mcNi2rasrwkFRZGZn7YUt8kPV1oRtGu7sMvaAvT1io67JuGB2wXzF_trZdgYKBlPkQKja0rlg9gqNr4eVj2FyX6_AEWAyc4FIenEyVF1Fz7tLCa8GLzHHrJ_B65Jyp-kIcpkuga22Iy4a4bHouT-A9sfacjkpodxfKemUGizSqsEHNPM430oBqjgNh7BikxRBKZ-kEtlEwZjDp5orB2CW6k19Na3IjDKHLdG4qHyewNUr3gu5CoZ9effsl3Foe7u-ZvZ2D3WdwW1AD4u7A4hZstvVpeI6oqC1edKrI4Pt16_4_L28cPw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSIgL5akuLeADHDiEjT2O4z3yWpVXQYiKHpAsx49yoJsoSf8_M4m3qAIhblE01ljf2J6xx_6GsSdJpAZg5YoQNBTKCVO4qgxFhABV9EQWQBndj0f68Fi9O6lOcp3T6S1M2-Wl_zl-zkTBM4T5QpxZEsN4gZ4Kli54U8OyC-kqu1aB1lS74RN8uzhkQeeNAUaZ05N_a3zJHU2s_ehkUPMfS_Pkb9a32M0cKPIXc7dusytxc4ftbosw8Dwn77LvX9rmfBh511PKhWDmbeL-h2uxIZ-JmgdOx60c3VJoz3js-7YfON14P-VhrkiPmmZRHmLseK4lcXqPHa_ffH11WOSSCYVXJYyF1kFGjKFUA6mOvkpNFDV6fVnqBGgE6Wn_JTyIgPGqMy5ILWuvdFRCyhTgPtvZtJu4x3iKguIXHT2UKshkhPBlE4wUTeWFCwv2bIuc7WZmDDtltI2xhLIllO2M8oK9JGgv5IjTevqB9rXZvlY1Lqo6YH8TKVQrVISbuQgO9zSmKhfsKRrG5jk2_EMZvyR39nMYrbbSUrhXriwOlwU72Fr3txyuboaomUE9-E9Nj9n1z6_X9sPbo_f77IakysDTTcIDtjP25_Ehhitj82gakr8AoTHivA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+prediction+of+chaotic+systems+with+random+errors+using+dynamical+system+deep+learning&rft.jtitle=Machine+learning%3A+science+and+technology&rft.au=Zixiang+Wu&rft.au=Jianping+Li&rft.au=Hao+Li&rft.au=Mingyu+Wang&rft.date=2025-06-30&rft.pub=IOP+Publishing&rft.eissn=2632-2153&rft.volume=6&rft.issue=2&rft.spage=025009&rft_id=info:doi/10.1088%2F2632-2153%2Fadc873&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4bae47d170f04d2491b5164e3a758850
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-2153&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-2153&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-2153&client=summon