N6-Methyladenosine Guides mRNA Alternative Translation during Integrated Stress Response

The integrated stress response (ISR) facilitates cellular adaptation to stress conditions via the common target eIF2α. During ISR, the selective translation of stress-related mRNAs often relies on alternative mechanisms, such as leaky scanning or reinitiation, but the underlying mechanism remains in...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 69; no. 4; pp. 636 - 647.e7
Main Authors Zhou, Jun, Wan, Ji, Shu, Xin Erica, Mao, Yuanhui, Liu, Xiao-Min, Yuan, Xin, Zhang, Xingqian, Hess, Martin E., Brüning, Jens C., Qian, Shu-Bing
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The integrated stress response (ISR) facilitates cellular adaptation to stress conditions via the common target eIF2α. During ISR, the selective translation of stress-related mRNAs often relies on alternative mechanisms, such as leaky scanning or reinitiation, but the underlying mechanism remains incompletely understood. Here we report that, in response to amino acid starvation, the reinitiation of ATF4 is not only governed by the eIF2α signaling pathway, but is also subjected to regulation by mRNA methylation in the form of N6-methyladenosine (m6A). While depleting m6A demethylases represses ATF4 reinitiation, knocking down m6A methyltransferases promotes ATF4 translation. We demonstrate that m6A in the 5′ UTR controls ribosome scanning and subsequent start codon selection. Global profiling of initiating ribosomes reveals widespread alternative translation events influenced by dynamic mRNA methylation. Consistently, Fto transgenic mice manifest enhanced ATF4 expression, highlighting the critical role of m6A in translational regulation of ISR at cellular and organismal levels. [Display omitted] •ATF4 reinitiation involves the m6A demethylase ALKBH5•ATF4 reinitiation is sensitive to mRNA m6A levels•Global alternative translation is modulated by 5′ UTR m6A levels•Liver-specific FTO transgenic mice show altered translation initiation Zhou et al. show that amino acid starvation-induced ATF4 translation is subject to regulation by mRNA methylation in the form of m6A. Global analysis of translation initiation reveals that m6A in the 5′ UTR modulates start codon selection, thereby controlling alternative translation.
AbstractList The integrated stress response (ISR) facilitates cellular adaptation to stress conditions via the common target eIF2α. During ISR, the selective translation of stress-related mRNAs often relies on alternative mechanisms, such as leaky scanning or reinitiation, but the underlying mechanism remains incompletely understood. Here we report that, in response to amino acid starvation, the reinitiation of ATF4 is not only governed by the eIF2α signaling pathway, but is also subjected to regulation by mRNA methylation in the form of N6-methyladenosine (m6A). While depleting m6A demethylases represses ATF4 reinitiation, knocking down m6A methyltransferases promotes ATF4 translation. We demonstrate that m6A in the 5′ UTR controls ribosome scanning and subsequent start codon selection. Global profiling of initiating ribosomes reveals widespread alternative translation events influenced by dynamic mRNA methylation. Consistently, Fto transgenic mice manifest enhanced ATF4 expression, highlighting the critical role of m6A in translational regulation of ISR at cellular and organismal levels. [Display omitted] •ATF4 reinitiation involves the m6A demethylase ALKBH5•ATF4 reinitiation is sensitive to mRNA m6A levels•Global alternative translation is modulated by 5′ UTR m6A levels•Liver-specific FTO transgenic mice show altered translation initiation Zhou et al. show that amino acid starvation-induced ATF4 translation is subject to regulation by mRNA methylation in the form of m6A. Global analysis of translation initiation reveals that m6A in the 5′ UTR modulates start codon selection, thereby controlling alternative translation.
The integrated stress response (ISR) facilitates cellular adaptation to stress conditions via the common target eIF2α. During ISR, the selective translation of stress-related mRNAs often relies on alternative mechanisms, such as leaky scanning or reinitiation, but the underlying mechanism remains incompletely understood. Here we report that, in response to amino acid starvation, the reinitiation of ATF4 is not only governed by the eIF2α signaling pathway, but is also subjected to regulation by mRNA methylation in the form of N6-methyladenosine (m6A). While depleting m6A demethylases represses ATF4 reinitiation, knocking down m6A methyltransferases promotes ATF4 translation. We demonstrate that m6A in the 5′ UTR controls ribosome scanning and subsequent start codon selection. Global profiling of initiating ribosomes reveals widespread alternative translation events influenced by dynamic mRNA methylation. Consistently, Fto transgenic mice manifest enhanced ATF4 expression, highlighting the critical role of m6A in translational regulation of ISR at cellular and organismal levels.
The integrated stress response (ISR) facilitates cellular adaptation to stress conditions via the common target eIF2α. During ISR, the selective translation of stress-related mRNAs often relies on alternative mechanisms, such as leaky scanning or reinitiation, but the underlying mechanism remains incompletely understood. Here we report that, in response to amino acid starvation, the reinitiation of ATF4 is not only governed by the eIF2α signaling pathway, but is also subjected to regulation by mRNA methylation in the form of N 6 -methyladenosine (m 6 A). While depleting m 6 A demethylases represses ATF4 reinitiation, knocking down m 6 A methyltransferases promotes ATF4 translation. We demonstrate that m 6 A in the 5′ untranslated region (5′UTR) controls ribosome scanning and subsequent start codon selection. Global profiling of initiating ribosomes reveals widespread alternative translation events influenced by dynamic mRNA methylation. Consistently, Fto -transgenic mice manifest enhanced ATF4 expression, highlighting the critical role of m 6 A in translational regulation of ISR at cellular and organismal levels. Zhou et al. show that amino acid starvation-induced ATF4 translation is subject to regulation by mRNA methylation in the form of m 6 A. Global analysis of translation initiation reveals that m 6 A in the 5′UTR modulates start codon selection, thereby controlling alternative translation.
The integrated stress response (ISR) facilitates cellular adaptation to stress conditions via the common target eIF2α. During ISR, the selective translation of stress-related mRNAs often relies on alternative mechanisms, such as leaky scanning or reinitiation, but the underlying mechanism remains incompletely understood. Here we report that, in response to amino acid starvation, the reinitiation of ATF4 is not only governed by the eIF2α signaling pathway, but is also subjected to regulation by mRNA methylation in the form of N6-methyladenosine (m6A). While depleting m6A demethylases represses ATF4 reinitiation, knocking down m6A methyltransferases promotes ATF4 translation. We demonstrate that m6A in the 5' UTR controls ribosome scanning and subsequent start codon selection. Global profiling of initiating ribosomes reveals widespread alternative translation events influenced by dynamic mRNA methylation. Consistently, Fto transgenic mice manifest enhanced ATF4 expression, highlighting the critical role of m6A in translational regulation of ISR at cellular and organismal levels.The integrated stress response (ISR) facilitates cellular adaptation to stress conditions via the common target eIF2α. During ISR, the selective translation of stress-related mRNAs often relies on alternative mechanisms, such as leaky scanning or reinitiation, but the underlying mechanism remains incompletely understood. Here we report that, in response to amino acid starvation, the reinitiation of ATF4 is not only governed by the eIF2α signaling pathway, but is also subjected to regulation by mRNA methylation in the form of N6-methyladenosine (m6A). While depleting m6A demethylases represses ATF4 reinitiation, knocking down m6A methyltransferases promotes ATF4 translation. We demonstrate that m6A in the 5' UTR controls ribosome scanning and subsequent start codon selection. Global profiling of initiating ribosomes reveals widespread alternative translation events influenced by dynamic mRNA methylation. Consistently, Fto transgenic mice manifest enhanced ATF4 expression, highlighting the critical role of m6A in translational regulation of ISR at cellular and organismal levels.
Author Qian, Shu-Bing
Wan, Ji
Yuan, Xin
Liu, Xiao-Min
Zhou, Jun
Mao, Yuanhui
Brüning, Jens C.
Zhang, Xingqian
Hess, Martin E.
Shu, Xin Erica
AuthorAffiliation 2 Max Planck Institute for Metabolism Research, Cologne 50931, Germany
1 Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
AuthorAffiliation_xml – name: 2 Max Planck Institute for Metabolism Research, Cologne 50931, Germany
– name: 1 Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
Author_xml – sequence: 1
  givenname: Jun
  surname: Zhou
  fullname: Zhou, Jun
  organization: Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
– sequence: 2
  givenname: Ji
  surname: Wan
  fullname: Wan, Ji
  organization: Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
– sequence: 3
  givenname: Xin Erica
  surname: Shu
  fullname: Shu, Xin Erica
  organization: Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
– sequence: 4
  givenname: Yuanhui
  surname: Mao
  fullname: Mao, Yuanhui
  organization: Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
– sequence: 5
  givenname: Xiao-Min
  surname: Liu
  fullname: Liu, Xiao-Min
  organization: Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
– sequence: 6
  givenname: Xin
  surname: Yuan
  fullname: Yuan, Xin
  organization: Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
– sequence: 7
  givenname: Xingqian
  surname: Zhang
  fullname: Zhang, Xingqian
  organization: Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
– sequence: 8
  givenname: Martin E.
  surname: Hess
  fullname: Hess, Martin E.
  organization: Max Planck Institute for Metabolism Research, Cologne 50931, Germany
– sequence: 9
  givenname: Jens C.
  surname: Brüning
  fullname: Brüning, Jens C.
  organization: Max Planck Institute for Metabolism Research, Cologne 50931, Germany
– sequence: 10
  givenname: Shu-Bing
  surname: Qian
  fullname: Qian, Shu-Bing
  email: sq38@cornell.edu
  organization: Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
BookMark eNqFkU9rGzEQxUVJaf4036CHPfayrqTVSqseCiakaSBNIEkhNyFLY0dGK7mS1pBvX7k2hfbQwIAGNPN483un6CjEAAh9IHhGMOGf1rMxegN-RjEZZpjUkm_QCcFStIxwdnToqeD9MTrNeY0xYf0g36FjKhmVkvIT9HTL2-9Qnl-8thBidgGaq8lZyM14fztv5r5ACrq4LTSPSYfsax9DY6fkwqq5DgVWSRewzUNJkHNzD3kTQ4b36O1S-wznh_cM_fh6-Xjxrb25u7q-mN-0huGutP2SStEJKzDAYCjR3WD6DjAdrOkl0ay3i44tzJJL1pN6i-BWCCpNrwcrNOvO0Je97mZajGANhJK0V5vkRp1eVNRO_f0T3LNaxa3qB8IF5VXg40EgxZ8T5KJGlytXrwPEKStKaeVNJOleH90RxmzAO1tsP2pSzDnB8o8jgtUuP7VW-_zULj-FSS1Z1z7_s2Zc-U28enf-teUDCqi8tw6SysZBMGBdAlOUje7_Ar8Aa4G6Xg
CitedBy_id crossref_primary_10_1186_s13287_021_02223_x
crossref_primary_10_3390_cells9020296
crossref_primary_10_3389_fonc_2023_1206561
crossref_primary_10_15252_embj_2020105977
crossref_primary_10_3390_biom14080932
crossref_primary_10_1093_nar_gky1007
crossref_primary_10_1016_j_bbamcr_2021_119123
crossref_primary_10_1016_j_gpb_2018_03_001
crossref_primary_10_3389_fonc_2021_705059
crossref_primary_10_1016_j_tibs_2019_03_002
crossref_primary_10_3390_cells9030540
crossref_primary_10_1158_0008_5472_CAN_21_3710
crossref_primary_10_3389_fonc_2022_927810
crossref_primary_10_1016_j_molcel_2023_02_019
crossref_primary_10_1016_j_celrep_2024_114165
crossref_primary_10_1016_j_tcb_2019_02_008
crossref_primary_10_3389_fcell_2021_656849
crossref_primary_10_1016_j_molcel_2025_02_016
crossref_primary_10_1016_j_semcdb_2023_03_004
crossref_primary_10_3389_fcell_2022_828683
crossref_primary_10_1016_j_celrep_2022_110373
crossref_primary_10_1016_j_molcel_2023_02_024
crossref_primary_10_1186_s12864_022_08350_w
crossref_primary_10_1016_j_canlet_2022_215826
crossref_primary_10_1093_nar_gkac830
crossref_primary_10_1016_j_biochi_2019_06_015
crossref_primary_10_1089_cbr_2024_0009
crossref_primary_10_1186_s12943_020_1135_7
crossref_primary_10_1016_j_celrep_2020_107641
crossref_primary_10_1371_journal_pone_0306043
crossref_primary_10_3892_etm_2024_12661
crossref_primary_10_1016_j_semcancer_2022_05_009
crossref_primary_10_1016_j_neuron_2023_06_005
crossref_primary_10_1016_j_isci_2022_105620
crossref_primary_10_1093_nar_gkad135
crossref_primary_10_1186_s13059_020_02009_z
crossref_primary_10_1038_s41419_020_03143_z
crossref_primary_10_1016_j_celrep_2024_113976
crossref_primary_10_1016_j_gendis_2023_02_054
crossref_primary_10_1261_rna_079404_122
crossref_primary_10_1155_2022_1335562
crossref_primary_10_3389_fpls_2021_702303
crossref_primary_10_1016_j_gendis_2022_10_015
crossref_primary_10_2139_ssrn_4180808
crossref_primary_10_2217_fon_2020_0330
crossref_primary_10_1016_j_bbagrm_2018_11_007
crossref_primary_10_1002_pld3_239
crossref_primary_10_1038_s41380_021_01282_z
crossref_primary_10_2217_epi_2019_0002
crossref_primary_10_1016_j_cell_2019_05_001
crossref_primary_10_3390_biomedicines9080911
crossref_primary_10_3390_microorganisms11071833
crossref_primary_10_1016_j_ygeno_2020_12_027
crossref_primary_10_3389_fnins_2023_1069640
crossref_primary_10_1016_j_taap_2023_116514
crossref_primary_10_1016_j_omtn_2021_08_019
crossref_primary_10_1016_j_taap_2023_116511
crossref_primary_10_1021_acs_chemrestox_1c00206
crossref_primary_10_3389_fcell_2023_1075215
crossref_primary_10_1111_ppl_13505
crossref_primary_10_1016_j_lfs_2018_09_054
crossref_primary_10_3390_ijms23168971
crossref_primary_10_1016_j_preteyeres_2020_100860
crossref_primary_10_1016_j_jbc_2022_102864
crossref_primary_10_1016_j_celrep_2022_111530
crossref_primary_10_1093_nar_gkab415
crossref_primary_10_1038_s41467_019_11552_8
crossref_primary_10_1038_s41587_023_01978_3
crossref_primary_10_1126_sciadv_abd6927
crossref_primary_10_1523_JNEUROSCI_0943_23_2023
crossref_primary_10_1016_j_yexcr_2020_112229
crossref_primary_10_1016_j_gene_2024_148130
crossref_primary_10_15252_embr_202050852
crossref_primary_10_1038_s41589_019_0327_1
crossref_primary_10_1016_j_vacune_2022_10_008
crossref_primary_10_1016_j_gendis_2020_07_011
crossref_primary_10_1038_s42003_021_02619_8
crossref_primary_10_1016_j_micinf_2023_105228
crossref_primary_10_1002_jcp_29005
crossref_primary_10_1101_gad_350752_123
crossref_primary_10_4049_jimmunol_1801151
crossref_primary_10_1007_s00018_022_04675_7
crossref_primary_10_3389_fcell_2023_1271141
crossref_primary_10_1002_wrna_1491
crossref_primary_10_1080_15476286_2019_1621120
crossref_primary_10_1134_S1819712421020112
crossref_primary_10_1016_j_celrep_2022_111784
crossref_primary_10_1016_j_molcel_2019_04_025
crossref_primary_10_15252_embr_202052101
crossref_primary_10_3389_fnut_2021_756803
crossref_primary_10_1016_j_omto_2023_100737
crossref_primary_10_1016_j_tibs_2020_11_008
crossref_primary_10_1016_j_ymthe_2020_09_007
crossref_primary_10_1016_j_canlet_2020_04_006
crossref_primary_10_1016_j_bbagrm_2018_10_006
crossref_primary_10_1016_j_bbagrm_2018_10_008
crossref_primary_10_1016_j_jmb_2023_168043
crossref_primary_10_3389_fcell_2021_617172
crossref_primary_10_3390_horticulturae8050462
crossref_primary_10_1016_j_scitotenv_2023_163428
crossref_primary_10_1007_s10815_024_03276_6
crossref_primary_10_1017_S0954422421000056
crossref_primary_10_1016_j_celrep_2023_112150
crossref_primary_10_1186_s13578_020_00385_4
crossref_primary_10_1016_j_ecoenv_2023_115072
crossref_primary_10_1158_0008_5472_CAN_23_1954
crossref_primary_10_1371_journal_pbio_2003903
crossref_primary_10_1016_j_pharmthera_2018_04_011
crossref_primary_10_1016_j_semcdb_2019_07_015
crossref_primary_10_1016_j_ijbiomac_2024_130101
crossref_primary_10_1038_s41392_020_00444_9
crossref_primary_10_1186_s13059_025_03515_8
crossref_primary_10_7554_eLife_77780
crossref_primary_10_1093_nar_gkz734
crossref_primary_10_1016_j_molmed_2018_04_001
crossref_primary_10_1016_j_bbagrm_2019_07_003
crossref_primary_10_1073_pnas_1809588115
crossref_primary_10_1261_rna_078777_121
crossref_primary_10_3390_nu10111600
crossref_primary_10_1038_s41420_022_00962_1
crossref_primary_10_1093_jleuko_qiad061
crossref_primary_10_3390_plants9050608
crossref_primary_10_1007_s11427_023_2535_x
crossref_primary_10_3389_fendo_2022_907060
crossref_primary_10_1080_15476286_2020_1820193
crossref_primary_10_1038_s41467_020_20576_4
crossref_primary_10_1080_10409238_2020_1869174
crossref_primary_10_3389_fgene_2021_625797
crossref_primary_10_1111_obr_12942
crossref_primary_10_1089_ars_2022_0123
crossref_primary_10_1016_j_molcel_2018_01_036
crossref_primary_10_1016_j_biochi_2023_09_017
crossref_primary_10_1016_j_neulet_2023_137513
crossref_primary_10_1158_0008_5472_CAN_24_1102
crossref_primary_10_3389_fcell_2021_709299
crossref_primary_10_1038_s41467_022_32963_0
crossref_primary_10_1080_15476286_2019_1632634
crossref_primary_10_1002_yea_3349
crossref_primary_10_1016_j_envexpbot_2023_105306
crossref_primary_10_3389_frnar_2023_1226610
crossref_primary_10_1007_s11897_020_00473_z
crossref_primary_10_1111_pbi_13733
crossref_primary_10_1016_j_ymthe_2023_07_018
crossref_primary_10_12688_f1000research_19848_1
crossref_primary_10_1038_s41589_021_00913_4
crossref_primary_10_1038_s41556_023_01258_x
crossref_primary_10_1016_j_molcel_2018_08_011
crossref_primary_10_1021_acs_biochem_8b00025
crossref_primary_10_1172_JCI171294
crossref_primary_10_1371_journal_ppat_1011917
crossref_primary_10_1016_j_vacun_2022_01_004
crossref_primary_10_1016_j_molcel_2020_06_005
crossref_primary_10_1016_j_molmet_2020_101085
crossref_primary_10_1016_j_gendis_2023_101181
crossref_primary_10_1016_j_molcel_2019_11_007
crossref_primary_10_1016_j_celrep_2023_112589
crossref_primary_10_1016_j_neuron_2019_12_013
crossref_primary_10_1093_nar_gkab378
crossref_primary_10_1038_s41388_021_01939_7
crossref_primary_10_1093_nar_gkac1247
crossref_primary_10_1016_j_isci_2023_106757
crossref_primary_10_1146_annurev_nutr_120919_041411
crossref_primary_10_1016_j_tcb_2024_06_008
crossref_primary_10_1007_s13238_020_00733_7
crossref_primary_10_1016_j_tplants_2024_10_005
crossref_primary_10_1016_j_molcel_2023_08_008
crossref_primary_10_1038_s41590_020_0650_4
crossref_primary_10_1016_j_cellsig_2021_110037
crossref_primary_10_1111_nph_18069
crossref_primary_10_1038_s41467_020_18452_2
crossref_primary_10_3389_fcell_2022_935224
crossref_primary_10_1002_wrna_1658
crossref_primary_10_3390_ijms22073662
crossref_primary_10_1210_jc_2018_00619
crossref_primary_10_1038_s41467_019_11232_7
crossref_primary_10_1186_s13072_024_00563_5
crossref_primary_10_1038_s41598_020_63355_3
crossref_primary_10_15252_embr_201845947
crossref_primary_10_3390_plants12122232
crossref_primary_10_1186_s12943_020_01244_z
crossref_primary_10_1101_gad_319475_118
crossref_primary_10_1111_febs_70033
crossref_primary_10_1038_s41568_021_00380_y
crossref_primary_10_1126_sciadv_abe5903
crossref_primary_10_1261_rna_079375_122
crossref_primary_10_1016_j_tox_2021_152962
crossref_primary_10_1152_ajpendo_00225_2023
crossref_primary_10_1111_cpr_13086
crossref_primary_10_3390_ijms22041949
crossref_primary_10_1016_j_clim_2022_109080
crossref_primary_10_15252_embj_2019104123
crossref_primary_10_1038_s41392_024_01777_5
crossref_primary_10_1080_21541264_2022_2057177
crossref_primary_10_1126_sciadv_adg5234
crossref_primary_10_3389_fgene_2022_866772
crossref_primary_10_1016_j_molcel_2019_06_006
crossref_primary_10_1016_j_semcdb_2023_06_006
Cites_doi 10.1016/j.cell.2011.05.005
10.1016/0092-8674(92)90193-G
10.1038/nature15377
10.1016/j.cell.2015.08.011
10.1038/nature12730
10.1016/j.gene.2004.11.041
10.1038/nrm1488
10.1038/nature07848
10.1016/j.biocel.2007.01.020
10.1016/j.cell.2017.03.031
10.1038/nbt.1621
10.1016/j.cell.2012.05.003
10.1074/jbc.M114.550350
10.1038/nchembio.1432
10.1073/pnas.1207846109
10.1038/nmeth.3208
10.1186/gb-2011-12-8-r79
10.1016/j.cell.2009.01.042
10.1126/science.aad9868
10.1016/j.stem.2014.09.019
10.1038/ng.713
10.1126/science.1261417
10.1016/0092-8674(86)90384-3
10.1038/nrg3724
10.1146/annurev.cellbio.18.011402.160624
10.1038/nature11112
10.7554/eLife.06821
10.1146/annurev-biochem-060713-035802
10.1038/cr.2014.151
10.1038/nature14234
10.1042/BST0340007
10.1016/j.cell.2011.10.002
10.1016/j.cell.2015.05.014
10.1083/jcb.200408003
10.1038/nchembio.687
10.1016/j.cell.2015.10.012
10.1038/nature13138
10.1038/nsmb.3148
10.2337/db09-0335
10.1016/j.molcel.2013.05.026
10.1038/nature17978
10.1016/j.molcel.2007.11.018
10.1038/nrm3785
10.1073/pnas.0400541101
10.1073/pnas.87.21.8301
10.1038/nature21022
10.1126/science.aad3867
10.1016/j.molcel.2012.05.021
10.1016/j.molcel.2012.10.015
10.1093/bioinformatics/btp120
10.1002/mrd.20902
10.1038/cr.2014.3
10.1016/j.bbagrm.2016.07.010
10.1038/srep25677
10.1038/nrm2838
10.1016/j.molcel.2016.01.012
10.1002/wrna.1212
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
7S9
L.6
5PM
DOI 10.1016/j.molcel.2018.01.019
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
EndPage 647.e7
ExternalDocumentID PMC5816726
10_1016_j_molcel_2018_01_019
S1097276518300480
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
2WC
4.4
457
4G.
5RE
62-
6I.
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
WQ6
ZA5
.55
.GJ
29M
3O-
53G
5VS
AAEDT
AAHBH
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
HZ~
OZT
R2-
UHS
X7M
ZGI
ZXP
7X8
7S9
L.6
5PM
EFKBS
ID FETCH-LOGICAL-c403t-5f29737d70ee8c21a38c53e028dc591a45db34bcf6945127676d7729c5a8d7a43
IEDL.DBID IXB
ISSN 1097-2765
1097-4164
IngestDate Thu Aug 21 18:02:46 EDT 2025
Thu Jul 10 22:28:44 EDT 2025
Fri Jul 11 13:09:52 EDT 2025
Thu Apr 24 23:13:17 EDT 2025
Tue Jul 01 03:40:51 EDT 2025
Fri Feb 23 02:30:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords FTO
alternative translation
QTI-seq
m6A
epitranscriptome
reinitiation
ribosome scanning
ATF4
integrated stress response
start codon selection
Language English
License This article is made available under the Elsevier license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-5f29737d70ee8c21a38c53e028dc591a45db34bcf6945127676d7729c5a8d7a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1097276518300480
PMID 29429926
PQID 2001404804
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5816726
proquest_miscellaneous_2221011913
proquest_miscellaneous_2001404804
crossref_primary_10_1016_j_molcel_2018_01_019
crossref_citationtrail_10_1016_j_molcel_2018_01_019
elsevier_sciencedirect_doi_10_1016_j_molcel_2018_01_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-15
PublicationDateYYYYMMDD 2018-02-15
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-15
  day: 15
PublicationDecade 2010
PublicationTitle Molecular cell
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Xiao, Adhikari, Dahal, Chen, Hao, Sun, Sun, Li, Ping, Lai (bib53) 2016; 61
Fischer, Koch, Emmerling, Vierkotten, Peters, Brüning, Rüther (bib13) 2009; 458
Alarcón, Goodarzi, Lee, Liu, Tavazoie, Tavazoie (bib1) 2015; 162
Iwasaki, Floor, Ingolia (bib23) 2016; 534
Baltz, Munschauer, Schwanhäusser, Vasile, Murakawa, Schueler, Youngs, Penfold-Brown, Drew, Milek (bib3) 2012; 46
Jackson, Hellen, Pestova (bib24) 2010; 11
Skabkin, Skabkina, Hellen, Pestova (bib41) 2013; 51
Slobodin, Han, Calderone, Vrielink, Loayza-Puch, Elkon, Agami (bib42) 2017; 169
Zheng, Dahl, Niu, Fedorcsak, Huang, Li, Vågbø, Shi, Wang, Song (bib57) 2013; 49
Ameri, Harris (bib2) 2008; 40
Corcoran, Georgiev, Mukherjee, Gottwein, Skalsky, Keene, Ohler (bib10) 2011; 12
Kozak (bib26) 1990; 87
Bokar, Shambaugh, Polayes, Matera, Rottman (bib5) 1997; 3
Church, Moir, McMurray, Girard, Banks, Teboul, Wells, Brüning, Nolan, Ashcroft, Cox (bib8) 2010; 42
Liu, Dai, Zheng, He, Parisien, Pan (bib30) 2015; 518
Gao, Wan, Liu, Ma, Shen, Qian (bib15) 2015; 12
Jia, Fu, Zhao, Dai, Zheng, Yang, Yi, Lindahl, Pan, Yang, He (bib25) 2011; 7
Meyer, Saletore, Zumbo, Elemento, Mason, Jaffrey (bib35) 2012; 149
Zhao, Yang, Sun, Shi, Yang, Xiao, Hao, Ping, Chen, Wang (bib56) 2014; 24
Wang, Lu, Gomez, Hon, Yue, Han, Fu, Parisien, Dai, Jia (bib50) 2014; 505
Hinnebusch (bib19) 2014; 83
Dominissini, Moshitch-Moshkovitz, Schwartz, Salmon-Divon, Ungar, Osenberg, Cesarkas, Jacob-Hirsch, Amariglio, Kupiec (bib12) 2012; 485
Geula, Moshitch-Moshkovitz, Dominissini, Mansour, Kol, Salmon-Divon, Hershkovitz, Peer, Mor, Manor (bib17) 2015; 347
Harding, Calfon, Urano, Novoa, Ron (bib18) 2002; 18
Sonenberg, Hinnebusch (bib45) 2009; 136
Wang, Zhao, Roundtree, Lu, Han, Ma, Weng, Chen, Shi, He (bib51) 2015; 161
Mauer, Luo, Blanjoie, Jiao, Grozhik, Patil, Linder, Pickering, Vasseur, Chen (bib32) 2017; 541
Medenbach, Seiler, Hentze (bib33) 2011; 145
Lee, Liu, Lee, Huang, Shen, Qian (bib27) 2012; 109
Sonenberg, Hinnebusch (bib44) 2007; 28
Xu, Liu, Tempel, Demetriades, Aik, Schofield, Min (bib54) 2014; 289
Hinnebusch, Ivanov, Sonenberg (bib20) 2016; 352
Chen, Yuan, Zhang, Zhang, Chen, Zhou, Yuan, Nie, Li, Mo, Chen (bib6) 2016; 1859
Ingolia, Lareau, Weissman (bib22) 2011; 147
Mueller, Hinnebusch (bib37) 1986; 45
Smemo, Tena, Kim, Gamazon, Sakabe, Gómez-Marín, Aneas, Credidio, Sobreira, Wasserman (bib43) 2014; 507
Fu, Dominissini, Rechavi, He (bib14) 2014; 15
Trapnell, Pachter, Salzberg (bib47) 2009; 25
Meyer, Patil, Zhou, Zinoviev, Skabkin, Elemento, Pestova, Qian, Jaffrey (bib36) 2015; 163
Meyer, Jaffrey (bib34) 2014; 15
Liu, Qian (bib28) 2014; 5
Zhang, Samanta, Lu, Bullen, Zhang, Chen, He, Semenza (bib55) 2016; 113
Vattem, Wek (bib49) 2004; 101
Trapnell, Williams, Pertea, Mortazavi, Kwan, van Baren, Salzberg, Wold, Pachter (bib48) 2010; 28
Choi, Ieong, Demirci, Chen, Petrov, Prabhakar, O’Leary, Dominissini, Rechavi, Soltis (bib7) 2016; 23
Gebauer, Hentze (bib16) 2004; 5
Starck, Tsai, Chen, Shodiya, Wang, Yahiro, Martins-Green, Shastri, Walter (bib46) 2016; 351
Ping, Sun, Wang, Xiao, Yang, Wang, Adhikari, Shi, Lv, Chen (bib39) 2014; 24
Seo, Fortuno, Suh, Stenesen, Tang, Parks, Adams, Townes, Graff (bib40) 2009; 58
Liu, Yue, Han, Wang, Fu, Zhang, Jia, Yu, Lu, Deng (bib29) 2014; 10
Batista, Molinie, Wang, Qu, Zhang, Li, Bouley, Lujan, Haddad, Daneshvar (bib4) 2014; 15
Cohen, Won, Nguyen, Lazar, Chen, Steger (bib9) 2015; 4
Dever, Feng, Wek, Cigan, Donahue, Hinnebusch (bib11) 1992; 68
Lu, Harding, Ron (bib31) 2004; 167
Zhou, Wan, Gao, Zhang, Jaffrey, Qian (bib58) 2015; 526
Zou, Toh, Wong, Gao, Hong, Woon (bib59) 2016; 6
Muir, Wilson-Rawls, Stevens, Rawls, Schweitzer, Kang, Skinner (bib38) 2008; 75
Wek, Jiang, Anthony (bib52) 2006; 34
Iacono, Mignone, Pesole (bib21) 2005; 349
Iacono (10.1016/j.molcel.2018.01.019_bib21) 2005; 349
Trapnell (10.1016/j.molcel.2018.01.019_bib48) 2010; 28
Batista (10.1016/j.molcel.2018.01.019_bib4) 2014; 15
Wang (10.1016/j.molcel.2018.01.019_bib51) 2015; 161
Sonenberg (10.1016/j.molcel.2018.01.019_bib45) 2009; 136
Meyer (10.1016/j.molcel.2018.01.019_bib34) 2014; 15
Smemo (10.1016/j.molcel.2018.01.019_bib43) 2014; 507
Zou (10.1016/j.molcel.2018.01.019_bib59) 2016; 6
Gebauer (10.1016/j.molcel.2018.01.019_bib16) 2004; 5
Liu (10.1016/j.molcel.2018.01.019_bib30) 2015; 518
Jackson (10.1016/j.molcel.2018.01.019_bib24) 2010; 11
Fischer (10.1016/j.molcel.2018.01.019_bib13) 2009; 458
Vattem (10.1016/j.molcel.2018.01.019_bib49) 2004; 101
Ameri (10.1016/j.molcel.2018.01.019_bib2) 2008; 40
Liu (10.1016/j.molcel.2018.01.019_bib28) 2014; 5
Starck (10.1016/j.molcel.2018.01.019_bib46) 2016; 351
Zhao (10.1016/j.molcel.2018.01.019_bib56) 2014; 24
Fu (10.1016/j.molcel.2018.01.019_bib14) 2014; 15
Hinnebusch (10.1016/j.molcel.2018.01.019_bib19) 2014; 83
Ingolia (10.1016/j.molcel.2018.01.019_bib22) 2011; 147
Hinnebusch (10.1016/j.molcel.2018.01.019_bib20) 2016; 352
Ping (10.1016/j.molcel.2018.01.019_bib39) 2014; 24
Choi (10.1016/j.molcel.2018.01.019_bib7) 2016; 23
Jia (10.1016/j.molcel.2018.01.019_bib25) 2011; 7
Mauer (10.1016/j.molcel.2018.01.019_bib32) 2017; 541
Wek (10.1016/j.molcel.2018.01.019_bib52) 2006; 34
Medenbach (10.1016/j.molcel.2018.01.019_bib33) 2011; 145
Zhou (10.1016/j.molcel.2018.01.019_bib58) 2015; 526
Dever (10.1016/j.molcel.2018.01.019_bib11) 1992; 68
Chen (10.1016/j.molcel.2018.01.019_bib6) 2016; 1859
Lee (10.1016/j.molcel.2018.01.019_bib27) 2012; 109
Dominissini (10.1016/j.molcel.2018.01.019_bib12) 2012; 485
Meyer (10.1016/j.molcel.2018.01.019_bib35) 2012; 149
Trapnell (10.1016/j.molcel.2018.01.019_bib47) 2009; 25
Cohen (10.1016/j.molcel.2018.01.019_bib9) 2015; 4
Skabkin (10.1016/j.molcel.2018.01.019_bib41) 2013; 51
Harding (10.1016/j.molcel.2018.01.019_bib18) 2002; 18
Alarcón (10.1016/j.molcel.2018.01.019_bib1) 2015; 162
Baltz (10.1016/j.molcel.2018.01.019_bib3) 2012; 46
Lu (10.1016/j.molcel.2018.01.019_bib31) 2004; 167
Mueller (10.1016/j.molcel.2018.01.019_bib37) 1986; 45
Xu (10.1016/j.molcel.2018.01.019_bib54) 2014; 289
Iwasaki (10.1016/j.molcel.2018.01.019_bib23) 2016; 534
Zhang (10.1016/j.molcel.2018.01.019_bib55) 2016; 113
Geula (10.1016/j.molcel.2018.01.019_bib17) 2015; 347
Muir (10.1016/j.molcel.2018.01.019_bib38) 2008; 75
Zheng (10.1016/j.molcel.2018.01.019_bib57) 2013; 49
Seo (10.1016/j.molcel.2018.01.019_bib40) 2009; 58
Wang (10.1016/j.molcel.2018.01.019_bib50) 2014; 505
Kozak (10.1016/j.molcel.2018.01.019_bib26) 1990; 87
Corcoran (10.1016/j.molcel.2018.01.019_bib10) 2011; 12
Meyer (10.1016/j.molcel.2018.01.019_bib36) 2015; 163
Slobodin (10.1016/j.molcel.2018.01.019_bib42) 2017; 169
Bokar (10.1016/j.molcel.2018.01.019_bib5) 1997; 3
Liu (10.1016/j.molcel.2018.01.019_bib29) 2014; 10
Gao (10.1016/j.molcel.2018.01.019_bib15) 2015; 12
Sonenberg (10.1016/j.molcel.2018.01.019_bib44) 2007; 28
Xiao (10.1016/j.molcel.2018.01.019_bib53) 2016; 61
Church (10.1016/j.molcel.2018.01.019_bib8) 2010; 42
References_xml – volume: 109
  start-page: E2424
  year: 2012
  end-page: E2432
  ident: bib27
  article-title: Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: R79
  year: 2011
  ident: bib10
  article-title: PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data
  publication-title: Genome Biol.
– volume: 24
  start-page: 1403
  year: 2014
  end-page: 1419
  ident: bib56
  article-title: FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis
  publication-title: Cell Res.
– volume: 12
  start-page: 147
  year: 2015
  end-page: 153
  ident: bib15
  article-title: Quantitative profiling of initiating ribosomes in vivo
  publication-title: Nat. Methods
– volume: 18
  start-page: 575
  year: 2002
  end-page: 599
  ident: bib18
  article-title: Transcriptional and translational control in the mammalian unfolded protein response
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 28
  start-page: 721
  year: 2007
  end-page: 729
  ident: bib44
  article-title: New modes of translational control in development, behavior, and disease
  publication-title: Mol. Cell
– volume: 145
  start-page: 902
  year: 2011
  end-page: 913
  ident: bib33
  article-title: Translational control via protein-regulated upstream open reading frames
  publication-title: Cell
– volume: 167
  start-page: 27
  year: 2004
  end-page: 33
  ident: bib31
  article-title: Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response
  publication-title: J. Cell Biol.
– volume: 28
  start-page: 511
  year: 2010
  end-page: 515
  ident: bib48
  article-title: Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation
  publication-title: Nat. Biotechnol.
– volume: 505
  start-page: 117
  year: 2014
  end-page: 120
  ident: bib50
  article-title: N6-methyladenosine-dependent regulation of messenger RNA stability
  publication-title: Nature
– volume: 87
  start-page: 8301
  year: 1990
  end-page: 8305
  ident: bib26
  article-title: Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 149
  start-page: 1635
  year: 2012
  end-page: 1646
  ident: bib35
  article-title: Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons
  publication-title: Cell
– volume: 58
  start-page: 2565
  year: 2009
  end-page: 2573
  ident: bib40
  article-title: Atf4 regulates obesity, glucose homeostasis, and energy expenditure
  publication-title: Diabetes
– volume: 42
  start-page: 1086
  year: 2010
  end-page: 1092
  ident: bib8
  article-title: Overexpression of Fto leads to increased food intake and results in obesity
  publication-title: Nat. Genet.
– volume: 136
  start-page: 731
  year: 2009
  end-page: 745
  ident: bib45
  article-title: Regulation of translation initiation in eukaryotes: mechanisms and biological targets
  publication-title: Cell
– volume: 3
  start-page: 1233
  year: 1997
  end-page: 1247
  ident: bib5
  article-title: Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase
  publication-title: RNA
– volume: 1859
  start-page: 1459
  year: 2016
  end-page: 1469
  ident: bib6
  article-title: ATF4 regulates SREBP1c expression to control fatty acids synthesis in 3T3-L1 adipocytes differentiation
  publication-title: Biochim. Biophys. Acta
– volume: 5
  start-page: 827
  year: 2004
  end-page: 835
  ident: bib16
  article-title: Molecular mechanisms of translational control
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 45
  start-page: 201
  year: 1986
  end-page: 207
  ident: bib37
  article-title: Multiple upstream AUG codons mediate translational control of GCN4
  publication-title: Cell
– volume: 169
  start-page: 326
  year: 2017
  end-page: 337.e12
  ident: bib42
  article-title: Transcription impacts the efficiency of mRNA translation via co-transcriptional N6-adenosine methylation
  publication-title: Cell
– volume: 526
  start-page: 591
  year: 2015
  end-page: 594
  ident: bib58
  article-title: Dynamic m(6)A mRNA methylation directs translational control of heat shock response
  publication-title: Nature
– volume: 507
  start-page: 371
  year: 2014
  end-page: 375
  ident: bib43
  article-title: Obesity-associated variants within FTO form long-range functional connections with IRX3
  publication-title: Nature
– volume: 4
  start-page: e06821
  year: 2015
  ident: bib9
  article-title: ATF4 licenses C/EBPβ activity in human mesenchymal stem cells primed for adipogenesis
  publication-title: eLife
– volume: 40
  start-page: 14
  year: 2008
  end-page: 21
  ident: bib2
  article-title: Activating transcription factor 4
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 46
  start-page: 674
  year: 2012
  end-page: 690
  ident: bib3
  article-title: The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts
  publication-title: Mol. Cell
– volume: 458
  start-page: 894
  year: 2009
  end-page: 898
  ident: bib13
  article-title: Inactivation of the Fto gene protects from obesity
  publication-title: Nature
– volume: 11
  start-page: 113
  year: 2010
  end-page: 127
  ident: bib24
  article-title: The mechanism of eukaryotic translation initiation and principles of its regulation
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 518
  start-page: 560
  year: 2015
  end-page: 564
  ident: bib30
  article-title: N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions
  publication-title: Nature
– volume: 541
  start-page: 371
  year: 2017
  end-page: 375
  ident: bib32
  article-title: Reversible methylation of m6Am in the 5′ cap controls mRNA stability
  publication-title: Nature
– volume: 15
  start-page: 707
  year: 2014
  end-page: 719
  ident: bib4
  article-title: m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells
  publication-title: Cell Stem Cell
– volume: 352
  start-page: 1413
  year: 2016
  end-page: 1416
  ident: bib20
  article-title: Translational control by 5′-untranslated regions of eukaryotic mRNAs
  publication-title: Science
– volume: 347
  start-page: 1002
  year: 2015
  end-page: 1006
  ident: bib17
  article-title: Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation
  publication-title: Science
– volume: 163
  start-page: 999
  year: 2015
  end-page: 1010
  ident: bib36
  article-title: 5′ UTR m(6)A promotes Cap-independent translation
  publication-title: Cell
– volume: 68
  start-page: 585
  year: 1992
  end-page: 596
  ident: bib11
  article-title: Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast
  publication-title: Cell
– volume: 351
  start-page: aad3867
  year: 2016
  ident: bib46
  article-title: Translation from the 5′ untranslated region shapes the integrated stress response
  publication-title: Science
– volume: 6
  start-page: 25677
  year: 2016
  ident: bib59
  article-title: N(6)-methyladenosine: a conformational marker that regulates the substrate specificity of human demethylases FTO and ALKBH5
  publication-title: Sci. Rep.
– volume: 5
  start-page: 301
  year: 2014
  end-page: 315
  ident: bib28
  article-title: Translational reprogramming in cellular stress response
  publication-title: Wiley Interdiscip. Rev. RNA
– volume: 147
  start-page: 789
  year: 2011
  end-page: 802
  ident: bib22
  article-title: Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes
  publication-title: Cell
– volume: 25
  start-page: 1105
  year: 2009
  end-page: 1111
  ident: bib47
  article-title: TopHat: discovering splice junctions with RNA-seq
  publication-title: Bioinformatics
– volume: 49
  start-page: 18
  year: 2013
  end-page: 29
  ident: bib57
  article-title: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility
  publication-title: Mol. Cell
– volume: 7
  start-page: 885
  year: 2011
  end-page: 887
  ident: bib25
  article-title: N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO
  publication-title: Nat. Chem. Biol.
– volume: 15
  start-page: 313
  year: 2014
  end-page: 326
  ident: bib34
  article-title: The dynamic epitranscriptome: N6-methyladenosine and gene expression control
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 34
  start-page: 7
  year: 2006
  end-page: 11
  ident: bib52
  article-title: Coping with stress: eIF2 kinases and translational control
  publication-title: Biochem. Soc. Trans.
– volume: 349
  start-page: 97
  year: 2005
  end-page: 105
  ident: bib21
  article-title: uAUG and uORFs in human and rodent 5’untranslated mRNAs
  publication-title: Gene
– volume: 83
  start-page: 779
  year: 2014
  end-page: 812
  ident: bib19
  article-title: The scanning mechanism of eukaryotic translation initiation
  publication-title: Annu. Rev. Biochem.
– volume: 61
  start-page: 507
  year: 2016
  end-page: 519
  ident: bib53
  article-title: Nuclear m(6)A reader YTHDC1 regulates mRNA splicing
  publication-title: Mol. Cell
– volume: 161
  start-page: 1388
  year: 2015
  end-page: 1399
  ident: bib51
  article-title: N(6)-methyladenosine modulates messenger RNA translation efficiency
  publication-title: Cell
– volume: 534
  start-page: 558
  year: 2016
  end-page: 561
  ident: bib23
  article-title: Rocaglates convert DEAD-box protein eIF4A into a sequence-selective translational repressor
  publication-title: Nature
– volume: 24
  start-page: 177
  year: 2014
  end-page: 189
  ident: bib39
  article-title: Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase
  publication-title: Cell Res.
– volume: 113
  start-page: E2047
  year: 2016
  end-page: E2056
  ident: bib55
  article-title: Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 101
  start-page: 11269
  year: 2004
  end-page: 11274
  ident: bib49
  article-title: Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 485
  start-page: 201
  year: 2012
  end-page: 206
  ident: bib12
  article-title: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq
  publication-title: Nature
– volume: 75
  start-page: 1637
  year: 2008
  end-page: 1652
  ident: bib38
  article-title: Integration of CREB and bHLH transcriptional signaling pathways through direct heterodimerization of the proteins: role in muscle and testis development
  publication-title: Mol. Reprod. Dev.
– volume: 23
  start-page: 110
  year: 2016
  end-page: 115
  ident: bib7
  article-title: N(6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics
  publication-title: Nat. Struct. Mol. Biol.
– volume: 51
  start-page: 249
  year: 2013
  end-page: 264
  ident: bib41
  article-title: Reinitiation and other unconventional posttermination events during eukaryotic translation
  publication-title: Mol. Cell
– volume: 15
  start-page: 293
  year: 2014
  end-page: 306
  ident: bib14
  article-title: Gene expression regulation mediated through reversible m
  publication-title: Nat. Rev. Genet.
– volume: 10
  start-page: 93
  year: 2014
  end-page: 95
  ident: bib29
  article-title: A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation
  publication-title: Nat. Chem. Biol.
– volume: 162
  start-page: 1299
  year: 2015
  end-page: 1308
  ident: bib1
  article-title: HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events
  publication-title: Cell
– volume: 289
  start-page: 17299
  year: 2014
  end-page: 17311
  ident: bib54
  article-title: Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation
  publication-title: J. Biol. Chem.
– volume: 145
  start-page: 902
  year: 2011
  ident: 10.1016/j.molcel.2018.01.019_bib33
  article-title: Translational control via protein-regulated upstream open reading frames
  publication-title: Cell
  doi: 10.1016/j.cell.2011.05.005
– volume: 68
  start-page: 585
  year: 1992
  ident: 10.1016/j.molcel.2018.01.019_bib11
  article-title: Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast
  publication-title: Cell
  doi: 10.1016/0092-8674(92)90193-G
– volume: 526
  start-page: 591
  year: 2015
  ident: 10.1016/j.molcel.2018.01.019_bib58
  article-title: Dynamic m(6)A mRNA methylation directs translational control of heat shock response
  publication-title: Nature
  doi: 10.1038/nature15377
– volume: 162
  start-page: 1299
  year: 2015
  ident: 10.1016/j.molcel.2018.01.019_bib1
  article-title: HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.011
– volume: 505
  start-page: 117
  year: 2014
  ident: 10.1016/j.molcel.2018.01.019_bib50
  article-title: N6-methyladenosine-dependent regulation of messenger RNA stability
  publication-title: Nature
  doi: 10.1038/nature12730
– volume: 349
  start-page: 97
  year: 2005
  ident: 10.1016/j.molcel.2018.01.019_bib21
  article-title: uAUG and uORFs in human and rodent 5’untranslated mRNAs
  publication-title: Gene
  doi: 10.1016/j.gene.2004.11.041
– volume: 5
  start-page: 827
  year: 2004
  ident: 10.1016/j.molcel.2018.01.019_bib16
  article-title: Molecular mechanisms of translational control
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1488
– volume: 458
  start-page: 894
  year: 2009
  ident: 10.1016/j.molcel.2018.01.019_bib13
  article-title: Inactivation of the Fto gene protects from obesity
  publication-title: Nature
  doi: 10.1038/nature07848
– volume: 3
  start-page: 1233
  year: 1997
  ident: 10.1016/j.molcel.2018.01.019_bib5
  article-title: Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase
  publication-title: RNA
– volume: 40
  start-page: 14
  year: 2008
  ident: 10.1016/j.molcel.2018.01.019_bib2
  article-title: Activating transcription factor 4
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2007.01.020
– volume: 169
  start-page: 326
  year: 2017
  ident: 10.1016/j.molcel.2018.01.019_bib42
  article-title: Transcription impacts the efficiency of mRNA translation via co-transcriptional N6-adenosine methylation
  publication-title: Cell
  doi: 10.1016/j.cell.2017.03.031
– volume: 28
  start-page: 511
  year: 2010
  ident: 10.1016/j.molcel.2018.01.019_bib48
  article-title: Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1621
– volume: 149
  start-page: 1635
  year: 2012
  ident: 10.1016/j.molcel.2018.01.019_bib35
  article-title: Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.003
– volume: 289
  start-page: 17299
  year: 2014
  ident: 10.1016/j.molcel.2018.01.019_bib54
  article-title: Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.550350
– volume: 10
  start-page: 93
  year: 2014
  ident: 10.1016/j.molcel.2018.01.019_bib29
  article-title: A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1432
– volume: 109
  start-page: E2424
  year: 2012
  ident: 10.1016/j.molcel.2018.01.019_bib27
  article-title: Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1207846109
– volume: 12
  start-page: 147
  year: 2015
  ident: 10.1016/j.molcel.2018.01.019_bib15
  article-title: Quantitative profiling of initiating ribosomes in vivo
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3208
– volume: 12
  start-page: R79
  year: 2011
  ident: 10.1016/j.molcel.2018.01.019_bib10
  article-title: PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data
  publication-title: Genome Biol.
  doi: 10.1186/gb-2011-12-8-r79
– volume: 136
  start-page: 731
  year: 2009
  ident: 10.1016/j.molcel.2018.01.019_bib45
  article-title: Regulation of translation initiation in eukaryotes: mechanisms and biological targets
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.042
– volume: 352
  start-page: 1413
  year: 2016
  ident: 10.1016/j.molcel.2018.01.019_bib20
  article-title: Translational control by 5′-untranslated regions of eukaryotic mRNAs
  publication-title: Science
  doi: 10.1126/science.aad9868
– volume: 15
  start-page: 707
  year: 2014
  ident: 10.1016/j.molcel.2018.01.019_bib4
  article-title: m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.09.019
– volume: 42
  start-page: 1086
  year: 2010
  ident: 10.1016/j.molcel.2018.01.019_bib8
  article-title: Overexpression of Fto leads to increased food intake and results in obesity
  publication-title: Nat. Genet.
  doi: 10.1038/ng.713
– volume: 347
  start-page: 1002
  year: 2015
  ident: 10.1016/j.molcel.2018.01.019_bib17
  article-title: Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation
  publication-title: Science
  doi: 10.1126/science.1261417
– volume: 45
  start-page: 201
  year: 1986
  ident: 10.1016/j.molcel.2018.01.019_bib37
  article-title: Multiple upstream AUG codons mediate translational control of GCN4
  publication-title: Cell
  doi: 10.1016/0092-8674(86)90384-3
– volume: 15
  start-page: 293
  year: 2014
  ident: 10.1016/j.molcel.2018.01.019_bib14
  article-title: Gene expression regulation mediated through reversible m6A RNA methylation
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3724
– volume: 18
  start-page: 575
  year: 2002
  ident: 10.1016/j.molcel.2018.01.019_bib18
  article-title: Transcriptional and translational control in the mammalian unfolded protein response
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.18.011402.160624
– volume: 485
  start-page: 201
  year: 2012
  ident: 10.1016/j.molcel.2018.01.019_bib12
  article-title: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq
  publication-title: Nature
  doi: 10.1038/nature11112
– volume: 113
  start-page: E2047
  year: 2016
  ident: 10.1016/j.molcel.2018.01.019_bib55
  article-title: Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 4
  start-page: e06821
  year: 2015
  ident: 10.1016/j.molcel.2018.01.019_bib9
  article-title: ATF4 licenses C/EBPβ activity in human mesenchymal stem cells primed for adipogenesis
  publication-title: eLife
  doi: 10.7554/eLife.06821
– volume: 83
  start-page: 779
  year: 2014
  ident: 10.1016/j.molcel.2018.01.019_bib19
  article-title: The scanning mechanism of eukaryotic translation initiation
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-060713-035802
– volume: 24
  start-page: 1403
  year: 2014
  ident: 10.1016/j.molcel.2018.01.019_bib56
  article-title: FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis
  publication-title: Cell Res.
  doi: 10.1038/cr.2014.151
– volume: 518
  start-page: 560
  year: 2015
  ident: 10.1016/j.molcel.2018.01.019_bib30
  article-title: N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions
  publication-title: Nature
  doi: 10.1038/nature14234
– volume: 34
  start-page: 7
  year: 2006
  ident: 10.1016/j.molcel.2018.01.019_bib52
  article-title: Coping with stress: eIF2 kinases and translational control
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST0340007
– volume: 147
  start-page: 789
  year: 2011
  ident: 10.1016/j.molcel.2018.01.019_bib22
  article-title: Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes
  publication-title: Cell
  doi: 10.1016/j.cell.2011.10.002
– volume: 161
  start-page: 1388
  year: 2015
  ident: 10.1016/j.molcel.2018.01.019_bib51
  article-title: N(6)-methyladenosine modulates messenger RNA translation efficiency
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.014
– volume: 167
  start-page: 27
  year: 2004
  ident: 10.1016/j.molcel.2018.01.019_bib31
  article-title: Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200408003
– volume: 7
  start-page: 885
  year: 2011
  ident: 10.1016/j.molcel.2018.01.019_bib25
  article-title: N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.687
– volume: 163
  start-page: 999
  year: 2015
  ident: 10.1016/j.molcel.2018.01.019_bib36
  article-title: 5′ UTR m(6)A promotes Cap-independent translation
  publication-title: Cell
  doi: 10.1016/j.cell.2015.10.012
– volume: 507
  start-page: 371
  year: 2014
  ident: 10.1016/j.molcel.2018.01.019_bib43
  article-title: Obesity-associated variants within FTO form long-range functional connections with IRX3
  publication-title: Nature
  doi: 10.1038/nature13138
– volume: 23
  start-page: 110
  year: 2016
  ident: 10.1016/j.molcel.2018.01.019_bib7
  article-title: N(6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3148
– volume: 58
  start-page: 2565
  year: 2009
  ident: 10.1016/j.molcel.2018.01.019_bib40
  article-title: Atf4 regulates obesity, glucose homeostasis, and energy expenditure
  publication-title: Diabetes
  doi: 10.2337/db09-0335
– volume: 51
  start-page: 249
  year: 2013
  ident: 10.1016/j.molcel.2018.01.019_bib41
  article-title: Reinitiation and other unconventional posttermination events during eukaryotic translation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.05.026
– volume: 534
  start-page: 558
  year: 2016
  ident: 10.1016/j.molcel.2018.01.019_bib23
  article-title: Rocaglates convert DEAD-box protein eIF4A into a sequence-selective translational repressor
  publication-title: Nature
  doi: 10.1038/nature17978
– volume: 28
  start-page: 721
  year: 2007
  ident: 10.1016/j.molcel.2018.01.019_bib44
  article-title: New modes of translational control in development, behavior, and disease
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.11.018
– volume: 15
  start-page: 313
  year: 2014
  ident: 10.1016/j.molcel.2018.01.019_bib34
  article-title: The dynamic epitranscriptome: N6-methyladenosine and gene expression control
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3785
– volume: 101
  start-page: 11269
  year: 2004
  ident: 10.1016/j.molcel.2018.01.019_bib49
  article-title: Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0400541101
– volume: 87
  start-page: 8301
  year: 1990
  ident: 10.1016/j.molcel.2018.01.019_bib26
  article-title: Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.87.21.8301
– volume: 541
  start-page: 371
  year: 2017
  ident: 10.1016/j.molcel.2018.01.019_bib32
  article-title: Reversible methylation of m6Am in the 5′ cap controls mRNA stability
  publication-title: Nature
  doi: 10.1038/nature21022
– volume: 351
  start-page: aad3867
  year: 2016
  ident: 10.1016/j.molcel.2018.01.019_bib46
  article-title: Translation from the 5′ untranslated region shapes the integrated stress response
  publication-title: Science
  doi: 10.1126/science.aad3867
– volume: 46
  start-page: 674
  year: 2012
  ident: 10.1016/j.molcel.2018.01.019_bib3
  article-title: The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.05.021
– volume: 49
  start-page: 18
  year: 2013
  ident: 10.1016/j.molcel.2018.01.019_bib57
  article-title: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.10.015
– volume: 25
  start-page: 1105
  year: 2009
  ident: 10.1016/j.molcel.2018.01.019_bib47
  article-title: TopHat: discovering splice junctions with RNA-seq
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp120
– volume: 75
  start-page: 1637
  year: 2008
  ident: 10.1016/j.molcel.2018.01.019_bib38
  article-title: Integration of CREB and bHLH transcriptional signaling pathways through direct heterodimerization of the proteins: role in muscle and testis development
  publication-title: Mol. Reprod. Dev.
  doi: 10.1002/mrd.20902
– volume: 24
  start-page: 177
  year: 2014
  ident: 10.1016/j.molcel.2018.01.019_bib39
  article-title: Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase
  publication-title: Cell Res.
  doi: 10.1038/cr.2014.3
– volume: 1859
  start-page: 1459
  year: 2016
  ident: 10.1016/j.molcel.2018.01.019_bib6
  article-title: ATF4 regulates SREBP1c expression to control fatty acids synthesis in 3T3-L1 adipocytes differentiation
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagrm.2016.07.010
– volume: 6
  start-page: 25677
  year: 2016
  ident: 10.1016/j.molcel.2018.01.019_bib59
  article-title: N(6)-methyladenosine: a conformational marker that regulates the substrate specificity of human demethylases FTO and ALKBH5
  publication-title: Sci. Rep.
  doi: 10.1038/srep25677
– volume: 11
  start-page: 113
  year: 2010
  ident: 10.1016/j.molcel.2018.01.019_bib24
  article-title: The mechanism of eukaryotic translation initiation and principles of its regulation
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2838
– volume: 61
  start-page: 507
  year: 2016
  ident: 10.1016/j.molcel.2018.01.019_bib53
  article-title: Nuclear m(6)A reader YTHDC1 regulates mRNA splicing
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.01.012
– volume: 5
  start-page: 301
  year: 2014
  ident: 10.1016/j.molcel.2018.01.019_bib28
  article-title: Translational reprogramming in cellular stress response
  publication-title: Wiley Interdiscip. Rev. RNA
  doi: 10.1002/wrna.1212
SSID ssj0014589
Score 2.621174
Snippet The integrated stress response (ISR) facilitates cellular adaptation to stress conditions via the common target eIF2α. During ISR, the selective translation of...
SourceID pubmedcentral
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 636
SubjectTerms alternative translation
amino acids
ATF4
epitranscriptome
FTO
integrated stress response
m6A
messenger RNA
methylation
methyltransferases
mice
QTI-seq
reinitiation
ribosome scanning
ribosomes
signal transduction
start codon
start codon selection
stress response
transgenic animals
translation (genetics)
Title N6-Methyladenosine Guides mRNA Alternative Translation during Integrated Stress Response
URI https://dx.doi.org/10.1016/j.molcel.2018.01.019
https://www.proquest.com/docview/2001404804
https://www.proquest.com/docview/2221011913
https://pubmed.ncbi.nlm.nih.gov/PMC5816726
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBchpbCX0a-xtF1Roa8isaWTlMe0rO1amoekZXkztnRhGalT2qSw_3462Q4NlBUGfrF9guN0vjvr7n7H2JlFD9MCQdjUgVDxoCnVXjiJBlJUykhqFL4b6usHdTOBSYtdNL0wVFZZ2_7KpkdrXT_p1tLsPs1m3THlTlOjIShl7IwOdlgqG5v4JufrTIKCOAaPiAVRN-1zscbrcTF3SAmIxEbwTsLbed89vQk_N4sn33ijyx32uQ4j-aDidJe1sNxj29VgyT_7bDLU4g7DHsxzT2jgIZTkV6uZxxf-OBoO-GBenwO-Io_eqqqI41XTIv_RYEh4Po69JHxUldLiAXu4_H5_cS3qGQrCqZ5cCpjScCrjTQ_RujTJpXUgMUQV3kE_yRX4QqrCTXVfBd9vtNGeAm4HufUmV_ILa5eLEr8yDtIU4LwBJ4Pro7ikn0xdINOA4TfIdJhsRJe5GmCc5lzMs6aS7HdWCTwjgWe9JFz9DhPrVU8VwMYH9KbZlWxDUbLgAz5YedpsYha-IUqM5CUuVi80ipNQhmxP_YMmDT_HhIYnAwcbGrBmm5C6N9-Us18RsRtsok2qD_-b9yP2ie6oXDyBY9ZePq_wW4iGlsUJ2xrcjn7enkS1_wuzCAt2
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEYIL4inK00hwtJK1PfbmwCE8SkKbHPqQcjO7tiOC0k1FElB_F3-QGe9u1EiISkiV9rRrr0YzY8_YM_MNY2_yGGBaRhC59CB0umiSJgivogUZtbaKCoVHYzM41V8mMNlhv9taGEqrbPb-ek9Pu3XzptNws3M-m3WOKXYqrQFUylQZ3WRWHsSLX3huW74bfkQhv5Vy_9PJh4FoWgsIr7tqJWBKPZtssN0Ycy-zQuUeVERjGzz0skJDKJUu_dT0NJpEa6wJ5Id6KPJgC63wvzfYTfQ-LO0Gw8n7TehCQ-q7R9QJIq-t10tJZWeLuY8U8cjyhBZKAD9_t4eX_N3tbM1L5m__Hrvb-K28X7PmPtuJ1QN2q-5kefGQTcZGjCIKfV4Egh9H35V_Xs9CXPKzo3Gf9-fNxePPyJN5rFPweF0lyYctaEXgx6l4hR_VubvxETu9Fs4-ZrvVoopPGAdlS_DBgldoa8kR6mVTj8MMRDx32T2mWtY53yCaU2ONuWtT1767muGOGO66GT69PSY2s85rRI8rxttWKm5LMx0anStmvm6F6HDRUiSmqOJivaTenwRrlHf1P8ZIPI0T_J5CCrY0YEM2QYNvf6lm3xJEOOSZsdI8_W_aX7Hbg5PRoTscjg-esTv0hXLVM3jOdlc_1vEFumKr8mVSfc6-Xvda-wN8fUXN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N6-Methyladenosine+Guides+mRNA+Alternative+Translation+during+Integrated+Stress+Response&rft.jtitle=Molecular+cell&rft.au=Zhou%2C+Jun&rft.au=Wan%2C+Ji&rft.au=Shu%2C+Xin+Erica&rft.au=Mao%2C+Yuanhui&rft.date=2018-02-15&rft.issn=1097-2765&rft.eissn=1097-4164&rft.volume=69&rft.issue=4&rft.spage=636&rft.epage=647.e7&rft_id=info:doi/10.1016%2Fj.molcel.2018.01.019&rft_id=info%3Apmid%2F29429926&rft.externalDocID=PMC5816726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon