Machine Learning in Detection and Classification of Leukemia Using Smear Blood Images: A Systematic Review

Introduction. The early detection and diagnosis of leukemia, i.e., the precise differentiation of malignant leukocytes with minimum costs in the early stages of the disease, is a major problem in the domain of disease diagnosis. Despite the high prevalence of leukemia, there is a shortage of flow cy...

Full description

Saved in:
Bibliographic Details
Published inScientific programming Vol. 2021; pp. 1 - 14
Main Authors Ghaderzadeh, Mustafa, Asadi, Farkhondeh, Hosseini, Azamossadat, Bashash, Davood, Abolghasemi, Hassan, Roshanpour, Arash
Format Journal Article
LanguageEnglish
Published New York Hindawi 25.06.2021
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Introduction. The early detection and diagnosis of leukemia, i.e., the precise differentiation of malignant leukocytes with minimum costs in the early stages of the disease, is a major problem in the domain of disease diagnosis. Despite the high prevalence of leukemia, there is a shortage of flow cytometry equipment, and the methods available at laboratory diagnostic centers are time-consuming. Motivated by the capabilities of machine learning (machine learning (ML)) in disease diagnosis, the present systematic review was conducted to review the studies aiming to discover and classify leukemia by using machine learning. Methods. A systematic search in four databases (PubMed, Scopus, Web of Science, and ScienceDirect) and Google Scholar was performed via a search strategy using Machine Learning (ML), leukemia, peripheral blood smear (PBS) image, detection, diagnosis, and classification as the keywords. Initially, 116 articles were retrieved. After applying the inclusion and exclusion criteria, 16 articles remained as the population of the study. Results. This review study presents a comprehensive and systematic view of the status of all published ML-based leukemia detection and classification models that process PBS images. The average accuracy of the ML methods applied in PBS image analysis to detect leukemia was >97%, indicating that the use of ML could lead to extraordinary outcomes in leukemia detection from PBS images. Among all ML techniques, deep learning (DL) achieved higher precision and sensitivity in detecting different cases of leukemia, compared to its precedents. ML has many applications in analyzing different types of leukemia images, but the use of ML algorithms to detect acute lymphoblastic leukemia (ALL) has attracted the greatest attention in the fields of hematology and artificial intelligence. Conclusion. Using the ML method to process leukemia smear images can improve accuracy, reduce diagnosis time, and provide faster, cheaper, and safer diagnostic services. In addition to the current diagnostic methods, clinical and laboratory experts can also adopt ML methods in laboratory applications and tools.
AbstractList Introduction. The early detection and diagnosis of leukemia, i.e., the precise differentiation of malignant leukocytes with minimum costs in the early stages of the disease, is a major problem in the domain of disease diagnosis. Despite the high prevalence of leukemia, there is a shortage of flow cytometry equipment, and the methods available at laboratory diagnostic centers are time-consuming. Motivated by the capabilities of machine learning (machine learning (ML)) in disease diagnosis, the present systematic review was conducted to review the studies aiming to discover and classify leukemia by using machine learning. Methods. A systematic search in four databases (PubMed, Scopus, Web of Science, and ScienceDirect) and Google Scholar was performed via a search strategy using Machine Learning (ML), leukemia, peripheral blood smear (PBS) image, detection, diagnosis, and classification as the keywords. Initially, 116 articles were retrieved. After applying the inclusion and exclusion criteria, 16 articles remained as the population of the study. Results. This review study presents a comprehensive and systematic view of the status of all published ML-based leukemia detection and classification models that process PBS images. The average accuracy of the ML methods applied in PBS image analysis to detect leukemia was >97%, indicating that the use of ML could lead to extraordinary outcomes in leukemia detection from PBS images. Among all ML techniques, deep learning (DL) achieved higher precision and sensitivity in detecting different cases of leukemia, compared to its precedents. ML has many applications in analyzing different types of leukemia images, but the use of ML algorithms to detect acute lymphoblastic leukemia (ALL) has attracted the greatest attention in the fields of hematology and artificial intelligence. Conclusion. Using the ML method to process leukemia smear images can improve accuracy, reduce diagnosis time, and provide faster, cheaper, and safer diagnostic services. In addition to the current diagnostic methods, clinical and laboratory experts can also adopt ML methods in laboratory applications and tools.
Author Roshanpour, Arash
Hosseini, Azamossadat
Asadi, Farkhondeh
Ghaderzadeh, Mustafa
Abolghasemi, Hassan
Bashash, Davood
Author_xml – sequence: 1
  givenname: Mustafa
  orcidid: 0000-0003-4016-3843
  surname: Ghaderzadeh
  fullname: Ghaderzadeh, Mustafa
  organization: Department of Health Information Technology and ManagementSchool of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIransbmu.ac.ir
– sequence: 2
  givenname: Farkhondeh
  orcidid: 0000-0003-0939-7983
  surname: Asadi
  fullname: Asadi, Farkhondeh
  organization: Department of Health Information Technology and ManagementSchool of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIransbmu.ac.ir
– sequence: 3
  givenname: Azamossadat
  orcidid: 0000-0002-4390-1154
  surname: Hosseini
  fullname: Hosseini, Azamossadat
  organization: Department of Health Information Technology and ManagementSchool of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIransbmu.ac.ir
– sequence: 4
  givenname: Davood
  orcidid: 0000-0002-8029-4920
  surname: Bashash
  fullname: Bashash, Davood
  organization: Department of Hematology and Blood BankingSchool of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIransbmu.ac.ir
– sequence: 5
  givenname: Hassan
  orcidid: 0000-0001-6920-5029
  surname: Abolghasemi
  fullname: Abolghasemi, Hassan
  organization: Pediatric Congenital Hematologic Disorders Research CenterShahid Beheshti University of Medical SciencesTehranIransbmu.ac.ir
– sequence: 6
  givenname: Arash
  surname: Roshanpour
  fullname: Roshanpour, Arash
  organization: Department of Computer ScienceSama Technical and Vocational Training CollegeTehran Branch (Tehran)Islamic Azad University (IAU)TehranIraniau.ac.ir
BookMark eNp9kFtLwzAUgIMouE3f_AEBH7Uul6ZNfJvzNpgIzoFvJaanM7NNZtM59u_tLk-CPp1w-L4c-Lro0HkHCJ1RckWpEH1GGO0rxXks6QHqUJmKSFH1dti-iZCRYnF8jLohzAmhkhLSQfMnbT6sAzwGXTvrZtg6fAsNmMZ6h7XL8bDUIdjCGr1d-aJll59QWY2nYWNMqtbFN6X3OR5VegbhGg_wZB0aqFrH4Bf4trA6QUeFLgOc7mcPTe_vXoeP0fj5YTQcjCMTE95EojDAuRQJ40YZTVMlgbNUJrEsJONxKiFlCVBqJNVM5BoSwgx9L7gmTFDCe-h89--i9l9LCE0298vatSczJmLJlGBp0lKXO8rUPoQaimxR20rX64ySbFMz29TM9jVbnP3CjW22QZpa2_Iv6WIntYVzvbL_n_gBiEyEnQ
CitedBy_id crossref_primary_10_3389_fdata_2024_1402926
crossref_primary_10_3389_fpubh_2023_1092018
crossref_primary_10_4108_eetpht_9_4852
crossref_primary_10_61186_ijbc_15_3_112
crossref_primary_10_1177_15330338221142996
crossref_primary_10_1002_int_22753
crossref_primary_10_1155_2023_3567194
crossref_primary_10_1111_jebm_70005
crossref_primary_10_1111_ijlh_14305
crossref_primary_10_32604_jai_2022_028092
crossref_primary_10_1080_21681163_2023_2280619
crossref_primary_10_30699_ijmm_17_5_571
crossref_primary_10_48175_IJARSCT_22540
crossref_primary_10_1002_cyto_a_24832
crossref_primary_10_1155_2021_9942873
crossref_primary_10_24017_Science_2022_1_8
crossref_primary_10_1038_s41390_024_03494_9
crossref_primary_10_1155_2022_4838009
crossref_primary_10_32604_csse_2023_036985
crossref_primary_10_3389_fonc_2025_1475893
crossref_primary_10_1111_ijlh_14082
crossref_primary_10_1080_23311916_2024_2304484
crossref_primary_10_1111_vcp_13400
crossref_primary_10_37391_ijeer_12icteee07
crossref_primary_10_1038_s41598_024_74889_1
crossref_primary_10_1155_2022_2801227
crossref_primary_10_1109_ACCESS_2025_3542609
crossref_primary_10_1002_ima_22787
crossref_primary_10_3390_app13074547
crossref_primary_10_1155_2022_4801671
crossref_primary_10_1007_s11831_022_09796_7
crossref_primary_10_1155_2023_1406545
crossref_primary_10_32604_csse_2023_029597
crossref_primary_10_1371_journal_pone_0289613
crossref_primary_10_1111_ijlh_14370
crossref_primary_10_32604_csse_2023_034658
Cites_doi 10.1109/mci.2010.939236
10.5120/12571-9186
10.1097/moh.0000000000000322
10.1177/1533033818802789
10.5244/C.25.101
10.1007/978-981-10-0135-2_52
10.3390/bioengineering7040120
10.1007/s00521-013-1438-3
10.1007/s13534-012-0056-9
10.1097/CCM.0b013e31819f0451
10.1016/j.procs.2015.08.082
10.1007/s10916-018-0962-1
10.1016/j.procs.2015.10.113
10.1109/ACCESS.2020.3021660
10.1016/j.clml.2018.07.246
10.1109/mim.2006.250641
10.1109/CCECE.2013.6567770
10.31557/apjcp.2020.21.5.1487
10.4103/2228-7477.150428
10.1515/bmt-2018-0213
10.1016/j.procs.2015.08.017
10.1016/j.bspc.2016.11.021
10.1155/2016/9514707
10.1007/s00521-018-3359-7
10.1016/j.clml.2019.07.067
10.1530/ec-19-0156
10.1109/rbme.2016.2515127
10.1038/nature14539
10.1109/ISSPIT.2014.7300632
10.1056/nejm199506153322407
10.1126/science.1127647
10.3389/fbioe.2020.01005
10.1016/j.cmpb.2017.09.011
10.1109/ICETECH.2015.7275021
10.1016/j.neunet.2018.02.002
10.1177/0954411920938567
10.1016/j.compmedimag.2011.01.003
10.1109/ICACA.2016.7887948
10.1109/NEBC.1996.503246
10.14738/aivp.33.1196
10.1155/2021/6677314
10.1016/j.artmed.2014.09.002
10.1016/0895-4356(94)00225-f
10.1016/j.patrec.2019.03.024
10.1136/jclinpath-2019-205949
10.1088/1742-6596/48/1/061
10.1002/jbio.201800488
10.1155/2013/137392
10.1109/PCITC.2015.7438079
10.1109/TITB.2008.925965
10.2196/27468
10.1007/s11517-019-02071-1
10.1007/s10916-018-1010-x
10.14569/IJACSA.2020.0110646
10.1038/s41598-017-01931-w
10.4018/978-1-60960-561-2.ch206
10.1016/j.bbe.2017.07.003
10.1109/INFOP.2015.7489422
10.2147/clep.s129779
10.1016/j.aej.2017.08.025
10.1016/j.engappai.2018.04.024
10.1109/ACSAT.2012.62
10.1109/jsyst.2014.2308452
10.1007/s11517-016-1590-x
10.1515/9781501501500
10.1007/s10278-019-00288-y
10.1007/3-540-45656-2_20
10.1002/jemt.23509
10.1056/nejmp1606181
ContentType Journal Article
Copyright Copyright © 2021 Mustafa Ghaderzadeh et al.
Copyright © 2021 Mustafa Ghaderzadeh et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2021 Mustafa Ghaderzadeh et al.
– notice: Copyright © 2021 Mustafa Ghaderzadeh et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1155/2021/9933481
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Technology Research Database
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1875-919X
Editor Wang, Pengwei
Editor_xml – sequence: 1
  givenname: Pengwei
  surname: Wang
  fullname: Wang, Pengwei
EndPage 14
ExternalDocumentID 10_1155_2021_9933481
GroupedDBID .4S
.DC
0R~
4.4
5VS
AAFWJ
AAJEY
ABDBF
ABJNI
ACGFS
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
BCNDV
DU5
EAD
EAP
EBS
EDO
EMK
EPL
EST
ESX
GROUPED_DOAJ
HZ~
I-F
IAO
IHR
IOS
KQ8
MIO
MK~
ML~
MV1
NGNOM
O9-
OK1
RHU
RHW
RHX
TUS
24P
AAYXX
ACCMX
CITATION
H13
7SC
7SP
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c403t-5fce3385623c9ca1798e3278648f823478e726e11c81a25dae602c1bf3a025103
IEDL.DBID RHX
ISSN 1058-9244
IngestDate Fri Jul 25 09:29:31 EDT 2025
Thu Apr 24 23:12:18 EDT 2025
Tue Jul 01 02:50:05 EDT 2025
Sun Jun 02 19:18:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-5fce3385623c9ca1798e3278648f823478e726e11c81a25dae602c1bf3a025103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4390-1154
0000-0002-8029-4920
0000-0003-4016-3843
0000-0003-0939-7983
0000-0001-6920-5029
OpenAccessLink https://dx.doi.org/10.1155/2021/9933481
PQID 2548295276
PQPubID 2046410
PageCount 14
ParticipantIDs proquest_journals_2548295276
crossref_primary_10_1155_2021_9933481
crossref_citationtrail_10_1155_2021_9933481
hindawi_primary_10_1155_2021_9933481
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-25
PublicationDateYYYYMMDD 2021-06-25
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-25
  day: 25
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Scientific programming
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References 45
46
47
48
R. Bhattacharjee (36)
Y. A. Gajul (54) 2016; 5
G. Díaz (81) 2011
51
C. E. Pedreira (74) 2008; 13
53
10
55
12
58
15
16
17
18
19
V. Shankar (57)
H. T. Madhloom (73)
1
(6) 2020
G. Singh (63) 2016; 11
3
4
5
7
8
9
61
20
64
T. W. Reader (14) 2009; 37
21
65
22
23
24
68
25
S. Khobragade (62)
69
26
27
G. E. Hinton (32) 2006; 313
H. Kekre (44) 2013; 72
28
29
J. Rawat (60)
S. C. Neoh (66) 2015; 5
T. Karthikeyan (59) 2017; 4
M. M. Amin (67) 2015; 5
A. A. Nasir (71) 2013; 10
70
72
31
75
76
33
J. Hari (50)
A. R. Begum (52) 2017; 8
77
34
78
35
M. MoradiAmin (37) 2015; 2
79
38
T. G. Patil (41) 2015; 2
39
D. Goutam (56)
E. A. Mohammed (49)
S. Koitka (30) 2016
S. Wan (82) 2015
(2) 2018
H. Sheikh (42)
80
M. Ghaderzadeh (11) 2013; 33
40
I. Oikonomidis (13)
43
References_xml – year: 2018
  ident: 2
  article-title: Hematology TAS of facts-and-statistics
– volume: 8
  year: 2017
  ident: 52
  article-title: A proposed novel method for detection and classification of leukemia using blood microscopic images
  publication-title: International Journal of Advanced Research in Computer Science
– year: 2016
  ident: 30
  article-title: Traditional feature engineering and deep learning approaches at medical classification task of ImageCLEF 2016
– ident: 38
  doi: 10.1109/mci.2010.939236
– volume: 72
  issue: 15
  year: 2013
  ident: 44
  article-title: Segmentation of blast using vector quantization technique
  publication-title: International Journal of Computer Applications
  doi: 10.5120/12571-9186
– ident: 4
  doi: 10.1097/moh.0000000000000322
– volume: 4
  start-page: 3136
  year: 2017
  ident: 59
  article-title: Microscopic image segmentation using fuzzy c means for leukemia diagnosis
  publication-title: Leukemia
– ident: 79
  doi: 10.1177/1533033818802789
– ident: 13
  article-title: Efficient model-based 3D tracking of hand articulations using Kinect
  doi: 10.5244/C.25.101
– ident: 64
  doi: 10.1007/978-981-10-0135-2_52
– ident: 27
  doi: 10.3390/bioengineering7040120
– ident: 70
  doi: 10.1007/s00521-013-1438-3
– ident: 72
  doi: 10.1007/s13534-012-0056-9
– volume: 37
  start-page: 1787
  issue: 5
  year: 2009
  ident: 14
  article-title: Developing a team performance framework for the intensive care unit
  publication-title: Critical Care Medicine
  doi: 10.1097/CCM.0b013e31819f0451
– volume: 2
  year: 2015
  ident: 41
  article-title: Automated leukemia detection by using contour signature method
  publication-title: International Journal of Advance Foundation and Research in Computer
– ident: 50
  article-title: Separation and counting of blood cells using geometrical features and distance transformed watershed
– year: 2020
  ident: 6
  article-title: Childhood leukemias
– ident: 58
  doi: 10.1016/j.procs.2015.08.082
– ident: 18
  doi: 10.1007/s10916-018-0962-1
– ident: 69
  doi: 10.1016/j.procs.2015.10.113
– ident: 76
  doi: 10.1109/ACCESS.2020.3021660
– ident: 26
  doi: 10.1016/j.clml.2018.07.246
– ident: 40
  doi: 10.1109/mim.2006.250641
– ident: 49
  article-title: Chronic lymphocytic leukemia cell segmentation from microscopic blood images using watershed algorithm and optimal thresholding
  doi: 10.1109/CCECE.2013.6567770
– ident: 3
  doi: 10.31557/apjcp.2020.21.5.1487
– volume: 5
  start-page: 49
  year: 2015
  ident: 67
  article-title: Recognition of acute lymphoblastic leukemia cells in microscopic images using k-means clustering and support vector machine classifier
  publication-title: Journal of Medical Signals and Sensors
  doi: 10.4103/2228-7477.150428
– ident: 78
  doi: 10.1515/bmt-2018-0213
– ident: 46
  doi: 10.1016/j.procs.2015.08.017
– ident: 61
  doi: 10.1016/j.bspc.2016.11.021
– ident: 47
  doi: 10.1155/2016/9514707
– ident: 53
  doi: 10.1007/s00521-018-3359-7
– ident: 25
  doi: 10.1016/j.clml.2019.07.067
– ident: 15
  doi: 10.1530/ec-19-0156
– ident: 7
  doi: 10.1109/rbme.2016.2515127
– ident: 33
  doi: 10.1038/nature14539
– ident: 60
  article-title: An approach for leukocytes nuclei segmentation based on image fusion
  doi: 10.1109/ISSPIT.2014.7300632
– ident: 5
  doi: 10.1056/nejm199506153322407
– volume: 313
  start-page: 504
  year: 2006
  ident: 32
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: 24
  doi: 10.3389/fbioe.2020.01005
– ident: 39
  doi: 10.1016/j.cmpb.2017.09.011
– ident: 56
  article-title: Classification of acute myelogenous leukemia in blood microscopic images using supervised classifier
  doi: 10.1109/ICETECH.2015.7275021
– ident: 8
  doi: 10.1016/j.neunet.2018.02.002
– ident: 16
  doi: 10.1177/0954411920938567
– ident: 43
  doi: 10.1016/j.compmedimag.2011.01.003
– ident: 57
  article-title: Automatic detection of acute lymphoblasitc leukemia using image processing
  doi: 10.1109/ICACA.2016.7887948
– ident: 42
  article-title: Blood cell identification using neural networks
  doi: 10.1109/NEBC.1996.503246
– ident: 68
  doi: 10.14738/aivp.33.1196
– volume: 10
  start-page: 1
  year: 2013
  ident: 71
  article-title: Classification of acute leukaemia cells using multilayer perceptron and simplified fuzzy ARTMAP neural networks
  publication-title: International Arab Journal of Information Technology
– volume: 5
  start-page: 10073
  issue: 6
  year: 2016
  ident: 54
  article-title: Computerized detection system for acute myelogenous leukemia in blood microscopic images
  publication-title: International Journal of Innovative Research in Science, Engineering and Technology
– ident: 29
  doi: 10.1155/2021/6677314
– ident: 35
  doi: 10.1016/j.artmed.2014.09.002
– ident: 80
  doi: 10.1016/0895-4356(94)00225-f
– volume: 33
  start-page: 45
  year: 2013
  ident: 11
  article-title: Comparing performance of different neural networks for early detection of cancer from benign hyperplasia of prostate
  publication-title: Applied Medical Informatics
– ident: 17
  doi: 10.1016/j.patrec.2019.03.024
– ident: 23
  doi: 10.1136/jclinpath-2019-205949
– ident: 65
  doi: 10.1088/1742-6596/48/1/061
– volume: 2
  start-page: 128
  year: 2015
  ident: 37
  article-title: Enhanced recognition of acute lymphoblastic leukemia cells in microscopic images based on feature reduction using principle component analysis
  publication-title: Frontiers in Biomedical Technologies
– ident: 77
  doi: 10.1002/jbio.201800488
– ident: 45
  doi: 10.1155/2013/137392
– ident: 36
  article-title: Robust technique for the detection of acute lymphoblastic leukemia
  doi: 10.1109/PCITC.2015.7438079
– volume: 13
  start-page: 284
  year: 2008
  ident: 74
  article-title: New decision support tool for treatment intensity choice in childhood acute lymphoblastic leukemia
  publication-title: IEEE Transactions on Information Technology in Biomedicine
  doi: 10.1109/TITB.2008.925965
– ident: 28
  doi: 10.2196/27468
– ident: 21
  doi: 10.1007/s11517-019-02071-1
– ident: 20
  doi: 10.1007/s10916-018-1010-x
– ident: 75
  doi: 10.14569/IJACSA.2020.0110646
– ident: 31
  doi: 10.1038/s41598-017-01931-w
– start-page: 325
  volume-title: Clinical Technologies: Concepts, Methodologies, Tools and Applications
  year: 2011
  ident: 81
  article-title: Automatic analysis of microscopic images in hematological cytology applications
  doi: 10.4018/978-1-60960-561-2.ch206
– ident: 34
  doi: 10.1016/j.bbe.2017.07.003
– ident: 62
  article-title: Detection of leukemia in microscopic white blood cell images
  doi: 10.1109/INFOP.2015.7489422
– volume: 5
  year: 2015
  ident: 66
  article-title: An intelligent decision support system for leukaemia diagnosis using microscopic blood images
  publication-title: Scientific Reports
– ident: 10
  doi: 10.2147/clep.s129779
– ident: 51
  doi: 10.1016/j.aej.2017.08.025
– ident: 22
  doi: 10.1016/j.engappai.2018.04.024
– volume: 11
  start-page: 7087
  year: 2016
  ident: 63
  article-title: Design of new architecture to detect leukemia cancer from medical images
  publication-title: International Journal of Applied Engineering Research
– ident: 73
  article-title: A robust feature extraction and selection method for the recognition of lymphocytes versus acute lymphoblastic leukemia
  doi: 10.1109/ACSAT.2012.62
– ident: 55
  doi: 10.1109/jsyst.2014.2308452
– ident: 12
  doi: 10.1007/s11517-016-1590-x
– volume-title: Machine Learning for Protein Subcellular Localization Prediction
  year: 2015
  ident: 82
  doi: 10.1515/9781501501500
– ident: 1
  doi: 10.1007/s10278-019-00288-y
– ident: 48
  doi: 10.1007/3-540-45656-2_20
– ident: 19
  doi: 10.1002/jemt.23509
– ident: 9
  doi: 10.1056/nejmp1606181
SSID ssj0018100
Score 2.5539503
SecondaryResourceType review_article
Snippet Introduction. The early detection and diagnosis of leukemia, i.e., the precise differentiation of malignant leukocytes with minimum costs in the early stages...
SourceID proquest
crossref
hindawi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial intelligence
Blood
Bone marrow
Classification
Clustering
Deep learning
Diagnosis
Efficiency
Flow cytometry
Image analysis
Image classification
Laboratories
Leukemia
Leukocytes
Machine learning
Medical imaging
Medical research
Methods
Morphology
Search engines
Search methods
Systematic review
Watersheds
Title Machine Learning in Detection and Classification of Leukemia Using Smear Blood Images: A Systematic Review
URI https://dx.doi.org/10.1155/2021/9933481
https://www.proquest.com/docview/2548295276
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA5uIPjib3E6xz3MJym2aZKmvs0fYwoTYQ72VtI01anrxHX475uk2UCH6GPhEsoll7uPfPkOoTZNU12E-rEXK5p5JM9SjzMVeRiLkBMiQizMA-f-PesNyd2IjpxI0mz1Cl9nOwPPg3OdRs2T0Rqq6Q1mQHlvtLws4IFfiQ5QHbs6XS347T_Gfss8688G8n6OV45gm1e622jTFYTQqVZwB62pYhdtLZotgIu9PfTSt7RHBU4R9QnGBVyr0lKpChBFBrbBpaH-WG_DNNe281c1GQuwzAAYTPRYuDRcdbid6JNkdgEdGCzFnKG6KdhHw-7N41XPc40SPEn8sPRoLpWGmqaUkbEURoNMhTjijPCc45BEXEWYqSCQPBCYZkIxH8sgzUNhIIYfHqB6MS3UIQIhYoqlESViGZGcCkqjOI_jyGdC11Kkgc4WTkykUxE3zSzeEosmKE2MyxPn8gY6XVq_V-oZv9i13Xr8YdZcLFbiQm2WaITLsf7piB39b5ZjtGE-Dd8L0yaqlx9zdaIrizJtoRomDy27u74A-MvDUA
linkProvider Hindawi Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+in+Detection+and+Classification+of+Leukemia+Using+Smear+Blood+Images%3A+A+Systematic+Review&rft.jtitle=Scientific+programming&rft.au=Ghaderzadeh%2C+Mustafa&rft.au=Asadi%2C+Farkhondeh&rft.au=Hosseini%2C+Azamossadat&rft.au=Bashash%2C+Davood&rft.date=2021-06-25&rft.pub=Hindawi&rft.issn=1058-9244&rft.eissn=1875-919X&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F9933481&rft.externalDocID=10_1155_2021_9933481
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-9244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-9244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-9244&client=summon