Structural changes upon membrane insertion of the insecticidal pore-forming toxins produced by Bacillus thuringiensis

Different Bacillus thuringiensis (Bt) strains produce a broad variety of pore-forming toxins (PFTs) that show toxicity against insects and other invertebrates. Some of these insecticidal PFT proteins have been used successfully worldwide to control diverse insect crop pests. There are several studie...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in insect science Vol. 3; p. 1188891
Main Authors Pacheco, Sabino, Gómez, Isabel, Peláez-Aguilar, Angel E., Verduzco-Rosas, Luis A., García-Suárez, Rosalina, do Nascimento, Nathaly A., Rivera-Nájera, Lucero Y., Cantón, Pablo Emiliano, Soberón, Mario, Bravo, Alejandra
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 26.04.2023
Subjects
Online AccessGet full text
ISSN2673-8600
2673-8600
DOI10.3389/finsc.2023.1188891

Cover

Abstract Different Bacillus thuringiensis (Bt) strains produce a broad variety of pore-forming toxins (PFTs) that show toxicity against insects and other invertebrates. Some of these insecticidal PFT proteins have been used successfully worldwide to control diverse insect crop pests. There are several studies focused on describing the mechanism of action of these toxins that have helped to improve their performance and to cope with the resistance evolved by different insects against some of these proteins. However, crucial information that is still missing is the structure of pores formed by some of these PFTs, such as the three-domain crystal (Cry) proteins, which are the most commercially used Bt toxins in the biological control of insect pests. In recent years, progress has been made on the identification of the structural changes that certain Bt insecticidal PFT proteins undergo upon membrane insertion. In this review, we describe the models that have been proposed for the membrane insertion of Cry toxins. We also review the recently published structures of the vegetative insecticidal proteins (Vips; e.g. Vip3) and the insecticidal toxin complex (Tc) in the membrane-inserted state. Although different Bt PFTs show different primary sequences, there are some similarities in the three-dimensional structures of Vips and Cry proteins. In addition, all PFTs described here must undergo major structural rearrangements to pass from a soluble form to a membrane-inserted state. It is proposed that, despite their structural differences, all PFTs undergo major structural rearrangements producing an extended α-helix, which plays a fundamental role in perforating their target membrane, resulting in the formation of the membrane pore required for their insecticidal activity.
AbstractList Different Bacillus thuringiensis (Bt) strains produce a broad variety of pore-forming toxins (PFTs) that show toxicity against insects and other invertebrates. Some of these insecticidal PFT proteins have been used successfully worldwide to control diverse insect crop pests. There are several studies focused on describing the mechanism of action of these toxins that have helped to improve their performance and to cope with the resistance evolved by different insects against some of these proteins. However, crucial information that is still missing is the structure of pores formed by some of these PFTs, such as the three-domain crystal (Cry) proteins, which are the most commercially used Bt toxins in the biological control of insect pests. In recent years, progress has been made on the identification of the structural changes that certain Bt insecticidal PFT proteins undergo upon membrane insertion. In this review, we describe the models that have been proposed for the membrane insertion of Cry toxins. We also review the recently published structures of the vegetative insecticidal proteins (Vips; e.g. Vip3) and the insecticidal toxin complex (Tc) in the membrane-inserted state. Although different Bt PFTs show different primary sequences, there are some similarities in the three-dimensional structures of Vips and Cry proteins. In addition, all PFTs described here must undergo major structural rearrangements to pass from a soluble form to a membrane-inserted state. It is proposed that, despite their structural differences, all PFTs undergo major structural rearrangements producing an extended α-helix, which plays a fundamental role in perforating their target membrane, resulting in the formation of the membrane pore required for their insecticidal activity.Different Bacillus thuringiensis (Bt) strains produce a broad variety of pore-forming toxins (PFTs) that show toxicity against insects and other invertebrates. Some of these insecticidal PFT proteins have been used successfully worldwide to control diverse insect crop pests. There are several studies focused on describing the mechanism of action of these toxins that have helped to improve their performance and to cope with the resistance evolved by different insects against some of these proteins. However, crucial information that is still missing is the structure of pores formed by some of these PFTs, such as the three-domain crystal (Cry) proteins, which are the most commercially used Bt toxins in the biological control of insect pests. In recent years, progress has been made on the identification of the structural changes that certain Bt insecticidal PFT proteins undergo upon membrane insertion. In this review, we describe the models that have been proposed for the membrane insertion of Cry toxins. We also review the recently published structures of the vegetative insecticidal proteins (Vips; e.g. Vip3) and the insecticidal toxin complex (Tc) in the membrane-inserted state. Although different Bt PFTs show different primary sequences, there are some similarities in the three-dimensional structures of Vips and Cry proteins. In addition, all PFTs described here must undergo major structural rearrangements to pass from a soluble form to a membrane-inserted state. It is proposed that, despite their structural differences, all PFTs undergo major structural rearrangements producing an extended α-helix, which plays a fundamental role in perforating their target membrane, resulting in the formation of the membrane pore required for their insecticidal activity.
Different (Bt) strains produce a broad variety of pore-forming toxins (PFTs) that show toxicity against insects and other invertebrates. Some of these insecticidal PFT proteins have been used successfully worldwide to control diverse insect crop pests. There are several studies focused on describing the mechanism of action of these toxins that have helped to improve their performance and to cope with the resistance evolved by different insects against some of these proteins. However, crucial information that is still missing is the structure of pores formed by some of these PFTs, such as the three-domain crystal (Cry) proteins, which are the most commercially used Bt toxins in the biological control of insect pests. In recent years, progress has been made on the identification of the structural changes that certain Bt insecticidal PFT proteins undergo upon membrane insertion. In this review, we describe the models that have been proposed for the membrane insertion of Cry toxins. We also review the recently published structures of the vegetative insecticidal proteins (Vips; e.g. Vip3) and the insecticidal toxin complex (Tc) in the membrane-inserted state. Although different Bt PFTs show different primary sequences, there are some similarities in the three-dimensional structures of Vips and Cry proteins. In addition, all PFTs described here must undergo major structural rearrangements to pass from a soluble form to a membrane-inserted state. It is proposed that, despite their structural differences, all PFTs undergo major structural rearrangements producing an extended α-helix, which plays a fundamental role in perforating their target membrane, resulting in the formation of the membrane pore required for their insecticidal activity.
Different Bacillus thuringiensis (Bt) strains produce a broad variety of pore-forming toxins (PFTs) that show toxicity against insects and other invertebrates. Some of these insecticidal PFT proteins have been used successfully worldwide to control diverse insect crop pests. There are several studies focused on describing the mechanism of action of these toxins that have helped to improve their performance and to cope with the resistance evolved by different insects against some of these proteins. However, crucial information that is still missing is the structure of pores formed by some of these PFTs, such as the three-domain crystal (Cry) proteins, which are the most commercially used Bt toxins in the biological control of insect pests. In recent years, progress has been made on the identification of the structural changes that certain Bt insecticidal PFT proteins undergo upon membrane insertion. In this review, we describe the models that have been proposed for the membrane insertion of Cry toxins. We also review the recently published structures of the vegetative insecticidal proteins (Vips; e.g. Vip3) and the insecticidal toxin complex (Tc) in the membrane-inserted state. Although different Bt PFTs show different primary sequences, there are some similarities in the three-dimensional structures of Vips and Cry proteins. In addition, all PFTs described here must undergo major structural rearrangements to pass from a soluble form to a membrane-inserted state. It is proposed that, despite their structural differences, all PFTs undergo major structural rearrangements producing an extended α-helix, which plays a fundamental role in perforating their target membrane, resulting in the formation of the membrane pore required for their insecticidal activity.
Author Gómez, Isabel
García-Suárez, Rosalina
Rivera-Nájera, Lucero Y.
Peláez-Aguilar, Angel E.
Verduzco-Rosas, Luis A.
Pacheco, Sabino
Soberón, Mario
do Nascimento, Nathaly A.
Cantón, Pablo Emiliano
Bravo, Alejandra
AuthorAffiliation Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca, Morelos , Mexico
AuthorAffiliation_xml – name: Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca, Morelos , Mexico
Author_xml – sequence: 1
  givenname: Sabino
  surname: Pacheco
  fullname: Pacheco, Sabino
– sequence: 2
  givenname: Isabel
  surname: Gómez
  fullname: Gómez, Isabel
– sequence: 3
  givenname: Angel E.
  surname: Peláez-Aguilar
  fullname: Peláez-Aguilar, Angel E.
– sequence: 4
  givenname: Luis A.
  surname: Verduzco-Rosas
  fullname: Verduzco-Rosas, Luis A.
– sequence: 5
  givenname: Rosalina
  surname: García-Suárez
  fullname: García-Suárez, Rosalina
– sequence: 6
  givenname: Nathaly A.
  surname: do Nascimento
  fullname: do Nascimento, Nathaly A.
– sequence: 7
  givenname: Lucero Y.
  surname: Rivera-Nájera
  fullname: Rivera-Nájera, Lucero Y.
– sequence: 8
  givenname: Pablo Emiliano
  surname: Cantón
  fullname: Cantón, Pablo Emiliano
– sequence: 9
  givenname: Mario
  surname: Soberón
  fullname: Soberón, Mario
– sequence: 10
  givenname: Alejandra
  surname: Bravo
  fullname: Bravo, Alejandra
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38469496$$D View this record in MEDLINE/PubMed
BookMark eNp9UUuPFCEQJmaNu677BzwYjl56hAZ64GR04yvZxIN6JjRdzGC6oeWxcf-9jDNuVg-eIFXfo6q-p-gsxAAIPadkw5hUr5wP2W560rMNpVJKRR-hi37Ysk4OhJw9-J-jq5y_E0J6ueWEiyfonEk-KK6GC1S_lFRtqcnM2O5N2EHGdY0BL7CMyQTAzQdS8a0UHS77Y8EWb_3UOGtM0LmYFh92uMSfrYnXFKdqYcLjHX5rrJ_nmhuzpobxELLPz9BjZ-YMV6f3En17_-7r9cfu5vOHT9dvbjrLCSvdQAYwDgAmSSihdnKUQz8OYhJsJIr3lPJRcscFoY63EzAxGj6ptiYxahTsEr0-6q51XGCyEEpbVK_JLybd6Wi8_rsT_F7v4q2mRPWDYLIpvDwppPijQi568dnCPLfTxJp1r8RAhWRq26AvHprdu_w5dgP0R4BNMecE7h5CiT6Eqn-Hqg-h6lOojST_IVlfzCGPNrCf_0f9BYNgq6w
CitedBy_id crossref_primary_10_1016_j_jip_2024_108129
crossref_primary_10_3390_toxins16050215
crossref_primary_10_1186_s40538_024_00720_8
crossref_primary_10_1016_j_tim_2024_06_001
crossref_primary_10_3390_toxins17020067
crossref_primary_10_3390_ijms242316809
crossref_primary_10_3390_ijms26031320
crossref_primary_10_1021_acs_jafc_3c08070
crossref_primary_10_3390_insects16010027
crossref_primary_10_1016_j_ibmb_2024_104208
crossref_primary_10_3390_toxins16020088
Cites_doi 10.3390/toxins6123296
10.1016/j.bbamem.2009.06.014
10.3390/toxins10120546
10.1073/pnas.1909821116
10.1128/AEM.00094-08
10.1111/febs.16710
10.3390/toxins9050165
10.1111/j.1574-6976.2012.00341.x
10.1016/j.sbi.2006.03.008
10.1128/AEM.01552-10
10.2174/1875414701003010101
10.1074/jbc.RA118.005101
10.1038/s41467-020-17758-5
10.1038/s41467-021-23146-4
10.1128/MMBR.00034-06
10.3390/insects13060547
10.1038/nature13015
10.1016/s0969-2126(01)00601-3
10.1016/S0021-9258(18)45879-6
10.1016/j.peptides.2008.08.006
10.1073/pnas.93.11.5389
10.3390/toxins9040131
10.1126/sciadv.aax6497
10.1074/jbc.M114.627554
10.1038/nature12465
10.1128/JB.182.18.5127-5138.2000
10.1371/journal.ppat.1007347
10.1074/jbc.M701314200
10.1002/pro.3803
10.1038/s41586-022-05250-7
10.1016/j.bbrc.2022.06.065
10.1006/jipa.1997.4656
10.1371/journal.ppat.1009244
10.1016/jip.2020.107438
10.1128/aem.65.6.2503-2507.1999
10.1038/nature08026
10.1038/nsmb.3281
10.1007/s002320010070
10.1021/bi061474z
10.1515/biol-2020-0014
10.1016/j.bpj.2013.06.003
10.1016/j.jip.2020.107342
10.1038/s41598-018-28753-8
10.1002/arch.21673
10.3390/toxins13050364
10.3390/toxins14070433
10.1107/s0907444901008186
10.1128/mBio.00822-17
10.3390/toxins12070438
10.1016/j.jbc.2023.103000
10.1007/978-0-387-72124-8_22
10.1002/pro.2536
10.1093/jee/toz308
10.1126/science.1184557
10.1038/s41467-022-31746-x
10.1016/S0065-2806(08)60085-5
10.1021/bi011572e
10.1021/bi010171w
10.1128/AEM.01521-14
10.3390/toxins14120823
10.1002/pro.3561
10.3390/toxins13080523
10.1006/jmbi.1995.0630
10.1111/j.1742-4658.2009.07275.x
10.1111/j.1467-7652.2011.00595.x
10.1074/jbc.274.45.31996
10.1371/journal.pone.0018122
10.1085/jgp.200910347
10.1016/s0014-5793(97)00626-1
10.1111/1751-7915.14110
10.1128/AEM.70.10.6123-6130.2004
10.1128/JB.188.9.3391-3401.2006
10.1016/S0014-5793(01)02139
10.1038/s41598-017-02545-y
10.1074/jbc.M109.085266
10.1016/j.jsb.2009.07.004
10.1128/AEM.67.12.5715-5720.2001
10.1021/bi301386q
10.1016/j.jmb.2005.02.013
10.1016/j.cbpb.2006.04.013
10.1016/j.pbiomolbio.2004.01.009
10.3389/fmicb.2021.659736
10.1042/BJ20131408
10.1016/B978-0-12-800197-4.00006-3
10.3389/fmicb.2021.758314
10.1038/353815a0
10.1111/1751-7915.13719
10.1038/s41467-020-16536-7
10.3390/toxins12060409
10.1128/AEM.00579-19
ContentType Journal Article
Copyright Copyright © 2023 Pacheco, Gómez, Peláez-Aguilar, Verduzco-Rosas, García-Suárez, do Nascimento, Rivera-Nájera, Cantón, Soberón and Bravo.
Copyright © 2023 Pacheco, Gómez, Peláez-Aguilar, Verduzco-Rosas, García-Suárez, do Nascimento, Rivera-Nájera, Cantón, Soberón and Bravo 2023 Pacheco, Gómez, Peláez-Aguilar, Verduzco-Rosas, García-Suárez, do Nascimento, Rivera-Nájera, Cantón, Soberón and Bravo
Copyright_xml – notice: Copyright © 2023 Pacheco, Gómez, Peláez-Aguilar, Verduzco-Rosas, García-Suárez, do Nascimento, Rivera-Nájera, Cantón, Soberón and Bravo.
– notice: Copyright © 2023 Pacheco, Gómez, Peláez-Aguilar, Verduzco-Rosas, García-Suárez, do Nascimento, Rivera-Nájera, Cantón, Soberón and Bravo 2023 Pacheco, Gómez, Peláez-Aguilar, Verduzco-Rosas, García-Suárez, do Nascimento, Rivera-Nájera, Cantón, Soberón and Bravo
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.3389/finsc.2023.1188891
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 2673-8600
ExternalDocumentID PMC10926538
38469496
10_3389_finsc_2023_1188891
Genre Journal Article
Review
GroupedDBID 9T4
AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
PGMZT
RPM
ABDBF
NPM
7X8
5PM
ID FETCH-LOGICAL-c403t-606eafeeed80101cdf14e2b65d53b0942114b84f4501f489135ba4d97400a9b53
ISSN 2673-8600
IngestDate Thu Aug 21 18:34:44 EDT 2025
Fri Sep 05 13:36:19 EDT 2025
Thu Jan 02 22:31:09 EST 2025
Tue Jul 01 03:20:29 EDT 2025
Thu Apr 24 22:51:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Vip3 toxin
pore-forming activity
Tc toxin
Bacillus thuringiensis
Cry toxin
Language English
License Copyright © 2023 Pacheco, Gómez, Peláez-Aguilar, Verduzco-Rosas, García-Suárez, do Nascimento, Rivera-Nájera, Cantón, Soberón and Bravo.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c403t-606eafeeed80101cdf14e2b65d53b0942114b84f4501f489135ba4d97400a9b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Ping Wang, Cornell University, United States
This article was submitted to Insect Molecular Genetics, a section of the journal Frontiers in Insect Science
Reviewed by: David Heckel, Max Planck Institute for Chemical Ecology, Germany; Neil Crickmore, University of Sussex, United Kingdom
OpenAccessLink http://dx.doi.org/10.3389/finsc.2023.1188891
PMID 38469496
PQID 2956158397
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10926538
proquest_miscellaneous_2956158397
pubmed_primary_38469496
crossref_primary_10_3389_finsc_2023_1188891
crossref_citationtrail_10_3389_finsc_2023_1188891
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-26
PublicationDateYYYYMMDD 2023-04-26
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-26
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in insect science
PublicationTitleAlternate Front Insect Sci
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Arnold (B52) 2001; 490
Meusch (B14) 2014; 508
Pacheco (B59) 2022; 22
Wang (B30) 2019; 85
Tomimoto (B54) 2006; 144
Boonserm (B27) 2006; 188
Muñóz-Garay (B38) 2009; 1788
Crickmore (B5) 2021; 186
Palma (B73) 2017; 9
Guo (B28) 2009; 168
Zheng (B88) 2017; 8
Galitsky (B25) 2001; 57
Pigott (B16) 2007; 71
Girard (B43) 2008; 74
Jiménez-Juárez (B48) 2007; 282
Li (B23) 1991; 353
Obata (B36) 2009; 276
Jiang (B75) 2023; 299
Núñez-Ramírez (B12) 2020; 11
Quant (B90) 2021; 13
Leidreiter (B82) 2019; 5
Evdokimov (B21) 2014; 23
Song (B81) 2021; 17
Jing (B29) 2019; 28
Hui (B57) 2012; 51
Lázaro-Berenguer (B76) 2022; 15
Gatsogiannis (B89) 2016; 23
Pacheco (B33) 2009; 30
Vié (B37) 2001; 180
Wang (B63) 2021; 14
Thamwiriyasati (B45) 2022; 620
Sriwimol (B39) 2015; 290
Groulx (B49) 2010; 136
Aronson (B53) 1999; 65
Silva-Filha (B9) 2021; 13
Roderer (B84) 2020; 11
Roderer (B86) 2019; 116
Mueller (B3) 2009; 459
Boonserm (B26) 2005; 348
(B8) 2019
Ocelotl (B34) 2017; 7
Jiang (B70) 2018; 14
Jiang (B74) 2020; 12
Lang (B15) 2010
Schwartz (B51) 1997; 410
Peña (B18) 2018; 293
Tabashnik (B65) 2020; 113
Waterfield (B78) 2007; 603
Pacheco (B58) 2018; 8
Gupta (B66) 2021; 12
Tetreau (B32) 2022; 13
Byrne (B13) 2021; 12
Wang (B61) 2020; 171
Gómez (B19) 2014; 459
Busby (B83) 2013; 501
Grochulski (B24) 1995; 254
Pardo-López (B6) 2013; 37
Sanahuja (B7) 2011; 9
Jiang (B69) 2018; 10
Parker (B1) 2005; 88
Wu (B47) 1992; 267
Carroll (B56) 1997; 70
Pacheco (B80) 2021; 12
Singh (B68) 2010; 76
Shan (B71) 2022; 13
Palma (B10) 2014; 6
Endo (B17) 2022; 14
Tilley (B2) 2006; 16
Pinos (B91) 2020; 12
Hurst (B77) 2000; 182
Wu (B20) 2014; 47
Lang (B87) 2013; 105
Masson (B41) 1999; 274
Liu (B60) 2020; 15
Arenas (B35) 2010; 285
Blackburn (B79) 2011; 6
Vachon (B42) 2004; 70
Tigue (B44) 2001; 67
Chakroun (B64) 2014; 80
Alzate (B50) 2006; 45
Xu (B85) 2022; 610
Knowles (B40) 1994; 24
Morse (B22) 2001; 9
Bel (B67) 2017; 9
Hinchliffe (B4) 2010; 3
Heckel (B11) 2020
Li (B31) 2022; 14
Zheng (B72) 2020; 29
Loseva (B55) 2001; 40
Vachon (B46) 2002; 41
Estruch (B62) 1996; 93
References_xml – volume: 6
  year: 2014
  ident: B10
  article-title: Bacillus thuringiensis toxins: an overview of their biocidal activity
  publication-title: Toxins
  doi: 10.3390/toxins6123296
– volume: 1788
  year: 2009
  ident: B38
  article-title: Characterization of the mechanism of action of the genetically modified Cry1AbMod toxin that is active against Cry1Ab-resistant insects
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamem.2009.06.014
– volume: 10
  year: 2018
  ident: B69
  article-title: Fibroblast growth factor receptor, a novel receptor for vegetative insecticidal protein Vip3Aa
  publication-title: Toxins
  doi: 10.3390/toxins10120546
– volume: 116
  year: 2019
  ident: B86
  article-title: Structure of a Tc holotoxin pore provides insights into the translocation mechanism
  publication-title: Proc Nat Acad Sci USA
  doi: 10.1073/pnas.1909821116
– volume: 74
  year: 2008
  ident: B43
  article-title: Cysteine scanning mutagenesis of α-4 a putative pore lining helix of the Bacillus thuringiensis insecticidal toxin Cry1Aa
  publication-title: App.l Environ Microbiol
  doi: 10.1128/AEM.00094-08
– volume: 22
  year: 2022
  ident: B59
  article-title: A major conformational change of n-terminal helices of Bacillus thuringiensis Cry1Ab insecticidal protein is necessary for membrane insertion and toxicity
  publication-title: FEBS J
  doi: 10.1111/febs.16710
– volume: 9
  year: 2017
  ident: B73
  article-title: The Vip3Ag4 insecticidal protoxin from Bacillus thuringiensis adopts a tetrameric configuration that is maintained on proteolysis
  publication-title: Toxins
  doi: 10.3390/toxins9050165
– volume: 37
  start-page: 3
  year: 2013
  ident: B6
  article-title: Bacillus thuringiensis insecticidal three-domain cry toxins: mode of action, insect resistance and consequences for crop protection
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/j.1574-6976.2012.00341.x
– volume: 16
  year: 2006
  ident: B2
  article-title: The mechanism of pore formation by bacterial toxins
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2006.03.008
– volume: 76
  year: 2010
  ident: B68
  article-title: Interaction of Bacillus thuringiensis vegetative insecticidal protein with ribosomal S2 protein triggers larvicidal activity in Spodoptera frugiperda
  publication-title: Appl Environm. Microbiol
  doi: 10.1128/AEM.01552-10
– volume: 3
  start-page: 83
  year: 2010
  ident: B4
  article-title: Insecticidal toxins from the Photorhabdus and Xenorhabdus bacteria
  publication-title: Open Toxinol. J
  doi: 10.2174/1875414701003010101
– volume: 293
  year: 2018
  ident: B18
  article-title: The c-terminal protoxin domain of Bacillus thuringiensis Cry1Ab toxin has a functional role in binding to GPI-anchored receptors in the insect midgut
  publication-title: J Biol Chem
  doi: 10.1074/jbc.RA118.005101
– volume: 11
  start-page: 3974
  year: 2020
  ident: B12
  article-title: Molecular architecture and activation of the insecticidal protein Vip3Aa from Bacillus thuringiensis
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-17758-5
– volume: 12
  start-page: 2791
  year: 2021
  ident: B13
  article-title: Cryo-EM structures of an insecticidal bt toxin reveal its mechanism of action on the membrane
  publication-title: Nat Comm
  doi: 10.1038/s41467-021-23146-4
– volume: 71
  year: 2007
  ident: B16
  article-title: Role of receptors in Bacillus thuringiensis crystal toxin activity
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.00034-06
– volume: 13
  year: 2022
  ident: B71
  article-title: Sf-FGFR and sf-SR-C are not the receptors for Vip3Aa to exert insecticidal toxicity in Spodoptera frugiperda
  publication-title: Insects
  doi: 10.3390/insects13060547
– volume: 508
  year: 2014
  ident: B14
  article-title: Mechanism of Tc toxin action revealed in molecular detail
  publication-title: Nature
  doi: 10.1038/nature13015
– volume: 9
  year: 2001
  ident: B22
  article-title: Structure of Cry2Aa suggests an unexpected receptor binding epitope
  publication-title: Structure.
  doi: 10.1016/s0969-2126(01)00601-3
– volume: 267
  year: 1992
  ident: B47
  article-title: Localized mutagenesis defines regions of the δ-endotoxin involved in toxicity and specificity
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)45879-6
– volume: 30
  year: 2009
  ident: B33
  article-title: Enhancement of insecticidal activity of Bacillus thuringiensis Cry1A toxins by fragments of a toxin-binding cadherin correlates with oligomer formation
  publication-title: Peptides
  doi: 10.1016/j.peptides.2008.08.006
– volume: 93
  year: 1996
  ident: B62
  article-title: Vip3A, a novel bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects
  publication-title: Proc Nat Acad Sci USA
  doi: 10.1073/pnas.93.11.5389
– volume: 9
  year: 2017
  ident: B67
  article-title: Insights into the structure of the Vip3Aa insecticidal protein by protease digestion analysis
  publication-title: Toxins
  doi: 10.3390/toxins9040131
– volume: 5
  start-page: eaax6497
  year: 2019
  ident: B82
  article-title: Common architecture of Tc toxins from human and insect pathogenic bacteria
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aax6497
– volume: 290
  year: 2015
  ident: B39
  article-title: Potential prepore trimer formation by the Bacillus thuringiensis mosquito-specific toxin: molecular insights into a critical prerequisite of membrane-bound monomers
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M114.627554
– volume-title: ISAAA brief no. 55
  year: 2019
  ident: B8
  article-title: Global status of commercialized biotech/GM crops in 2019: biotech crops drive socio-economic development and sustainable environment in the new frontier
– volume: 501
  year: 2013
  ident: B83
  article-title: The BC component of ABC toxins is an RHS-repeat-containing protein encapsulation device
  publication-title: Nature
  doi: 10.1038/nature12465
– volume: 182
  year: 2000
  ident: B77
  article-title: Plasmid-located pathogenicity determinants of Serratia entomophila, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of Photorhabdus luminescens
  publication-title: J Bacteriol
  doi: 10.1128/JB.182.18.5127-5138.2000
– volume: 14
  year: 2018
  ident: B70
  article-title: Scavenger receptor-c acts as a receptor for Bacillus thuringiensis vegetative insecticidal protein Vip3Aa and mediates the internalization of Vip3Aa via endocytosis
  publication-title: PloS Pathog
  doi: 10.1371/journal.ppat.1007347
– volume: 282
  year: 2007
  ident: B48
  article-title: Bacillus thuringiensis Cry1Ab mutants affecting oligomer formation are non-toxic to Manduca sexta larvae
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M701314200
– volume: 29
  year: 2020
  ident: B72
  article-title: Crystal structure of a Vip3B family insecticidal protein reveals a new fold and a unique tetrameric assembly
  publication-title: Protein science.
  doi: 10.1002/pro.3803
– volume: 610
  year: 2022
  ident: B85
  article-title: CRISPR screens in Drosophila cells identify vsg as a Tc toxin receptor
  publication-title: Nature
  doi: 10.1038/s41586-022-05250-7
– volume: 620
  year: 2022
  ident: B45
  article-title: Complete structure of a functional form of the Bacillus thuringiensis Cry4Ba δ-endotoxin: insights into toxin-induced transmembrane pore
  publication-title: Biochem Biophys Commun
  doi: 10.1016/j.bbrc.2022.06.065
– volume: 70
  year: 1997
  ident: B56
  article-title: Intramolecular proteolytic cleavage of Bacillus thuringiensis Cry3A delta-endotoxin may facilitate its coleopteran toxicity
  publication-title: J Invertebr Pathol
  doi: 10.1006/jipa.1997.4656
– volume: 17
  year: 2021
  ident: B81
  article-title: N-glycans and sulfated glycosaminoglycans contribute to the action of diverse Tc toxins on mammalian cells
  publication-title: PloS Pathog
  doi: 10.1371/journal.ppat.1009244
– volume: 186
  start-page: 107438
  year: 2021
  ident: B5
  article-title: A structure-based nomenclature for Bacillus thuringiensis and other bacteria-derived pesticidal proteins
  publication-title: J Invertebr. Pathol
  doi: 10.1016/jip.2020.107438
– volume: 65
  year: 1999
  ident: B53
  article-title: Aggregation of Bacillus thuringiensis Cry1A toxins upon binding to target insect larval midgut vesicles
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.65.6.2503-2507.1999
– volume: 459
  year: 2009
  ident: B3
  article-title: The structure of a cytolytic α-helical toxin pore reveals its assembly mechanism
  publication-title: Nature
  doi: 10.1038/nature08026
– volume: 23
  year: 2016
  ident: B89
  article-title: Membrane insertion of a Tc toxin in near-atomic detail
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.3281
– volume: 180
  start-page: 195
  year: 2001
  ident: B37
  article-title: Lipid-induced pore formation of the Bacillus thuringiensis Cry1Aa insecticidal toxin
  publication-title: J Membr. Biol
  doi: 10.1007/s002320010070
– volume: 45
  year: 2006
  ident: B50
  article-title: Effects of disulfide bridges in domain I of Bacillus thuringiensis Cry1Aa δ-endotoxin on ion-channel formation in biological membranes
  publication-title: Biochemistry
  doi: 10.1021/bi061474z
– volume: 15
  year: 2020
  ident: B60
  article-title: Activity of Vip3Aa1 against Periplaneta americana
  publication-title: Open Life Sci
  doi: 10.1515/biol-2020-0014
– volume: 105
  year: 2013
  ident: B87
  article-title: TcdA1 of Photorhabdus luminescens: electrophysiological analysis of pore formation and effector binding
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2013.06.003
– volume: 171
  year: 2020
  ident: B61
  article-title: Vip3Aa from Bacillus thuringiensis subsp. kurstaki HD1 is toxic to Aedes aegypti (Diptera: culicidae)
  publication-title: J Invertebr. Pathol
  doi: 10.1016/j.jip.2020.107342
– volume: 8
  start-page: 10331
  year: 2018
  ident: B58
  article-title: Helix alpha-3 inter-molecular salt bridges and conformational changes are essential for toxicity of Bacillus thuringiensis 3D-cry toxin family
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-28753-8
– year: 2020
  ident: B11
  article-title: How do toxins from Bacillus thuringiensis kill insects? an evolutionary perspective
  publication-title: Arch Insect Biochem Physiol
  doi: 10.1002/arch.21673
– volume: 13
  year: 2021
  ident: B90
  article-title: The rapid evolution of resistance to Vip3Aa insecticidal protein in Mythimma separata (Walker) is not related to altered binding to midgut receptors
  publication-title: Toxins
  doi: 10.3390/toxins13050364
– volume: 14
  start-page: 433
  year: 2022
  ident: B17
  article-title: Molecular and kinetic models for pore formation of Bacillus thuringiensis Cry toxin
  publication-title: Toxins
  doi: 10.3390/toxins14070433
– volume: 57
  year: 2001
  ident: B25
  article-title: Structure of the insecticidal bacterial delta-endotoxin Cry3Bb1 of Bacillus thuringiensis
  publication-title: Acta Crystallogr. D Biol Crystallogr.
  doi: 10.1107/s0907444901008186
– volume: 8
  year: 2017
  ident: B88
  article-title: Comparative genomics of Bacillus thuringiensis reveals a path to specialized exploitation of multiple invertebrate hosts
  publication-title: mBio
  doi: 10.1128/mBio.00822-17
– volume: 12
  year: 2020
  ident: B74
  article-title: Structural and functional insights into the c-terminal fragment of insecticidal Vip3A toxin of Bacillus thuringiensis
  publication-title: Toxins
  doi: 10.3390/toxins12070438
– volume: 299
  start-page: 103000
  year: 2023
  ident: B75
  article-title: Functional characterization of Vip3Aa from Bacillus thuringiensis reveals the contributions of specific domains to its insecticidal activity
  publication-title: J Biol Chem
  doi: 10.1016/j.jbc.2023.103000
– volume: 603
  year: 2007
  ident: B78
  article-title: The insect toxin complex of yersinia
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-0-387-72124-8_22
– volume: 23
  year: 2014
  ident: B21
  article-title: Structure of the full-length insecticidal protein Cry1Ac reveals intriguing details of toxin packaging into in vivo formed crystals
  publication-title: Protein Sci
  doi: 10.1002/pro.2536
– volume: 113
  year: 2020
  ident: B65
  article-title: Evaluating cross-resistance between vip and cry toxins of Bacillus thuringiensis
  publication-title: J Econom. Entomol
  doi: 10.1093/jee/toz308
– year: 2010
  ident: B15
  article-title: Photorhabdus luminescens toxins ADP-ribosylate actin and RhoA to force actin clustering
  publication-title: Sci (N.Y
  doi: 10.1126/science.1184557
– volume: 13
  start-page: 4376
  year: 2022
  ident: B32
  article-title: De novo determination of mosquitocidal Cry11Aa and Cry11Ba structures from naturally-occurring nanocrystals
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-31746-x
– volume: 24
  start-page: 275
  year: 1994
  ident: B40
  article-title: Mechanism of action of Insecticidal δ-endotoxins
  publication-title: Adv Insect Physiol
  doi: 10.1016/S0065-2806(08)60085-5
– volume: 41
  year: 2002
  ident: B46
  article-title: Role of helix 3 in pore formation by the Bacillus thuringiensis insecticidal toxin Cry1Aa
  publication-title: Biochemistry
  doi: 10.1021/bi011572e
– volume: 40
  start-page: 14143
  year: 2001
  ident: B55
  article-title: Structure of Cry3A δ- endotoxin within phospholipid membranes
  publication-title: Biochemistry
  doi: 10.1021/bi010171w
– volume: 80
  year: 2014
  ident: B64
  article-title: In vivo and in vitro binding of Vip3Aa to Spodoptera frugiperda midgut and characterization of binding sites by 125I radiolabeling
  publication-title: Appl Environm. Microbiol
  doi: 10.1128/AEM.01521-14
– volume: 14
  start-page: 823
  year: 2022
  ident: B31
  article-title: Insights from the structure of an active form of Bacillus thuringiensis Cry5B
  publication-title: Toxins (Basel)
  doi: 10.3390/toxins14120823
– volume: 28
  year: 2019
  ident: B29
  article-title: Crystal structure of Bacillus thuringiensis Cry7Ca1 toxin active against Locusta migratoria manilensis
  publication-title: Protein Sci
  doi: 10.1002/pro.3561
– volume: 13
  year: 2021
  ident: B9
  article-title: Bacterial toxins active against mosquitoes: mode of action and resistance
  publication-title: Toxins
  doi: 10.3390/toxins13080523
– volume: 254
  year: 1995
  ident: B24
  article-title: Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1995.0630
– volume: 276
  year: 2009
  ident: B36
  article-title: Analysis of the region for receptor binding and triggering of oligomerization on Bacillus thuringiensis Cry1Aa toxin
  publication-title: FEBS J
  doi: 10.1111/j.1742-4658.2009.07275.x
– volume: 9
  start-page: 283
  year: 2011
  ident: B7
  article-title: Bacillus thuringiensis: a century of research, development and commercial applications
  publication-title: Plant Biotechnol J
  doi: 10.1111/j.1467-7652.2011.00595.x
– volume: 274
  year: 1999
  ident: B41
  article-title: Helix 4 of the Bacillus thuringiensis Cry1Aa toxin lines the lumen of the ion channel
  publication-title: J Biol Chem
  doi: 10.1074/jbc.274.45.31996
– volume: 6
  year: 2011
  ident: B79
  article-title: The occurrence of photorhabdus-like toxin complexes in Bacillus thuringiensis
  publication-title: PloS One
  doi: 10.1371/journal.pone.0018122
– volume: 136
  start-page: 497
  year: 2010
  ident: B49
  article-title: Rapid topology probing using fluorescence spectroscopy in planar lipid bilayer: the pore-forming mechanism of the toxin Cry1Aa of Bacillus thuringiensis
  publication-title: J Gen Physiol
  doi: 10.1085/jgp.200910347
– volume: 410
  start-page: 397
  year: 1997
  ident: B51
  article-title: Restriction of intramolecular movements within the CrylAa toxin molecule of Bacillus thuringiensis through disulfide bond engineering
  publication-title: FEBS Lett
  doi: 10.1016/s0014-5793(97)00626-1
– volume: 15
  year: 2022
  ident: B76
  article-title: Structural and functional role of domain I for the insecticidal activity of the Vip3Aa protein from Bacillus thuringiensis
  publication-title: Microbial Biotechnol
  doi: 10.1111/1751-7915.14110
– volume: 70
  year: 2004
  ident: B42
  article-title: Helix 4 mutants of the Bacillus thuringiensis insecticidal toxin Cry1Aa display altered pore-forming abilities
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.70.10.6123-6130.2004
– volume: 188
  year: 2006
  ident: B27
  article-title: Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstrom resolution
  publication-title: J Bacteriol
  doi: 10.1128/JB.188.9.3391-3401.2006
– volume: 490
  year: 2001
  ident: B52
  article-title: The role of a proline-induced broken-helix motif in α-helix 2 of Bacillus thuringiensis δ-endotoxins
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(01)02139
– volume: 7
  start-page: 2386
  year: 2017
  ident: B34
  article-title: ABCC2 is associated with Bacillus thuringiensis Cry1Ac toxin oligomerization and membrane insertion in diamondback moth
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-02545-y
– volume: 285
  year: 2010
  ident: B35
  article-title: Role of alkaline phosphatase from Manduca sexta in the mechanism of action of Bacillus thuringiensis Cry1Ab toxin. J
  publication-title: Biol Chem
  doi: 10.1074/jbc.M109.085266
– volume: 168
  year: 2009
  ident: B28
  article-title: Crystal structure of Bacillus thuringiensis Cry8Ea1: an insecticidal toxin toxic to underground pests, the larvae of Holotrichia parallela
  publication-title: J Struct Biol
  doi: 10.1016/j.jsb.2009.07.004
– volume: 67
  year: 2001
  ident: B44
  article-title: The α-helix 4 residue, Asn135, is involved in the oligomerization of Cry1Ac1 and Cry1Ab5 Bacillus thuringiensis toxins
  publication-title: Appl Environm. Microbiol
  doi: 10.1128/AEM.67.12.5715-5720.2001
– volume: 51
  year: 2012
  ident: B57
  article-title: Structure and glycolipid binding properties of the nematicidal protein Cry5B
  publication-title: Biochemistry
  doi: 10.1021/bi301386q
– volume: 348
  year: 2005
  ident: B26
  article-title: Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2005.02.013
– volume: 144
  year: 2006
  ident: B54
  article-title: Pronase digestion of brush border membrane-bound Cry1Aa shows that almost the whole activated Cry1Aa molecule penetrates the membrane
  publication-title: Comp Biochem Physiol B Biochem Mol Biol
  doi: 10.1016/j.cbpb.2006.04.013
– volume: 88
  start-page: 91
  year: 2005
  ident: B1
  article-title: Pore-forming protein toxins: from structure to function
  publication-title: Prog Biophys Mol Biol
  doi: 10.1016/j.pbiomolbio.2004.01.009
– volume: 12
  year: 2021
  ident: B66
  article-title: Vegetative insecticidal protein (Vip): a potential contender from Bacillus thuringiensis for efficient management of various detrimental agricultural pests
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2021.659736
– volume: 459
  year: 2014
  ident: B19
  article-title: Bacillus thuringiensis Cry1A toxins are versatile-proteins with multiple modes of action: two distinct pre-pores are involved in toxicity
  publication-title: Biochem J
  doi: 10.1042/BJ20131408
– volume: 47
  start-page: 297
  year: 2014
  ident: B20
  article-title: Detection and mechanisms of resistance evolved in insects to cry toxins from Bacillus thuringiensis
  publication-title: Adv Insect Physiol
  doi: 10.1016/B978-0-12-800197-4.00006-3
– volume: 12
  year: 2021
  ident: B80
  article-title: Whole genome sequencing analysis of Bacillus thuringiensis GR007 reveals multiple pesticidal protein genes
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2021.758314
– volume: 353
  year: 1991
  ident: B23
  article-title: Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 a resolution
  publication-title: Nature
  doi: 10.1038/353815a0
– volume: 14
  year: 2021
  ident: B63
  article-title: Nutrient conditions determine the localization of Bacillus thuringiensis Vip3Aa protein in the mother cell compartment
  publication-title: Microb Biotech.
  doi: 10.1111/1751-7915.13719
– volume: 11
  start-page: 2694
  year: 2020
  ident: B84
  article-title: Glycan-dependent cell adhesion mechanism of Tc toxins
  publication-title: Nat Com.
  doi: 10.1038/s41467-020-16536-7
– volume: 12
  year: 2020
  ident: B91
  article-title: Reduced membrane-bound alkaline phosphatase does not affect binding of Vip3Aa in a Heliothis virescens resistant colony
  publication-title: Toxins (Basel).
  doi: 10.3390/toxins12060409
– volume: 85
  year: 2019
  ident: B30
  article-title: Bacillus thuringiensis Cry1Da_7 and Cry1B.868 protein interactions with novel receptors allow control of resistant fall armyworms, Spodoptera frugiperda (J.E. smith)
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00579-19
SSID ssj0002874045
Score 2.3202934
SecondaryResourceType review_article
Snippet Different Bacillus thuringiensis (Bt) strains produce a broad variety of pore-forming toxins (PFTs) that show toxicity against insects and other invertebrates....
Different (Bt) strains produce a broad variety of pore-forming toxins (PFTs) that show toxicity against insects and other invertebrates. Some of these...
Different Bacillus thuringiensis (Bt) strains produce a broad variety of pore-forming toxins (PFTs) that show toxicity against insects and other invertebrates....
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1188891
SubjectTerms Insect Science
Title Structural changes upon membrane insertion of the insecticidal pore-forming toxins produced by Bacillus thuringiensis
URI https://www.ncbi.nlm.nih.gov/pubmed/38469496
https://www.proquest.com/docview/2956158397
https://pubmed.ncbi.nlm.nih.gov/PMC10926538
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwGLXKEBIviDvlMhmJtyojiZ3bY4dWDVSGBC2qeIlixxlBaVMtjQT9C_xpvs9O0nSb0OClitzcmnPqfNdjQt6EgoWeG0RguaUMo1W2FWWwZXNHeo4vUymwUfjjmX865x8W3mIw-N2rWqo34khur-0r-R9UYQxwxS7Zf0C2OykMwDbgC5-AMHzeCOMvWvxVC2eYBt5qVK8BzqVaghOs9UAw2d7YhGhi4gB2ReUpdmCVF8pCo1W3TJU_sVpmrRVgjVl6nMi8KOoKjtTNjDkWu1d9c3aC8ge4mDaGTcy5R807dZebAlrI0kSfwQ0vu4ofzNEfs6UJYb-vEqGK3URd6Ay-o7bW-LzOC1MGPsYK3F3vxFd1kdZbWVqfy8r0pU3rvGqis00kw0VCWKZd3kx4rh8wK_Rtk6dR14w1MzbrzbjgIIWhWfDr8tsAvG8UU83g56NYpcuOejvvS2-ffYon8-k0np0sZrfIbTcIdM6_Df380FHIgNt60evunkwTFl7m7dWL7Bs6V7yXy0W4Patmdp_ca9wROjbcekAGavWQ3PlW6mTLI1LvGEYbhlFkGG0ZRjuG0TKjwDDaZxjtM4wahtGWYVT8oi3D6B7DHpP55GT27tRqFuqwJLfZxgInWCWZAnMrRMlCmWYOV67wvdRjwo64C063CHnGPdvJOCbGPZHwFFxZ204i4bEn5GBVrtQzQqPATRVLJcwXCWdBgvpzjpSRC663BOdhSJz2qcayUbHHxVSKGLxZRCLWSMSIRNwgMSSj7pi10XD5696vW7BimGoxfwaPs6yr2MUmcA88imBInhrwuvMxsOMjHsH9hXuwdjugjPv-N6v8u5Zzd-zI9cHueH6DC78gd3f_nJfkAEigXoFVvBGHOpp0qDn7B6f_vpA
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+changes+upon+membrane+insertion+of+the+insecticidal+pore-forming+toxins+produced+by+Bacillus+thuringiensis&rft.jtitle=Frontiers+in+insect+science&rft.au=Pacheco%2C+Sabino&rft.au=G%C3%B3mez%2C+Isabel&rft.au=Pel%C3%A1ez-Aguilar%2C+Angel+E&rft.au=Verduzco-Rosas%2C+Luis+A&rft.date=2023-04-26&rft.issn=2673-8600&rft.eissn=2673-8600&rft.volume=3&rft.spage=1188891&rft_id=info:doi/10.3389%2Ffinsc.2023.1188891&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-8600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-8600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-8600&client=summon