Production and catalytic transformation of levulinic acid: A platform for speciality chemicals and fuels

Lignocellulosic biomass is a renewable and abundant source that can be used as a replacement for fossil resources in the sustainable production of speciality chemicals and transportation fuels. Over the last several decades, it has been demonstrated that one of the most effective methodology is to c...

Full description

Saved in:
Bibliographic Details
Published inRenewable & sustainable energy reviews Vol. 51; pp. 986 - 997
Main Authors Yan, Kai, Jarvis, Cody, Gu, Jing, Yan, Yong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2015
Subjects
Online AccessGet full text
ISSN1364-0321
1879-0690
DOI10.1016/j.rser.2015.07.021

Cover

Loading…
Abstract Lignocellulosic biomass is a renewable and abundant source that can be used as a replacement for fossil resources in the sustainable production of speciality chemicals and transportation fuels. Over the last several decades, it has been demonstrated that one of the most effective methodology is to converse the high concentration of oxygen functionalized biomass monomers (e.g., cellulose, hemicelluloses) through de-functionalization into levulinic acid (LA) that has low oxygen content, followed by catalytic transformation of LA into fuels and valuable chemicals. This strategy currently seems to be the logical and promising alternative for sustainable development in the context of economic and environmental considerations. Besides, LA has been identified as one of the most promising platform chemicals for the sustainable production of fuels and commodity chemicals. This review is an up-to-date progress of literatures available on the subject of speciality chemicals and fuels derived from biomass through LA platform. The mechanism and current technologies for the production of LA are reviewed and compared. The potential theoretical calculation methods such as ab initio methods and density functional theories to predict the reaction pathway was also commented. The various transformation methods started from LA to speciality chemicals and fuels are critically reviewed. Among the various products, γ-valerolactone, 2-methyltetrahydrofuran and levuinate esters have been identified as promising fuels. The commercial diphenolic acid and delta-aminolevulinic acid have been widely utilized in many areas. The potential applications as well as fuel properties of these products are also discussed.
AbstractList Lignocellulosic biomass is a renewable and abundant source that can be used as a replacement for fossil resources in the sustainable production of speciality chemicals and transportation fuels. Over the last several decades, it has been demonstrated that one of the most effective methodology is to converse the high concentration of oxygen functionalized biomass monomers (e.g., cellulose, hemicelluloses) through de-functionalization into levulinic acid (LA) that has low oxygen content, followed by catalytic transformation of LA into fuels and valuable chemicals. This strategy currently seems to be the logical and promising alternative for sustainable development in the context of economic and environmental considerations. Besides, LA has been identified as one of the most promising platform chemicals for the sustainable production of fuels and commodity chemicals. This review is an up-to-date progress of literatures available on the subject of speciality chemicals and fuels derived from biomass through LA platform. The mechanism and current technologies for the production of LA are reviewed and compared. The potential theoretical calculation methods such as ab initio methods and density functional theories to predict the reaction pathway was also commented. The various transformation methods started from LA to speciality chemicals and fuels are critically reviewed. Among the various products, γ-valerolactone, 2-methyltetrahydrofuran and levuinate esters have been identified as promising fuels. The commercial diphenolic acid and delta-aminolevulinic acid have been widely utilized in many areas. The potential applications as well as fuel properties of these products are also discussed.
Author Jarvis, Cody
Yan, Kai
Yan, Yong
Gu, Jing
Author_xml – sequence: 1
  givenname: Kai
  surname: Yan
  fullname: Yan, Kai
  email: kai_yan@brown.edu
  organization: School of Engineering, Brown University, Providence, RI, USA
– sequence: 2
  givenname: Cody
  surname: Jarvis
  fullname: Jarvis, Cody
  organization: Department of Chemistry, Lakehead University, Thunder Bay, ON, Canada
– sequence: 3
  givenname: Jing
  surname: Gu
  fullname: Gu, Jing
  organization: Department of Chemistry, Princeton University, Princeton, NJ, USA
– sequence: 4
  givenname: Yong
  surname: Yan
  fullname: Yan, Yong
  organization: Department of Chemistry, Princeton University, Princeton, NJ, USA
BookMark eNp9kM9KAzEQh4NUsK2-gKe8wK75s5tkxUspWoWCHvQcstmEpqS7JUkLfXuzrScPvUyG_OYbmG8GJv3QGwAeMSoxwuxpW4ZoQkkQrkvES0TwDZhiwZsCsQZNck9ZVSBK8B2YxbhFeVBwOgWbrzB0B53c0EPVd1CrpPwpOQ1TUH20Q9ipczhY6M3x4F2fM6Vd9wwXcO9VGkdgLjDujXbKu3SCemN2Tisfzzvtwfh4D25t_jAPf-8c_Ly9fi_fi_Xn6mO5WBe6QjQVtRCK60ozxkSLOTdUYVuThilccUqpQrXlzBKOVWMIqnDDurrloiVYUIpbOgfksleHIcZgrNwHt1PhJDGSoyu5laMrObqSiMvsKkPiH6RdOt-dLTh_HX25oPlGc3Q5jdqZXpvOBaOT7AZ3Df8FI1CIWw
CitedBy_id crossref_primary_10_1039_C6GC02415G
crossref_primary_10_32933_ActaInnovations_35_3
crossref_primary_10_1039_C9GC01651A
crossref_primary_10_1016_j_psep_2018_05_015
crossref_primary_10_1002_cssc_202000175
crossref_primary_10_1007_s11244_019_01147_4
crossref_primary_10_1039_C8NJ03569E
crossref_primary_10_1016_j_jcat_2022_08_013
crossref_primary_10_1021_acsomega_2c03424
crossref_primary_10_1002_cjoc_201900433
crossref_primary_10_1007_s11244_022_01605_6
crossref_primary_10_1016_j_rser_2018_06_016
crossref_primary_10_1021_acssuschemeng_9b00734
crossref_primary_10_1039_D4CY00045E
crossref_primary_10_1002_jctb_6810
crossref_primary_10_1007_s10562_017_2241_z
crossref_primary_10_1021_acs_iecr_8b02464
crossref_primary_10_3389_fchem_2022_979353
crossref_primary_10_1002_cssc_201900745
crossref_primary_10_1007_s10562_021_03701_w
crossref_primary_10_3390_chemengineering2010007
crossref_primary_10_1016_j_fuproc_2021_106893
crossref_primary_10_1002_jctb_7596
crossref_primary_10_1126_sciadv_abc0274
crossref_primary_10_1088_1757_899X_729_1_012109
crossref_primary_10_1016_j_fuel_2021_122056
crossref_primary_10_1016_j_biotechadv_2021_107706
crossref_primary_10_1021_acssuschemeng_8b06744
crossref_primary_10_1016_j_biortech_2021_125977
crossref_primary_10_1016_j_cattod_2024_115165
crossref_primary_10_1021_acs_chemrev_0c00158
crossref_primary_10_1016_j_rser_2017_04_016
crossref_primary_10_1007_s11244_019_01161_6
crossref_primary_10_1039_D1CY01450A
crossref_primary_10_1007_s10562_018_2618_7
crossref_primary_10_1021_acs_iecr_8b00273
crossref_primary_10_1039_C9GC01706B
crossref_primary_10_1007_s11356_024_33968_6
crossref_primary_10_1021_acsomega_9b04406
crossref_primary_10_1021_acssuschemeng_0c04450
crossref_primary_10_1016_j_molliq_2019_02_053
crossref_primary_10_1021_acsaem_9b01439
crossref_primary_10_1039_D4RA06038E
crossref_primary_10_1088_1755_1315_65_1_012042
crossref_primary_10_1016_j_cattod_2024_114989
crossref_primary_10_1016_j_catcom_2020_105971
crossref_primary_10_1016_j_fuproc_2021_107097
crossref_primary_10_1016_j_apsusc_2024_159681
crossref_primary_10_1002_ente_201700594
crossref_primary_10_1021_acssuschemeng_8b00412
crossref_primary_10_32604_jrm_2021_011646
crossref_primary_10_1021_acs_iecr_0c00255
crossref_primary_10_1007_s13399_022_03444_7
crossref_primary_10_1002_cplu_202300381
crossref_primary_10_1016_j_jct_2017_05_011
crossref_primary_10_1016_j_jenvman_2018_04_105
crossref_primary_10_1016_j_cattod_2020_02_028
crossref_primary_10_1016_j_fuel_2019_116208
crossref_primary_10_1016_j_renene_2019_04_058
crossref_primary_10_3389_fenrg_2023_1133514
crossref_primary_10_1016_j_scitotenv_2022_153426
crossref_primary_10_1016_j_rser_2019_05_039
crossref_primary_10_1016_j_rser_2017_02_042
crossref_primary_10_2174_2213346107666200129104358
crossref_primary_10_1016_j_mcat_2021_112049
crossref_primary_10_1016_j_jct_2017_03_030
crossref_primary_10_1002_ente_201500343
crossref_primary_10_1021_acs_chemrev_7b00395
crossref_primary_10_1039_D2CY01325H
crossref_primary_10_1002_pol_20210399
crossref_primary_10_1016_j_cej_2018_12_111
crossref_primary_10_1016_j_biombioe_2021_106261
crossref_primary_10_1002_cctc_202201170
crossref_primary_10_1016_j_fuel_2020_118032
crossref_primary_10_3390_app8020259
crossref_primary_10_1016_j_rser_2021_111253
crossref_primary_10_1016_j_fluid_2018_07_014
crossref_primary_10_1002_cplu_201500492
crossref_primary_10_1002_slct_202000099
crossref_primary_10_1007_s13399_022_02498_x
crossref_primary_10_1080_07388551_2021_1939261
crossref_primary_10_3390_su13010128
crossref_primary_10_1016_j_fuel_2023_129447
crossref_primary_10_1039_D3SU00140G
crossref_primary_10_3390_en11020404
crossref_primary_10_1016_j_indcrop_2024_118309
crossref_primary_10_1039_C9CY02567G
crossref_primary_10_1016_j_cej_2021_132433
crossref_primary_10_1039_D1NJ04800G
crossref_primary_10_1021_acs_energyfuels_9b01583
crossref_primary_10_1016_j_enconman_2019_112442
crossref_primary_10_1039_D0PY00705F
crossref_primary_10_1021_acssuschemeng_1c03247
crossref_primary_10_1039_C7CY00902J
crossref_primary_10_1002_kin_21087
crossref_primary_10_1039_C7CY00274B
crossref_primary_10_1016_j_supflu_2015_11_002
crossref_primary_10_1021_acs_iecr_8b01283
crossref_primary_10_1016_j_fuel_2025_135153
crossref_primary_10_3390_catal6120196
crossref_primary_10_1016_j_molliq_2021_117278
crossref_primary_10_1021_acscatal_6b01883
crossref_primary_10_1039_C9GC02365H
crossref_primary_10_1016_j_biombioe_2025_107683
crossref_primary_10_1016_j_cej_2020_125750
crossref_primary_10_3390_catal6090131
crossref_primary_10_1016_j_apcatb_2021_120219
crossref_primary_10_1039_D1NJ05777D
crossref_primary_10_9767_bcrec_16_4_12197_904_915
crossref_primary_10_1021_acssuschemeng_1c02845
crossref_primary_10_3389_fchem_2020_00221
crossref_primary_10_1016_j_fuel_2018_09_148
crossref_primary_10_1016_j_jcat_2023_115177
crossref_primary_10_1016_j_apcata_2019_117309
crossref_primary_10_1016_j_rser_2018_02_019
crossref_primary_10_1016_j_cej_2024_152141
crossref_primary_10_1016_j_fuel_2018_03_120
crossref_primary_10_1016_j_jiec_2021_02_018
crossref_primary_10_1016_j_fuproc_2022_107185
crossref_primary_10_1016_j_cattod_2022_08_012
crossref_primary_10_1016_j_gee_2019_05_002
crossref_primary_10_1070_RCR5018
crossref_primary_10_1016_j_jcou_2020_101158
crossref_primary_10_3390_nano13061129
crossref_primary_10_1016_j_molcata_2016_10_032
crossref_primary_10_1021_acs_iecr_6b03900
crossref_primary_10_3762_bjoc_12_207
crossref_primary_10_1039_D0SE01257B
crossref_primary_10_1021_acssuschemeng_1c00554
crossref_primary_10_1007_s12039_024_02317_y
crossref_primary_10_1016_j_catcom_2023_106673
crossref_primary_10_1088_1757_899X_778_1_012140
crossref_primary_10_1039_C8GC03264E
crossref_primary_10_1021_acssuschemeng_2c00309
crossref_primary_10_1007_s10934_021_01131_y
crossref_primary_10_1016_j_apcata_2025_120238
crossref_primary_10_1002_cjoc_201600726
crossref_primary_10_3390_molecules24152760
crossref_primary_10_1016_j_biortech_2018_01_141
crossref_primary_10_3390_molecules201219760
crossref_primary_10_1016_j_mcat_2022_112499
crossref_primary_10_3846_jeelm_2022_16744
crossref_primary_10_3390_molecules28010442
crossref_primary_10_1002_cctc_202301291
crossref_primary_10_1016_j_rser_2018_12_007
crossref_primary_10_1021_acs_joc_3c01870
crossref_primary_10_1039_D0NJ01180K
crossref_primary_10_1016_j_carres_2022_108529
crossref_primary_10_1039_C6RA06050A
crossref_primary_10_1016_j_catcom_2019_02_022
crossref_primary_10_3390_en11051223
crossref_primary_10_1016_j_jcis_2021_05_161
crossref_primary_10_1016_j_jclepro_2022_132771
crossref_primary_10_1039_C6RA26469G
crossref_primary_10_1080_17458080_2016_1214985
crossref_primary_10_1002_slct_201702580
crossref_primary_10_1126_sciadv_abe0026
crossref_primary_10_1021_acssuschemeng_6b01834
crossref_primary_10_1021_acscatal_7b01786
crossref_primary_10_1039_D0CS00177E
crossref_primary_10_52396_JUSTC_2021_0268
crossref_primary_10_1016_j_catcom_2022_106430
crossref_primary_10_5059_yukigoseikyokaishi_78_856
crossref_primary_10_1016_j_fuel_2022_125213
crossref_primary_10_1016_j_cattod_2017_03_008
crossref_primary_10_1002_cctc_201900807
crossref_primary_10_1007_s43979_023_00058_4
crossref_primary_10_1002_cctc_201801843
crossref_primary_10_1038_s41598_018_38051_y
crossref_primary_10_1021_acssuschemeng_6b02244
crossref_primary_10_1002_aic_17973
crossref_primary_10_1016_j_biortech_2024_130301
crossref_primary_10_1021_acssuschemeng_6b02338
crossref_primary_10_1111_ics_12564
crossref_primary_10_7849_ksnre_2021_0005
crossref_primary_10_1016_j_cattod_2024_114902
crossref_primary_10_1039_D4CY01467G
crossref_primary_10_1016_j_jenvman_2021_114385
crossref_primary_10_1016_j_tgchem_2024_100037
crossref_primary_10_1016_j_cattod_2016_05_030
crossref_primary_10_1016_j_fuproc_2021_106958
crossref_primary_10_1021_acs_energyfuels_9b03508
crossref_primary_10_3390_molecules28041527
crossref_primary_10_1039_D2RA01379G
crossref_primary_10_1155_2018_1920180
crossref_primary_10_1002_cssc_201902988
crossref_primary_10_1002_jctb_6318
crossref_primary_10_3390_en11030621
crossref_primary_10_1007_s12649_022_01948_x
crossref_primary_10_1360_SSV_2023_0067
crossref_primary_10_1021_acs_energyfuels_8b00378
crossref_primary_10_1002_jctb_5352
crossref_primary_10_1007_s13738_019_01677_4
crossref_primary_10_1039_C9NJ00191C
crossref_primary_10_1016_j_egypro_2017_03_374
crossref_primary_10_1016_j_ecmx_2022_100222
crossref_primary_10_1016_j_tgchem_2024_100046
crossref_primary_10_3390_catal7080235
crossref_primary_10_1007_s12649_020_00997_4
crossref_primary_10_1016_j_fuel_2022_123137
crossref_primary_10_1039_D2SE01583H
crossref_primary_10_1016_j_apcata_2017_09_007
crossref_primary_10_1016_j_seppur_2023_123166
crossref_primary_10_1016_j_biortech_2018_05_040
crossref_primary_10_1039_D2SE01503J
crossref_primary_10_1007_s12649_020_01221_z
crossref_primary_10_1016_j_rser_2016_11_110
crossref_primary_10_1016_j_mcat_2021_111483
crossref_primary_10_1002_adsc_201801656
crossref_primary_10_1021_acs_chemrev_9b00846
crossref_primary_10_1039_C6RA24218A
crossref_primary_10_1007_s11164_021_04646_w
crossref_primary_10_1039_D0CS00041H
crossref_primary_10_1039_D1GC02919C
crossref_primary_10_1007_s11814_020_0521_6
crossref_primary_10_1088_1742_6596_1363_1_012096
crossref_primary_10_1016_j_materresbull_2020_111128
crossref_primary_10_1002_cctc_202100032
crossref_primary_10_1021_acs_energyfuels_7b03987
crossref_primary_10_1016_j_biortech_2016_11_063
crossref_primary_10_1016_j_jiec_2024_04_008
crossref_primary_10_1016_j_rser_2017_10_038
crossref_primary_10_1016_j_micromeso_2018_12_009
crossref_primary_10_1021_acssuschemeng_9b00778
crossref_primary_10_1021_acssuschemeng_9b06636
crossref_primary_10_1016_j_rser_2018_04_043
crossref_primary_10_1039_C7RA12994G
crossref_primary_10_3390_catal6070107
crossref_primary_10_1007_s41660_019_00097_4
crossref_primary_10_1039_D3RE00497J
crossref_primary_10_1021_acs_energyfuels_3c00948
crossref_primary_10_1002_celc_201900734
crossref_primary_10_1002_ente_201800524
crossref_primary_10_1007_s12649_021_01485_z
crossref_primary_10_1021_acssuschemeng_5b01480
crossref_primary_10_1039_C5RA27513J
crossref_primary_10_1039_D1MA00197C
crossref_primary_10_1039_D0GC01082K
crossref_primary_10_1002_bbb_2352
crossref_primary_10_1002_slct_201800132
crossref_primary_10_1080_17597269_2018_1489673
crossref_primary_10_3390_ijms23020799
crossref_primary_10_1002_tcr_201600102
crossref_primary_10_1002_bbb_2351
crossref_primary_10_1016_j_cej_2024_152677
crossref_primary_10_1016_j_catcom_2022_106516
crossref_primary_10_3390_pr10040734
crossref_primary_10_1016_j_cej_2019_05_042
crossref_primary_10_1021_acscatal_7b03530
crossref_primary_10_3390_catal13071144
crossref_primary_10_3390_su132413919
crossref_primary_10_1002_slct_201702899
crossref_primary_10_3390_su11133604
crossref_primary_10_3390_molecules29163779
crossref_primary_10_1016_j_gee_2020_09_009
crossref_primary_10_1088_1361_6528_abfabb
crossref_primary_10_1016_j_jiec_2016_07_059
crossref_primary_10_1016_j_carbpol_2017_10_064
crossref_primary_10_1002_cctc_201801381
crossref_primary_10_1016_j_indcrop_2018_12_082
crossref_primary_10_3390_catal10091006
crossref_primary_10_1016_j_biteb_2020_100514
crossref_primary_10_1016_j_cattod_2019_02_020
crossref_primary_10_1007_s11144_018_1421_1
crossref_primary_10_1021_acssuschemeng_8b06553
crossref_primary_10_1088_1755_1315_272_2_022100
crossref_primary_10_1016_j_cattod_2016_12_019
crossref_primary_10_1155_2019_5710708
crossref_primary_10_1021_acs_iecr_5c00115
crossref_primary_10_1039_D0GC01725F
crossref_primary_10_1002_cssc_201802066
crossref_primary_10_3390_catal8040169
crossref_primary_10_1016_j_jbiotec_2024_09_015
crossref_primary_10_1039_C9CY00168A
crossref_primary_10_1016_j_indcrop_2019_112031
crossref_primary_10_1016_j_ijbiomac_2024_136061
crossref_primary_10_1021_acs_iecr_2c00931
crossref_primary_10_1016_j_jclepro_2017_09_103
crossref_primary_10_1039_C9GC03056E
crossref_primary_10_1016_j_cattod_2022_06_016
crossref_primary_10_1039_D2GC03444A
crossref_primary_10_1039_C9NJ03239H
crossref_primary_10_3390_sym17010082
Cites_doi 10.1016/S0040-4039(00)94793-2
10.1016/0141-0229(84)90012-7
10.1002/anie.201002060
10.1016/j.rser.2014.05.084
10.1002/cctc.201300956
10.1002/cssc.201100380
10.1039/C2CY20689G
10.1021/cr050989d
10.1007/s11244-008-9166-0
10.1021/cr068360d
10.1080/00397919408010567
10.1016/S0921-3449(99)00047-6
10.1016/j.catcom.2011.10.001
10.1039/c004654j
10.1002/cssc.200900092
10.1039/c3gc37065h
10.1002/cssc.201100608
10.1126/science.1184362
10.1039/c3ra43619e
10.1002/cssc.200900136
10.1039/C3GC41803K
10.1016/j.catcom.2011.12.004
10.1016/j.rser.2013.04.019
10.1039/c3gc40909k
10.1039/b922014c
10.1016/j.polymer.2012.02.026
10.1146/annurev-chembioeng-073009-100935
10.1039/b801641k
10.1016/S1381-1169(01)00495-2
10.1016/j.rser.2013.11.006
10.1016/j.apcatb.2010.07.029
10.1021/ja01375a033
10.1021/sc400229w
10.1016/j.catcom.2013.01.010
10.1039/C5CC01463H
10.1016/j.apenergy.2011.05.049
10.1016/j.biortech.2010.10.018
10.1002/anie.201007582
10.1016/0926-860X(96)00136-6
10.1002/cssc.200900281
10.1016/j.rser.2014.07.003
10.1038/bjc.1992.175
10.1139/v74-480
10.1016/j.cattod.2008.04.017
10.1016/0926-860X(94)85008-9
10.1039/b708754c
10.2172/926125
10.1126/science.1126337
10.1080/00986445.2013.775646
10.1002/anie.201000655
10.1007/s10562-009-0160-3
10.1016/j.apcatb.2011.04.009
10.1021/ie00025a004
10.1023/A:1014857703817
10.1016/j.fuel.2013.06.042
10.1016/j.apcatb.2007.12.020
10.1039/c2cc30239j
10.1002/anie.200902281
10.1042/bj0700071
10.1016/j.biombioe.2014.11.007
10.1016/S0960-8524(01)00144-4
10.1016/j.polymer.2003.09.041
10.1039/c2gc16599f
10.3390/molecules15085258
10.1021/ie061186z
10.1007/s10853-007-2021-z
10.1205/cherd05038
10.1016/j.biortech.2008.02.045
10.1080/07328309708007350
10.1021/ja803983h
10.1016/S1004-9541(06)60139-0
10.1039/c1ee01418h
10.1104/pp.53.2.297
10.1016/j.apcata.2012.03.020
10.1002/cctc.201200113
10.1002/pola.24541
10.1002/prac.18400210121
10.1016/0144-4565(87)90046-1
10.1039/c2ee22111j
10.1016/j.rser.2014.07.209
10.1016/j.rser.2014.11.092
10.1016/j.carres.2008.09.008
10.15376/biores.9.2.3264-3275
10.1021/ie500318t
10.1007/s11051-013-1906-9
10.1016/0008-6215(90)84096-D
10.1016/j.apenergy.2010.07.016
10.1016/j.apcata.2012.08.014
10.1039/b900229b
10.1039/c3cc40980e
10.1021/ja01646a053
10.1016/j.apcatb.2015.04.030
10.1002/star.19900420808
10.1016/j.rser.2013.03.037
10.1016/j.apcatb.2012.09.029
10.1023/A:1009017929727
10.1021/jp101418f
10.1016/j.jcat.2006.05.026
10.1039/b702739g
10.1002/cssc.200800216
10.1039/C2GC36630D
10.1039/c3ra22158j
10.1007/BF02249141
10.1039/B712863K
10.1021/bk-2007-0954.ch017
10.1021/ie051088y
10.1016/j.tetlet.2010.02.148
10.1080/07352689509382363
10.1002/clen.200700100
10.1016/S0008-6215(00)82742-1
10.1016/S0040-4039(96)02419-7
10.1016/j.energy.2013.05.035
10.1039/B918922J
10.1039/b910416j
10.1016/j.fuel.2011.02.022
10.1039/a704544a
10.1021/bk-2001-0784.ch005
10.1016/j.apcata.2013.08.037
10.1016/j.rser.2014.08.075
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.rser.2015.07.021
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0690
EndPage 997
ExternalDocumentID 10_1016_j_rser_2015_07_021
S1364032115006681
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
Y6R
ZCA
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c403t-588a7c4c6668b177e3a1f5296a147333a05f76f271a9e204196d5b78b218331b3
IEDL.DBID .~1
ISSN 1364-0321
IngestDate Tue Jul 01 01:56:39 EDT 2025
Thu Apr 24 23:07:51 EDT 2025
Fri Feb 23 02:19:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Biomass
Levulinic acid
Fuels
Speciality chemicals
Technologies
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-588a7c4c6668b177e3a1f5296a147333a05f76f271a9e204196d5b78b218331b3
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_rser_2015_07_021
crossref_citationtrail_10_1016_j_rser_2015_07_021
elsevier_sciencedirect_doi_10_1016_j_rser_2015_07_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-01
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Renewable & sustainable energy reviews
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bourne, Stevens, Ke, Poliakoff (bib115) 2007; 44
Yan, Liao, Wu, Xie (bib116) 2013; 3
Geilen, vom Stein, Engendahl, Winterle, Liauw, Klankermayer (bib22) 2011; 50
MacDonald (bib102) 1974; 52
Kröger, Prüße, Vorlop (bib67) 2000; 13
Yang, Huang, Guo, Fu (bib122) 2013; 49
Serrano-Ruiz, Braden, West, Dumesic (bib75) 2010; 100
Saravanamurugan, Riisager (bib139) 2012; 17
Shen, Sun, Wang, Xu, Sun (bib96) 2014; 9
Zuo, Lane, Culy, Schultz, Pullar, Waxman (bib125) 2013; 129
Fernandes, Rocha, Mai, Mota, Teixeira (bib137) 2012; 425
Rebeiz, Montazer-Zouhoor, Hopen, Wu (bib99) 1984; 6
Yan, Wu, An, Xie (bib28) 2014; 201
Mascal, Nikitin (bib57) 2009; 2
Martiná, Marcel (bib77) 2013; 3
Zúñiga, Lligadas, Ronda, Galià, Cádiz (bib88) 2012; 53
Guo, Li, Clark (bib91) 2007; 9
Vyver, Thomas, Geboers, Keyzer, Smet, Dehaen (bib95) 2011; 4
Peng, Lin, Li, Yang (bib132) 2011; 88
Alonso, Bond, Dumesic (bib5) 2010; 12
Zhao, Wang, Zhao, Wang, Wang (bib69) 2011; 90
Kudakasseril, Raveendran, Hussain, Vijaya Raghavan (bib9) 2013; 25
Tarabanko, Chernyak, Aralova, Kuznetsov (bib64) 2002; 75
Zhang, Wu, Li, Zhang (bib12) 2012; 4
Hegner, Pereira, DeBoef, Lucht (bib71) 2010; 51
Corma, Iborra, Velty (bib29) 2007; 107
Farone W.A., Cuzens J.E. Method for the production of levulinic acid and its derivatives. US patent 6054611; 2000.
Bharathiraja, Chakravarthy, Kumar, Yuvaraj, Jayamuthunagai, Kumar (bib135) 2014; 38
Appleton, Duguid, Lee, Ha, Ha, Leeper (bib107) 1998; 1
Serrano-Ruiz, West, Dumesic (bib20) 2010; 1
Geilen, Engendahl, Harwardt, Marquardt, Klankermayer (bib113) 2010; 49
Otsuka M., Hirose Y., Kinoshita T., Masawa T. Manufacture of levulinic acid. US patent 37552849; 1973.
Chambon, Rataboul, Pinel, Cabiac, Guillon, Essayem (bib76) 2011; 105
Bond, Alonso, Wang, West, Dumesic (bib84) 2010; 327
Fábos, Koczó, Mehdi, Boda, Horváth (bib111) 2009; 2
Gurbuz, Wettstein, Dumesic (bib55) 2012; 5
Salak, Yoshida (bib68) 2006; 45
Bedwell, McRoberts, Phillips, Brown (bib101) 1992; 65
Lange, Price, Ayou, Louis, Petrus, Clarke (bib112) 2010; 49
Suganuma, Nakajima, Kitano, Yamaguchi, Kato, Hayashi (bib27) 2008; 130
Beale, Castelfranco (bib98) 1974; 53
Hayes, Fitzpatrick, Hayes, Ross (bib33) 2008
Zeng, Cheng, Chen, Zhan (bib65) 2009; 133
Hayes, Fitzpatrick, Hayes, Ross (bib106) 2006; 1
Román-Leshkov, Chheda, Dumesic (bib54) 2006; 312
Chen, Yu, Jin (bib79) 2011; 102
Manzer L.E. In catalysis for the conversion of biomass and its derivatives, editors. M. Behrens and A. K. Datye; 2013.
Alonso, Wettstein, Dumesic (bib19) 2013; 15
Jow, Rorrer, Hawley, Lamport (bib41) 1987; 4
Lilja, Murzin, Salmi, Aumo, Mäki-Arvela, Sundell (bib134) 2002; 182
BP. Statistical review of world energy. In: British Petroleum; 2012.
Kricheldorf, Hobzova, Schwarz (bib89) 2003; 44
Yan, Chen (bib118) 2013; 58
Horvat, Klaic, Metelko, Sunjic (bib42) 1985; 26
Sah, Ma (bib58) 1930; 52
Bart, Reidetschlager, Schatka, Lehmann (bib130) 1994; 33
Girisuta, Janssen, Heeres (bib74) 2007; 46
Yan, Jarvis, Lafleur, Qiao, Xie (bib108) 2013; 3
Yan, Lafleur, Wu, Liao, Ceng, Xie (bib109) 2013; 468
Zúñiga, Larrechi, Lligadas, Ronda, Galià, Cádiz (bib87) 2011; 49
Fitzpatrick S.W. Production of Levulinic acid from carbohydrate-containing materials. US patent 5608105; 1997.
Yan, Wu, Lafleur, Jarvis (bib6) 2014; 38
Girisuta, Janssen, Heeres (bib46) 2006; 84
Liu, Zeng, Deng, Liao, Pang, Guo (bib90) 2013; 15
Wettstein, Alonso, Chong, Dumesic (bib53) 2012; 5
Energy Independence and Security Act of 2007. In: U.S. D.O. Energy (Eds.). United States Congress, Washington, D.C.; 2007. p. 30-37.
Saladino, Pagliaccia, Argyropoulos, Crestini (bib15) 2007; 954
Qi, Watanabe, Aida, Smith (bib48) 2008; 10
Tolan (bib17) 2006
Zuo, Zhang, Fu (bib72) 2014; 6
Texaco/NYSERDA/Biofine. Ethyl levulinate D-975 Diesel Additive Test Program, Glenham, NY; 2000.
2004.
Moreau, Durand, Duhamet, Rivalier (bib36) 1997; 16
Pasquale, Vázquez, Romanelli, Baronetti (bib140) 2012; 18
Yan, Yang, Chai, Lu (bib21) 2015; 179
Kayser, Müller, García-González, Smirnova, Leitner, Domínguez de María (bib136) 2012; 445
Huber, Iborra, Corma (bib11) 2006; 106
Carlson L.J. Process for the manufactures of levulinic acid. US patent 3,065,263 ; 1962.
Yan, Yang, Pang, Liao (bib83) 2008; 36
Bader, Kontowicz (bib86) 1954; 76
Dabrowski, Kwasny, Kaminski, Beldowicz, Lewicka, Obukowicz (bib105) 2003; 60
Wang, Scott (bib104) 1997; 38
Gibson, Laver, Neuberger (bib97) 1958; 70
Guo, Li, Yu, Clark (bib92) 2008; 81
Bozell, Petersen (bib25) 2010; 12
Redmon B.C. Process for the production of levulinic acid. US patent 2,738,367; 1956.
Vyver, Geboers, Helsen, Yu, Thomas, Smet (bib94) 2012; 48
Upare, Lee, Hwang, Hwang, Lee, Halligudi (bib117) 2012; 4
Antal, Mok, Richards (bib40) 1990; 199
Chang, Ma, Cen (bib62) 2006; 14
Mulder (bib43) 1840; 21
Kuo, Poyraz, Jin, Meng, Pahalagedara, Chen (bib50) 2014; 16
Bozell, Moens, Elliott, Wang, Neuenscwander, Fitzpatrick (bib85) 2000; 28
Demirbas (bib127) 2011; 88
Olson, Kjelden, Schlag, Sharma (bib129) 2001; 784
Maity (bib31) 2015; 43
Kuster (bib44) 1990; 42
Shafizadeh, McGinnis, Philpot (bib38) 1972; 25
2002.
Ha, Lee, Ha, Park (bib103) 1994; 24
Lange, van de Graaf, Haan (bib34) 2009; 2
Conti J, Holtberg P, Doman LE, Smith KA, Vincent KR, Barden JL et al. World energy outlook 2011. In: Energy Information Administration; 2011.
Mansoor, Mariun, Ismail, Wahab (bib4) 2013; 24
Al-Shaal, Dzierbinski, Palkovits (bib121) 2014; 16
Leshkov, Dumesic (bib47) 2009; 52
U.S. Dep. Energy. . Roadmap for biomass technologies in the United States.
Werpy T.A., Holladay J.E., White J.F. . Top value added chemicals from biomass: I. Results of screening for potential candidates from sugars and synthesis gas. US Department of Energy.
Horváth, Mehdi, Fábos, Boda, Mika (bib110) 2008; 10
Chadwick, McDonnell, Brennan, Fagan, Everard (bib7) 2014; 30
Li, Hu, Li, Ma, Xu, Guo (bib93) 2009; 19
Yan, Lafleur, Liao (bib114) 2013; 15
Yan, Lafleur, Wu, Chai, Wu, Xie (bib8) 2015; 51
Assary, Redfern, Hammond, Greeley, Curtiss (bib39) 2010; 114
Mascal, Nikitin (bib51) 2010; 12
Lange (bib23) 2007
Lourvanij, Rorrer (bib61) 1994; 109
Takeuchi, Jin, Tohji, Enomoto (bib52) 2008; 43
Elliott D.C., Frye J.G. Hydrogenated 5-carbon compound and method of making. U.S. patent 5,883,266; 1999.
Tang, Zeng, Li, Hu, Sun, Liu (bib18) 2014; 40
Jow, Rorrer, Hawley, Lamport (bib66) 1987; 14
Yan, Lafleur, Liao, Xie (bib16) 2013; 6
Amarasekara, Williams, Ebede (bib35) 2008; 343
Du, Bi, Liu, Cao, He, Fan (bib120) 2012; 14
Moreau, Durand, Razigade, Duhamet, Faugeras, Rivalier (bib37) 1996; 145
Hayes (bib128) 2009; 145
Yan, Wu, Wen, Chen (bib138) 2013; 34
Maity (bib30) 2015; 43
Liu, Lotero, Goodwin (bib133) 2006; 242
Sievers, Musin, Marzialetti, Olarte, Agrawal, Jones (bib45) 2009; 2
Hu, Song, Wu, Gholizadeh, Li (bib131) 2013; 1
Efremov, Pervyshina, Kuznetsov (bib70) 1998; 34
Yan, Chen (bib119) 2014; 115
Mukherjee, Dumont, Raghavan (bib10) 2015; 72
Rinaldi, Meine, Stein, Palkovits, Schüth (bib49) 2010; 3
Girisuta, Danon, Manurung, Janssen, Heeres (bib78) 2008; 99
Peng, Lin, Zhang, Zhuang, Zhang, Gong (bib56) 2010; 15
Erner W.E. Synthetic liquid fuel and fuel mixtures for oil-burning devices. U.S. patent 4,364,743; 1982.
Repice R, Adler R, Berry J, Michaels J, Schmitt R, King RF et al. Annual energy review United States energy information administration: Washington, D.C.; 2011.
Yang, Wang, Jia, Qiu, Pang, Pan (bib73) 2014; 53
Fang, Hanna (bib26) 2002; 81
Rebeiz, Gut, Lee, Juvik, Rebeiz, Bouton (bib100) 1995; 14
Deng, Li, Lai, Fu, Guo (bib63) 2009; 48
Du (10.1016/j.rser.2015.07.021_bib120) 2012; 14
Alonso (10.1016/j.rser.2015.07.021_bib19) 2013; 15
Beale (10.1016/j.rser.2015.07.021_bib98) 1974; 53
Deng (10.1016/j.rser.2015.07.021_bib63) 2009; 48
Upare (10.1016/j.rser.2015.07.021_bib117) 2012; 4
Hegner (10.1016/j.rser.2015.07.021_bib71) 2010; 51
Lange (10.1016/j.rser.2015.07.021_bib34) 2009; 2
Hayes (10.1016/j.rser.2015.07.021_bib106) 2006; 1
Liu (10.1016/j.rser.2015.07.021_bib90) 2013; 15
Corma (10.1016/j.rser.2015.07.021_bib29) 2007; 107
Shen (10.1016/j.rser.2015.07.021_bib96) 2014; 9
Chambon (10.1016/j.rser.2015.07.021_bib76) 2011; 105
Zúñiga (10.1016/j.rser.2015.07.021_bib88) 2012; 53
10.1016/j.rser.2015.07.021_bib32
Salak (10.1016/j.rser.2015.07.021_bib68) 2006; 45
Dabrowski (10.1016/j.rser.2015.07.021_bib105) 2003; 60
Wang (10.1016/j.rser.2015.07.021_bib104) 1997; 38
Yang (10.1016/j.rser.2015.07.021_bib73) 2014; 53
Kricheldorf (10.1016/j.rser.2015.07.021_bib89) 2003; 44
Appleton (10.1016/j.rser.2015.07.021_bib107) 1998; 1
Bourne (10.1016/j.rser.2015.07.021_bib115) 2007; 44
Lange (10.1016/j.rser.2015.07.021_bib112) 2010; 49
Kayser (10.1016/j.rser.2015.07.021_bib136) 2012; 445
Yan (10.1016/j.rser.2015.07.021_bib83) 2008; 36
Leshkov (10.1016/j.rser.2015.07.021_bib47) 2009; 52
Yan (10.1016/j.rser.2015.07.021_bib8) 2015; 51
Antal (10.1016/j.rser.2015.07.021_bib40) 1990; 199
Tarabanko (10.1016/j.rser.2015.07.021_bib64) 2002; 75
Yan (10.1016/j.rser.2015.07.021_bib28) 2014; 201
Assary (10.1016/j.rser.2015.07.021_bib39) 2010; 114
Hayes (10.1016/j.rser.2015.07.021_bib128) 2009; 145
Lourvanij (10.1016/j.rser.2015.07.021_bib61) 1994; 109
Yan (10.1016/j.rser.2015.07.021_bib116) 2013; 3
10.1016/j.rser.2015.07.021_bib59
Alonso (10.1016/j.rser.2015.07.021_bib5) 2010; 12
Horvat (10.1016/j.rser.2015.07.021_bib42) 1985; 26
Girisuta (10.1016/j.rser.2015.07.021_bib46) 2006; 84
Serrano-Ruiz (10.1016/j.rser.2015.07.021_bib75) 2010; 100
Mukherjee (10.1016/j.rser.2015.07.021_bib10) 2015; 72
Yang (10.1016/j.rser.2015.07.021_bib122) 2013; 49
Tolan (10.1016/j.rser.2015.07.021_bib17) 2006
Bozell (10.1016/j.rser.2015.07.021_bib85) 2000; 28
Li (10.1016/j.rser.2015.07.021_bib93) 2009; 19
Rebeiz (10.1016/j.rser.2015.07.021_bib99) 1984; 6
Hu (10.1016/j.rser.2015.07.021_bib131) 2013; 1
Pasquale (10.1016/j.rser.2015.07.021_bib140) 2012; 18
MacDonald (10.1016/j.rser.2015.07.021_bib102) 1974; 52
Horváth (10.1016/j.rser.2015.07.021_bib110) 2008; 10
Shafizadeh (10.1016/j.rser.2015.07.021_bib38) 1972; 25
Amarasekara (10.1016/j.rser.2015.07.021_bib35) 2008; 343
Bharathiraja (10.1016/j.rser.2015.07.021_bib135) 2014; 38
Zhang (10.1016/j.rser.2015.07.021_bib12) 2012; 4
Jow (10.1016/j.rser.2015.07.021_bib66) 1987; 14
Bozell (10.1016/j.rser.2015.07.021_bib25) 2010; 12
Gurbuz (10.1016/j.rser.2015.07.021_bib55) 2012; 5
Moreau (10.1016/j.rser.2015.07.021_bib37) 1996; 145
Sievers (10.1016/j.rser.2015.07.021_bib45) 2009; 2
Suganuma (10.1016/j.rser.2015.07.021_bib27) 2008; 130
Zhao (10.1016/j.rser.2015.07.021_bib69) 2011; 90
Geilen (10.1016/j.rser.2015.07.021_bib22) 2011; 50
Bedwell (10.1016/j.rser.2015.07.021_bib101) 1992; 65
Girisuta (10.1016/j.rser.2015.07.021_bib74) 2007; 46
Vyver (10.1016/j.rser.2015.07.021_bib94) 2012; 48
Demirbas (10.1016/j.rser.2015.07.021_bib127) 2011; 88
Huber (10.1016/j.rser.2015.07.021_bib11) 2006; 106
Tang (10.1016/j.rser.2015.07.021_bib18) 2014; 40
10.1016/j.rser.2015.07.021_bib60
Yan (10.1016/j.rser.2015.07.021_bib16) 2013; 6
Takeuchi (10.1016/j.rser.2015.07.021_bib52) 2008; 43
Mascal (10.1016/j.rser.2015.07.021_bib57) 2009; 2
Zuo (10.1016/j.rser.2015.07.021_bib125) 2013; 129
Maity (10.1016/j.rser.2015.07.021_bib30) 2015; 43
Serrano-Ruiz (10.1016/j.rser.2015.07.021_bib20) 2010; 1
Efremov (10.1016/j.rser.2015.07.021_bib70) 1998; 34
Qi (10.1016/j.rser.2015.07.021_bib48) 2008; 10
Kröger (10.1016/j.rser.2015.07.021_bib67) 2000; 13
Guo (10.1016/j.rser.2015.07.021_bib92) 2008; 81
Kuo (10.1016/j.rser.2015.07.021_bib50) 2014; 16
Zúñiga (10.1016/j.rser.2015.07.021_bib87) 2011; 49
Yan (10.1016/j.rser.2015.07.021_bib109) 2013; 468
Kudakasseril (10.1016/j.rser.2015.07.021_bib9) 2013; 25
Yan (10.1016/j.rser.2015.07.021_bib119) 2014; 115
Yan (10.1016/j.rser.2015.07.021_bib6) 2014; 38
Kuster (10.1016/j.rser.2015.07.021_bib44) 1990; 42
Bader (10.1016/j.rser.2015.07.021_bib86) 1954; 76
Román-Leshkov (10.1016/j.rser.2015.07.021_bib54) 2006; 312
Rebeiz (10.1016/j.rser.2015.07.021_bib100) 1995; 14
Bond (10.1016/j.rser.2015.07.021_bib84) 2010; 327
Peng (10.1016/j.rser.2015.07.021_bib56) 2010; 15
Vyver (10.1016/j.rser.2015.07.021_bib95) 2011; 4
Lilja (10.1016/j.rser.2015.07.021_bib134) 2002; 182
Girisuta (10.1016/j.rser.2015.07.021_bib78) 2008; 99
Jow (10.1016/j.rser.2015.07.021_bib41) 1987; 4
Wettstein (10.1016/j.rser.2015.07.021_bib53) 2012; 5
Lange (10.1016/j.rser.2015.07.021_bib23) 2007
Fernandes (10.1016/j.rser.2015.07.021_bib137) 2012; 425
10.1016/j.rser.2015.07.021_bib82
Chadwick (10.1016/j.rser.2015.07.021_bib7) 2014; 30
10.1016/j.rser.2015.07.021_bib81
Zeng (10.1016/j.rser.2015.07.021_bib65) 2009; 133
10.1016/j.rser.2015.07.021_bib80
Maity (10.1016/j.rser.2015.07.021_bib31) 2015; 43
Chen (10.1016/j.rser.2015.07.021_bib79) 2011; 102
Bart (10.1016/j.rser.2015.07.021_bib130) 1994; 33
Yan (10.1016/j.rser.2015.07.021_bib118) 2013; 58
10.1016/j.rser.2015.07.021_bib14
10.1016/j.rser.2015.07.021_bib13
Yan (10.1016/j.rser.2015.07.021_bib21) 2015; 179
Geilen (10.1016/j.rser.2015.07.021_bib113) 2010; 49
Zuo (10.1016/j.rser.2015.07.021_bib72) 2014; 6
Yan (10.1016/j.rser.2015.07.021_bib114) 2013; 15
Al-Shaal (10.1016/j.rser.2015.07.021_bib121) 2014; 16
Fang (10.1016/j.rser.2015.07.021_bib26) 2002; 81
Yan (10.1016/j.rser.2015.07.021_bib108) 2013; 3
Gibson (10.1016/j.rser.2015.07.021_bib97) 1958; 70
Moreau (10.1016/j.rser.2015.07.021_bib36) 1997; 16
Fábos (10.1016/j.rser.2015.07.021_bib111) 2009; 2
Olson (10.1016/j.rser.2015.07.021_bib129) 2001; 784
Saladino (10.1016/j.rser.2015.07.021_bib15) 2007; 954
Peng (10.1016/j.rser.2015.07.021_bib132) 2011; 88
Yan (10.1016/j.rser.2015.07.021_bib138) 2013; 34
10.1016/j.rser.2015.07.021_bib24
Hayes (10.1016/j.rser.2015.07.021_bib33) 2008
Mulder (10.1016/j.rser.2015.07.021_bib43) 1840; 21
Sah (10.1016/j.rser.2015.07.021_bib58) 1930; 52
10.1016/j.rser.2015.07.021_bib123
10.1016/j.rser.2015.07.021_bib124
Rinaldi (10.1016/j.rser.2015.07.021_bib49) 2010; 3
Guo (10.1016/j.rser.2015.07.021_bib91) 2007; 9
10.1016/j.rser.2015.07.021_bib126
Chang (10.1016/j.rser.2015.07.021_bib62) 2006; 14
Martiná (10.1016/j.rser.2015.07.021_bib77) 2013; 3
Ha (10.1016/j.rser.2015.07.021_bib103) 1994; 24
Mansoor (10.1016/j.rser.2015.07.021_bib4) 2013; 24
Mascal (10.1016/j.rser.2015.07.021_bib51) 2010; 12
10.1016/j.rser.2015.07.021_bib1
10.1016/j.rser.2015.07.021_bib2
10.1016/j.rser.2015.07.021_bib3
Liu (10.1016/j.rser.2015.07.021_bib133) 2006; 242
Saravanamurugan (10.1016/j.rser.2015.07.021_bib139) 2012; 17
References_xml – volume: 53
  start-page: 1613
  year: 2012
  end-page: 1617
  ident: bib88
  article-title: Renewable polybenzoxazines based in diphenolic acid
  publication-title: Polymer
– volume: 12
  start-page: 370
  year: 2010
  end-page: 373
  ident: bib51
  article-title: High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl) furfural, levulinic acid, and levulinic esters via 5-(chloromethyl) furfural
  publication-title: Green Chem
– volume: 25
  start-page: 23
  year: 1972
  end-page: 33
  ident: bib38
  article-title: Thermal degradation of xylan and related model compounds
  publication-title: Carbohydr Res
– volume: 784
  start-page: 51
  year: 2001
  end-page: 63
  ident: bib129
  article-title: Chemicals and materials from renewable resources
  publication-title: ACS Symp Ser
– volume: 10
  start-page: 799
  year: 2008
  end-page: 805
  ident: bib48
  article-title: Catalytic dehydration of fructose into 5-hydroxymethylfurfural by Ion-exchange resin in mixed-aqueous system by microwave heating
  publication-title: Green Chem
– volume: 5
  start-page: 383
  year: 2012
  end-page: 387
  ident: bib55
  article-title: Conversion of hemicellolose to furfural and levuinci acid using biphasic reators with alkyphenol solevents
  publication-title: ChemSusChem
– volume: 145
  start-page: 138
  year: 2009
  end-page: 151
  ident: bib128
  article-title: An examination of biorefining processes, catalysis and challenges
  publication-title: Catal Today
– volume: 42
  start-page: 314
  year: 1990
  end-page: 321
  ident: bib44
  article-title: 5-Hydroxymethylfurfural (HMF). a review focussing on its manufacture
  publication-title: Starch/Stärke
– volume: 2
  start-page: 767
  year: 2009
  end-page: 769
  ident: bib111
  article-title: Bio-oxygenates and the peroxide number: a safety issue alert
  publication-title: Energy Environ Sci
– reference: Texaco/NYSERDA/Biofine. Ethyl levulinate D-975 Diesel Additive Test Program, Glenham, NY; 2000.
– volume: 72
  start-page: 143
  year: 2015
  end-page: 183
  ident: bib10
  article-title: Review: sustainable production of hydroxymethylfurfural and levulinic acid: challenges and opportunities
  publication-title: Biomass Bioenergy
– volume: 34
  start-page: 182
  year: 1998
  end-page: 185
  ident: bib70
  article-title: Production of levulinic acid from wood raw material in the presence of sulfuric acid and its salts
  publication-title: Chem Nat Compd
– volume: 81
  start-page: 182
  year: 2008
  end-page: 191
  ident: bib92
  article-title: Mesoporous H
  publication-title: Appl Catal, B
– volume: 3
  start-page: 927
  year: 2013
  end-page: 931
  ident: bib77
  article-title: Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts
  publication-title: Catal Sci Technol
– volume: 425
  start-page: 199
  year: 2012
  end-page: 204
  ident: bib137
  article-title: Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts
  publication-title: Appl Catal, A
– volume: 327
  start-page: 1110
  year: 2010
  end-page: 1114
  ident: bib84
  article-title: Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels
  publication-title: Science
– volume: 9
  start-page: 3264
  year: 2014
  end-page: 3275
  ident: bib96
  article-title: Catalytic synthesis of diphenolic acid from levulinic acid over Bronsted acidic ionic liquids
  publication-title: BioResources
– volume: 21
  start-page: 219
  year: 1840
  ident: bib43
  publication-title: J Prakt Chem
– reference: Redmon B.C. Process for the production of levulinic acid. US patent 2,738,367; 1956.
– reference: ; 2004.
– volume: 16
  start-page: 785
  year: 2014
  end-page: 791
  ident: bib50
  article-title: Heterogeneous acidic TiO
  publication-title: Green Chem
– volume: 40
  start-page: 608
  year: 2014
  end-page: 620
  ident: bib18
  article-title: Production of γ-valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply
  publication-title: Renewable Sustainable Energy Rev
– volume: 242
  start-page: 278
  year: 2006
  end-page: 286
  ident: bib133
  article-title: A comparison of the esterification of acetic acid with methanol using heterogeneous versus homogeneous acid catalysis
  publication-title: J Catal
– volume: 179
  start-page: 292
  year: 2015
  end-page: 304
  ident: bib21
  article-title: Catalytic reactions of gamma-valerolactone: a platform to fuels and value-added chemicals
  publication-title: Appl Catal B
– volume: 1
  start-page: 89
  year: 1998
  end-page: 101
  ident: bib107
  article-title: Synthesis of analogues of
  publication-title: J Chem Soc Perkin Trans
– volume: 14
  start-page: 935
  year: 2012
  end-page: 939
  ident: bib120
  article-title: Tunable copper-catalyzed chemoselective hydrogenolysis of biomass-derived γ-valerolactone into 1,4-pentanediol or 2-methyltetrahydrofuran
  publication-title: Green Chem
– volume: 15
  start-page: 1
  year: 2013
  end-page: 7
  ident: bib114
  article-title: Facile synthesis of palladium nanoparticles supported on multi-walled carbon nanotube for efficient hydrogenation of biomass-derived levulinic acid
  publication-title: J Nanopart Res
– volume: 9
  start-page: 839
  year: 2007
  end-page: 841
  ident: bib91
  article-title: The synthesis of diphenolic acid using the periodic mesoporous H
  publication-title: Green Chem
– volume: 58
  start-page: 357
  year: 2013
  end-page: 363
  ident: bib118
  article-title: Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized Noble-metal-free Cu–Cr catalyst
  publication-title: Energy
– volume: 90
  start-page: 2289
  year: 2011
  end-page: 2293
  ident: bib69
  article-title: High selective production of 5-hydroymethylfurfural from fructose by a solid heteropolyacid catalyst
  publication-title: Fuel
– volume: 24
  start-page: 306
  year: 2013
  end-page: 313
  ident: bib4
  article-title: A guidance chart for most probable solution directions in sustainable energy developments
  publication-title: Renewable Sustainable Energy Rev
– volume: 130
  start-page: 12787
  year: 2008
  end-page: 12793
  ident: bib27
  article-title: Hydrolysis of cellulose by amorphous carbon bearing SO
  publication-title: J Am Chem Soc
– volume: 19
  start-page: 8628
  year: 2009
  end-page: 8638
  ident: bib93
  article-title: Design of mesostructured H
  publication-title: J Mater Chem
– reference: Erner W.E. Synthetic liquid fuel and fuel mixtures for oil-burning devices. U.S. patent 4,364,743; 1982.
– volume: 129
  start-page: 342
  year: 2013
  end-page: 350
  ident: bib125
  article-title: Sulfonic acid functionalized mesoporous SBA-15 catalysts for biodiesel production
  publication-title: Appl Catal, B
– volume: 4
  start-page: 1749
  year: 2012
  end-page: 1752
  ident: bib117
  article-title: Direct hydrocyclization of biomass-derived levulinic acid to 2-methyltetrahydrofuran over nanocomposite copper/silica catalysts
  publication-title: ChemSusChem
– volume: 49
  start-page: 1219
  year: 2011
  end-page: 1227
  ident: bib87
  article-title: Polybenzoxazines from renewable diphenolic acid
  publication-title: J Polym Sci, Part A: Polym Chem
– reference: Manzer L.E. In catalysis for the conversion of biomass and its derivatives, editors. M. Behrens and A. K. Datye; 2013.
– volume: 26
  start-page: 2111
  year: 1985
  end-page: 2114
  ident: bib42
  article-title: Mechanism of levulinic acid formation
  publication-title: Tetrahedron Lett
– volume: 14
  start-page: 329
  year: 1995
  end-page: 366
  ident: bib100
  article-title: Photodynamics of porphyric insecticides
  publication-title: Crit Rev Plant Sci
– volume: 445
  start-page: 180
  year: 2012
  end-page: 186
  ident: bib136
  article-title: Dried chitosan-gels as organocatalysts for the production of biomass-derived platform chemicals
  publication-title: Appl Catal, A
– volume: 49
  start-page: 4479
  year: 2010
  end-page: 4483
  ident: bib112
  article-title: Valeric biofuels: a platform of cellulosic transportation fuels
  publication-title: Angew Chem Int Ed
– volume: 107
  start-page: 2411
  year: 2007
  end-page: 2502
  ident: bib29
  article-title: Chemical routes for the transformation of biomass into chemicals
  publication-title: Chem Rev
– start-page: 139
  year: 2008
  end-page: 164
  ident: bib33
  article-title: The biofine process-production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks
  publication-title: Biorefineries-industrial processes and products: status Quo and future directions
– volume: 6
  start-page: 753
  year: 2014
  end-page: 755
  ident: bib72
  article-title: Catalytic conversion of cellulose into levulinic acid by a sulfonated chloromethyl polystyrene solid acid catalyst
  publication-title: ChemCatChem
– volume: 3
  start-page: 3853
  year: 2013
  end-page: 3856
  ident: bib116
  article-title: A Noble-metal free Cu-catalyst derived from hydrotalcite for highly efficient hydrogenation of biomass-derived furfural and levulinic acid
  publication-title: RSC Adv
– volume: 53
  start-page: 6562
  year: 2014
  end-page: 6568
  ident: bib73
  article-title: Selective decomposition of cellulose into glucose and levulinic acid over Fe-resin catalyst in NaCl solution under hydrothermal conditions
  publication-title: Ind Eng Chem Res
– volume: 15
  start-page: 81
  year: 2013
  end-page: 84
  ident: bib90
  article-title: Brønsted acidic ionic liquids catalyze the high-yield production of diphenolic acid/esters from renewable levulinic acid
  publication-title: Green Chem
– volume: 53
  start-page: 297
  year: 1974
  end-page: 303
  ident: bib98
  article-title: The biosynthesis of delta-aminolevulinic acid in higher plants. II. Formation of 14C-delta-aminolevulinic acid from labelled precursors in greening plant tissues
  publication-title: Plant Phys
– volume: 312
  start-page: 1933
  year: 2006
  end-page: 1937
  ident: bib54
  article-title: Phase modifiers promote efficient production of hydroxymethylfurfural from fructose
  publication-title: Science
– volume: 46
  start-page: 1696
  year: 2007
  end-page: 1708
  ident: bib74
  article-title: Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid
  publication-title: Ind Eng Chem Res
– volume: 48
  start-page: 3497
  year: 2012
  end-page: 3499
  ident: bib94
  article-title: Thiol-promoted catalytic synthesis of diphenolic acid with sulfonated hyperbranched poly(arylene oxindole)s
  publication-title: Chem Commun
– volume: 4
  start-page: 185
  year: 1987
  end-page: 194
  ident: bib41
  article-title: Dehydration of
  publication-title: Biomass
– volume: 34
  start-page: 58
  year: 2013
  end-page: 63
  ident: bib138
  article-title: One-step synthesis of mesoporous H
  publication-title: Catal Commun
– volume: 201
  start-page: 456
  year: 2014
  end-page: 465
  ident: bib28
  article-title: Facile synthesis of reusable CoAl-hydrotalcite catalyst for dehydration of biomass-derived fructose into platform chemical 5-hydroxymethylfurfural
  publication-title: Chem Eng Commun
– volume: 343
  start-page: 3021
  year: 2008
  end-page: 3024
  ident: bib35
  article-title: Mechanism of the dehydration of
  publication-title: Carbohydr Res
– volume: 50
  start-page: 6831
  year: 2011
  end-page: 6834
  ident: bib22
  article-title: Highly selective decarbonylation of 5‐(hydroxymethyl) furfural in the presence of compressed carbon dioxide
  publication-title: Angew Chem Int Ed
– volume: 12
  start-page: 539
  year: 2010
  end-page: 554
  ident: bib25
  article-title: Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s top 10 revisited
  publication-title: Green Chem
– volume: 3
  start-page: 25865
  year: 2013
  end-page: 25871
  ident: bib108
  article-title: Novel synthesis of Pd nanoparticles for hydrogenation of biomass-derived platform chemicals showing enhanced catalytic performance
  publication-title: RSC Adv
– reference: Conti J, Holtberg P, Doman LE, Smith KA, Vincent KR, Barden JL et al. World energy outlook 2011. In: Energy Information Administration; 2011.
– volume: 1
  start-page: 139
  year: 2006
  end-page: 164
  ident: bib106
  article-title: The biofine process: production of levulinic acid. furfural and formic acid from lignocellulosic feedstocks
  publication-title: Biorefineries
– volume: 468
  start-page: 52
  year: 2013
  end-page: 58
  ident: bib109
  article-title: Highly selective production of value-added γ-valerolactone from biomass-derived levulinic acid using the robust Pd nanoparticles
  publication-title: Appl Catal, A
– volume: 954
  start-page: 262
  year: 2007
  end-page: 279
  ident: bib15
  article-title: Production of chemicals from cellulose and biomass-derived compounds: advances in the oxidative functionalization of levulinic acid
  publication-title: ACS Symp Ser
– volume: 38
  start-page: 368
  year: 2014
  end-page: 382
  ident: bib135
  article-title: Biodiesel production using chemical and biological methods—a review of process, catalyst, acyl acceptor, source and process variables
  publication-title: Renewable Sustainable Energy Rev
– volume: 70
  start-page: 71
  year: 1958
  end-page: 81
  ident: bib97
  article-title: Initial stages in the biosynthesis of porphyrins. II. The formation of 5-aminolevulinic acid from glycine and succinyl-CoA by particles from chicken erythrocytes
  publication-title: Biochem J
– volume: 4
  start-page: 1230
  year: 2012
  end-page: 1237
  ident: bib12
  article-title: Advances in the catalytic production of valuable levulinic acid derivatives
  publication-title: ChemCatChem
– volume: 10
  start-page: 238
  year: 2008
  end-page: 242
  ident: bib110
  article-title: γ-Valerolactone—a sustainable liquid for energy and carbon-based chemicals
  publication-title: Green Chem
– volume: 81
  start-page: 187
  year: 2002
  end-page: 192
  ident: bib26
  article-title: Experimental studies for levulinic acid production from whole kernel grain sorghum
  publication-title: Bioresour Technol
– volume: 84
  start-page: 339
  year: 2006
  end-page: 349
  ident: bib46
  article-title: A kinetic study on the conversion of glucose to levulinic acid
  publication-title: Chem Eng Res Des
– reference: Farone W.A., Cuzens J.E. Method for the production of levulinic acid and its derivatives. US patent 6054611; 2000.
– volume: 49
  start-page: 5328
  year: 2013
  end-page: 5330
  ident: bib122
  article-title: RANEY® Ni catalyzed transfer hydrogenation of levulinate esters to γ-valerolactone at room temperature
  publication-title: Chem Commun
– reference: Energy Independence and Security Act of 2007. In: U.S. D.O. Energy (Eds.). United States Congress, Washington, D.C.; 2007. p. 30-37.
– volume: 52
  start-page: 297
  year: 2009
  end-page: 303
  ident: bib47
  article-title: Solvent effects on fructose dehydration to 5-hydroxymethylfurfural in biphasic systems saturated with inorganic salts
  publication-title: Top Catal
– volume: 76
  start-page: 4465
  year: 1954
  end-page: 4466
  ident: bib86
  article-title: γ,γ-
  publication-title: J Am Chem Soc
– volume: 48
  start-page: 6529
  year: 2009
  end-page: 6532
  ident: bib63
  article-title: Catalytic conversion of biomass‐derived carbohydrates into γ‐valerolactone without using an external H
  publication-title: Angew Chem Int Ed
– volume: 2
  start-page: 859
  year: 2009
  end-page: 861
  ident: bib57
  article-title: Dramatic advancements in the saccharide to 5-(chloromethyl) furfural conversion reaction
  publication-title: ChemSusChem
– volume: 145
  start-page: 211
  year: 1996
  end-page: 224
  ident: bib37
  article-title: Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites
  publication-title: Appl Catal, A
– volume: 60
  start-page: 219
  year: 2003
  end-page: 224
  ident: bib105
  article-title: The synthesis and applications of 5-aminolevulinic acid (ALA) derivatives in photodynamic therapy and photodiagnosis
  publication-title: Acta Pol Pharm
– volume: 75
  start-page: 117
  year: 2002
  end-page: 126
  ident: bib64
  article-title: Kinetics of levulinic acid formation from carbohydrates at moderate temperatures
  publication-title: React Kinet Catal Lett
– volume: 2
  start-page: 665
  year: 2009
  end-page: 671
  ident: bib45
  article-title: Acid-catalyzed conversion of sugars and furfurals in an ionic-liquid phase
  publication-title: ChemSusChem
– volume: 36
  start-page: 158
  year: 2008
  end-page: 163
  ident: bib83
  article-title: Production of levulinic acid from Bagasse and Paddy Straw by liquefaction in the presence of hydrochloride acid
  publication-title: Clean-Soil Air Water
– volume: 44
  start-page: 7361
  year: 2003
  end-page: 7368
  ident: bib89
  article-title: Cyclic hyperbranched polyesters derived from 4,4-
  publication-title: Polymer
– volume: 16
  start-page: 709
  year: 1997
  end-page: 714
  ident: bib36
  article-title: Hydrolysis of fructose and glucose precursors in the presence of H-form zeolites
  publication-title: J Carbohydr Chem
– volume: 6
  start-page: 134
  year: 2013
  end-page: 139
  ident: bib16
  article-title: Green and facile synthesis of palladium nanoparticles for efficient liquid-phase hydrogenation of biomass-derived furfural
  publication-title: Sci Adv Mater
– reference: Carlson L.J. Process for the manufactures of levulinic acid. US patent 3,065,263 ; 1962.
– volume: 1
  start-page: 593
  year: 2013
  end-page: 599
  ident: bib131
  article-title: One-Pot synthesis of levulinic acid/ester from C5 carbohydrates in a methanol medium
  publication-title: ACS Sustainable Chem Eng
– volume: 25
  start-page: 205
  year: 2013
  end-page: 219
  ident: bib9
  article-title: Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: a comprehensive review
  publication-title: Renewable Sustainable Energy Rev
– reference: Otsuka M., Hirose Y., Kinoshita T., Masawa T. Manufacture of levulinic acid. US patent 37552849; 1973.
– volume: 38
  start-page: 663
  year: 2014
  end-page: 676
  ident: bib6
  article-title: Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals
  publication-title: Renewable Sustainable Energy Rev
– volume: 3
  start-page: 266
  year: 2010
  end-page: 276
  ident: bib49
  article-title: Which controls the depolymerization of cellulose in ionic liquids: the solid acid catalyst or cellulose?
  publication-title: ChemSusChem
– volume: 88
  start-page: 4590
  year: 2011
  end-page: 4596
  ident: bib132
  article-title: Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts
  publication-title: Appl Energy
– reference: BP. Statistical review of world energy. In: British Petroleum; 2012.
– volume: 51
  start-page: 6984
  year: 2015
  end-page: 6987
  ident: bib8
  article-title: Cascade upgrading of γ-valerolactone to biofuels
  publication-title: Chem Commun
– volume: 52
  start-page: 3257
  year: 1974
  end-page: 3258
  ident: bib102
  article-title: Methyl 5-bromolevulinate
  publication-title: Can J Chem
– volume: 43
  start-page: 2472
  year: 2008
  end-page: 2475
  ident: bib52
  article-title: Acid catalytic hydrothermal conversion of carbohydrate biomass into useful substances
  publication-title: J Mater Sci
– volume: 1
  start-page: 79
  year: 2010
  end-page: 100
  ident: bib20
  article-title: Catalytic conversion of renewable biomass resources to fuels and chemicals
  publication-title: Annu Rev Chem Biomol Eng
– volume: 12
  start-page: 1493
  year: 2010
  end-page: 1513
  ident: bib5
  article-title: Catalytic conversion of biomass to biofuels
  publication-title: Green Chem
– volume: 14
  start-page: 708
  year: 2006
  end-page: 712
  ident: bib62
  article-title: Kinetics of levulinic acid formation from glucose decomposition at high temperature
  publication-title: Chin J Chem Eng
– volume: 28
  start-page: 227
  year: 2000
  end-page: 239
  ident: bib85
  article-title: Production of levulinic acid and use as a platform chemical for derived products
  publication-title: Resour Conserv Recycl
– volume: 99
  start-page: 8367
  year: 2008
  end-page: 8375
  ident: bib78
  article-title: Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid
  publication-title: Bioresour Technol
– volume: 44
  start-page: 4632
  year: 2007
  end-page: 4634
  ident: bib115
  article-title: Maximising opportunities in supercritical chemistry: the continuous conversion of levulinic acid to γ-valerolactone in CO
  publication-title: Chem Commun
– reference: Werpy T.A., Holladay J.E., White J.F. . Top value added chemicals from biomass: I. Results of screening for potential candidates from sugars and synthesis gas. US Department of Energy.
– volume: 102
  start-page: 3568
  year: 2011
  end-page: 3570
  ident: bib79
  article-title: Production of levulinic acid from steam exploded rice straw via solid superacid
  publication-title: Bioresour Technol
– volume: 49
  start-page: 5510
  year: 2010
  end-page: 5514
  ident: bib113
  article-title: Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system
  publication-title: Angew Chem Int Ed
– reference: ; 2002.
– start-page: 21
  year: 2007
  end-page: 51
  ident: bib23
  article-title: Lignocellulose conversion: an introduction to chemistry, process and economics
  publication-title: Catalysis for renewables: from feedstock to energy production
– volume: 51
  start-page: 2356
  year: 2010
  end-page: 2358
  ident: bib71
  article-title: Conversion of cellulose to glucose and levulinic acid via solid-supported acid catalysis
  publication-title: Tetrahedron Lett
– volume: 33
  start-page: 21
  year: 1994
  end-page: 25
  ident: bib130
  article-title: Kinetics of esterification of levulinic acid with
  publication-title: Ind Eng Chem Res
– volume: 199
  start-page: 91
  year: 1990
  end-page: 109
  ident: bib40
  article-title: Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from
  publication-title: Carbohydr Res
– reference: Repice R, Adler R, Berry J, Michaels J, Schmitt R, King RF et al. Annual energy review United States energy information administration: Washington, D.C.; 2011.
– reference: Elliott D.C., Frye J.G. Hydrogenated 5-carbon compound and method of making. U.S. patent 5,883,266; 1999.
– volume: 43
  start-page: 1446
  year: 2015
  end-page: 1466
  ident: bib31
  article-title: Opportunities, recent trends and challenges of integrated biorefinery: Part II
  publication-title: Renewable Sustainable Energy Rev
– volume: 114
  start-page: 9002
  year: 2010
  end-page: 9009
  ident: bib39
  article-title: Computational studies of the thermochemistry for conversion of glucose to levulinic acid
  publication-title: J Phys Chem B
– volume: 100
  start-page: 184
  year: 2010
  end-page: 189
  ident: bib75
  article-title: Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen
  publication-title: Appl Catal, B
– volume: 18
  start-page: 115
  year: 2012
  end-page: 120
  ident: bib140
  article-title: Catalytic upgrading of levulinic acid to ethyl levulinate using reusable silica-included Wells–Dawson heteropolyacid as catalyst
  publication-title: Catal Commun
– volume: 43
  start-page: 1427
  year: 2015
  end-page: 1445
  ident: bib30
  article-title: Opportunities, recent trends and challenges of integrated biorefinery: Part I
  publication-title: Renewable Sustainable Energy Rev
– volume: 16
  start-page: 1358
  year: 2014
  end-page: 1364
  ident: bib121
  article-title: Solvent-free γ-valerolactone hydrogenation to 2-methyltetrahydrofuran catalysed by Ru/C: a reaction network analysis
  publication-title: Green Chem
– volume: 2
  start-page: 437
  year: 2009
  end-page: 441
  ident: bib34
  article-title: Conversion of furfuryl alcohol into ethyl levulinate using solid acid catalysts
  publication-title: ChemSusChem
– volume: 105
  start-page: 171
  year: 2011
  end-page: 181
  ident: bib76
  article-title: Cellulose hydrothermal conversion promoted by heterogeneous Brønsted and Lewis acids: remarkable efficiency of solid lewis acids to produce lactic acid
  publication-title: Appl Catal, B
– volume: 30
  start-page: 672
  year: 2014
  end-page: 681
  ident: bib7
  article-title: Evaluation of infrared techniques for the assessment of biomass and biofuel quality parameters and conversion technology processes: a review
  publication-title: Renewable Sustainable Energy Rev
– volume: 6
  start-page: 390
  year: 1984
  end-page: 401
  ident: bib99
  article-title: Photodynamic herbicides: concept and phenomenology
  publication-title: Enzym Microb Technol
– volume: 115
  start-page: 101
  year: 2014
  end-page: 108
  ident: bib119
  article-title: Selective hydrogenation of furfural and levulinic acid to biofuels on the ecofriendly Cu–Fe catalyst
  publication-title: Fuel
– volume: 88
  start-page: 17
  year: 2011
  end-page: 28
  ident: bib127
  article-title: Competitive liquid biofuels from biomass
  publication-title: Appl Energy
– start-page: 193
  year: 2006
  end-page: 207
  ident: bib17
  article-title: Iogen’s demonstration process for producing ethanol from cellulosic biomass
  publication-title: Biorefineries -industrial processes and products. Status quo and future directions
– volume: 17
  start-page: 71
  year: 2012
  end-page: 75
  ident: bib139
  article-title: Solid acid catalysed formation of ethyl levulinate and ethyl glucopyranoside from mono-and disaccharides
  publication-title: Catal Commun
– volume: 5
  start-page: 8199
  year: 2012
  end-page: 8203
  ident: bib53
  article-title: Production of levulinic acid and gamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasic systems
  publication-title: Energy Environ Sci
– volume: 133
  start-page: 221
  year: 2009
  end-page: 226
  ident: bib65
  article-title: Catalytic conversion of glucose on Al–Zr mixed oxides in hot compressed water
  publication-title: Catal Lett
– volume: 38
  start-page: 739
  year: 1997
  end-page: 740
  ident: bib104
  article-title: An efficient synthesis of
  publication-title: Tetrahedron Lett
– reference: U.S. Dep. Energy. . Roadmap for biomass technologies in the United States.
– volume: 52
  start-page: 4880
  year: 1930
  end-page: 4883
  ident: bib58
  article-title: Levulinic acid and its esters
  publication-title: J Am Chem Soc
– volume: 4
  start-page: 3601
  year: 2011
  end-page: 3610
  ident: bib95
  article-title: Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly(aryleneoxindole)s
  publication-title: Energy Environ Sci
– volume: 65
  start-page: 818
  year: 1992
  end-page: 824
  ident: bib101
  article-title: Fluorescence distribution and photodynamic effect of ALA-induced PP IX in the DMF rat colonic tumor model
  publication-title: Br J Cancer
– volume: 109
  start-page: 147
  year: 1994
  end-page: 165
  ident: bib61
  article-title: Dehydration of glucose to organic acids in microporous pillared clay catalysts
  publication-title: Appl Catal, A
– volume: 45
  start-page: 2163
  year: 2006
  end-page: 2173
  ident: bib68
  article-title: Acid-catalyzed production of 5-hydroxymethylfurfural from
  publication-title: Ind Eng Chem Res
– volume: 15
  start-page: 584
  year: 2013
  end-page: 595
  ident: bib19
  article-title: Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass
  publication-title: Green Chem
– volume: 182
  start-page: 555
  year: 2002
  end-page: 563
  ident: bib134
  article-title: Esterification of different acids over heterogeneous and homogeneous catalysts and correlation with the Taft equation
  publication-title: J Mol Catal A
– volume: 13
  start-page: 237
  year: 2000
  end-page: 242
  ident: bib67
  article-title: A new approach for the production of 2,5-furandicarboxylic acid by in situ oxidation of 5-hydroxymethylfurfural starting from fructose
  publication-title: Top Catal
– volume: 15
  start-page: 5258
  year: 2010
  end-page: 5272
  ident: bib56
  article-title: Catalytic conversion of cellulose to levulinic acid by metal chlorides
  publication-title: Molecules
– reference: Fitzpatrick S.W. Production of Levulinic acid from carbohydrate-containing materials. US patent 5608105; 1997.
– volume: 14
  start-page: 185
  year: 1987
  end-page: 194
  ident: bib66
  article-title: Dehydration of
  publication-title: Biomass
– volume: 24
  start-page: 2557
  year: 1994
  end-page: 2562
  ident: bib103
  article-title: Selective bromination of ketones. A convenient synthesis of 5-aminolevulinic acid
  publication-title: Synth Commun
– volume: 106
  start-page: 4044
  year: 2006
  end-page: 4098
  ident: bib11
  article-title: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering
  publication-title: Chem Rev
– volume: 26
  start-page: 2111
  year: 1985
  ident: 10.1016/j.rser.2015.07.021_bib42
  article-title: Mechanism of levulinic acid formation
  publication-title: Tetrahedron Lett
  doi: 10.1016/S0040-4039(00)94793-2
– ident: 10.1016/j.rser.2015.07.021_bib2
– volume: 6
  start-page: 390
  year: 1984
  ident: 10.1016/j.rser.2015.07.021_bib99
  article-title: Photodynamic herbicides: concept and phenomenology
  publication-title: Enzym Microb Technol
  doi: 10.1016/0141-0229(84)90012-7
– volume: 49
  start-page: 5510
  year: 2010
  ident: 10.1016/j.rser.2015.07.021_bib113
  article-title: Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201002060
– volume: 38
  start-page: 368
  year: 2014
  ident: 10.1016/j.rser.2015.07.021_bib135
  article-title: Biodiesel production using chemical and biological methods—a review of process, catalyst, acyl acceptor, source and process variables
  publication-title: Renewable Sustainable Energy Rev
  doi: 10.1016/j.rser.2014.05.084
– volume: 6
  start-page: 753
  year: 2014
  ident: 10.1016/j.rser.2015.07.021_bib72
  article-title: Catalytic conversion of cellulose into levulinic acid by a sulfonated chloromethyl polystyrene solid acid catalyst
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201300956
– ident: 10.1016/j.rser.2015.07.021_bib59
– volume: 4
  start-page: 1749
  year: 2012
  ident: 10.1016/j.rser.2015.07.021_bib117
  article-title: Direct hydrocyclization of biomass-derived levulinic acid to 2-methyltetrahydrofuran over nanocomposite copper/silica catalysts
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201100380
– ident: 10.1016/j.rser.2015.07.021_bib13
– ident: 10.1016/j.rser.2015.07.021_bib126
– volume: 3
  start-page: 927
  year: 2013
  ident: 10.1016/j.rser.2015.07.021_bib77
  article-title: Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts
  publication-title: Catal Sci Technol
  doi: 10.1039/C2CY20689G
– volume: 107
  start-page: 2411
  year: 2007
  ident: 10.1016/j.rser.2015.07.021_bib29
  article-title: Chemical routes for the transformation of biomass into chemicals
  publication-title: Chem Rev
  doi: 10.1021/cr050989d
– start-page: 139
  year: 2008
  ident: 10.1016/j.rser.2015.07.021_bib33
  article-title: The biofine process-production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks
– volume: 52
  start-page: 297
  year: 2009
  ident: 10.1016/j.rser.2015.07.021_bib47
  article-title: Solvent effects on fructose dehydration to 5-hydroxymethylfurfural in biphasic systems saturated with inorganic salts
  publication-title: Top Catal
  doi: 10.1007/s11244-008-9166-0
– volume: 106
  start-page: 4044
  year: 2006
  ident: 10.1016/j.rser.2015.07.021_bib11
  article-title: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering
  publication-title: Chem Rev
  doi: 10.1021/cr068360d
– volume: 24
  start-page: 2557
  year: 1994
  ident: 10.1016/j.rser.2015.07.021_bib103
  article-title: Selective bromination of ketones. A convenient synthesis of 5-aminolevulinic acid
  publication-title: Synth Commun
  doi: 10.1080/00397919408010567
– volume: 28
  start-page: 227
  year: 2000
  ident: 10.1016/j.rser.2015.07.021_bib85
  article-title: Production of levulinic acid and use as a platform chemical for derived products
  publication-title: Resour Conserv Recycl
  doi: 10.1016/S0921-3449(99)00047-6
– volume: 17
  start-page: 71
  year: 2012
  ident: 10.1016/j.rser.2015.07.021_bib139
  article-title: Solid acid catalysed formation of ethyl levulinate and ethyl glucopyranoside from mono-and disaccharides
  publication-title: Catal Commun
  doi: 10.1016/j.catcom.2011.10.001
– volume: 12
  start-page: 1493
  issue: 9
  year: 2010
  ident: 10.1016/j.rser.2015.07.021_bib5
  article-title: Catalytic conversion of biomass to biofuels
  publication-title: Green Chem
  doi: 10.1039/c004654j
– volume: 2
  start-page: 665
  year: 2009
  ident: 10.1016/j.rser.2015.07.021_bib45
  article-title: Acid-catalyzed conversion of sugars and furfurals in an ionic-liquid phase
  publication-title: ChemSusChem
  doi: 10.1002/cssc.200900092
– volume: 15
  start-page: 584
  year: 2013
  ident: 10.1016/j.rser.2015.07.021_bib19
  article-title: Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass
  publication-title: Green Chem
  doi: 10.1039/c3gc37065h
– volume: 5
  start-page: 383
  year: 2012
  ident: 10.1016/j.rser.2015.07.021_bib55
  article-title: Conversion of hemicellolose to furfural and levuinci acid using biphasic reators with alkyphenol solevents
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201100608
– volume: 327
  start-page: 1110
  year: 2010
  ident: 10.1016/j.rser.2015.07.021_bib84
  article-title: Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels
  publication-title: Science
  doi: 10.1126/science.1184362
– volume: 3
  start-page: 25865
  year: 2013
  ident: 10.1016/j.rser.2015.07.021_bib108
  article-title: Novel synthesis of Pd nanoparticles for hydrogenation of biomass-derived platform chemicals showing enhanced catalytic performance
  publication-title: RSC Adv
  doi: 10.1039/c3ra43619e
– volume: 2
  start-page: 859
  year: 2009
  ident: 10.1016/j.rser.2015.07.021_bib57
  article-title: Dramatic advancements in the saccharide to 5-(chloromethyl) furfural conversion reaction
  publication-title: ChemSusChem
  doi: 10.1002/cssc.200900136
– volume: 16
  start-page: 1358
  year: 2014
  ident: 10.1016/j.rser.2015.07.021_bib121
  article-title: Solvent-free γ-valerolactone hydrogenation to 2-methyltetrahydrofuran catalysed by Ru/C: a reaction network analysis
  publication-title: Green Chem
  doi: 10.1039/C3GC41803K
– volume: 18
  start-page: 115
  year: 2012
  ident: 10.1016/j.rser.2015.07.021_bib140
  article-title: Catalytic upgrading of levulinic acid to ethyl levulinate using reusable silica-included Wells–Dawson heteropolyacid as catalyst
  publication-title: Catal Commun
  doi: 10.1016/j.catcom.2011.12.004
– volume: 25
  start-page: 205
  year: 2013
  ident: 10.1016/j.rser.2015.07.021_bib9
  article-title: Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: a comprehensive review
  publication-title: Renewable Sustainable Energy Rev
  doi: 10.1016/j.rser.2013.04.019
– volume: 16
  start-page: 785
  year: 2014
  ident: 10.1016/j.rser.2015.07.021_bib50
  article-title: Heterogeneous acidic TiO2 nanoparticles for efficient conversion of biomass derived carbohydrates
  publication-title: Green Chem
  doi: 10.1039/c3gc40909k
– volume: 12
  start-page: 539
  issue: 4
  year: 2010
  ident: 10.1016/j.rser.2015.07.021_bib25
  article-title: Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s top 10 revisited
  publication-title: Green Chem
  doi: 10.1039/b922014c
– volume: 53
  start-page: 1613
  year: 2012
  ident: 10.1016/j.rser.2015.07.021_bib88
  article-title: Renewable polybenzoxazines based in diphenolic acid
  publication-title: Polymer
  doi: 10.1016/j.polymer.2012.02.026
– volume: 1
  start-page: 79
  year: 2010
  ident: 10.1016/j.rser.2015.07.021_bib20
  article-title: Catalytic conversion of renewable biomass resources to fuels and chemicals
  publication-title: Annu Rev Chem Biomol Eng
  doi: 10.1146/annurev-chembioeng-073009-100935
– volume: 10
  start-page: 799
  year: 2008
  ident: 10.1016/j.rser.2015.07.021_bib48
  article-title: Catalytic dehydration of fructose into 5-hydroxymethylfurfural by Ion-exchange resin in mixed-aqueous system by microwave heating
  publication-title: Green Chem
  doi: 10.1039/b801641k
– ident: 10.1016/j.rser.2015.07.021_bib82
– volume: 182
  start-page: 555
  year: 2002
  ident: 10.1016/j.rser.2015.07.021_bib134
  article-title: Esterification of different acids over heterogeneous and homogeneous catalysts and correlation with the Taft equation
  publication-title: J Mol Catal A
  doi: 10.1016/S1381-1169(01)00495-2
– volume: 30
  start-page: 672
  year: 2014
  ident: 10.1016/j.rser.2015.07.021_bib7
  article-title: Evaluation of infrared techniques for the assessment of biomass and biofuel quality parameters and conversion technology processes: a review
  publication-title: Renewable Sustainable Energy Rev
  doi: 10.1016/j.rser.2013.11.006
– volume: 100
  start-page: 184
  year: 2010
  ident: 10.1016/j.rser.2015.07.021_bib75
  article-title: Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen
  publication-title: Appl Catal, B
  doi: 10.1016/j.apcatb.2010.07.029
– volume: 52
  start-page: 4880
  year: 1930
  ident: 10.1016/j.rser.2015.07.021_bib58
  article-title: Levulinic acid and its esters
  publication-title: J Am Chem Soc
  doi: 10.1021/ja01375a033
– volume: 1
  start-page: 593
  year: 2013
  ident: 10.1016/j.rser.2015.07.021_bib131
  article-title: One-Pot synthesis of levulinic acid/ester from C5 carbohydrates in a methanol medium
  publication-title: ACS Sustainable Chem Eng
  doi: 10.1021/sc400229w
– volume: 34
  start-page: 58
  year: 2013
  ident: 10.1016/j.rser.2015.07.021_bib138
  article-title: One-step synthesis of mesoporous H4SiW12O40–SiO2 catalysts for production of methyl and ethyl levulinate biodiesel
  publication-title: Catal Commun
  doi: 10.1016/j.catcom.2013.01.010
– volume: 51
  start-page: 6984
  year: 2015
  ident: 10.1016/j.rser.2015.07.021_bib8
  article-title: Cascade upgrading of γ-valerolactone to biofuels
  publication-title: Chem Commun
  doi: 10.1039/C5CC01463H
– volume: 88
  start-page: 4590
  year: 2011
  ident: 10.1016/j.rser.2015.07.021_bib132
  article-title: Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.05.049
– volume: 102
  start-page: 3568
  year: 2011
  ident: 10.1016/j.rser.2015.07.021_bib79
  article-title: Production of levulinic acid from steam exploded rice straw via solid superacid
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2010.10.018
– volume: 50
  start-page: 6831
  year: 2011
  ident: 10.1016/j.rser.2015.07.021_bib22
  article-title: Highly selective decarbonylation of 5‐(hydroxymethyl) furfural in the presence of compressed carbon dioxide
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201007582
– volume: 145
  start-page: 211
  year: 1996
  ident: 10.1016/j.rser.2015.07.021_bib37
  article-title: Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites
  publication-title: Appl Catal, A
  doi: 10.1016/0926-860X(96)00136-6
– volume: 3
  start-page: 266
  year: 2010
  ident: 10.1016/j.rser.2015.07.021_bib49
  article-title: Which controls the depolymerization of cellulose in ionic liquids: the solid acid catalyst or cellulose?
  publication-title: ChemSusChem
  doi: 10.1002/cssc.200900281
– volume: 38
  start-page: 663
  year: 2014
  ident: 10.1016/j.rser.2015.07.021_bib6
  article-title: Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals
  publication-title: Renewable Sustainable Energy Rev
  doi: 10.1016/j.rser.2014.07.003
– volume: 65
  start-page: 818
  year: 1992
  ident: 10.1016/j.rser.2015.07.021_bib101
  article-title: Fluorescence distribution and photodynamic effect of ALA-induced PP IX in the DMF rat colonic tumor model
  publication-title: Br J Cancer
  doi: 10.1038/bjc.1992.175
– volume: 52
  start-page: 3257
  year: 1974
  ident: 10.1016/j.rser.2015.07.021_bib102
  article-title: Methyl 5-bromolevulinate
  publication-title: Can J Chem
  doi: 10.1139/v74-480
– volume: 145
  start-page: 138
  year: 2009
  ident: 10.1016/j.rser.2015.07.021_bib128
  article-title: An examination of biorefining processes, catalysis and challenges
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2008.04.017
– volume: 109
  start-page: 147
  year: 1994
  ident: 10.1016/j.rser.2015.07.021_bib61
  article-title: Dehydration of glucose to organic acids in microporous pillared clay catalysts
  publication-title: Appl Catal, A
  doi: 10.1016/0926-860X(94)85008-9
– volume: 44
  start-page: 4632
  year: 2007
  ident: 10.1016/j.rser.2015.07.021_bib115
  article-title: Maximising opportunities in supercritical chemistry: the continuous conversion of levulinic acid to γ-valerolactone in CO2
  publication-title: Chem Commun
  doi: 10.1039/b708754c
– ident: 10.1016/j.rser.2015.07.021_bib24
  doi: 10.2172/926125
– volume: 312
  start-page: 1933
  year: 2006
  ident: 10.1016/j.rser.2015.07.021_bib54
  article-title: Phase modifiers promote efficient production of hydroxymethylfurfural from fructose
  publication-title: Science
  doi: 10.1126/science.1126337
– volume: 201
  start-page: 456
  year: 2014
  ident: 10.1016/j.rser.2015.07.021_bib28
  article-title: Facile synthesis of reusable CoAl-hydrotalcite catalyst for dehydration of biomass-derived fructose into platform chemical 5-hydroxymethylfurfural
  publication-title: Chem Eng Commun
  doi: 10.1080/00986445.2013.775646
– volume: 49
  start-page: 4479
  year: 2010
  ident: 10.1016/j.rser.2015.07.021_bib112
  article-title: Valeric biofuels: a platform of cellulosic transportation fuels
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201000655
– ident: 10.1016/j.rser.2015.07.021_bib14
– volume: 133
  start-page: 221
  year: 2009
  ident: 10.1016/j.rser.2015.07.021_bib65
  article-title: Catalytic conversion of glucose on Al–Zr mixed oxides in hot compressed water
  publication-title: Catal Lett
  doi: 10.1007/s10562-009-0160-3
– volume: 105
  start-page: 171
  year: 2011
  ident: 10.1016/j.rser.2015.07.021_bib76
  article-title: Cellulose hydrothermal conversion promoted by heterogeneous Brønsted and Lewis acids: remarkable efficiency of solid lewis acids to produce lactic acid
  publication-title: Appl Catal, B
  doi: 10.1016/j.apcatb.2011.04.009
– ident: 10.1016/j.rser.2015.07.021_bib123
– volume: 33
  start-page: 21
  year: 1994
  ident: 10.1016/j.rser.2015.07.021_bib130
  article-title: Kinetics of esterification of levulinic acid with n-butanol by homogeneous catalysis
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie00025a004
– volume: 1
  start-page: 139
  year: 2006
  ident: 10.1016/j.rser.2015.07.021_bib106
  article-title: The biofine process: production of levulinic acid. furfural and formic acid from lignocellulosic feedstocks
  publication-title: Biorefineries
– volume: 75
  start-page: 117
  year: 2002
  ident: 10.1016/j.rser.2015.07.021_bib64
  article-title: Kinetics of levulinic acid formation from carbohydrates at moderate temperatures
  publication-title: React Kinet Catal Lett
  doi: 10.1023/A:1014857703817
– volume: 115
  start-page: 101
  year: 2014
  ident: 10.1016/j.rser.2015.07.021_bib119
  article-title: Selective hydrogenation of furfural and levulinic acid to biofuels on the ecofriendly Cu–Fe catalyst
  publication-title: Fuel
  doi: 10.1016/j.fuel.2013.06.042
– volume: 81
  start-page: 182
  year: 2008
  ident: 10.1016/j.rser.2015.07.021_bib92
  article-title: Mesoporous H3PW12O40-silica composite: efficient and reusable solid acid catalyst for the synthesis of diphenolic acid from levulinic acid
  publication-title: Appl Catal, B
  doi: 10.1016/j.apcatb.2007.12.020
– volume: 48
  start-page: 3497
  year: 2012
  ident: 10.1016/j.rser.2015.07.021_bib94
  article-title: Thiol-promoted catalytic synthesis of diphenolic acid with sulfonated hyperbranched poly(arylene oxindole)s
  publication-title: Chem Commun
  doi: 10.1039/c2cc30239j
– volume: 48
  start-page: 6529
  year: 2009
  ident: 10.1016/j.rser.2015.07.021_bib63
  article-title: Catalytic conversion of biomass‐derived carbohydrates into γ‐valerolactone without using an external H2 supply
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200902281
– volume: 70
  start-page: 71
  year: 1958
  ident: 10.1016/j.rser.2015.07.021_bib97
  article-title: Initial stages in the biosynthesis of porphyrins. II. The formation of 5-aminolevulinic acid from glycine and succinyl-CoA by particles from chicken erythrocytes
  publication-title: Biochem J
  doi: 10.1042/bj0700071
– volume: 72
  start-page: 143
  year: 2015
  ident: 10.1016/j.rser.2015.07.021_bib10
  article-title: Review: sustainable production of hydroxymethylfurfural and levulinic acid: challenges and opportunities
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2014.11.007
– volume: 81
  start-page: 187
  year: 2002
  ident: 10.1016/j.rser.2015.07.021_bib26
  article-title: Experimental studies for levulinic acid production from whole kernel grain sorghum
  publication-title: Bioresour Technol
  doi: 10.1016/S0960-8524(01)00144-4
– volume: 44
  start-page: 7361
  year: 2003
  ident: 10.1016/j.rser.2015.07.021_bib89
  article-title: Cyclic hyperbranched polyesters derived from 4,4-bis(4′-hydroxyphenyl)valeric acid
  publication-title: Polymer
  doi: 10.1016/j.polymer.2003.09.041
– volume: 14
  start-page: 935
  year: 2012
  ident: 10.1016/j.rser.2015.07.021_bib120
  article-title: Tunable copper-catalyzed chemoselective hydrogenolysis of biomass-derived γ-valerolactone into 1,4-pentanediol or 2-methyltetrahydrofuran
  publication-title: Green Chem
  doi: 10.1039/c2gc16599f
– volume: 15
  start-page: 5258
  year: 2010
  ident: 10.1016/j.rser.2015.07.021_bib56
  article-title: Catalytic conversion of cellulose to levulinic acid by metal chlorides
  publication-title: Molecules
  doi: 10.3390/molecules15085258
– volume: 46
  start-page: 1696
  year: 2007
  ident: 10.1016/j.rser.2015.07.021_bib74
  article-title: Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie061186z
– volume: 43
  start-page: 2472
  year: 2008
  ident: 10.1016/j.rser.2015.07.021_bib52
  article-title: Acid catalytic hydrothermal conversion of carbohydrate biomass into useful substances
  publication-title: J Mater Sci
  doi: 10.1007/s10853-007-2021-z
– start-page: 193
  year: 2006
  ident: 10.1016/j.rser.2015.07.021_bib17
  article-title: Iogen’s demonstration process for producing ethanol from cellulosic biomass
– ident: 10.1016/j.rser.2015.07.021_bib32
– volume: 84
  start-page: 339
  year: 2006
  ident: 10.1016/j.rser.2015.07.021_bib46
  article-title: A kinetic study on the conversion of glucose to levulinic acid
  publication-title: Chem Eng Res Des
  doi: 10.1205/cherd05038
– volume: 99
  start-page: 8367
  year: 2008
  ident: 10.1016/j.rser.2015.07.021_bib78
  article-title: Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2008.02.045
– volume: 16
  start-page: 709
  year: 1997
  ident: 10.1016/j.rser.2015.07.021_bib36
  article-title: Hydrolysis of fructose and glucose precursors in the presence of H-form zeolites
  publication-title: J Carbohydr Chem
  doi: 10.1080/07328309708007350
– volume: 130
  start-page: 12787
  year: 2008
  ident: 10.1016/j.rser.2015.07.021_bib27
  article-title: Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups
  publication-title: J Am Chem Soc
  doi: 10.1021/ja803983h
– volume: 14
  start-page: 708
  year: 2006
  ident: 10.1016/j.rser.2015.07.021_bib62
  article-title: Kinetics of levulinic acid formation from glucose decomposition at high temperature
  publication-title: Chin J Chem Eng
  doi: 10.1016/S1004-9541(06)60139-0
– volume: 4
  start-page: 3601
  year: 2011
  ident: 10.1016/j.rser.2015.07.021_bib95
  article-title: Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly(aryleneoxindole)s
  publication-title: Energy Environ Sci
  doi: 10.1039/c1ee01418h
– volume: 53
  start-page: 297
  year: 1974
  ident: 10.1016/j.rser.2015.07.021_bib98
  article-title: The biosynthesis of delta-aminolevulinic acid in higher plants. II. Formation of 14C-delta-aminolevulinic acid from labelled precursors in greening plant tissues
  publication-title: Plant Phys
  doi: 10.1104/pp.53.2.297
– volume: 425
  start-page: 199
  year: 2012
  ident: 10.1016/j.rser.2015.07.021_bib137
  article-title: Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts
  publication-title: Appl Catal, A
  doi: 10.1016/j.apcata.2012.03.020
– ident: 10.1016/j.rser.2015.07.021_bib81
– volume: 4
  start-page: 1230
  year: 2012
  ident: 10.1016/j.rser.2015.07.021_bib12
  article-title: Advances in the catalytic production of valuable levulinic acid derivatives
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201200113
– volume: 49
  start-page: 1219
  year: 2011
  ident: 10.1016/j.rser.2015.07.021_bib87
  article-title: Polybenzoxazines from renewable diphenolic acid
  publication-title: J Polym Sci, Part A: Polym Chem
  doi: 10.1002/pola.24541
– volume: 21
  start-page: 219
  year: 1840
  ident: 10.1016/j.rser.2015.07.021_bib43
  publication-title: J Prakt Chem
  doi: 10.1002/prac.18400210121
– volume: 4
  start-page: 185
  year: 1987
  ident: 10.1016/j.rser.2015.07.021_bib41
  article-title: Dehydration of d-fructose to levulinic acid over LZY zeolite catalyst
  publication-title: Biomass
  doi: 10.1016/0144-4565(87)90046-1
– ident: 10.1016/j.rser.2015.07.021_bib3
– volume: 5
  start-page: 8199
  year: 2012
  ident: 10.1016/j.rser.2015.07.021_bib53
  article-title: Production of levulinic acid and gamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasic systems
  publication-title: Energy Environ Sci
  doi: 10.1039/c2ee22111j
– volume: 6
  start-page: 134
  year: 2013
  ident: 10.1016/j.rser.2015.07.021_bib16
  article-title: Green and facile synthesis of palladium nanoparticles for efficient liquid-phase hydrogenation of biomass-derived furfural
  publication-title: Sci Adv Mater
– volume: 40
  start-page: 608
  year: 2014
  ident: 10.1016/j.rser.2015.07.021_bib18
  article-title: Production of γ-valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply
  publication-title: Renewable Sustainable Energy Rev
  doi: 10.1016/j.rser.2014.07.209
– volume: 43
  start-page: 1427
  year: 2015
  ident: 10.1016/j.rser.2015.07.021_bib30
  article-title: Opportunities, recent trends and challenges of integrated biorefinery: Part I
  publication-title: Renewable Sustainable Energy Rev
  doi: 10.1016/j.rser.2014.11.092
– volume: 343
  start-page: 3021
  year: 2008
  ident: 10.1016/j.rser.2015.07.021_bib35
  article-title: Mechanism of the dehydration of d-Fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at 150°C: an NMR study
  publication-title: Carbohydr Res
  doi: 10.1016/j.carres.2008.09.008
– volume: 9
  start-page: 3264
  year: 2014
  ident: 10.1016/j.rser.2015.07.021_bib96
  article-title: Catalytic synthesis of diphenolic acid from levulinic acid over Bronsted acidic ionic liquids
  publication-title: BioResources
  doi: 10.15376/biores.9.2.3264-3275
– volume: 60
  start-page: 219
  year: 2003
  ident: 10.1016/j.rser.2015.07.021_bib105
  article-title: The synthesis and applications of 5-aminolevulinic acid (ALA) derivatives in photodynamic therapy and photodiagnosis
  publication-title: Acta Pol Pharm
– volume: 53
  start-page: 6562
  year: 2014
  ident: 10.1016/j.rser.2015.07.021_bib73
  article-title: Selective decomposition of cellulose into glucose and levulinic acid over Fe-resin catalyst in NaCl solution under hydrothermal conditions
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie500318t
– volume: 15
  start-page: 1
  year: 2013
  ident: 10.1016/j.rser.2015.07.021_bib114
  article-title: Facile synthesis of palladium nanoparticles supported on multi-walled carbon nanotube for efficient hydrogenation of biomass-derived levulinic acid
  publication-title: J Nanopart Res
  doi: 10.1007/s11051-013-1906-9
– volume: 199
  start-page: 91
  year: 1990
  ident: 10.1016/j.rser.2015.07.021_bib40
  article-title: Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose
  publication-title: Carbohydr Res
  doi: 10.1016/0008-6215(90)84096-D
– volume: 88
  start-page: 17
  year: 2011
  ident: 10.1016/j.rser.2015.07.021_bib127
  article-title: Competitive liquid biofuels from biomass
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.07.016
– volume: 445
  start-page: 180
  year: 2012
  ident: 10.1016/j.rser.2015.07.021_bib136
  article-title: Dried chitosan-gels as organocatalysts for the production of biomass-derived platform chemicals
  publication-title: Appl Catal, A
  doi: 10.1016/j.apcata.2012.08.014
– volume: 2
  start-page: 767
  year: 2009
  ident: 10.1016/j.rser.2015.07.021_bib111
  article-title: Bio-oxygenates and the peroxide number: a safety issue alert
  publication-title: Energy Environ Sci
  doi: 10.1039/b900229b
– volume: 49
  start-page: 5328
  year: 2013
  ident: 10.1016/j.rser.2015.07.021_bib122
  article-title: RANEY® Ni catalyzed transfer hydrogenation of levulinate esters to γ-valerolactone at room temperature
  publication-title: Chem Commun
  doi: 10.1039/c3cc40980e
– volume: 14
  start-page: 185
  year: 1987
  ident: 10.1016/j.rser.2015.07.021_bib66
  article-title: Dehydration of d-fructose to levulinic acid over LZY zeolite Catalyst
  publication-title: Biomass
  doi: 10.1016/0144-4565(87)90046-1
– volume: 76
  start-page: 4465
  year: 1954
  ident: 10.1016/j.rser.2015.07.021_bib86
  article-title: γ,γ-Bis-(p-hydroxyphenyl)-valeric acid
  publication-title: J Am Chem Soc
  doi: 10.1021/ja01646a053
– volume: 179
  start-page: 292
  year: 2015
  ident: 10.1016/j.rser.2015.07.021_bib21
  article-title: Catalytic reactions of gamma-valerolactone: a platform to fuels and value-added chemicals
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2015.04.030
– volume: 42
  start-page: 314
  year: 1990
  ident: 10.1016/j.rser.2015.07.021_bib44
  article-title: 5-Hydroxymethylfurfural (HMF). a review focussing on its manufacture
  publication-title: Starch/Stärke
  doi: 10.1002/star.19900420808
– volume: 24
  start-page: 306
  year: 2013
  ident: 10.1016/j.rser.2015.07.021_bib4
  article-title: A guidance chart for most probable solution directions in sustainable energy developments
  publication-title: Renewable Sustainable Energy Rev
  doi: 10.1016/j.rser.2013.03.037
– volume: 129
  start-page: 342
  year: 2013
  ident: 10.1016/j.rser.2015.07.021_bib125
  article-title: Sulfonic acid functionalized mesoporous SBA-15 catalysts for biodiesel production
  publication-title: Appl Catal, B
  doi: 10.1016/j.apcatb.2012.09.029
– volume: 13
  start-page: 237
  year: 2000
  ident: 10.1016/j.rser.2015.07.021_bib67
  article-title: A new approach for the production of 2,5-furandicarboxylic acid by in situ oxidation of 5-hydroxymethylfurfural starting from fructose
  publication-title: Top Catal
  doi: 10.1023/A:1009017929727
– volume: 114
  start-page: 9002
  year: 2010
  ident: 10.1016/j.rser.2015.07.021_bib39
  article-title: Computational studies of the thermochemistry for conversion of glucose to levulinic acid
  publication-title: J Phys Chem B
  doi: 10.1021/jp101418f
– volume: 242
  start-page: 278
  year: 2006
  ident: 10.1016/j.rser.2015.07.021_bib133
  article-title: A comparison of the esterification of acetic acid with methanol using heterogeneous versus homogeneous acid catalysis
  publication-title: J Catal
  doi: 10.1016/j.jcat.2006.05.026
– volume: 9
  start-page: 839
  year: 2007
  ident: 10.1016/j.rser.2015.07.021_bib91
  article-title: The synthesis of diphenolic acid using the periodic mesoporous H3PW12O40-silica composite catalysed reaction of levulinic acid
  publication-title: Green Chem
  doi: 10.1039/b702739g
– volume: 2
  start-page: 437
  year: 2009
  ident: 10.1016/j.rser.2015.07.021_bib34
  article-title: Conversion of furfuryl alcohol into ethyl levulinate using solid acid catalysts
  publication-title: ChemSusChem
  doi: 10.1002/cssc.200800216
– volume: 15
  start-page: 81
  year: 2013
  ident: 10.1016/j.rser.2015.07.021_bib90
  article-title: Brønsted acidic ionic liquids catalyze the high-yield production of diphenolic acid/esters from renewable levulinic acid
  publication-title: Green Chem
  doi: 10.1039/C2GC36630D
– volume: 3
  start-page: 3853
  year: 2013
  ident: 10.1016/j.rser.2015.07.021_bib116
  article-title: A Noble-metal free Cu-catalyst derived from hydrotalcite for highly efficient hydrogenation of biomass-derived furfural and levulinic acid
  publication-title: RSC Adv
  doi: 10.1039/c3ra22158j
– volume: 34
  start-page: 182
  year: 1998
  ident: 10.1016/j.rser.2015.07.021_bib70
  article-title: Production of levulinic acid from wood raw material in the presence of sulfuric acid and its salts
  publication-title: Chem Nat Compd
  doi: 10.1007/BF02249141
– volume: 10
  start-page: 238
  year: 2008
  ident: 10.1016/j.rser.2015.07.021_bib110
  article-title: γ-Valerolactone—a sustainable liquid for energy and carbon-based chemicals
  publication-title: Green Chem
  doi: 10.1039/B712863K
– ident: 10.1016/j.rser.2015.07.021_bib124
– volume: 954
  start-page: 262
  year: 2007
  ident: 10.1016/j.rser.2015.07.021_bib15
  article-title: Production of chemicals from cellulose and biomass-derived compounds: advances in the oxidative functionalization of levulinic acid
  publication-title: ACS Symp Ser
  doi: 10.1021/bk-2007-0954.ch017
– start-page: 21
  year: 2007
  ident: 10.1016/j.rser.2015.07.021_bib23
  article-title: Lignocellulose conversion: an introduction to chemistry, process and economics
– volume: 45
  start-page: 2163
  year: 2006
  ident: 10.1016/j.rser.2015.07.021_bib68
  article-title: Acid-catalyzed production of 5-hydroxymethylfurfural from d-fructose in subcritical water
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie051088y
– volume: 51
  start-page: 2356
  year: 2010
  ident: 10.1016/j.rser.2015.07.021_bib71
  article-title: Conversion of cellulose to glucose and levulinic acid via solid-supported acid catalysis
  publication-title: Tetrahedron Lett
  doi: 10.1016/j.tetlet.2010.02.148
– volume: 14
  start-page: 329
  year: 1995
  ident: 10.1016/j.rser.2015.07.021_bib100
  article-title: Photodynamics of porphyric insecticides
  publication-title: Crit Rev Plant Sci
  doi: 10.1080/07352689509382363
– volume: 36
  start-page: 158
  year: 2008
  ident: 10.1016/j.rser.2015.07.021_bib83
  article-title: Production of levulinic acid from Bagasse and Paddy Straw by liquefaction in the presence of hydrochloride acid
  publication-title: Clean-Soil Air Water
  doi: 10.1002/clen.200700100
– ident: 10.1016/j.rser.2015.07.021_bib60
– volume: 25
  start-page: 23
  year: 1972
  ident: 10.1016/j.rser.2015.07.021_bib38
  article-title: Thermal degradation of xylan and related model compounds
  publication-title: Carbohydr Res
  doi: 10.1016/S0008-6215(00)82742-1
– ident: 10.1016/j.rser.2015.07.021_bib1
– volume: 38
  start-page: 739
  year: 1997
  ident: 10.1016/j.rser.2015.07.021_bib104
  article-title: An efficient synthesis of d-aminolevulinic acid (ala) and its isotopomers
  publication-title: Tetrahedron Lett
  doi: 10.1016/S0040-4039(96)02419-7
– volume: 58
  start-page: 357
  year: 2013
  ident: 10.1016/j.rser.2015.07.021_bib118
  article-title: Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized Noble-metal-free Cu–Cr catalyst
  publication-title: Energy
  doi: 10.1016/j.energy.2013.05.035
– volume: 12
  start-page: 370
  year: 2010
  ident: 10.1016/j.rser.2015.07.021_bib51
  article-title: High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl) furfural, levulinic acid, and levulinic esters via 5-(chloromethyl) furfural
  publication-title: Green Chem
  doi: 10.1039/B918922J
– volume: 19
  start-page: 8628
  year: 2009
  ident: 10.1016/j.rser.2015.07.021_bib93
  article-title: Design of mesostructured H3PW12O40-silica materials with controllable ordered and disordered pore geometries and their application for the synthesis of diphenolic acid
  publication-title: J Mater Chem
  doi: 10.1039/b910416j
– volume: 90
  start-page: 2289
  year: 2011
  ident: 10.1016/j.rser.2015.07.021_bib69
  article-title: High selective production of 5-hydroymethylfurfural from fructose by a solid heteropolyacid catalyst
  publication-title: Fuel
  doi: 10.1016/j.fuel.2011.02.022
– volume: 1
  start-page: 89
  year: 1998
  ident: 10.1016/j.rser.2015.07.021_bib107
  article-title: Synthesis of analogues of d-aminolaevulinic acid and inhibition of 5-aminolaevulinic acid dehydratase
  publication-title: J Chem Soc Perkin Trans
  doi: 10.1039/a704544a
– volume: 784
  start-page: 51
  year: 2001
  ident: 10.1016/j.rser.2015.07.021_bib129
  article-title: Chemicals and materials from renewable resources
  publication-title: ACS Symp Ser
  doi: 10.1021/bk-2001-0784.ch005
– ident: 10.1016/j.rser.2015.07.021_bib80
– volume: 468
  start-page: 52
  year: 2013
  ident: 10.1016/j.rser.2015.07.021_bib109
  article-title: Highly selective production of value-added γ-valerolactone from biomass-derived levulinic acid using the robust Pd nanoparticles
  publication-title: Appl Catal, A
  doi: 10.1016/j.apcata.2013.08.037
– volume: 43
  start-page: 1446
  year: 2015
  ident: 10.1016/j.rser.2015.07.021_bib31
  article-title: Opportunities, recent trends and challenges of integrated biorefinery: Part II
  publication-title: Renewable Sustainable Energy Rev
  doi: 10.1016/j.rser.2014.08.075
SSID ssj0015873
Score 2.5996172
SecondaryResourceType review_article
Snippet Lignocellulosic biomass is a renewable and abundant source that can be used as a replacement for fossil resources in the sustainable production of speciality...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 986
SubjectTerms Biomass
Fuels
Levulinic acid
Speciality chemicals
Technologies
Title Production and catalytic transformation of levulinic acid: A platform for speciality chemicals and fuels
URI https://dx.doi.org/10.1016/j.rser.2015.07.021
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DL3oQP3F-jBy8SV3TJE3rbQzH_BpDHewW0jbFyejG1gle_Nt9r-3GBNnBS0vb90r4vfTlpXnvF0KujDQiMVw4nuXGESyNHGPCxPGVDWKpwjA1WJz83PO7A_EwlMMaaS9rYTCtsvL9pU8vvHV1p1mh2ZyORs1Xxn3hcg9DGhg3i_JrIRT28pvvVZoHk0GxyozCDkpXhTNljtcMzIzpXbIg8PTY34PT2oDT2Sd7VaRIW2VjDkjNZodkd40_8Ii890u-VsCWmiyhxb-YL5Cn-Vo8Cg8nKR3bz0VRBUlNPEpuaYtOxyZHEQoHOi_3oYeYnMYVh8C8eGe6gAYek0Hn7q3ddaqtE5wYMMkdGQRGxSKGyUmABFNgCJbiEqthQnHOjStT5aeeYia0nivgO0xkpIIIIybOIn5CtrJJZk8JhQmesS4HVaMEctnEkW_dRKmIpz5nok7YEjMdV7ziuL3FWC8TyD404qwRZ-0qDTjXyfVKZ1qyamyUlktT6F99Q4Pb36B39k-9c7KDV2XF4QXZymcLewmhRx41ir7VINut9stTH8_3j93eDyFn2oQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na8IwFA9DD9sOY5_Mfeaw2yg2TdLU3UQmuqkMpuAtpG3KHOJk1sH--73XRnEwPOzSQ_NeCb-kLy957_1CyJ2RRqSGCy-w3HiCZbFnTCP1QmWjRKpGIzNYnNwfhJ2ReBrL8Q5prWphMK3S2f7SphfW2r2pOzTr88mk_sp4KHweoEsD6yaWX1eRnUpWSLXZfe4M1sEEGRWBZpT3UMHVzpRpXp8w0pjhJQsOz4D9vT5trDntQ3LgnEXaLPtzRHbs7Jjsb1AInpC3l5KyFeClZpbS4jjmG-RpvuGSQuNHRqf2a1kUQlKTTNIH2qTzqclRhMKDLsqr6MEtp4mjEVgU38yW0MFTMmo_Dlsdz92e4CUAS-7JKDIqEQnsTyLkmIKxYBlGWQ0TinNufJmpMAsUMw0b-AJ-xVTGKorRaeIs5mekMvuY2XNCYY9nrM9B1SiBdDZJHFo_VSrmWciZqBG2wkwnjlocb7iY6lUO2btGnDXirH2lAecauV_rzEtija3ScjUU-tf00GD5t-hd_FPvlux2hv2e7nUHz5dkD1vKAsQrUsk_l_YaPJE8vnEz7QfRRdug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Production+and+catalytic+transformation+of+levulinic+acid%3A+A+platform+for+speciality+chemicals+and+fuels&rft.jtitle=Renewable+%26+sustainable+energy+reviews&rft.au=Yan%2C+Kai&rft.au=Jarvis%2C+Cody&rft.au=Gu%2C+Jing&rft.au=Yan%2C+Yong&rft.date=2015-11-01&rft.issn=1364-0321&rft.volume=51&rft.spage=986&rft.epage=997&rft_id=info:doi/10.1016%2Fj.rser.2015.07.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rser_2015_07_021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-0321&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-0321&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-0321&client=summon