Machine Learning in Detection and Classification of Leukemia Using Smear Blood Images: A Systematic Review
Introduction. The early detection and diagnosis of leukemia, i.e., the precise differentiation of malignant leukocytes with minimum costs in the early stages of the disease, is a major problem in the domain of disease diagnosis. Despite the high prevalence of leukemia, there is a shortage of flow cy...
Saved in:
Published in | Scientific programming Vol. 2021; pp. 1 - 14 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Hindawi
25.06.2021
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Introduction. The early detection and diagnosis of leukemia, i.e., the precise differentiation of malignant leukocytes with minimum costs in the early stages of the disease, is a major problem in the domain of disease diagnosis. Despite the high prevalence of leukemia, there is a shortage of flow cytometry equipment, and the methods available at laboratory diagnostic centers are time-consuming. Motivated by the capabilities of machine learning (machine learning (ML)) in disease diagnosis, the present systematic review was conducted to review the studies aiming to discover and classify leukemia by using machine learning. Methods. A systematic search in four databases (PubMed, Scopus, Web of Science, and ScienceDirect) and Google Scholar was performed via a search strategy using Machine Learning (ML), leukemia, peripheral blood smear (PBS) image, detection, diagnosis, and classification as the keywords. Initially, 116 articles were retrieved. After applying the inclusion and exclusion criteria, 16 articles remained as the population of the study. Results. This review study presents a comprehensive and systematic view of the status of all published ML-based leukemia detection and classification models that process PBS images. The average accuracy of the ML methods applied in PBS image analysis to detect leukemia was >97%, indicating that the use of ML could lead to extraordinary outcomes in leukemia detection from PBS images. Among all ML techniques, deep learning (DL) achieved higher precision and sensitivity in detecting different cases of leukemia, compared to its precedents. ML has many applications in analyzing different types of leukemia images, but the use of ML algorithms to detect acute lymphoblastic leukemia (ALL) has attracted the greatest attention in the fields of hematology and artificial intelligence. Conclusion. Using the ML method to process leukemia smear images can improve accuracy, reduce diagnosis time, and provide faster, cheaper, and safer diagnostic services. In addition to the current diagnostic methods, clinical and laboratory experts can also adopt ML methods in laboratory applications and tools. |
---|---|
AbstractList | Introduction. The early detection and diagnosis of leukemia, i.e., the precise differentiation of malignant leukocytes with minimum costs in the early stages of the disease, is a major problem in the domain of disease diagnosis. Despite the high prevalence of leukemia, there is a shortage of flow cytometry equipment, and the methods available at laboratory diagnostic centers are time-consuming. Motivated by the capabilities of machine learning (machine learning (ML)) in disease diagnosis, the present systematic review was conducted to review the studies aiming to discover and classify leukemia by using machine learning. Methods. A systematic search in four databases (PubMed, Scopus, Web of Science, and ScienceDirect) and Google Scholar was performed via a search strategy using Machine Learning (ML), leukemia, peripheral blood smear (PBS) image, detection, diagnosis, and classification as the keywords. Initially, 116 articles were retrieved. After applying the inclusion and exclusion criteria, 16 articles remained as the population of the study. Results. This review study presents a comprehensive and systematic view of the status of all published ML-based leukemia detection and classification models that process PBS images. The average accuracy of the ML methods applied in PBS image analysis to detect leukemia was >97%, indicating that the use of ML could lead to extraordinary outcomes in leukemia detection from PBS images. Among all ML techniques, deep learning (DL) achieved higher precision and sensitivity in detecting different cases of leukemia, compared to its precedents. ML has many applications in analyzing different types of leukemia images, but the use of ML algorithms to detect acute lymphoblastic leukemia (ALL) has attracted the greatest attention in the fields of hematology and artificial intelligence. Conclusion. Using the ML method to process leukemia smear images can improve accuracy, reduce diagnosis time, and provide faster, cheaper, and safer diagnostic services. In addition to the current diagnostic methods, clinical and laboratory experts can also adopt ML methods in laboratory applications and tools. |
Author | Roshanpour, Arash Hosseini, Azamossadat Asadi, Farkhondeh Ghaderzadeh, Mustafa Abolghasemi, Hassan Bashash, Davood |
Author_xml | – sequence: 1 givenname: Mustafa orcidid: 0000-0003-4016-3843 surname: Ghaderzadeh fullname: Ghaderzadeh, Mustafa organization: Department of Health Information Technology and ManagementSchool of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIransbmu.ac.ir – sequence: 2 givenname: Farkhondeh orcidid: 0000-0003-0939-7983 surname: Asadi fullname: Asadi, Farkhondeh organization: Department of Health Information Technology and ManagementSchool of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIransbmu.ac.ir – sequence: 3 givenname: Azamossadat orcidid: 0000-0002-4390-1154 surname: Hosseini fullname: Hosseini, Azamossadat organization: Department of Health Information Technology and ManagementSchool of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIransbmu.ac.ir – sequence: 4 givenname: Davood orcidid: 0000-0002-8029-4920 surname: Bashash fullname: Bashash, Davood organization: Department of Hematology and Blood BankingSchool of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIransbmu.ac.ir – sequence: 5 givenname: Hassan orcidid: 0000-0001-6920-5029 surname: Abolghasemi fullname: Abolghasemi, Hassan organization: Pediatric Congenital Hematologic Disorders Research CenterShahid Beheshti University of Medical SciencesTehranIransbmu.ac.ir – sequence: 6 givenname: Arash surname: Roshanpour fullname: Roshanpour, Arash organization: Department of Computer ScienceSama Technical and Vocational Training CollegeTehran Branch (Tehran)Islamic Azad University (IAU)TehranIraniau.ac.ir |
BookMark | eNp9kFtLwzAUgIMouE3f_AEBH7Uul6ZNfJvzNpgIzoFvJaanM7NNZtM59u_tLk-CPp1w-L4c-Lro0HkHCJ1RckWpEH1GGO0rxXks6QHqUJmKSFH1dti-iZCRYnF8jLohzAmhkhLSQfMnbT6sAzwGXTvrZtg6fAsNmMZ6h7XL8bDUIdjCGr1d-aJll59QWY2nYWNMqtbFN6X3OR5VegbhGg_wZB0aqFrH4Bf4trA6QUeFLgOc7mcPTe_vXoeP0fj5YTQcjCMTE95EojDAuRQJ40YZTVMlgbNUJrEsJONxKiFlCVBqJNVM5BoSwgx9L7gmTFDCe-h89--i9l9LCE0298vatSczJmLJlGBp0lKXO8rUPoQaimxR20rX64ySbFMz29TM9jVbnP3CjW22QZpa2_Iv6WIntYVzvbL_n_gBiEyEnQ |
CitedBy_id | crossref_primary_10_3389_fdata_2024_1402926 crossref_primary_10_3389_fpubh_2023_1092018 crossref_primary_10_4108_eetpht_9_4852 crossref_primary_10_61186_ijbc_15_3_112 crossref_primary_10_1177_15330338221142996 crossref_primary_10_1002_int_22753 crossref_primary_10_1155_2023_3567194 crossref_primary_10_1111_jebm_70005 crossref_primary_10_1111_ijlh_14305 crossref_primary_10_32604_jai_2022_028092 crossref_primary_10_1080_21681163_2023_2280619 crossref_primary_10_30699_ijmm_17_5_571 crossref_primary_10_48175_IJARSCT_22540 crossref_primary_10_1002_cyto_a_24832 crossref_primary_10_1155_2021_9942873 crossref_primary_10_24017_Science_2022_1_8 crossref_primary_10_1038_s41390_024_03494_9 crossref_primary_10_1155_2022_4838009 crossref_primary_10_32604_csse_2023_036985 crossref_primary_10_3389_fonc_2025_1475893 crossref_primary_10_1111_ijlh_14082 crossref_primary_10_1080_23311916_2024_2304484 crossref_primary_10_1111_vcp_13400 crossref_primary_10_37391_ijeer_12icteee07 crossref_primary_10_1038_s41598_024_74889_1 crossref_primary_10_1155_2022_2801227 crossref_primary_10_1109_ACCESS_2025_3542609 crossref_primary_10_1002_ima_22787 crossref_primary_10_3390_app13074547 crossref_primary_10_1155_2022_4801671 crossref_primary_10_1007_s11831_022_09796_7 crossref_primary_10_1155_2023_1406545 crossref_primary_10_32604_csse_2023_029597 crossref_primary_10_1371_journal_pone_0289613 crossref_primary_10_1111_ijlh_14370 crossref_primary_10_32604_csse_2023_034658 |
Cites_doi | 10.1109/mci.2010.939236 10.5120/12571-9186 10.1097/moh.0000000000000322 10.1177/1533033818802789 10.5244/C.25.101 10.1007/978-981-10-0135-2_52 10.3390/bioengineering7040120 10.1007/s00521-013-1438-3 10.1007/s13534-012-0056-9 10.1097/CCM.0b013e31819f0451 10.1016/j.procs.2015.08.082 10.1007/s10916-018-0962-1 10.1016/j.procs.2015.10.113 10.1109/ACCESS.2020.3021660 10.1016/j.clml.2018.07.246 10.1109/mim.2006.250641 10.1109/CCECE.2013.6567770 10.31557/apjcp.2020.21.5.1487 10.4103/2228-7477.150428 10.1515/bmt-2018-0213 10.1016/j.procs.2015.08.017 10.1016/j.bspc.2016.11.021 10.1155/2016/9514707 10.1007/s00521-018-3359-7 10.1016/j.clml.2019.07.067 10.1530/ec-19-0156 10.1109/rbme.2016.2515127 10.1038/nature14539 10.1109/ISSPIT.2014.7300632 10.1056/nejm199506153322407 10.1126/science.1127647 10.3389/fbioe.2020.01005 10.1016/j.cmpb.2017.09.011 10.1109/ICETECH.2015.7275021 10.1016/j.neunet.2018.02.002 10.1177/0954411920938567 10.1016/j.compmedimag.2011.01.003 10.1109/ICACA.2016.7887948 10.1109/NEBC.1996.503246 10.14738/aivp.33.1196 10.1155/2021/6677314 10.1016/j.artmed.2014.09.002 10.1016/0895-4356(94)00225-f 10.1016/j.patrec.2019.03.024 10.1136/jclinpath-2019-205949 10.1088/1742-6596/48/1/061 10.1002/jbio.201800488 10.1155/2013/137392 10.1109/PCITC.2015.7438079 10.1109/TITB.2008.925965 10.2196/27468 10.1007/s11517-019-02071-1 10.1007/s10916-018-1010-x 10.14569/IJACSA.2020.0110646 10.1038/s41598-017-01931-w 10.4018/978-1-60960-561-2.ch206 10.1016/j.bbe.2017.07.003 10.1109/INFOP.2015.7489422 10.2147/clep.s129779 10.1016/j.aej.2017.08.025 10.1016/j.engappai.2018.04.024 10.1109/ACSAT.2012.62 10.1109/jsyst.2014.2308452 10.1007/s11517-016-1590-x 10.1515/9781501501500 10.1007/s10278-019-00288-y 10.1007/3-540-45656-2_20 10.1002/jemt.23509 10.1056/nejmp1606181 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Mustafa Ghaderzadeh et al. Copyright © 2021 Mustafa Ghaderzadeh et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2021 Mustafa Ghaderzadeh et al. – notice: Copyright © 2021 Mustafa Ghaderzadeh et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | RHU RHW RHX AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1155/2021/9933481 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1875-919X |
Editor | Wang, Pengwei |
Editor_xml | – sequence: 1 givenname: Pengwei surname: Wang fullname: Wang, Pengwei |
EndPage | 14 |
ExternalDocumentID | 10_1155_2021_9933481 |
GroupedDBID | .4S .DC 0R~ 4.4 5VS AAFWJ AAJEY ABDBF ABJNI ACGFS ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS ARCSS ASPBG AVWKF BCNDV DU5 EAD EAP EBS EDO EMK EPL EST ESX GROUPED_DOAJ HZ~ I-F IAO IHR IOS KQ8 MIO MK~ ML~ MV1 NGNOM O9- OK1 RHU RHW RHX TUS 24P AAYXX ACCMX CITATION H13 7SC 7SP 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c403t-5fce3385623c9ca1798e3278648f823478e726e11c81a25dae602c1bf3a025103 |
IEDL.DBID | RHX |
ISSN | 1058-9244 |
IngestDate | Fri Jul 25 09:29:31 EDT 2025 Thu Apr 24 23:12:18 EDT 2025 Tue Jul 01 02:50:05 EDT 2025 Sun Jun 02 19:18:04 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-5fce3385623c9ca1798e3278648f823478e726e11c81a25dae602c1bf3a025103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4390-1154 0000-0002-8029-4920 0000-0003-4016-3843 0000-0003-0939-7983 0000-0001-6920-5029 |
OpenAccessLink | https://dx.doi.org/10.1155/2021/9933481 |
PQID | 2548295276 |
PQPubID | 2046410 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2548295276 crossref_primary_10_1155_2021_9933481 crossref_citationtrail_10_1155_2021_9933481 hindawi_primary_10_1155_2021_9933481 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-25 |
PublicationDateYYYYMMDD | 2021-06-25 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Scientific programming |
PublicationYear | 2021 |
Publisher | Hindawi John Wiley & Sons, Inc |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
References | 45 46 47 48 R. Bhattacharjee (36) Y. A. Gajul (54) 2016; 5 G. Díaz (81) 2011 51 C. E. Pedreira (74) 2008; 13 53 10 55 12 58 15 16 17 18 19 V. Shankar (57) H. T. Madhloom (73) 1 (6) 2020 G. Singh (63) 2016; 11 3 4 5 7 8 9 61 20 64 T. W. Reader (14) 2009; 37 21 65 22 23 24 68 25 S. Khobragade (62) 69 26 27 G. E. Hinton (32) 2006; 313 H. Kekre (44) 2013; 72 28 29 J. Rawat (60) S. C. Neoh (66) 2015; 5 T. Karthikeyan (59) 2017; 4 M. M. Amin (67) 2015; 5 A. A. Nasir (71) 2013; 10 70 72 31 75 76 33 J. Hari (50) A. R. Begum (52) 2017; 8 77 34 78 35 M. MoradiAmin (37) 2015; 2 79 38 T. G. Patil (41) 2015; 2 39 D. Goutam (56) E. A. Mohammed (49) S. Koitka (30) 2016 S. Wan (82) 2015 (2) 2018 H. Sheikh (42) 80 M. Ghaderzadeh (11) 2013; 33 40 I. Oikonomidis (13) 43 |
References_xml | – year: 2018 ident: 2 article-title: Hematology TAS of facts-and-statistics – volume: 8 year: 2017 ident: 52 article-title: A proposed novel method for detection and classification of leukemia using blood microscopic images publication-title: International Journal of Advanced Research in Computer Science – year: 2016 ident: 30 article-title: Traditional feature engineering and deep learning approaches at medical classification task of ImageCLEF 2016 – ident: 38 doi: 10.1109/mci.2010.939236 – volume: 72 issue: 15 year: 2013 ident: 44 article-title: Segmentation of blast using vector quantization technique publication-title: International Journal of Computer Applications doi: 10.5120/12571-9186 – ident: 4 doi: 10.1097/moh.0000000000000322 – volume: 4 start-page: 3136 year: 2017 ident: 59 article-title: Microscopic image segmentation using fuzzy c means for leukemia diagnosis publication-title: Leukemia – ident: 79 doi: 10.1177/1533033818802789 – ident: 13 article-title: Efficient model-based 3D tracking of hand articulations using Kinect doi: 10.5244/C.25.101 – ident: 64 doi: 10.1007/978-981-10-0135-2_52 – ident: 27 doi: 10.3390/bioengineering7040120 – ident: 70 doi: 10.1007/s00521-013-1438-3 – ident: 72 doi: 10.1007/s13534-012-0056-9 – volume: 37 start-page: 1787 issue: 5 year: 2009 ident: 14 article-title: Developing a team performance framework for the intensive care unit publication-title: Critical Care Medicine doi: 10.1097/CCM.0b013e31819f0451 – volume: 2 year: 2015 ident: 41 article-title: Automated leukemia detection by using contour signature method publication-title: International Journal of Advance Foundation and Research in Computer – ident: 50 article-title: Separation and counting of blood cells using geometrical features and distance transformed watershed – year: 2020 ident: 6 article-title: Childhood leukemias – ident: 58 doi: 10.1016/j.procs.2015.08.082 – ident: 18 doi: 10.1007/s10916-018-0962-1 – ident: 69 doi: 10.1016/j.procs.2015.10.113 – ident: 76 doi: 10.1109/ACCESS.2020.3021660 – ident: 26 doi: 10.1016/j.clml.2018.07.246 – ident: 40 doi: 10.1109/mim.2006.250641 – ident: 49 article-title: Chronic lymphocytic leukemia cell segmentation from microscopic blood images using watershed algorithm and optimal thresholding doi: 10.1109/CCECE.2013.6567770 – ident: 3 doi: 10.31557/apjcp.2020.21.5.1487 – volume: 5 start-page: 49 year: 2015 ident: 67 article-title: Recognition of acute lymphoblastic leukemia cells in microscopic images using k-means clustering and support vector machine classifier publication-title: Journal of Medical Signals and Sensors doi: 10.4103/2228-7477.150428 – ident: 78 doi: 10.1515/bmt-2018-0213 – ident: 46 doi: 10.1016/j.procs.2015.08.017 – ident: 61 doi: 10.1016/j.bspc.2016.11.021 – ident: 47 doi: 10.1155/2016/9514707 – ident: 53 doi: 10.1007/s00521-018-3359-7 – ident: 25 doi: 10.1016/j.clml.2019.07.067 – ident: 15 doi: 10.1530/ec-19-0156 – ident: 7 doi: 10.1109/rbme.2016.2515127 – ident: 33 doi: 10.1038/nature14539 – ident: 60 article-title: An approach for leukocytes nuclei segmentation based on image fusion doi: 10.1109/ISSPIT.2014.7300632 – ident: 5 doi: 10.1056/nejm199506153322407 – volume: 313 start-page: 504 year: 2006 ident: 32 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – ident: 24 doi: 10.3389/fbioe.2020.01005 – ident: 39 doi: 10.1016/j.cmpb.2017.09.011 – ident: 56 article-title: Classification of acute myelogenous leukemia in blood microscopic images using supervised classifier doi: 10.1109/ICETECH.2015.7275021 – ident: 8 doi: 10.1016/j.neunet.2018.02.002 – ident: 16 doi: 10.1177/0954411920938567 – ident: 43 doi: 10.1016/j.compmedimag.2011.01.003 – ident: 57 article-title: Automatic detection of acute lymphoblasitc leukemia using image processing doi: 10.1109/ICACA.2016.7887948 – ident: 42 article-title: Blood cell identification using neural networks doi: 10.1109/NEBC.1996.503246 – ident: 68 doi: 10.14738/aivp.33.1196 – volume: 10 start-page: 1 year: 2013 ident: 71 article-title: Classification of acute leukaemia cells using multilayer perceptron and simplified fuzzy ARTMAP neural networks publication-title: International Arab Journal of Information Technology – volume: 5 start-page: 10073 issue: 6 year: 2016 ident: 54 article-title: Computerized detection system for acute myelogenous leukemia in blood microscopic images publication-title: International Journal of Innovative Research in Science, Engineering and Technology – ident: 29 doi: 10.1155/2021/6677314 – ident: 35 doi: 10.1016/j.artmed.2014.09.002 – ident: 80 doi: 10.1016/0895-4356(94)00225-f – volume: 33 start-page: 45 year: 2013 ident: 11 article-title: Comparing performance of different neural networks for early detection of cancer from benign hyperplasia of prostate publication-title: Applied Medical Informatics – ident: 17 doi: 10.1016/j.patrec.2019.03.024 – ident: 23 doi: 10.1136/jclinpath-2019-205949 – ident: 65 doi: 10.1088/1742-6596/48/1/061 – volume: 2 start-page: 128 year: 2015 ident: 37 article-title: Enhanced recognition of acute lymphoblastic leukemia cells in microscopic images based on feature reduction using principle component analysis publication-title: Frontiers in Biomedical Technologies – ident: 77 doi: 10.1002/jbio.201800488 – ident: 45 doi: 10.1155/2013/137392 – ident: 36 article-title: Robust technique for the detection of acute lymphoblastic leukemia doi: 10.1109/PCITC.2015.7438079 – volume: 13 start-page: 284 year: 2008 ident: 74 article-title: New decision support tool for treatment intensity choice in childhood acute lymphoblastic leukemia publication-title: IEEE Transactions on Information Technology in Biomedicine doi: 10.1109/TITB.2008.925965 – ident: 28 doi: 10.2196/27468 – ident: 21 doi: 10.1007/s11517-019-02071-1 – ident: 20 doi: 10.1007/s10916-018-1010-x – ident: 75 doi: 10.14569/IJACSA.2020.0110646 – ident: 31 doi: 10.1038/s41598-017-01931-w – start-page: 325 volume-title: Clinical Technologies: Concepts, Methodologies, Tools and Applications year: 2011 ident: 81 article-title: Automatic analysis of microscopic images in hematological cytology applications doi: 10.4018/978-1-60960-561-2.ch206 – ident: 34 doi: 10.1016/j.bbe.2017.07.003 – ident: 62 article-title: Detection of leukemia in microscopic white blood cell images doi: 10.1109/INFOP.2015.7489422 – volume: 5 year: 2015 ident: 66 article-title: An intelligent decision support system for leukaemia diagnosis using microscopic blood images publication-title: Scientific Reports – ident: 10 doi: 10.2147/clep.s129779 – ident: 51 doi: 10.1016/j.aej.2017.08.025 – ident: 22 doi: 10.1016/j.engappai.2018.04.024 – volume: 11 start-page: 7087 year: 2016 ident: 63 article-title: Design of new architecture to detect leukemia cancer from medical images publication-title: International Journal of Applied Engineering Research – ident: 73 article-title: A robust feature extraction and selection method for the recognition of lymphocytes versus acute lymphoblastic leukemia doi: 10.1109/ACSAT.2012.62 – ident: 55 doi: 10.1109/jsyst.2014.2308452 – ident: 12 doi: 10.1007/s11517-016-1590-x – volume-title: Machine Learning for Protein Subcellular Localization Prediction year: 2015 ident: 82 doi: 10.1515/9781501501500 – ident: 1 doi: 10.1007/s10278-019-00288-y – ident: 48 doi: 10.1007/3-540-45656-2_20 – ident: 19 doi: 10.1002/jemt.23509 – ident: 9 doi: 10.1056/nejmp1606181 |
SSID | ssj0018100 |
Score | 2.5539503 |
SecondaryResourceType | review_article |
Snippet | Introduction. The early detection and diagnosis of leukemia, i.e., the precise differentiation of malignant leukocytes with minimum costs in the early stages... |
SourceID | proquest crossref hindawi |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Artificial intelligence Blood Bone marrow Classification Clustering Deep learning Diagnosis Efficiency Flow cytometry Image analysis Image classification Laboratories Leukemia Leukocytes Machine learning Medical imaging Medical research Methods Morphology Search engines Search methods Systematic review Watersheds |
Title | Machine Learning in Detection and Classification of Leukemia Using Smear Blood Images: A Systematic Review |
URI | https://dx.doi.org/10.1155/2021/9933481 https://www.proquest.com/docview/2548295276 |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA5uIPjib3E6xz3MJym2aZKmvs0fYwoTYQ72VtI01anrxHX475uk2UCH6GPhEsoll7uPfPkOoTZNU12E-rEXK5p5JM9SjzMVeRiLkBMiQizMA-f-PesNyd2IjpxI0mz1Cl9nOwPPg3OdRs2T0Rqq6Q1mQHlvtLws4IFfiQ5QHbs6XS347T_Gfss8688G8n6OV45gm1e622jTFYTQqVZwB62pYhdtLZotgIu9PfTSt7RHBU4R9QnGBVyr0lKpChBFBrbBpaH-WG_DNNe281c1GQuwzAAYTPRYuDRcdbid6JNkdgEdGCzFnKG6KdhHw-7N41XPc40SPEn8sPRoLpWGmqaUkbEURoNMhTjijPCc45BEXEWYqSCQPBCYZkIxH8sgzUNhIIYfHqB6MS3UIQIhYoqlESViGZGcCkqjOI_jyGdC11Kkgc4WTkykUxE3zSzeEosmKE2MyxPn8gY6XVq_V-oZv9i13Xr8YdZcLFbiQm2WaITLsf7piB39b5ZjtGE-Dd8L0yaqlx9zdaIrizJtoRomDy27u74A-MvDUA |
linkProvider | Hindawi Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+in+Detection+and+Classification+of+Leukemia+Using+Smear+Blood+Images%3A+A+Systematic+Review&rft.jtitle=Scientific+programming&rft.au=Ghaderzadeh%2C+Mustafa&rft.au=Asadi%2C+Farkhondeh&rft.au=Hosseini%2C+Azamossadat&rft.au=Bashash%2C+Davood&rft.date=2021-06-25&rft.pub=Hindawi&rft.issn=1058-9244&rft.eissn=1875-919X&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F9933481&rft.externalDocID=10_1155_2021_9933481 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-9244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-9244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-9244&client=summon |