N6-Methyladenosine Guides mRNA Alternative Translation during Integrated Stress Response
The integrated stress response (ISR) facilitates cellular adaptation to stress conditions via the common target eIF2α. During ISR, the selective translation of stress-related mRNAs often relies on alternative mechanisms, such as leaky scanning or reinitiation, but the underlying mechanism remains in...
Saved in:
Published in | Molecular cell Vol. 69; no. 4; pp. 636 - 647.e7 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The integrated stress response (ISR) facilitates cellular adaptation to stress conditions via the common target eIF2α. During ISR, the selective translation of stress-related mRNAs often relies on alternative mechanisms, such as leaky scanning or reinitiation, but the underlying mechanism remains incompletely understood. Here we report that, in response to amino acid starvation, the reinitiation of ATF4 is not only governed by the eIF2α signaling pathway, but is also subjected to regulation by mRNA methylation in the form of N6-methyladenosine (m6A). While depleting m6A demethylases represses ATF4 reinitiation, knocking down m6A methyltransferases promotes ATF4 translation. We demonstrate that m6A in the 5′ UTR controls ribosome scanning and subsequent start codon selection. Global profiling of initiating ribosomes reveals widespread alternative translation events influenced by dynamic mRNA methylation. Consistently, Fto transgenic mice manifest enhanced ATF4 expression, highlighting the critical role of m6A in translational regulation of ISR at cellular and organismal levels.
[Display omitted]
•ATF4 reinitiation involves the m6A demethylase ALKBH5•ATF4 reinitiation is sensitive to mRNA m6A levels•Global alternative translation is modulated by 5′ UTR m6A levels•Liver-specific FTO transgenic mice show altered translation initiation
Zhou et al. show that amino acid starvation-induced ATF4 translation is subject to regulation by mRNA methylation in the form of m6A. Global analysis of translation initiation reveals that m6A in the 5′ UTR modulates start codon selection, thereby controlling alternative translation. |
---|---|
AbstractList | The integrated stress response (ISR) facilitates cellular adaptation to stress conditions via the common target eIF2α. During ISR, the selective translation of stress-related mRNAs often relies on alternative mechanisms, such as leaky scanning or reinitiation, but the underlying mechanism remains incompletely understood. Here we report that, in response to amino acid starvation, the reinitiation of ATF4 is not only governed by the eIF2α signaling pathway, but is also subjected to regulation by mRNA methylation in the form of N6-methyladenosine (m6A). While depleting m6A demethylases represses ATF4 reinitiation, knocking down m6A methyltransferases promotes ATF4 translation. We demonstrate that m6A in the 5′ UTR controls ribosome scanning and subsequent start codon selection. Global profiling of initiating ribosomes reveals widespread alternative translation events influenced by dynamic mRNA methylation. Consistently, Fto transgenic mice manifest enhanced ATF4 expression, highlighting the critical role of m6A in translational regulation of ISR at cellular and organismal levels.
[Display omitted]
•ATF4 reinitiation involves the m6A demethylase ALKBH5•ATF4 reinitiation is sensitive to mRNA m6A levels•Global alternative translation is modulated by 5′ UTR m6A levels•Liver-specific FTO transgenic mice show altered translation initiation
Zhou et al. show that amino acid starvation-induced ATF4 translation is subject to regulation by mRNA methylation in the form of m6A. Global analysis of translation initiation reveals that m6A in the 5′ UTR modulates start codon selection, thereby controlling alternative translation. The integrated stress response (ISR) facilitates cellular adaptation to stress conditions via the common target eIF2α. During ISR, the selective translation of stress-related mRNAs often relies on alternative mechanisms, such as leaky scanning or reinitiation, but the underlying mechanism remains incompletely understood. Here we report that, in response to amino acid starvation, the reinitiation of ATF4 is not only governed by the eIF2α signaling pathway, but is also subjected to regulation by mRNA methylation in the form of N6-methyladenosine (m6A). While depleting m6A demethylases represses ATF4 reinitiation, knocking down m6A methyltransferases promotes ATF4 translation. We demonstrate that m6A in the 5′ UTR controls ribosome scanning and subsequent start codon selection. Global profiling of initiating ribosomes reveals widespread alternative translation events influenced by dynamic mRNA methylation. Consistently, Fto transgenic mice manifest enhanced ATF4 expression, highlighting the critical role of m6A in translational regulation of ISR at cellular and organismal levels. The integrated stress response (ISR) facilitates cellular adaptation to stress conditions via the common target eIF2α. During ISR, the selective translation of stress-related mRNAs often relies on alternative mechanisms, such as leaky scanning or reinitiation, but the underlying mechanism remains incompletely understood. Here we report that, in response to amino acid starvation, the reinitiation of ATF4 is not only governed by the eIF2α signaling pathway, but is also subjected to regulation by mRNA methylation in the form of N 6 -methyladenosine (m 6 A). While depleting m 6 A demethylases represses ATF4 reinitiation, knocking down m 6 A methyltransferases promotes ATF4 translation. We demonstrate that m 6 A in the 5′ untranslated region (5′UTR) controls ribosome scanning and subsequent start codon selection. Global profiling of initiating ribosomes reveals widespread alternative translation events influenced by dynamic mRNA methylation. Consistently, Fto -transgenic mice manifest enhanced ATF4 expression, highlighting the critical role of m 6 A in translational regulation of ISR at cellular and organismal levels. Zhou et al. show that amino acid starvation-induced ATF4 translation is subject to regulation by mRNA methylation in the form of m 6 A. Global analysis of translation initiation reveals that m 6 A in the 5′UTR modulates start codon selection, thereby controlling alternative translation. The integrated stress response (ISR) facilitates cellular adaptation to stress conditions via the common target eIF2α. During ISR, the selective translation of stress-related mRNAs often relies on alternative mechanisms, such as leaky scanning or reinitiation, but the underlying mechanism remains incompletely understood. Here we report that, in response to amino acid starvation, the reinitiation of ATF4 is not only governed by the eIF2α signaling pathway, but is also subjected to regulation by mRNA methylation in the form of N6-methyladenosine (m6A). While depleting m6A demethylases represses ATF4 reinitiation, knocking down m6A methyltransferases promotes ATF4 translation. We demonstrate that m6A in the 5' UTR controls ribosome scanning and subsequent start codon selection. Global profiling of initiating ribosomes reveals widespread alternative translation events influenced by dynamic mRNA methylation. Consistently, Fto transgenic mice manifest enhanced ATF4 expression, highlighting the critical role of m6A in translational regulation of ISR at cellular and organismal levels.The integrated stress response (ISR) facilitates cellular adaptation to stress conditions via the common target eIF2α. During ISR, the selective translation of stress-related mRNAs often relies on alternative mechanisms, such as leaky scanning or reinitiation, but the underlying mechanism remains incompletely understood. Here we report that, in response to amino acid starvation, the reinitiation of ATF4 is not only governed by the eIF2α signaling pathway, but is also subjected to regulation by mRNA methylation in the form of N6-methyladenosine (m6A). While depleting m6A demethylases represses ATF4 reinitiation, knocking down m6A methyltransferases promotes ATF4 translation. We demonstrate that m6A in the 5' UTR controls ribosome scanning and subsequent start codon selection. Global profiling of initiating ribosomes reveals widespread alternative translation events influenced by dynamic mRNA methylation. Consistently, Fto transgenic mice manifest enhanced ATF4 expression, highlighting the critical role of m6A in translational regulation of ISR at cellular and organismal levels. |
Author | Qian, Shu-Bing Wan, Ji Yuan, Xin Liu, Xiao-Min Zhou, Jun Mao, Yuanhui Brüning, Jens C. Zhang, Xingqian Hess, Martin E. Shu, Xin Erica |
AuthorAffiliation | 2 Max Planck Institute for Metabolism Research, Cologne 50931, Germany 1 Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA |
AuthorAffiliation_xml | – name: 2 Max Planck Institute for Metabolism Research, Cologne 50931, Germany – name: 1 Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA |
Author_xml | – sequence: 1 givenname: Jun surname: Zhou fullname: Zhou, Jun organization: Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA – sequence: 2 givenname: Ji surname: Wan fullname: Wan, Ji organization: Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA – sequence: 3 givenname: Xin Erica surname: Shu fullname: Shu, Xin Erica organization: Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA – sequence: 4 givenname: Yuanhui surname: Mao fullname: Mao, Yuanhui organization: Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA – sequence: 5 givenname: Xiao-Min surname: Liu fullname: Liu, Xiao-Min organization: Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA – sequence: 6 givenname: Xin surname: Yuan fullname: Yuan, Xin organization: Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA – sequence: 7 givenname: Xingqian surname: Zhang fullname: Zhang, Xingqian organization: Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA – sequence: 8 givenname: Martin E. surname: Hess fullname: Hess, Martin E. organization: Max Planck Institute for Metabolism Research, Cologne 50931, Germany – sequence: 9 givenname: Jens C. surname: Brüning fullname: Brüning, Jens C. organization: Max Planck Institute for Metabolism Research, Cologne 50931, Germany – sequence: 10 givenname: Shu-Bing surname: Qian fullname: Qian, Shu-Bing email: sq38@cornell.edu organization: Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA |
BookMark | eNqFkU9rGzEQxUVJaf4036CHPfayrqTVSqseCiakaSBNIEkhNyFLY0dGK7mS1pBvX7k2hfbQwIAGNPN483un6CjEAAh9IHhGMOGf1rMxegN-RjEZZpjUkm_QCcFStIxwdnToqeD9MTrNeY0xYf0g36FjKhmVkvIT9HTL2-9Qnl-8thBidgGaq8lZyM14fztv5r5ACrq4LTSPSYfsax9DY6fkwqq5DgVWSRewzUNJkHNzD3kTQ4b36O1S-wznh_cM_fh6-Xjxrb25u7q-mN-0huGutP2SStEJKzDAYCjR3WD6DjAdrOkl0ay3i44tzJJL1pN6i-BWCCpNrwcrNOvO0Je97mZajGANhJK0V5vkRp1eVNRO_f0T3LNaxa3qB8IF5VXg40EgxZ8T5KJGlytXrwPEKStKaeVNJOleH90RxmzAO1tsP2pSzDnB8o8jgtUuP7VW-_zULj-FSS1Z1z7_s2Zc-U28enf-teUDCqi8tw6SysZBMGBdAlOUje7_Ar8Aa4G6Xg |
CitedBy_id | crossref_primary_10_1186_s13287_021_02223_x crossref_primary_10_3390_cells9020296 crossref_primary_10_3389_fonc_2023_1206561 crossref_primary_10_15252_embj_2020105977 crossref_primary_10_3390_biom14080932 crossref_primary_10_1093_nar_gky1007 crossref_primary_10_1016_j_bbamcr_2021_119123 crossref_primary_10_1016_j_gpb_2018_03_001 crossref_primary_10_3389_fonc_2021_705059 crossref_primary_10_1016_j_tibs_2019_03_002 crossref_primary_10_3390_cells9030540 crossref_primary_10_1158_0008_5472_CAN_21_3710 crossref_primary_10_3389_fonc_2022_927810 crossref_primary_10_1016_j_molcel_2023_02_019 crossref_primary_10_1016_j_celrep_2024_114165 crossref_primary_10_1016_j_tcb_2019_02_008 crossref_primary_10_3389_fcell_2021_656849 crossref_primary_10_1016_j_molcel_2025_02_016 crossref_primary_10_1016_j_semcdb_2023_03_004 crossref_primary_10_3389_fcell_2022_828683 crossref_primary_10_1016_j_celrep_2022_110373 crossref_primary_10_1016_j_molcel_2023_02_024 crossref_primary_10_1186_s12864_022_08350_w crossref_primary_10_1016_j_canlet_2022_215826 crossref_primary_10_1093_nar_gkac830 crossref_primary_10_1016_j_biochi_2019_06_015 crossref_primary_10_1089_cbr_2024_0009 crossref_primary_10_1186_s12943_020_1135_7 crossref_primary_10_1016_j_celrep_2020_107641 crossref_primary_10_1371_journal_pone_0306043 crossref_primary_10_3892_etm_2024_12661 crossref_primary_10_1016_j_semcancer_2022_05_009 crossref_primary_10_1016_j_neuron_2023_06_005 crossref_primary_10_1016_j_isci_2022_105620 crossref_primary_10_1093_nar_gkad135 crossref_primary_10_1186_s13059_020_02009_z crossref_primary_10_1038_s41419_020_03143_z crossref_primary_10_1016_j_celrep_2024_113976 crossref_primary_10_1016_j_gendis_2023_02_054 crossref_primary_10_1261_rna_079404_122 crossref_primary_10_1155_2022_1335562 crossref_primary_10_3389_fpls_2021_702303 crossref_primary_10_1016_j_gendis_2022_10_015 crossref_primary_10_2139_ssrn_4180808 crossref_primary_10_2217_fon_2020_0330 crossref_primary_10_1016_j_bbagrm_2018_11_007 crossref_primary_10_1002_pld3_239 crossref_primary_10_1038_s41380_021_01282_z crossref_primary_10_2217_epi_2019_0002 crossref_primary_10_1016_j_cell_2019_05_001 crossref_primary_10_3390_biomedicines9080911 crossref_primary_10_3390_microorganisms11071833 crossref_primary_10_1016_j_ygeno_2020_12_027 crossref_primary_10_3389_fnins_2023_1069640 crossref_primary_10_1016_j_taap_2023_116514 crossref_primary_10_1016_j_omtn_2021_08_019 crossref_primary_10_1016_j_taap_2023_116511 crossref_primary_10_1021_acs_chemrestox_1c00206 crossref_primary_10_3389_fcell_2023_1075215 crossref_primary_10_1111_ppl_13505 crossref_primary_10_1016_j_lfs_2018_09_054 crossref_primary_10_3390_ijms23168971 crossref_primary_10_1016_j_preteyeres_2020_100860 crossref_primary_10_1016_j_jbc_2022_102864 crossref_primary_10_1016_j_celrep_2022_111530 crossref_primary_10_1093_nar_gkab415 crossref_primary_10_1038_s41467_019_11552_8 crossref_primary_10_1038_s41587_023_01978_3 crossref_primary_10_1126_sciadv_abd6927 crossref_primary_10_1523_JNEUROSCI_0943_23_2023 crossref_primary_10_1016_j_yexcr_2020_112229 crossref_primary_10_1016_j_gene_2024_148130 crossref_primary_10_15252_embr_202050852 crossref_primary_10_1038_s41589_019_0327_1 crossref_primary_10_1016_j_vacune_2022_10_008 crossref_primary_10_1016_j_gendis_2020_07_011 crossref_primary_10_1038_s42003_021_02619_8 crossref_primary_10_1016_j_micinf_2023_105228 crossref_primary_10_1002_jcp_29005 crossref_primary_10_1101_gad_350752_123 crossref_primary_10_4049_jimmunol_1801151 crossref_primary_10_1007_s00018_022_04675_7 crossref_primary_10_3389_fcell_2023_1271141 crossref_primary_10_1002_wrna_1491 crossref_primary_10_1080_15476286_2019_1621120 crossref_primary_10_1134_S1819712421020112 crossref_primary_10_1016_j_celrep_2022_111784 crossref_primary_10_1016_j_molcel_2019_04_025 crossref_primary_10_15252_embr_202052101 crossref_primary_10_3389_fnut_2021_756803 crossref_primary_10_1016_j_omto_2023_100737 crossref_primary_10_1016_j_tibs_2020_11_008 crossref_primary_10_1016_j_ymthe_2020_09_007 crossref_primary_10_1016_j_canlet_2020_04_006 crossref_primary_10_1016_j_bbagrm_2018_10_006 crossref_primary_10_1016_j_bbagrm_2018_10_008 crossref_primary_10_1016_j_jmb_2023_168043 crossref_primary_10_3389_fcell_2021_617172 crossref_primary_10_3390_horticulturae8050462 crossref_primary_10_1016_j_scitotenv_2023_163428 crossref_primary_10_1007_s10815_024_03276_6 crossref_primary_10_1017_S0954422421000056 crossref_primary_10_1016_j_celrep_2023_112150 crossref_primary_10_1186_s13578_020_00385_4 crossref_primary_10_1016_j_ecoenv_2023_115072 crossref_primary_10_1158_0008_5472_CAN_23_1954 crossref_primary_10_1371_journal_pbio_2003903 crossref_primary_10_1016_j_pharmthera_2018_04_011 crossref_primary_10_1016_j_semcdb_2019_07_015 crossref_primary_10_1016_j_ijbiomac_2024_130101 crossref_primary_10_1038_s41392_020_00444_9 crossref_primary_10_1186_s13059_025_03515_8 crossref_primary_10_7554_eLife_77780 crossref_primary_10_1093_nar_gkz734 crossref_primary_10_1016_j_molmed_2018_04_001 crossref_primary_10_1016_j_bbagrm_2019_07_003 crossref_primary_10_1073_pnas_1809588115 crossref_primary_10_1261_rna_078777_121 crossref_primary_10_3390_nu10111600 crossref_primary_10_1038_s41420_022_00962_1 crossref_primary_10_1093_jleuko_qiad061 crossref_primary_10_3390_plants9050608 crossref_primary_10_1007_s11427_023_2535_x crossref_primary_10_3389_fendo_2022_907060 crossref_primary_10_1080_15476286_2020_1820193 crossref_primary_10_1038_s41467_020_20576_4 crossref_primary_10_1080_10409238_2020_1869174 crossref_primary_10_3389_fgene_2021_625797 crossref_primary_10_1111_obr_12942 crossref_primary_10_1089_ars_2022_0123 crossref_primary_10_1016_j_molcel_2018_01_036 crossref_primary_10_1016_j_biochi_2023_09_017 crossref_primary_10_1016_j_neulet_2023_137513 crossref_primary_10_1158_0008_5472_CAN_24_1102 crossref_primary_10_3389_fcell_2021_709299 crossref_primary_10_1038_s41467_022_32963_0 crossref_primary_10_1080_15476286_2019_1632634 crossref_primary_10_1002_yea_3349 crossref_primary_10_1016_j_envexpbot_2023_105306 crossref_primary_10_3389_frnar_2023_1226610 crossref_primary_10_1007_s11897_020_00473_z crossref_primary_10_1111_pbi_13733 crossref_primary_10_1016_j_ymthe_2023_07_018 crossref_primary_10_12688_f1000research_19848_1 crossref_primary_10_1038_s41589_021_00913_4 crossref_primary_10_1038_s41556_023_01258_x crossref_primary_10_1016_j_molcel_2018_08_011 crossref_primary_10_1021_acs_biochem_8b00025 crossref_primary_10_1172_JCI171294 crossref_primary_10_1371_journal_ppat_1011917 crossref_primary_10_1016_j_vacun_2022_01_004 crossref_primary_10_1016_j_molcel_2020_06_005 crossref_primary_10_1016_j_molmet_2020_101085 crossref_primary_10_1016_j_gendis_2023_101181 crossref_primary_10_1016_j_molcel_2019_11_007 crossref_primary_10_1016_j_celrep_2023_112589 crossref_primary_10_1016_j_neuron_2019_12_013 crossref_primary_10_1093_nar_gkab378 crossref_primary_10_1038_s41388_021_01939_7 crossref_primary_10_1093_nar_gkac1247 crossref_primary_10_1016_j_isci_2023_106757 crossref_primary_10_1146_annurev_nutr_120919_041411 crossref_primary_10_1016_j_tcb_2024_06_008 crossref_primary_10_1007_s13238_020_00733_7 crossref_primary_10_1016_j_tplants_2024_10_005 crossref_primary_10_1016_j_molcel_2023_08_008 crossref_primary_10_1038_s41590_020_0650_4 crossref_primary_10_1016_j_cellsig_2021_110037 crossref_primary_10_1111_nph_18069 crossref_primary_10_1038_s41467_020_18452_2 crossref_primary_10_3389_fcell_2022_935224 crossref_primary_10_1002_wrna_1658 crossref_primary_10_3390_ijms22073662 crossref_primary_10_1210_jc_2018_00619 crossref_primary_10_1038_s41467_019_11232_7 crossref_primary_10_1186_s13072_024_00563_5 crossref_primary_10_1038_s41598_020_63355_3 crossref_primary_10_15252_embr_201845947 crossref_primary_10_3390_plants12122232 crossref_primary_10_1186_s12943_020_01244_z crossref_primary_10_1101_gad_319475_118 crossref_primary_10_1111_febs_70033 crossref_primary_10_1038_s41568_021_00380_y crossref_primary_10_1126_sciadv_abe5903 crossref_primary_10_1261_rna_079375_122 crossref_primary_10_1016_j_tox_2021_152962 crossref_primary_10_1152_ajpendo_00225_2023 crossref_primary_10_1111_cpr_13086 crossref_primary_10_3390_ijms22041949 crossref_primary_10_1016_j_clim_2022_109080 crossref_primary_10_15252_embj_2019104123 crossref_primary_10_1038_s41392_024_01777_5 crossref_primary_10_1080_21541264_2022_2057177 crossref_primary_10_1126_sciadv_adg5234 crossref_primary_10_3389_fgene_2022_866772 crossref_primary_10_1016_j_molcel_2019_06_006 crossref_primary_10_1016_j_semcdb_2023_06_006 |
Cites_doi | 10.1016/j.cell.2011.05.005 10.1016/0092-8674(92)90193-G 10.1038/nature15377 10.1016/j.cell.2015.08.011 10.1038/nature12730 10.1016/j.gene.2004.11.041 10.1038/nrm1488 10.1038/nature07848 10.1016/j.biocel.2007.01.020 10.1016/j.cell.2017.03.031 10.1038/nbt.1621 10.1016/j.cell.2012.05.003 10.1074/jbc.M114.550350 10.1038/nchembio.1432 10.1073/pnas.1207846109 10.1038/nmeth.3208 10.1186/gb-2011-12-8-r79 10.1016/j.cell.2009.01.042 10.1126/science.aad9868 10.1016/j.stem.2014.09.019 10.1038/ng.713 10.1126/science.1261417 10.1016/0092-8674(86)90384-3 10.1038/nrg3724 10.1146/annurev.cellbio.18.011402.160624 10.1038/nature11112 10.7554/eLife.06821 10.1146/annurev-biochem-060713-035802 10.1038/cr.2014.151 10.1038/nature14234 10.1042/BST0340007 10.1016/j.cell.2011.10.002 10.1016/j.cell.2015.05.014 10.1083/jcb.200408003 10.1038/nchembio.687 10.1016/j.cell.2015.10.012 10.1038/nature13138 10.1038/nsmb.3148 10.2337/db09-0335 10.1016/j.molcel.2013.05.026 10.1038/nature17978 10.1016/j.molcel.2007.11.018 10.1038/nrm3785 10.1073/pnas.0400541101 10.1073/pnas.87.21.8301 10.1038/nature21022 10.1126/science.aad3867 10.1016/j.molcel.2012.05.021 10.1016/j.molcel.2012.10.015 10.1093/bioinformatics/btp120 10.1002/mrd.20902 10.1038/cr.2014.3 10.1016/j.bbagrm.2016.07.010 10.1038/srep25677 10.1038/nrm2838 10.1016/j.molcel.2016.01.012 10.1002/wrna.1212 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.molcel.2018.01.019 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4164 |
EndPage | 647.e7 |
ExternalDocumentID | PMC5816726 10_1016_j_molcel_2018_01_019 S1097276518300480 |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1~5 2WC 4.4 457 4G. 5RE 62- 6I. 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFFNX AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SDG SES SSZ TR2 WQ6 ZA5 .55 .GJ 29M 3O- 53G 5VS AAEDT AAHBH AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB HZ~ OZT R2- UHS X7M ZGI ZXP 7X8 7S9 L.6 5PM EFKBS |
ID | FETCH-LOGICAL-c403t-5f29737d70ee8c21a38c53e028dc591a45db34bcf6945127676d7729c5a8d7a43 |
IEDL.DBID | IXB |
ISSN | 1097-2765 1097-4164 |
IngestDate | Thu Aug 21 18:02:46 EDT 2025 Thu Jul 10 22:28:44 EDT 2025 Fri Jul 11 13:09:52 EDT 2025 Thu Apr 24 23:13:17 EDT 2025 Tue Jul 01 03:40:51 EDT 2025 Fri Feb 23 02:30:33 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | FTO alternative translation QTI-seq m6A epitranscriptome reinitiation ribosome scanning ATF4 integrated stress response start codon selection |
Language | English |
License | This article is made available under the Elsevier license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-5f29737d70ee8c21a38c53e028dc591a45db34bcf6945127676d7729c5a8d7a43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1097276518300480 |
PMID | 29429926 |
PQID | 2001404804 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5816726 proquest_miscellaneous_2221011913 proquest_miscellaneous_2001404804 crossref_primary_10_1016_j_molcel_2018_01_019 crossref_citationtrail_10_1016_j_molcel_2018_01_019 elsevier_sciencedirect_doi_10_1016_j_molcel_2018_01_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-15 |
PublicationDateYYYYMMDD | 2018-02-15 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Molecular cell |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Xiao, Adhikari, Dahal, Chen, Hao, Sun, Sun, Li, Ping, Lai (bib53) 2016; 61 Fischer, Koch, Emmerling, Vierkotten, Peters, Brüning, Rüther (bib13) 2009; 458 Alarcón, Goodarzi, Lee, Liu, Tavazoie, Tavazoie (bib1) 2015; 162 Iwasaki, Floor, Ingolia (bib23) 2016; 534 Baltz, Munschauer, Schwanhäusser, Vasile, Murakawa, Schueler, Youngs, Penfold-Brown, Drew, Milek (bib3) 2012; 46 Jackson, Hellen, Pestova (bib24) 2010; 11 Skabkin, Skabkina, Hellen, Pestova (bib41) 2013; 51 Slobodin, Han, Calderone, Vrielink, Loayza-Puch, Elkon, Agami (bib42) 2017; 169 Zheng, Dahl, Niu, Fedorcsak, Huang, Li, Vågbø, Shi, Wang, Song (bib57) 2013; 49 Ameri, Harris (bib2) 2008; 40 Corcoran, Georgiev, Mukherjee, Gottwein, Skalsky, Keene, Ohler (bib10) 2011; 12 Kozak (bib26) 1990; 87 Bokar, Shambaugh, Polayes, Matera, Rottman (bib5) 1997; 3 Church, Moir, McMurray, Girard, Banks, Teboul, Wells, Brüning, Nolan, Ashcroft, Cox (bib8) 2010; 42 Liu, Dai, Zheng, He, Parisien, Pan (bib30) 2015; 518 Gao, Wan, Liu, Ma, Shen, Qian (bib15) 2015; 12 Jia, Fu, Zhao, Dai, Zheng, Yang, Yi, Lindahl, Pan, Yang, He (bib25) 2011; 7 Meyer, Saletore, Zumbo, Elemento, Mason, Jaffrey (bib35) 2012; 149 Zhao, Yang, Sun, Shi, Yang, Xiao, Hao, Ping, Chen, Wang (bib56) 2014; 24 Wang, Lu, Gomez, Hon, Yue, Han, Fu, Parisien, Dai, Jia (bib50) 2014; 505 Hinnebusch (bib19) 2014; 83 Dominissini, Moshitch-Moshkovitz, Schwartz, Salmon-Divon, Ungar, Osenberg, Cesarkas, Jacob-Hirsch, Amariglio, Kupiec (bib12) 2012; 485 Geula, Moshitch-Moshkovitz, Dominissini, Mansour, Kol, Salmon-Divon, Hershkovitz, Peer, Mor, Manor (bib17) 2015; 347 Harding, Calfon, Urano, Novoa, Ron (bib18) 2002; 18 Sonenberg, Hinnebusch (bib45) 2009; 136 Wang, Zhao, Roundtree, Lu, Han, Ma, Weng, Chen, Shi, He (bib51) 2015; 161 Mauer, Luo, Blanjoie, Jiao, Grozhik, Patil, Linder, Pickering, Vasseur, Chen (bib32) 2017; 541 Medenbach, Seiler, Hentze (bib33) 2011; 145 Lee, Liu, Lee, Huang, Shen, Qian (bib27) 2012; 109 Sonenberg, Hinnebusch (bib44) 2007; 28 Xu, Liu, Tempel, Demetriades, Aik, Schofield, Min (bib54) 2014; 289 Hinnebusch, Ivanov, Sonenberg (bib20) 2016; 352 Chen, Yuan, Zhang, Zhang, Chen, Zhou, Yuan, Nie, Li, Mo, Chen (bib6) 2016; 1859 Ingolia, Lareau, Weissman (bib22) 2011; 147 Mueller, Hinnebusch (bib37) 1986; 45 Smemo, Tena, Kim, Gamazon, Sakabe, Gómez-Marín, Aneas, Credidio, Sobreira, Wasserman (bib43) 2014; 507 Fu, Dominissini, Rechavi, He (bib14) 2014; 15 Trapnell, Pachter, Salzberg (bib47) 2009; 25 Meyer, Patil, Zhou, Zinoviev, Skabkin, Elemento, Pestova, Qian, Jaffrey (bib36) 2015; 163 Meyer, Jaffrey (bib34) 2014; 15 Liu, Qian (bib28) 2014; 5 Zhang, Samanta, Lu, Bullen, Zhang, Chen, He, Semenza (bib55) 2016; 113 Vattem, Wek (bib49) 2004; 101 Trapnell, Williams, Pertea, Mortazavi, Kwan, van Baren, Salzberg, Wold, Pachter (bib48) 2010; 28 Choi, Ieong, Demirci, Chen, Petrov, Prabhakar, O’Leary, Dominissini, Rechavi, Soltis (bib7) 2016; 23 Gebauer, Hentze (bib16) 2004; 5 Starck, Tsai, Chen, Shodiya, Wang, Yahiro, Martins-Green, Shastri, Walter (bib46) 2016; 351 Ping, Sun, Wang, Xiao, Yang, Wang, Adhikari, Shi, Lv, Chen (bib39) 2014; 24 Seo, Fortuno, Suh, Stenesen, Tang, Parks, Adams, Townes, Graff (bib40) 2009; 58 Liu, Yue, Han, Wang, Fu, Zhang, Jia, Yu, Lu, Deng (bib29) 2014; 10 Batista, Molinie, Wang, Qu, Zhang, Li, Bouley, Lujan, Haddad, Daneshvar (bib4) 2014; 15 Cohen, Won, Nguyen, Lazar, Chen, Steger (bib9) 2015; 4 Dever, Feng, Wek, Cigan, Donahue, Hinnebusch (bib11) 1992; 68 Lu, Harding, Ron (bib31) 2004; 167 Zhou, Wan, Gao, Zhang, Jaffrey, Qian (bib58) 2015; 526 Zou, Toh, Wong, Gao, Hong, Woon (bib59) 2016; 6 Muir, Wilson-Rawls, Stevens, Rawls, Schweitzer, Kang, Skinner (bib38) 2008; 75 Wek, Jiang, Anthony (bib52) 2006; 34 Iacono, Mignone, Pesole (bib21) 2005; 349 Iacono (10.1016/j.molcel.2018.01.019_bib21) 2005; 349 Trapnell (10.1016/j.molcel.2018.01.019_bib48) 2010; 28 Batista (10.1016/j.molcel.2018.01.019_bib4) 2014; 15 Wang (10.1016/j.molcel.2018.01.019_bib51) 2015; 161 Sonenberg (10.1016/j.molcel.2018.01.019_bib45) 2009; 136 Meyer (10.1016/j.molcel.2018.01.019_bib34) 2014; 15 Smemo (10.1016/j.molcel.2018.01.019_bib43) 2014; 507 Zou (10.1016/j.molcel.2018.01.019_bib59) 2016; 6 Gebauer (10.1016/j.molcel.2018.01.019_bib16) 2004; 5 Liu (10.1016/j.molcel.2018.01.019_bib30) 2015; 518 Jackson (10.1016/j.molcel.2018.01.019_bib24) 2010; 11 Fischer (10.1016/j.molcel.2018.01.019_bib13) 2009; 458 Vattem (10.1016/j.molcel.2018.01.019_bib49) 2004; 101 Ameri (10.1016/j.molcel.2018.01.019_bib2) 2008; 40 Liu (10.1016/j.molcel.2018.01.019_bib28) 2014; 5 Starck (10.1016/j.molcel.2018.01.019_bib46) 2016; 351 Zhao (10.1016/j.molcel.2018.01.019_bib56) 2014; 24 Fu (10.1016/j.molcel.2018.01.019_bib14) 2014; 15 Hinnebusch (10.1016/j.molcel.2018.01.019_bib19) 2014; 83 Ingolia (10.1016/j.molcel.2018.01.019_bib22) 2011; 147 Hinnebusch (10.1016/j.molcel.2018.01.019_bib20) 2016; 352 Ping (10.1016/j.molcel.2018.01.019_bib39) 2014; 24 Choi (10.1016/j.molcel.2018.01.019_bib7) 2016; 23 Jia (10.1016/j.molcel.2018.01.019_bib25) 2011; 7 Mauer (10.1016/j.molcel.2018.01.019_bib32) 2017; 541 Wek (10.1016/j.molcel.2018.01.019_bib52) 2006; 34 Medenbach (10.1016/j.molcel.2018.01.019_bib33) 2011; 145 Zhou (10.1016/j.molcel.2018.01.019_bib58) 2015; 526 Dever (10.1016/j.molcel.2018.01.019_bib11) 1992; 68 Chen (10.1016/j.molcel.2018.01.019_bib6) 2016; 1859 Lee (10.1016/j.molcel.2018.01.019_bib27) 2012; 109 Dominissini (10.1016/j.molcel.2018.01.019_bib12) 2012; 485 Meyer (10.1016/j.molcel.2018.01.019_bib35) 2012; 149 Trapnell (10.1016/j.molcel.2018.01.019_bib47) 2009; 25 Cohen (10.1016/j.molcel.2018.01.019_bib9) 2015; 4 Skabkin (10.1016/j.molcel.2018.01.019_bib41) 2013; 51 Harding (10.1016/j.molcel.2018.01.019_bib18) 2002; 18 Alarcón (10.1016/j.molcel.2018.01.019_bib1) 2015; 162 Baltz (10.1016/j.molcel.2018.01.019_bib3) 2012; 46 Lu (10.1016/j.molcel.2018.01.019_bib31) 2004; 167 Mueller (10.1016/j.molcel.2018.01.019_bib37) 1986; 45 Xu (10.1016/j.molcel.2018.01.019_bib54) 2014; 289 Iwasaki (10.1016/j.molcel.2018.01.019_bib23) 2016; 534 Zhang (10.1016/j.molcel.2018.01.019_bib55) 2016; 113 Geula (10.1016/j.molcel.2018.01.019_bib17) 2015; 347 Muir (10.1016/j.molcel.2018.01.019_bib38) 2008; 75 Zheng (10.1016/j.molcel.2018.01.019_bib57) 2013; 49 Seo (10.1016/j.molcel.2018.01.019_bib40) 2009; 58 Wang (10.1016/j.molcel.2018.01.019_bib50) 2014; 505 Kozak (10.1016/j.molcel.2018.01.019_bib26) 1990; 87 Corcoran (10.1016/j.molcel.2018.01.019_bib10) 2011; 12 Meyer (10.1016/j.molcel.2018.01.019_bib36) 2015; 163 Slobodin (10.1016/j.molcel.2018.01.019_bib42) 2017; 169 Bokar (10.1016/j.molcel.2018.01.019_bib5) 1997; 3 Liu (10.1016/j.molcel.2018.01.019_bib29) 2014; 10 Gao (10.1016/j.molcel.2018.01.019_bib15) 2015; 12 Sonenberg (10.1016/j.molcel.2018.01.019_bib44) 2007; 28 Xiao (10.1016/j.molcel.2018.01.019_bib53) 2016; 61 Church (10.1016/j.molcel.2018.01.019_bib8) 2010; 42 |
References_xml | – volume: 109 start-page: E2424 year: 2012 end-page: E2432 ident: bib27 article-title: Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 start-page: R79 year: 2011 ident: bib10 article-title: PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data publication-title: Genome Biol. – volume: 24 start-page: 1403 year: 2014 end-page: 1419 ident: bib56 article-title: FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis publication-title: Cell Res. – volume: 12 start-page: 147 year: 2015 end-page: 153 ident: bib15 article-title: Quantitative profiling of initiating ribosomes in vivo publication-title: Nat. Methods – volume: 18 start-page: 575 year: 2002 end-page: 599 ident: bib18 article-title: Transcriptional and translational control in the mammalian unfolded protein response publication-title: Annu. Rev. Cell Dev. Biol. – volume: 28 start-page: 721 year: 2007 end-page: 729 ident: bib44 article-title: New modes of translational control in development, behavior, and disease publication-title: Mol. Cell – volume: 145 start-page: 902 year: 2011 end-page: 913 ident: bib33 article-title: Translational control via protein-regulated upstream open reading frames publication-title: Cell – volume: 167 start-page: 27 year: 2004 end-page: 33 ident: bib31 article-title: Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response publication-title: J. Cell Biol. – volume: 28 start-page: 511 year: 2010 end-page: 515 ident: bib48 article-title: Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation publication-title: Nat. Biotechnol. – volume: 505 start-page: 117 year: 2014 end-page: 120 ident: bib50 article-title: N6-methyladenosine-dependent regulation of messenger RNA stability publication-title: Nature – volume: 87 start-page: 8301 year: 1990 end-page: 8305 ident: bib26 article-title: Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes publication-title: Proc. Natl. Acad. Sci. USA – volume: 149 start-page: 1635 year: 2012 end-page: 1646 ident: bib35 article-title: Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons publication-title: Cell – volume: 58 start-page: 2565 year: 2009 end-page: 2573 ident: bib40 article-title: Atf4 regulates obesity, glucose homeostasis, and energy expenditure publication-title: Diabetes – volume: 42 start-page: 1086 year: 2010 end-page: 1092 ident: bib8 article-title: Overexpression of Fto leads to increased food intake and results in obesity publication-title: Nat. Genet. – volume: 136 start-page: 731 year: 2009 end-page: 745 ident: bib45 article-title: Regulation of translation initiation in eukaryotes: mechanisms and biological targets publication-title: Cell – volume: 3 start-page: 1233 year: 1997 end-page: 1247 ident: bib5 article-title: Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase publication-title: RNA – volume: 1859 start-page: 1459 year: 2016 end-page: 1469 ident: bib6 article-title: ATF4 regulates SREBP1c expression to control fatty acids synthesis in 3T3-L1 adipocytes differentiation publication-title: Biochim. Biophys. Acta – volume: 5 start-page: 827 year: 2004 end-page: 835 ident: bib16 article-title: Molecular mechanisms of translational control publication-title: Nat. Rev. Mol. Cell Biol. – volume: 45 start-page: 201 year: 1986 end-page: 207 ident: bib37 article-title: Multiple upstream AUG codons mediate translational control of GCN4 publication-title: Cell – volume: 169 start-page: 326 year: 2017 end-page: 337.e12 ident: bib42 article-title: Transcription impacts the efficiency of mRNA translation via co-transcriptional N6-adenosine methylation publication-title: Cell – volume: 526 start-page: 591 year: 2015 end-page: 594 ident: bib58 article-title: Dynamic m(6)A mRNA methylation directs translational control of heat shock response publication-title: Nature – volume: 507 start-page: 371 year: 2014 end-page: 375 ident: bib43 article-title: Obesity-associated variants within FTO form long-range functional connections with IRX3 publication-title: Nature – volume: 4 start-page: e06821 year: 2015 ident: bib9 article-title: ATF4 licenses C/EBPβ activity in human mesenchymal stem cells primed for adipogenesis publication-title: eLife – volume: 40 start-page: 14 year: 2008 end-page: 21 ident: bib2 article-title: Activating transcription factor 4 publication-title: Int. J. Biochem. Cell Biol. – volume: 46 start-page: 674 year: 2012 end-page: 690 ident: bib3 article-title: The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts publication-title: Mol. Cell – volume: 458 start-page: 894 year: 2009 end-page: 898 ident: bib13 article-title: Inactivation of the Fto gene protects from obesity publication-title: Nature – volume: 11 start-page: 113 year: 2010 end-page: 127 ident: bib24 article-title: The mechanism of eukaryotic translation initiation and principles of its regulation publication-title: Nat. Rev. Mol. Cell Biol. – volume: 518 start-page: 560 year: 2015 end-page: 564 ident: bib30 article-title: N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions publication-title: Nature – volume: 541 start-page: 371 year: 2017 end-page: 375 ident: bib32 article-title: Reversible methylation of m6Am in the 5′ cap controls mRNA stability publication-title: Nature – volume: 15 start-page: 707 year: 2014 end-page: 719 ident: bib4 article-title: m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells publication-title: Cell Stem Cell – volume: 352 start-page: 1413 year: 2016 end-page: 1416 ident: bib20 article-title: Translational control by 5′-untranslated regions of eukaryotic mRNAs publication-title: Science – volume: 347 start-page: 1002 year: 2015 end-page: 1006 ident: bib17 article-title: Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation publication-title: Science – volume: 163 start-page: 999 year: 2015 end-page: 1010 ident: bib36 article-title: 5′ UTR m(6)A promotes Cap-independent translation publication-title: Cell – volume: 68 start-page: 585 year: 1992 end-page: 596 ident: bib11 article-title: Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast publication-title: Cell – volume: 351 start-page: aad3867 year: 2016 ident: bib46 article-title: Translation from the 5′ untranslated region shapes the integrated stress response publication-title: Science – volume: 6 start-page: 25677 year: 2016 ident: bib59 article-title: N(6)-methyladenosine: a conformational marker that regulates the substrate specificity of human demethylases FTO and ALKBH5 publication-title: Sci. Rep. – volume: 5 start-page: 301 year: 2014 end-page: 315 ident: bib28 article-title: Translational reprogramming in cellular stress response publication-title: Wiley Interdiscip. Rev. RNA – volume: 147 start-page: 789 year: 2011 end-page: 802 ident: bib22 article-title: Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes publication-title: Cell – volume: 25 start-page: 1105 year: 2009 end-page: 1111 ident: bib47 article-title: TopHat: discovering splice junctions with RNA-seq publication-title: Bioinformatics – volume: 49 start-page: 18 year: 2013 end-page: 29 ident: bib57 article-title: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility publication-title: Mol. Cell – volume: 7 start-page: 885 year: 2011 end-page: 887 ident: bib25 article-title: N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO publication-title: Nat. Chem. Biol. – volume: 15 start-page: 313 year: 2014 end-page: 326 ident: bib34 article-title: The dynamic epitranscriptome: N6-methyladenosine and gene expression control publication-title: Nat. Rev. Mol. Cell Biol. – volume: 34 start-page: 7 year: 2006 end-page: 11 ident: bib52 article-title: Coping with stress: eIF2 kinases and translational control publication-title: Biochem. Soc. Trans. – volume: 349 start-page: 97 year: 2005 end-page: 105 ident: bib21 article-title: uAUG and uORFs in human and rodent 5’untranslated mRNAs publication-title: Gene – volume: 83 start-page: 779 year: 2014 end-page: 812 ident: bib19 article-title: The scanning mechanism of eukaryotic translation initiation publication-title: Annu. Rev. Biochem. – volume: 61 start-page: 507 year: 2016 end-page: 519 ident: bib53 article-title: Nuclear m(6)A reader YTHDC1 regulates mRNA splicing publication-title: Mol. Cell – volume: 161 start-page: 1388 year: 2015 end-page: 1399 ident: bib51 article-title: N(6)-methyladenosine modulates messenger RNA translation efficiency publication-title: Cell – volume: 534 start-page: 558 year: 2016 end-page: 561 ident: bib23 article-title: Rocaglates convert DEAD-box protein eIF4A into a sequence-selective translational repressor publication-title: Nature – volume: 24 start-page: 177 year: 2014 end-page: 189 ident: bib39 article-title: Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase publication-title: Cell Res. – volume: 113 start-page: E2047 year: 2016 end-page: E2056 ident: bib55 article-title: Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m publication-title: Proc. Natl. Acad. Sci. USA – volume: 101 start-page: 11269 year: 2004 end-page: 11274 ident: bib49 article-title: Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells publication-title: Proc. Natl. Acad. Sci. USA – volume: 485 start-page: 201 year: 2012 end-page: 206 ident: bib12 article-title: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq publication-title: Nature – volume: 75 start-page: 1637 year: 2008 end-page: 1652 ident: bib38 article-title: Integration of CREB and bHLH transcriptional signaling pathways through direct heterodimerization of the proteins: role in muscle and testis development publication-title: Mol. Reprod. Dev. – volume: 23 start-page: 110 year: 2016 end-page: 115 ident: bib7 article-title: N(6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics publication-title: Nat. Struct. Mol. Biol. – volume: 51 start-page: 249 year: 2013 end-page: 264 ident: bib41 article-title: Reinitiation and other unconventional posttermination events during eukaryotic translation publication-title: Mol. Cell – volume: 15 start-page: 293 year: 2014 end-page: 306 ident: bib14 article-title: Gene expression regulation mediated through reversible m publication-title: Nat. Rev. Genet. – volume: 10 start-page: 93 year: 2014 end-page: 95 ident: bib29 article-title: A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation publication-title: Nat. Chem. Biol. – volume: 162 start-page: 1299 year: 2015 end-page: 1308 ident: bib1 article-title: HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events publication-title: Cell – volume: 289 start-page: 17299 year: 2014 end-page: 17311 ident: bib54 article-title: Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation publication-title: J. Biol. Chem. – volume: 145 start-page: 902 year: 2011 ident: 10.1016/j.molcel.2018.01.019_bib33 article-title: Translational control via protein-regulated upstream open reading frames publication-title: Cell doi: 10.1016/j.cell.2011.05.005 – volume: 68 start-page: 585 year: 1992 ident: 10.1016/j.molcel.2018.01.019_bib11 article-title: Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast publication-title: Cell doi: 10.1016/0092-8674(92)90193-G – volume: 526 start-page: 591 year: 2015 ident: 10.1016/j.molcel.2018.01.019_bib58 article-title: Dynamic m(6)A mRNA methylation directs translational control of heat shock response publication-title: Nature doi: 10.1038/nature15377 – volume: 162 start-page: 1299 year: 2015 ident: 10.1016/j.molcel.2018.01.019_bib1 article-title: HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events publication-title: Cell doi: 10.1016/j.cell.2015.08.011 – volume: 505 start-page: 117 year: 2014 ident: 10.1016/j.molcel.2018.01.019_bib50 article-title: N6-methyladenosine-dependent regulation of messenger RNA stability publication-title: Nature doi: 10.1038/nature12730 – volume: 349 start-page: 97 year: 2005 ident: 10.1016/j.molcel.2018.01.019_bib21 article-title: uAUG and uORFs in human and rodent 5’untranslated mRNAs publication-title: Gene doi: 10.1016/j.gene.2004.11.041 – volume: 5 start-page: 827 year: 2004 ident: 10.1016/j.molcel.2018.01.019_bib16 article-title: Molecular mechanisms of translational control publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1488 – volume: 458 start-page: 894 year: 2009 ident: 10.1016/j.molcel.2018.01.019_bib13 article-title: Inactivation of the Fto gene protects from obesity publication-title: Nature doi: 10.1038/nature07848 – volume: 3 start-page: 1233 year: 1997 ident: 10.1016/j.molcel.2018.01.019_bib5 article-title: Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase publication-title: RNA – volume: 40 start-page: 14 year: 2008 ident: 10.1016/j.molcel.2018.01.019_bib2 article-title: Activating transcription factor 4 publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2007.01.020 – volume: 169 start-page: 326 year: 2017 ident: 10.1016/j.molcel.2018.01.019_bib42 article-title: Transcription impacts the efficiency of mRNA translation via co-transcriptional N6-adenosine methylation publication-title: Cell doi: 10.1016/j.cell.2017.03.031 – volume: 28 start-page: 511 year: 2010 ident: 10.1016/j.molcel.2018.01.019_bib48 article-title: Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1621 – volume: 149 start-page: 1635 year: 2012 ident: 10.1016/j.molcel.2018.01.019_bib35 article-title: Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons publication-title: Cell doi: 10.1016/j.cell.2012.05.003 – volume: 289 start-page: 17299 year: 2014 ident: 10.1016/j.molcel.2018.01.019_bib54 article-title: Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.550350 – volume: 10 start-page: 93 year: 2014 ident: 10.1016/j.molcel.2018.01.019_bib29 article-title: A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1432 – volume: 109 start-page: E2424 year: 2012 ident: 10.1016/j.molcel.2018.01.019_bib27 article-title: Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1207846109 – volume: 12 start-page: 147 year: 2015 ident: 10.1016/j.molcel.2018.01.019_bib15 article-title: Quantitative profiling of initiating ribosomes in vivo publication-title: Nat. Methods doi: 10.1038/nmeth.3208 – volume: 12 start-page: R79 year: 2011 ident: 10.1016/j.molcel.2018.01.019_bib10 article-title: PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data publication-title: Genome Biol. doi: 10.1186/gb-2011-12-8-r79 – volume: 136 start-page: 731 year: 2009 ident: 10.1016/j.molcel.2018.01.019_bib45 article-title: Regulation of translation initiation in eukaryotes: mechanisms and biological targets publication-title: Cell doi: 10.1016/j.cell.2009.01.042 – volume: 352 start-page: 1413 year: 2016 ident: 10.1016/j.molcel.2018.01.019_bib20 article-title: Translational control by 5′-untranslated regions of eukaryotic mRNAs publication-title: Science doi: 10.1126/science.aad9868 – volume: 15 start-page: 707 year: 2014 ident: 10.1016/j.molcel.2018.01.019_bib4 article-title: m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.09.019 – volume: 42 start-page: 1086 year: 2010 ident: 10.1016/j.molcel.2018.01.019_bib8 article-title: Overexpression of Fto leads to increased food intake and results in obesity publication-title: Nat. Genet. doi: 10.1038/ng.713 – volume: 347 start-page: 1002 year: 2015 ident: 10.1016/j.molcel.2018.01.019_bib17 article-title: Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation publication-title: Science doi: 10.1126/science.1261417 – volume: 45 start-page: 201 year: 1986 ident: 10.1016/j.molcel.2018.01.019_bib37 article-title: Multiple upstream AUG codons mediate translational control of GCN4 publication-title: Cell doi: 10.1016/0092-8674(86)90384-3 – volume: 15 start-page: 293 year: 2014 ident: 10.1016/j.molcel.2018.01.019_bib14 article-title: Gene expression regulation mediated through reversible m6A RNA methylation publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3724 – volume: 18 start-page: 575 year: 2002 ident: 10.1016/j.molcel.2018.01.019_bib18 article-title: Transcriptional and translational control in the mammalian unfolded protein response publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.18.011402.160624 – volume: 485 start-page: 201 year: 2012 ident: 10.1016/j.molcel.2018.01.019_bib12 article-title: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq publication-title: Nature doi: 10.1038/nature11112 – volume: 113 start-page: E2047 year: 2016 ident: 10.1016/j.molcel.2018.01.019_bib55 article-title: Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA publication-title: Proc. Natl. Acad. Sci. USA – volume: 4 start-page: e06821 year: 2015 ident: 10.1016/j.molcel.2018.01.019_bib9 article-title: ATF4 licenses C/EBPβ activity in human mesenchymal stem cells primed for adipogenesis publication-title: eLife doi: 10.7554/eLife.06821 – volume: 83 start-page: 779 year: 2014 ident: 10.1016/j.molcel.2018.01.019_bib19 article-title: The scanning mechanism of eukaryotic translation initiation publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060713-035802 – volume: 24 start-page: 1403 year: 2014 ident: 10.1016/j.molcel.2018.01.019_bib56 article-title: FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis publication-title: Cell Res. doi: 10.1038/cr.2014.151 – volume: 518 start-page: 560 year: 2015 ident: 10.1016/j.molcel.2018.01.019_bib30 article-title: N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions publication-title: Nature doi: 10.1038/nature14234 – volume: 34 start-page: 7 year: 2006 ident: 10.1016/j.molcel.2018.01.019_bib52 article-title: Coping with stress: eIF2 kinases and translational control publication-title: Biochem. Soc. Trans. doi: 10.1042/BST0340007 – volume: 147 start-page: 789 year: 2011 ident: 10.1016/j.molcel.2018.01.019_bib22 article-title: Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes publication-title: Cell doi: 10.1016/j.cell.2011.10.002 – volume: 161 start-page: 1388 year: 2015 ident: 10.1016/j.molcel.2018.01.019_bib51 article-title: N(6)-methyladenosine modulates messenger RNA translation efficiency publication-title: Cell doi: 10.1016/j.cell.2015.05.014 – volume: 167 start-page: 27 year: 2004 ident: 10.1016/j.molcel.2018.01.019_bib31 article-title: Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response publication-title: J. Cell Biol. doi: 10.1083/jcb.200408003 – volume: 7 start-page: 885 year: 2011 ident: 10.1016/j.molcel.2018.01.019_bib25 article-title: N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.687 – volume: 163 start-page: 999 year: 2015 ident: 10.1016/j.molcel.2018.01.019_bib36 article-title: 5′ UTR m(6)A promotes Cap-independent translation publication-title: Cell doi: 10.1016/j.cell.2015.10.012 – volume: 507 start-page: 371 year: 2014 ident: 10.1016/j.molcel.2018.01.019_bib43 article-title: Obesity-associated variants within FTO form long-range functional connections with IRX3 publication-title: Nature doi: 10.1038/nature13138 – volume: 23 start-page: 110 year: 2016 ident: 10.1016/j.molcel.2018.01.019_bib7 article-title: N(6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3148 – volume: 58 start-page: 2565 year: 2009 ident: 10.1016/j.molcel.2018.01.019_bib40 article-title: Atf4 regulates obesity, glucose homeostasis, and energy expenditure publication-title: Diabetes doi: 10.2337/db09-0335 – volume: 51 start-page: 249 year: 2013 ident: 10.1016/j.molcel.2018.01.019_bib41 article-title: Reinitiation and other unconventional posttermination events during eukaryotic translation publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.05.026 – volume: 534 start-page: 558 year: 2016 ident: 10.1016/j.molcel.2018.01.019_bib23 article-title: Rocaglates convert DEAD-box protein eIF4A into a sequence-selective translational repressor publication-title: Nature doi: 10.1038/nature17978 – volume: 28 start-page: 721 year: 2007 ident: 10.1016/j.molcel.2018.01.019_bib44 article-title: New modes of translational control in development, behavior, and disease publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.11.018 – volume: 15 start-page: 313 year: 2014 ident: 10.1016/j.molcel.2018.01.019_bib34 article-title: The dynamic epitranscriptome: N6-methyladenosine and gene expression control publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3785 – volume: 101 start-page: 11269 year: 2004 ident: 10.1016/j.molcel.2018.01.019_bib49 article-title: Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0400541101 – volume: 87 start-page: 8301 year: 1990 ident: 10.1016/j.molcel.2018.01.019_bib26 article-title: Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.87.21.8301 – volume: 541 start-page: 371 year: 2017 ident: 10.1016/j.molcel.2018.01.019_bib32 article-title: Reversible methylation of m6Am in the 5′ cap controls mRNA stability publication-title: Nature doi: 10.1038/nature21022 – volume: 351 start-page: aad3867 year: 2016 ident: 10.1016/j.molcel.2018.01.019_bib46 article-title: Translation from the 5′ untranslated region shapes the integrated stress response publication-title: Science doi: 10.1126/science.aad3867 – volume: 46 start-page: 674 year: 2012 ident: 10.1016/j.molcel.2018.01.019_bib3 article-title: The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.05.021 – volume: 49 start-page: 18 year: 2013 ident: 10.1016/j.molcel.2018.01.019_bib57 article-title: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.10.015 – volume: 25 start-page: 1105 year: 2009 ident: 10.1016/j.molcel.2018.01.019_bib47 article-title: TopHat: discovering splice junctions with RNA-seq publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp120 – volume: 75 start-page: 1637 year: 2008 ident: 10.1016/j.molcel.2018.01.019_bib38 article-title: Integration of CREB and bHLH transcriptional signaling pathways through direct heterodimerization of the proteins: role in muscle and testis development publication-title: Mol. Reprod. Dev. doi: 10.1002/mrd.20902 – volume: 24 start-page: 177 year: 2014 ident: 10.1016/j.molcel.2018.01.019_bib39 article-title: Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase publication-title: Cell Res. doi: 10.1038/cr.2014.3 – volume: 1859 start-page: 1459 year: 2016 ident: 10.1016/j.molcel.2018.01.019_bib6 article-title: ATF4 regulates SREBP1c expression to control fatty acids synthesis in 3T3-L1 adipocytes differentiation publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2016.07.010 – volume: 6 start-page: 25677 year: 2016 ident: 10.1016/j.molcel.2018.01.019_bib59 article-title: N(6)-methyladenosine: a conformational marker that regulates the substrate specificity of human demethylases FTO and ALKBH5 publication-title: Sci. Rep. doi: 10.1038/srep25677 – volume: 11 start-page: 113 year: 2010 ident: 10.1016/j.molcel.2018.01.019_bib24 article-title: The mechanism of eukaryotic translation initiation and principles of its regulation publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2838 – volume: 61 start-page: 507 year: 2016 ident: 10.1016/j.molcel.2018.01.019_bib53 article-title: Nuclear m(6)A reader YTHDC1 regulates mRNA splicing publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.01.012 – volume: 5 start-page: 301 year: 2014 ident: 10.1016/j.molcel.2018.01.019_bib28 article-title: Translational reprogramming in cellular stress response publication-title: Wiley Interdiscip. Rev. RNA doi: 10.1002/wrna.1212 |
SSID | ssj0014589 |
Score | 2.621174 |
Snippet | The integrated stress response (ISR) facilitates cellular adaptation to stress conditions via the common target eIF2α. During ISR, the selective translation of... |
SourceID | pubmedcentral proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 636 |
SubjectTerms | alternative translation amino acids ATF4 epitranscriptome FTO integrated stress response m6A messenger RNA methylation methyltransferases mice QTI-seq reinitiation ribosome scanning ribosomes signal transduction start codon start codon selection stress response transgenic animals translation (genetics) |
Title | N6-Methyladenosine Guides mRNA Alternative Translation during Integrated Stress Response |
URI | https://dx.doi.org/10.1016/j.molcel.2018.01.019 https://www.proquest.com/docview/2001404804 https://www.proquest.com/docview/2221011913 https://pubmed.ncbi.nlm.nih.gov/PMC5816726 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBchpbCX0a-xtF1Roa8isaWTlMe0rO1amoekZXkztnRhGalT2qSw_3462Q4NlBUGfrF9guN0vjvr7n7H2JlFD9MCQdjUgVDxoCnVXjiJBlJUykhqFL4b6usHdTOBSYtdNL0wVFZZ2_7KpkdrXT_p1tLsPs1m3THlTlOjIShl7IwOdlgqG5v4JufrTIKCOAaPiAVRN-1zscbrcTF3SAmIxEbwTsLbed89vQk_N4sn33ijyx32uQ4j-aDidJe1sNxj29VgyT_7bDLU4g7DHsxzT2jgIZTkV6uZxxf-OBoO-GBenwO-Io_eqqqI41XTIv_RYEh4Po69JHxUldLiAXu4_H5_cS3qGQrCqZ5cCpjScCrjTQ_RujTJpXUgMUQV3kE_yRX4QqrCTXVfBd9vtNGeAm4HufUmV_ILa5eLEr8yDtIU4LwBJ4Pro7ikn0xdINOA4TfIdJhsRJe5GmCc5lzMs6aS7HdWCTwjgWe9JFz9DhPrVU8VwMYH9KbZlWxDUbLgAz5YedpsYha-IUqM5CUuVi80ipNQhmxP_YMmDT_HhIYnAwcbGrBmm5C6N9-Us18RsRtsok2qD_-b9yP2ie6oXDyBY9ZePq_wW4iGlsUJ2xrcjn7enkS1_wuzCAt2 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEYIL4inK00hwtJK1PfbmwCE8SkKbHPqQcjO7tiOC0k1FElB_F3-QGe9u1EiISkiV9rRrr0YzY8_YM_MNY2_yGGBaRhC59CB0umiSJgivogUZtbaKCoVHYzM41V8mMNlhv9taGEqrbPb-ek9Pu3XzptNws3M-m3WOKXYqrQFUylQZ3WRWHsSLX3huW74bfkQhv5Vy_9PJh4FoWgsIr7tqJWBKPZtssN0Ycy-zQuUeVERjGzz0skJDKJUu_dT0NJpEa6wJ5Id6KPJgC63wvzfYTfQ-LO0Gw8n7TehCQ-q7R9QJIq-t10tJZWeLuY8U8cjyhBZKAD9_t4eX_N3tbM1L5m__Hrvb-K28X7PmPtuJ1QN2q-5kefGQTcZGjCIKfV4Egh9H35V_Xs9CXPKzo3Gf9-fNxePPyJN5rFPweF0lyYctaEXgx6l4hR_VubvxETu9Fs4-ZrvVoopPGAdlS_DBgldoa8kR6mVTj8MMRDx32T2mWtY53yCaU2ONuWtT1767muGOGO66GT69PSY2s85rRI8rxttWKm5LMx0anStmvm6F6HDRUiSmqOJivaTenwRrlHf1P8ZIPI0T_J5CCrY0YEM2QYNvf6lm3xJEOOSZsdI8_W_aX7Hbg5PRoTscjg-esTv0hXLVM3jOdlc_1vEFumKr8mVSfc6-Xvda-wN8fUXN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N6-Methyladenosine+Guides+mRNA+Alternative+Translation+during+Integrated+Stress+Response&rft.jtitle=Molecular+cell&rft.au=Zhou%2C+Jun&rft.au=Wan%2C+Ji&rft.au=Shu%2C+Xin+Erica&rft.au=Mao%2C+Yuanhui&rft.date=2018-02-15&rft.issn=1097-2765&rft.eissn=1097-4164&rft.volume=69&rft.issue=4&rft.spage=636&rft.epage=647.e7&rft_id=info:doi/10.1016%2Fj.molcel.2018.01.019&rft_id=info%3Apmid%2F29429926&rft.externalDocID=PMC5816726 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |