Production and catalytic transformation of levulinic acid: A platform for speciality chemicals and fuels
Lignocellulosic biomass is a renewable and abundant source that can be used as a replacement for fossil resources in the sustainable production of speciality chemicals and transportation fuels. Over the last several decades, it has been demonstrated that one of the most effective methodology is to c...
Saved in:
Published in | Renewable & sustainable energy reviews Vol. 51; pp. 986 - 997 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1364-0321 1879-0690 |
DOI | 10.1016/j.rser.2015.07.021 |
Cover
Loading…
Abstract | Lignocellulosic biomass is a renewable and abundant source that can be used as a replacement for fossil resources in the sustainable production of speciality chemicals and transportation fuels. Over the last several decades, it has been demonstrated that one of the most effective methodology is to converse the high concentration of oxygen functionalized biomass monomers (e.g., cellulose, hemicelluloses) through de-functionalization into levulinic acid (LA) that has low oxygen content, followed by catalytic transformation of LA into fuels and valuable chemicals. This strategy currently seems to be the logical and promising alternative for sustainable development in the context of economic and environmental considerations. Besides, LA has been identified as one of the most promising platform chemicals for the sustainable production of fuels and commodity chemicals. This review is an up-to-date progress of literatures available on the subject of speciality chemicals and fuels derived from biomass through LA platform. The mechanism and current technologies for the production of LA are reviewed and compared. The potential theoretical calculation methods such as ab initio methods and density functional theories to predict the reaction pathway was also commented. The various transformation methods started from LA to speciality chemicals and fuels are critically reviewed. Among the various products, γ-valerolactone, 2-methyltetrahydrofuran and levuinate esters have been identified as promising fuels. The commercial diphenolic acid and delta-aminolevulinic acid have been widely utilized in many areas. The potential applications as well as fuel properties of these products are also discussed. |
---|---|
AbstractList | Lignocellulosic biomass is a renewable and abundant source that can be used as a replacement for fossil resources in the sustainable production of speciality chemicals and transportation fuels. Over the last several decades, it has been demonstrated that one of the most effective methodology is to converse the high concentration of oxygen functionalized biomass monomers (e.g., cellulose, hemicelluloses) through de-functionalization into levulinic acid (LA) that has low oxygen content, followed by catalytic transformation of LA into fuels and valuable chemicals. This strategy currently seems to be the logical and promising alternative for sustainable development in the context of economic and environmental considerations. Besides, LA has been identified as one of the most promising platform chemicals for the sustainable production of fuels and commodity chemicals. This review is an up-to-date progress of literatures available on the subject of speciality chemicals and fuels derived from biomass through LA platform. The mechanism and current technologies for the production of LA are reviewed and compared. The potential theoretical calculation methods such as ab initio methods and density functional theories to predict the reaction pathway was also commented. The various transformation methods started from LA to speciality chemicals and fuels are critically reviewed. Among the various products, γ-valerolactone, 2-methyltetrahydrofuran and levuinate esters have been identified as promising fuels. The commercial diphenolic acid and delta-aminolevulinic acid have been widely utilized in many areas. The potential applications as well as fuel properties of these products are also discussed. |
Author | Jarvis, Cody Yan, Kai Yan, Yong Gu, Jing |
Author_xml | – sequence: 1 givenname: Kai surname: Yan fullname: Yan, Kai email: kai_yan@brown.edu organization: School of Engineering, Brown University, Providence, RI, USA – sequence: 2 givenname: Cody surname: Jarvis fullname: Jarvis, Cody organization: Department of Chemistry, Lakehead University, Thunder Bay, ON, Canada – sequence: 3 givenname: Jing surname: Gu fullname: Gu, Jing organization: Department of Chemistry, Princeton University, Princeton, NJ, USA – sequence: 4 givenname: Yong surname: Yan fullname: Yan, Yong organization: Department of Chemistry, Princeton University, Princeton, NJ, USA |
BookMark | eNp9kM9KAzEQh4NUsK2-gKe8wK75s5tkxUspWoWCHvQcstmEpqS7JUkLfXuzrScPvUyG_OYbmG8GJv3QGwAeMSoxwuxpW4ZoQkkQrkvES0TwDZhiwZsCsQZNck9ZVSBK8B2YxbhFeVBwOgWbrzB0B53c0EPVd1CrpPwpOQ1TUH20Q9ipczhY6M3x4F2fM6Vd9wwXcO9VGkdgLjDujXbKu3SCemN2Tisfzzvtwfh4D25t_jAPf-8c_Ly9fi_fi_Xn6mO5WBe6QjQVtRCK60ozxkSLOTdUYVuThilccUqpQrXlzBKOVWMIqnDDurrloiVYUIpbOgfksleHIcZgrNwHt1PhJDGSoyu5laMrObqSiMvsKkPiH6RdOt-dLTh_HX25oPlGc3Q5jdqZXpvOBaOT7AZ3Df8FI1CIWw |
CitedBy_id | crossref_primary_10_1039_C6GC02415G crossref_primary_10_32933_ActaInnovations_35_3 crossref_primary_10_1039_C9GC01651A crossref_primary_10_1016_j_psep_2018_05_015 crossref_primary_10_1002_cssc_202000175 crossref_primary_10_1007_s11244_019_01147_4 crossref_primary_10_1039_C8NJ03569E crossref_primary_10_1016_j_jcat_2022_08_013 crossref_primary_10_1021_acsomega_2c03424 crossref_primary_10_1002_cjoc_201900433 crossref_primary_10_1007_s11244_022_01605_6 crossref_primary_10_1016_j_rser_2018_06_016 crossref_primary_10_1021_acssuschemeng_9b00734 crossref_primary_10_1039_D4CY00045E crossref_primary_10_1002_jctb_6810 crossref_primary_10_1007_s10562_017_2241_z crossref_primary_10_1021_acs_iecr_8b02464 crossref_primary_10_3389_fchem_2022_979353 crossref_primary_10_1002_cssc_201900745 crossref_primary_10_1007_s10562_021_03701_w crossref_primary_10_3390_chemengineering2010007 crossref_primary_10_1016_j_fuproc_2021_106893 crossref_primary_10_1002_jctb_7596 crossref_primary_10_1126_sciadv_abc0274 crossref_primary_10_1088_1757_899X_729_1_012109 crossref_primary_10_1016_j_fuel_2021_122056 crossref_primary_10_1016_j_biotechadv_2021_107706 crossref_primary_10_1021_acssuschemeng_8b06744 crossref_primary_10_1016_j_biortech_2021_125977 crossref_primary_10_1016_j_cattod_2024_115165 crossref_primary_10_1021_acs_chemrev_0c00158 crossref_primary_10_1016_j_rser_2017_04_016 crossref_primary_10_1007_s11244_019_01161_6 crossref_primary_10_1039_D1CY01450A crossref_primary_10_1007_s10562_018_2618_7 crossref_primary_10_1021_acs_iecr_8b00273 crossref_primary_10_1039_C9GC01706B crossref_primary_10_1007_s11356_024_33968_6 crossref_primary_10_1021_acsomega_9b04406 crossref_primary_10_1021_acssuschemeng_0c04450 crossref_primary_10_1016_j_molliq_2019_02_053 crossref_primary_10_1021_acsaem_9b01439 crossref_primary_10_1039_D4RA06038E crossref_primary_10_1088_1755_1315_65_1_012042 crossref_primary_10_1016_j_cattod_2024_114989 crossref_primary_10_1016_j_catcom_2020_105971 crossref_primary_10_1016_j_fuproc_2021_107097 crossref_primary_10_1016_j_apsusc_2024_159681 crossref_primary_10_1002_ente_201700594 crossref_primary_10_1021_acssuschemeng_8b00412 crossref_primary_10_32604_jrm_2021_011646 crossref_primary_10_1021_acs_iecr_0c00255 crossref_primary_10_1007_s13399_022_03444_7 crossref_primary_10_1002_cplu_202300381 crossref_primary_10_1016_j_jct_2017_05_011 crossref_primary_10_1016_j_jenvman_2018_04_105 crossref_primary_10_1016_j_cattod_2020_02_028 crossref_primary_10_1016_j_fuel_2019_116208 crossref_primary_10_1016_j_renene_2019_04_058 crossref_primary_10_3389_fenrg_2023_1133514 crossref_primary_10_1016_j_scitotenv_2022_153426 crossref_primary_10_1016_j_rser_2019_05_039 crossref_primary_10_1016_j_rser_2017_02_042 crossref_primary_10_2174_2213346107666200129104358 crossref_primary_10_1016_j_mcat_2021_112049 crossref_primary_10_1016_j_jct_2017_03_030 crossref_primary_10_1002_ente_201500343 crossref_primary_10_1021_acs_chemrev_7b00395 crossref_primary_10_1039_D2CY01325H crossref_primary_10_1002_pol_20210399 crossref_primary_10_1016_j_cej_2018_12_111 crossref_primary_10_1016_j_biombioe_2021_106261 crossref_primary_10_1002_cctc_202201170 crossref_primary_10_1016_j_fuel_2020_118032 crossref_primary_10_3390_app8020259 crossref_primary_10_1016_j_rser_2021_111253 crossref_primary_10_1016_j_fluid_2018_07_014 crossref_primary_10_1002_cplu_201500492 crossref_primary_10_1002_slct_202000099 crossref_primary_10_1007_s13399_022_02498_x crossref_primary_10_1080_07388551_2021_1939261 crossref_primary_10_3390_su13010128 crossref_primary_10_1016_j_fuel_2023_129447 crossref_primary_10_1039_D3SU00140G crossref_primary_10_3390_en11020404 crossref_primary_10_1016_j_indcrop_2024_118309 crossref_primary_10_1039_C9CY02567G crossref_primary_10_1016_j_cej_2021_132433 crossref_primary_10_1039_D1NJ04800G crossref_primary_10_1021_acs_energyfuels_9b01583 crossref_primary_10_1016_j_enconman_2019_112442 crossref_primary_10_1039_D0PY00705F crossref_primary_10_1021_acssuschemeng_1c03247 crossref_primary_10_1039_C7CY00902J crossref_primary_10_1002_kin_21087 crossref_primary_10_1039_C7CY00274B crossref_primary_10_1016_j_supflu_2015_11_002 crossref_primary_10_1021_acs_iecr_8b01283 crossref_primary_10_1016_j_fuel_2025_135153 crossref_primary_10_3390_catal6120196 crossref_primary_10_1016_j_molliq_2021_117278 crossref_primary_10_1021_acscatal_6b01883 crossref_primary_10_1039_C9GC02365H crossref_primary_10_1016_j_biombioe_2025_107683 crossref_primary_10_1016_j_cej_2020_125750 crossref_primary_10_3390_catal6090131 crossref_primary_10_1016_j_apcatb_2021_120219 crossref_primary_10_1039_D1NJ05777D crossref_primary_10_9767_bcrec_16_4_12197_904_915 crossref_primary_10_1021_acssuschemeng_1c02845 crossref_primary_10_3389_fchem_2020_00221 crossref_primary_10_1016_j_fuel_2018_09_148 crossref_primary_10_1016_j_jcat_2023_115177 crossref_primary_10_1016_j_apcata_2019_117309 crossref_primary_10_1016_j_rser_2018_02_019 crossref_primary_10_1016_j_cej_2024_152141 crossref_primary_10_1016_j_fuel_2018_03_120 crossref_primary_10_1016_j_jiec_2021_02_018 crossref_primary_10_1016_j_fuproc_2022_107185 crossref_primary_10_1016_j_cattod_2022_08_012 crossref_primary_10_1016_j_gee_2019_05_002 crossref_primary_10_1070_RCR5018 crossref_primary_10_1016_j_jcou_2020_101158 crossref_primary_10_3390_nano13061129 crossref_primary_10_1016_j_molcata_2016_10_032 crossref_primary_10_1021_acs_iecr_6b03900 crossref_primary_10_3762_bjoc_12_207 crossref_primary_10_1039_D0SE01257B crossref_primary_10_1021_acssuschemeng_1c00554 crossref_primary_10_1007_s12039_024_02317_y crossref_primary_10_1016_j_catcom_2023_106673 crossref_primary_10_1088_1757_899X_778_1_012140 crossref_primary_10_1039_C8GC03264E crossref_primary_10_1021_acssuschemeng_2c00309 crossref_primary_10_1007_s10934_021_01131_y crossref_primary_10_1016_j_apcata_2025_120238 crossref_primary_10_1002_cjoc_201600726 crossref_primary_10_3390_molecules24152760 crossref_primary_10_1016_j_biortech_2018_01_141 crossref_primary_10_3390_molecules201219760 crossref_primary_10_1016_j_mcat_2022_112499 crossref_primary_10_3846_jeelm_2022_16744 crossref_primary_10_3390_molecules28010442 crossref_primary_10_1002_cctc_202301291 crossref_primary_10_1016_j_rser_2018_12_007 crossref_primary_10_1021_acs_joc_3c01870 crossref_primary_10_1039_D0NJ01180K crossref_primary_10_1016_j_carres_2022_108529 crossref_primary_10_1039_C6RA06050A crossref_primary_10_1016_j_catcom_2019_02_022 crossref_primary_10_3390_en11051223 crossref_primary_10_1016_j_jcis_2021_05_161 crossref_primary_10_1016_j_jclepro_2022_132771 crossref_primary_10_1039_C6RA26469G crossref_primary_10_1080_17458080_2016_1214985 crossref_primary_10_1002_slct_201702580 crossref_primary_10_1126_sciadv_abe0026 crossref_primary_10_1021_acssuschemeng_6b01834 crossref_primary_10_1021_acscatal_7b01786 crossref_primary_10_1039_D0CS00177E crossref_primary_10_52396_JUSTC_2021_0268 crossref_primary_10_1016_j_catcom_2022_106430 crossref_primary_10_5059_yukigoseikyokaishi_78_856 crossref_primary_10_1016_j_fuel_2022_125213 crossref_primary_10_1016_j_cattod_2017_03_008 crossref_primary_10_1002_cctc_201900807 crossref_primary_10_1007_s43979_023_00058_4 crossref_primary_10_1002_cctc_201801843 crossref_primary_10_1038_s41598_018_38051_y crossref_primary_10_1021_acssuschemeng_6b02244 crossref_primary_10_1002_aic_17973 crossref_primary_10_1016_j_biortech_2024_130301 crossref_primary_10_1021_acssuschemeng_6b02338 crossref_primary_10_1111_ics_12564 crossref_primary_10_7849_ksnre_2021_0005 crossref_primary_10_1016_j_cattod_2024_114902 crossref_primary_10_1039_D4CY01467G crossref_primary_10_1016_j_jenvman_2021_114385 crossref_primary_10_1016_j_tgchem_2024_100037 crossref_primary_10_1016_j_cattod_2016_05_030 crossref_primary_10_1016_j_fuproc_2021_106958 crossref_primary_10_1021_acs_energyfuels_9b03508 crossref_primary_10_3390_molecules28041527 crossref_primary_10_1039_D2RA01379G crossref_primary_10_1155_2018_1920180 crossref_primary_10_1002_cssc_201902988 crossref_primary_10_1002_jctb_6318 crossref_primary_10_3390_en11030621 crossref_primary_10_1007_s12649_022_01948_x crossref_primary_10_1360_SSV_2023_0067 crossref_primary_10_1021_acs_energyfuels_8b00378 crossref_primary_10_1002_jctb_5352 crossref_primary_10_1007_s13738_019_01677_4 crossref_primary_10_1039_C9NJ00191C crossref_primary_10_1016_j_egypro_2017_03_374 crossref_primary_10_1016_j_ecmx_2022_100222 crossref_primary_10_1016_j_tgchem_2024_100046 crossref_primary_10_3390_catal7080235 crossref_primary_10_1007_s12649_020_00997_4 crossref_primary_10_1016_j_fuel_2022_123137 crossref_primary_10_1039_D2SE01583H crossref_primary_10_1016_j_apcata_2017_09_007 crossref_primary_10_1016_j_seppur_2023_123166 crossref_primary_10_1016_j_biortech_2018_05_040 crossref_primary_10_1039_D2SE01503J crossref_primary_10_1007_s12649_020_01221_z crossref_primary_10_1016_j_rser_2016_11_110 crossref_primary_10_1016_j_mcat_2021_111483 crossref_primary_10_1002_adsc_201801656 crossref_primary_10_1021_acs_chemrev_9b00846 crossref_primary_10_1039_C6RA24218A crossref_primary_10_1007_s11164_021_04646_w crossref_primary_10_1039_D0CS00041H crossref_primary_10_1039_D1GC02919C crossref_primary_10_1007_s11814_020_0521_6 crossref_primary_10_1088_1742_6596_1363_1_012096 crossref_primary_10_1016_j_materresbull_2020_111128 crossref_primary_10_1002_cctc_202100032 crossref_primary_10_1021_acs_energyfuels_7b03987 crossref_primary_10_1016_j_biortech_2016_11_063 crossref_primary_10_1016_j_jiec_2024_04_008 crossref_primary_10_1016_j_rser_2017_10_038 crossref_primary_10_1016_j_micromeso_2018_12_009 crossref_primary_10_1021_acssuschemeng_9b00778 crossref_primary_10_1021_acssuschemeng_9b06636 crossref_primary_10_1016_j_rser_2018_04_043 crossref_primary_10_1039_C7RA12994G crossref_primary_10_3390_catal6070107 crossref_primary_10_1007_s41660_019_00097_4 crossref_primary_10_1039_D3RE00497J crossref_primary_10_1021_acs_energyfuels_3c00948 crossref_primary_10_1002_celc_201900734 crossref_primary_10_1002_ente_201800524 crossref_primary_10_1007_s12649_021_01485_z crossref_primary_10_1021_acssuschemeng_5b01480 crossref_primary_10_1039_C5RA27513J crossref_primary_10_1039_D1MA00197C crossref_primary_10_1039_D0GC01082K crossref_primary_10_1002_bbb_2352 crossref_primary_10_1002_slct_201800132 crossref_primary_10_1080_17597269_2018_1489673 crossref_primary_10_3390_ijms23020799 crossref_primary_10_1002_tcr_201600102 crossref_primary_10_1002_bbb_2351 crossref_primary_10_1016_j_cej_2024_152677 crossref_primary_10_1016_j_catcom_2022_106516 crossref_primary_10_3390_pr10040734 crossref_primary_10_1016_j_cej_2019_05_042 crossref_primary_10_1021_acscatal_7b03530 crossref_primary_10_3390_catal13071144 crossref_primary_10_3390_su132413919 crossref_primary_10_1002_slct_201702899 crossref_primary_10_3390_su11133604 crossref_primary_10_3390_molecules29163779 crossref_primary_10_1016_j_gee_2020_09_009 crossref_primary_10_1088_1361_6528_abfabb crossref_primary_10_1016_j_jiec_2016_07_059 crossref_primary_10_1016_j_carbpol_2017_10_064 crossref_primary_10_1002_cctc_201801381 crossref_primary_10_1016_j_indcrop_2018_12_082 crossref_primary_10_3390_catal10091006 crossref_primary_10_1016_j_biteb_2020_100514 crossref_primary_10_1016_j_cattod_2019_02_020 crossref_primary_10_1007_s11144_018_1421_1 crossref_primary_10_1021_acssuschemeng_8b06553 crossref_primary_10_1088_1755_1315_272_2_022100 crossref_primary_10_1016_j_cattod_2016_12_019 crossref_primary_10_1155_2019_5710708 crossref_primary_10_1021_acs_iecr_5c00115 crossref_primary_10_1039_D0GC01725F crossref_primary_10_1002_cssc_201802066 crossref_primary_10_3390_catal8040169 crossref_primary_10_1016_j_jbiotec_2024_09_015 crossref_primary_10_1039_C9CY00168A crossref_primary_10_1016_j_indcrop_2019_112031 crossref_primary_10_1016_j_ijbiomac_2024_136061 crossref_primary_10_1021_acs_iecr_2c00931 crossref_primary_10_1016_j_jclepro_2017_09_103 crossref_primary_10_1039_C9GC03056E crossref_primary_10_1016_j_cattod_2022_06_016 crossref_primary_10_1039_D2GC03444A crossref_primary_10_1039_C9NJ03239H crossref_primary_10_3390_sym17010082 |
Cites_doi | 10.1016/S0040-4039(00)94793-2 10.1016/0141-0229(84)90012-7 10.1002/anie.201002060 10.1016/j.rser.2014.05.084 10.1002/cctc.201300956 10.1002/cssc.201100380 10.1039/C2CY20689G 10.1021/cr050989d 10.1007/s11244-008-9166-0 10.1021/cr068360d 10.1080/00397919408010567 10.1016/S0921-3449(99)00047-6 10.1016/j.catcom.2011.10.001 10.1039/c004654j 10.1002/cssc.200900092 10.1039/c3gc37065h 10.1002/cssc.201100608 10.1126/science.1184362 10.1039/c3ra43619e 10.1002/cssc.200900136 10.1039/C3GC41803K 10.1016/j.catcom.2011.12.004 10.1016/j.rser.2013.04.019 10.1039/c3gc40909k 10.1039/b922014c 10.1016/j.polymer.2012.02.026 10.1146/annurev-chembioeng-073009-100935 10.1039/b801641k 10.1016/S1381-1169(01)00495-2 10.1016/j.rser.2013.11.006 10.1016/j.apcatb.2010.07.029 10.1021/ja01375a033 10.1021/sc400229w 10.1016/j.catcom.2013.01.010 10.1039/C5CC01463H 10.1016/j.apenergy.2011.05.049 10.1016/j.biortech.2010.10.018 10.1002/anie.201007582 10.1016/0926-860X(96)00136-6 10.1002/cssc.200900281 10.1016/j.rser.2014.07.003 10.1038/bjc.1992.175 10.1139/v74-480 10.1016/j.cattod.2008.04.017 10.1016/0926-860X(94)85008-9 10.1039/b708754c 10.2172/926125 10.1126/science.1126337 10.1080/00986445.2013.775646 10.1002/anie.201000655 10.1007/s10562-009-0160-3 10.1016/j.apcatb.2011.04.009 10.1021/ie00025a004 10.1023/A:1014857703817 10.1016/j.fuel.2013.06.042 10.1016/j.apcatb.2007.12.020 10.1039/c2cc30239j 10.1002/anie.200902281 10.1042/bj0700071 10.1016/j.biombioe.2014.11.007 10.1016/S0960-8524(01)00144-4 10.1016/j.polymer.2003.09.041 10.1039/c2gc16599f 10.3390/molecules15085258 10.1021/ie061186z 10.1007/s10853-007-2021-z 10.1205/cherd05038 10.1016/j.biortech.2008.02.045 10.1080/07328309708007350 10.1021/ja803983h 10.1016/S1004-9541(06)60139-0 10.1039/c1ee01418h 10.1104/pp.53.2.297 10.1016/j.apcata.2012.03.020 10.1002/cctc.201200113 10.1002/pola.24541 10.1002/prac.18400210121 10.1016/0144-4565(87)90046-1 10.1039/c2ee22111j 10.1016/j.rser.2014.07.209 10.1016/j.rser.2014.11.092 10.1016/j.carres.2008.09.008 10.15376/biores.9.2.3264-3275 10.1021/ie500318t 10.1007/s11051-013-1906-9 10.1016/0008-6215(90)84096-D 10.1016/j.apenergy.2010.07.016 10.1016/j.apcata.2012.08.014 10.1039/b900229b 10.1039/c3cc40980e 10.1021/ja01646a053 10.1016/j.apcatb.2015.04.030 10.1002/star.19900420808 10.1016/j.rser.2013.03.037 10.1016/j.apcatb.2012.09.029 10.1023/A:1009017929727 10.1021/jp101418f 10.1016/j.jcat.2006.05.026 10.1039/b702739g 10.1002/cssc.200800216 10.1039/C2GC36630D 10.1039/c3ra22158j 10.1007/BF02249141 10.1039/B712863K 10.1021/bk-2007-0954.ch017 10.1021/ie051088y 10.1016/j.tetlet.2010.02.148 10.1080/07352689509382363 10.1002/clen.200700100 10.1016/S0008-6215(00)82742-1 10.1016/S0040-4039(96)02419-7 10.1016/j.energy.2013.05.035 10.1039/B918922J 10.1039/b910416j 10.1016/j.fuel.2011.02.022 10.1039/a704544a 10.1021/bk-2001-0784.ch005 10.1016/j.apcata.2013.08.037 10.1016/j.rser.2014.08.075 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd |
Copyright_xml | – notice: 2015 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.rser.2015.07.021 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0690 |
EndPage | 997 |
ExternalDocumentID | 10_1016_j_rser_2015_07_021 S1364032115006681 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADHUB ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSR SSZ T5K Y6R ZCA ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c403t-588a7c4c6668b177e3a1f5296a147333a05f76f271a9e204196d5b78b218331b3 |
IEDL.DBID | .~1 |
ISSN | 1364-0321 |
IngestDate | Tue Jul 01 01:56:39 EDT 2025 Thu Apr 24 23:07:51 EDT 2025 Fri Feb 23 02:19:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biomass Levulinic acid Fuels Speciality chemicals Technologies |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-588a7c4c6668b177e3a1f5296a147333a05f76f271a9e204196d5b78b218331b3 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1016_j_rser_2015_07_021 crossref_citationtrail_10_1016_j_rser_2015_07_021 elsevier_sciencedirect_doi_10_1016_j_rser_2015_07_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-11-01 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Renewable & sustainable energy reviews |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Bourne, Stevens, Ke, Poliakoff (bib115) 2007; 44 Yan, Liao, Wu, Xie (bib116) 2013; 3 Geilen, vom Stein, Engendahl, Winterle, Liauw, Klankermayer (bib22) 2011; 50 MacDonald (bib102) 1974; 52 Kröger, Prüße, Vorlop (bib67) 2000; 13 Yang, Huang, Guo, Fu (bib122) 2013; 49 Serrano-Ruiz, Braden, West, Dumesic (bib75) 2010; 100 Saravanamurugan, Riisager (bib139) 2012; 17 Shen, Sun, Wang, Xu, Sun (bib96) 2014; 9 Zuo, Lane, Culy, Schultz, Pullar, Waxman (bib125) 2013; 129 Fernandes, Rocha, Mai, Mota, Teixeira (bib137) 2012; 425 Rebeiz, Montazer-Zouhoor, Hopen, Wu (bib99) 1984; 6 Yan, Wu, An, Xie (bib28) 2014; 201 Mascal, Nikitin (bib57) 2009; 2 Martiná, Marcel (bib77) 2013; 3 Zúñiga, Lligadas, Ronda, Galià, Cádiz (bib88) 2012; 53 Guo, Li, Clark (bib91) 2007; 9 Vyver, Thomas, Geboers, Keyzer, Smet, Dehaen (bib95) 2011; 4 Peng, Lin, Li, Yang (bib132) 2011; 88 Alonso, Bond, Dumesic (bib5) 2010; 12 Zhao, Wang, Zhao, Wang, Wang (bib69) 2011; 90 Kudakasseril, Raveendran, Hussain, Vijaya Raghavan (bib9) 2013; 25 Tarabanko, Chernyak, Aralova, Kuznetsov (bib64) 2002; 75 Zhang, Wu, Li, Zhang (bib12) 2012; 4 Hegner, Pereira, DeBoef, Lucht (bib71) 2010; 51 Corma, Iborra, Velty (bib29) 2007; 107 Farone W.A., Cuzens J.E. Method for the production of levulinic acid and its derivatives. US patent 6054611; 2000. Bharathiraja, Chakravarthy, Kumar, Yuvaraj, Jayamuthunagai, Kumar (bib135) 2014; 38 Appleton, Duguid, Lee, Ha, Ha, Leeper (bib107) 1998; 1 Serrano-Ruiz, West, Dumesic (bib20) 2010; 1 Geilen, Engendahl, Harwardt, Marquardt, Klankermayer (bib113) 2010; 49 Otsuka M., Hirose Y., Kinoshita T., Masawa T. Manufacture of levulinic acid. US patent 37552849; 1973. Chambon, Rataboul, Pinel, Cabiac, Guillon, Essayem (bib76) 2011; 105 Bond, Alonso, Wang, West, Dumesic (bib84) 2010; 327 Fábos, Koczó, Mehdi, Boda, Horváth (bib111) 2009; 2 Gurbuz, Wettstein, Dumesic (bib55) 2012; 5 Salak, Yoshida (bib68) 2006; 45 Bedwell, McRoberts, Phillips, Brown (bib101) 1992; 65 Lange, Price, Ayou, Louis, Petrus, Clarke (bib112) 2010; 49 Suganuma, Nakajima, Kitano, Yamaguchi, Kato, Hayashi (bib27) 2008; 130 Beale, Castelfranco (bib98) 1974; 53 Hayes, Fitzpatrick, Hayes, Ross (bib33) 2008 Zeng, Cheng, Chen, Zhan (bib65) 2009; 133 Hayes, Fitzpatrick, Hayes, Ross (bib106) 2006; 1 Román-Leshkov, Chheda, Dumesic (bib54) 2006; 312 Chen, Yu, Jin (bib79) 2011; 102 Manzer L.E. In catalysis for the conversion of biomass and its derivatives, editors. M. Behrens and A. K. Datye; 2013. Alonso, Wettstein, Dumesic (bib19) 2013; 15 Jow, Rorrer, Hawley, Lamport (bib41) 1987; 4 Lilja, Murzin, Salmi, Aumo, Mäki-Arvela, Sundell (bib134) 2002; 182 BP. Statistical review of world energy. In: British Petroleum; 2012. Kricheldorf, Hobzova, Schwarz (bib89) 2003; 44 Yan, Chen (bib118) 2013; 58 Horvat, Klaic, Metelko, Sunjic (bib42) 1985; 26 Sah, Ma (bib58) 1930; 52 Bart, Reidetschlager, Schatka, Lehmann (bib130) 1994; 33 Girisuta, Janssen, Heeres (bib74) 2007; 46 Yan, Jarvis, Lafleur, Qiao, Xie (bib108) 2013; 3 Yan, Lafleur, Wu, Liao, Ceng, Xie (bib109) 2013; 468 Zúñiga, Larrechi, Lligadas, Ronda, Galià, Cádiz (bib87) 2011; 49 Fitzpatrick S.W. Production of Levulinic acid from carbohydrate-containing materials. US patent 5608105; 1997. Yan, Wu, Lafleur, Jarvis (bib6) 2014; 38 Girisuta, Janssen, Heeres (bib46) 2006; 84 Liu, Zeng, Deng, Liao, Pang, Guo (bib90) 2013; 15 Wettstein, Alonso, Chong, Dumesic (bib53) 2012; 5 Energy Independence and Security Act of 2007. In: U.S. D.O. Energy (Eds.). United States Congress, Washington, D.C.; 2007. p. 30-37. Saladino, Pagliaccia, Argyropoulos, Crestini (bib15) 2007; 954 Qi, Watanabe, Aida, Smith (bib48) 2008; 10 Tolan (bib17) 2006 Zuo, Zhang, Fu (bib72) 2014; 6 Texaco/NYSERDA/Biofine. Ethyl levulinate D-975 Diesel Additive Test Program, Glenham, NY; 2000. 2004. Moreau, Durand, Duhamet, Rivalier (bib36) 1997; 16 Pasquale, Vázquez, Romanelli, Baronetti (bib140) 2012; 18 Yan, Yang, Chai, Lu (bib21) 2015; 179 Kayser, Müller, García-González, Smirnova, Leitner, Domínguez de María (bib136) 2012; 445 Huber, Iborra, Corma (bib11) 2006; 106 Carlson L.J. Process for the manufactures of levulinic acid. US patent 3,065,263 ; 1962. Yan, Yang, Pang, Liao (bib83) 2008; 36 Bader, Kontowicz (bib86) 1954; 76 Dabrowski, Kwasny, Kaminski, Beldowicz, Lewicka, Obukowicz (bib105) 2003; 60 Wang, Scott (bib104) 1997; 38 Gibson, Laver, Neuberger (bib97) 1958; 70 Guo, Li, Yu, Clark (bib92) 2008; 81 Bozell, Petersen (bib25) 2010; 12 Redmon B.C. Process for the production of levulinic acid. US patent 2,738,367; 1956. Vyver, Geboers, Helsen, Yu, Thomas, Smet (bib94) 2012; 48 Upare, Lee, Hwang, Hwang, Lee, Halligudi (bib117) 2012; 4 Antal, Mok, Richards (bib40) 1990; 199 Chang, Ma, Cen (bib62) 2006; 14 Mulder (bib43) 1840; 21 Kuo, Poyraz, Jin, Meng, Pahalagedara, Chen (bib50) 2014; 16 Bozell, Moens, Elliott, Wang, Neuenscwander, Fitzpatrick (bib85) 2000; 28 Demirbas (bib127) 2011; 88 Olson, Kjelden, Schlag, Sharma (bib129) 2001; 784 Maity (bib31) 2015; 43 Kuster (bib44) 1990; 42 Shafizadeh, McGinnis, Philpot (bib38) 1972; 25 2002. Ha, Lee, Ha, Park (bib103) 1994; 24 Lange, van de Graaf, Haan (bib34) 2009; 2 Conti J, Holtberg P, Doman LE, Smith KA, Vincent KR, Barden JL et al. World energy outlook 2011. In: Energy Information Administration; 2011. Mansoor, Mariun, Ismail, Wahab (bib4) 2013; 24 Al-Shaal, Dzierbinski, Palkovits (bib121) 2014; 16 Leshkov, Dumesic (bib47) 2009; 52 U.S. Dep. Energy. . Roadmap for biomass technologies in the United States. Werpy T.A., Holladay J.E., White J.F. . Top value added chemicals from biomass: I. Results of screening for potential candidates from sugars and synthesis gas. US Department of Energy. Horváth, Mehdi, Fábos, Boda, Mika (bib110) 2008; 10 Chadwick, McDonnell, Brennan, Fagan, Everard (bib7) 2014; 30 Li, Hu, Li, Ma, Xu, Guo (bib93) 2009; 19 Yan, Lafleur, Liao (bib114) 2013; 15 Yan, Lafleur, Wu, Chai, Wu, Xie (bib8) 2015; 51 Assary, Redfern, Hammond, Greeley, Curtiss (bib39) 2010; 114 Mascal, Nikitin (bib51) 2010; 12 Lange (bib23) 2007 Lourvanij, Rorrer (bib61) 1994; 109 Takeuchi, Jin, Tohji, Enomoto (bib52) 2008; 43 Elliott D.C., Frye J.G. Hydrogenated 5-carbon compound and method of making. U.S. patent 5,883,266; 1999. Tang, Zeng, Li, Hu, Sun, Liu (bib18) 2014; 40 Jow, Rorrer, Hawley, Lamport (bib66) 1987; 14 Yan, Lafleur, Liao, Xie (bib16) 2013; 6 Amarasekara, Williams, Ebede (bib35) 2008; 343 Du, Bi, Liu, Cao, He, Fan (bib120) 2012; 14 Moreau, Durand, Razigade, Duhamet, Faugeras, Rivalier (bib37) 1996; 145 Hayes (bib128) 2009; 145 Yan, Wu, Wen, Chen (bib138) 2013; 34 Maity (bib30) 2015; 43 Liu, Lotero, Goodwin (bib133) 2006; 242 Sievers, Musin, Marzialetti, Olarte, Agrawal, Jones (bib45) 2009; 2 Hu, Song, Wu, Gholizadeh, Li (bib131) 2013; 1 Efremov, Pervyshina, Kuznetsov (bib70) 1998; 34 Yan, Chen (bib119) 2014; 115 Mukherjee, Dumont, Raghavan (bib10) 2015; 72 Rinaldi, Meine, Stein, Palkovits, Schüth (bib49) 2010; 3 Girisuta, Danon, Manurung, Janssen, Heeres (bib78) 2008; 99 Peng, Lin, Zhang, Zhuang, Zhang, Gong (bib56) 2010; 15 Erner W.E. Synthetic liquid fuel and fuel mixtures for oil-burning devices. U.S. patent 4,364,743; 1982. Repice R, Adler R, Berry J, Michaels J, Schmitt R, King RF et al. Annual energy review United States energy information administration: Washington, D.C.; 2011. Yang, Wang, Jia, Qiu, Pang, Pan (bib73) 2014; 53 Fang, Hanna (bib26) 2002; 81 Rebeiz, Gut, Lee, Juvik, Rebeiz, Bouton (bib100) 1995; 14 Deng, Li, Lai, Fu, Guo (bib63) 2009; 48 Du (10.1016/j.rser.2015.07.021_bib120) 2012; 14 Alonso (10.1016/j.rser.2015.07.021_bib19) 2013; 15 Beale (10.1016/j.rser.2015.07.021_bib98) 1974; 53 Deng (10.1016/j.rser.2015.07.021_bib63) 2009; 48 Upare (10.1016/j.rser.2015.07.021_bib117) 2012; 4 Hegner (10.1016/j.rser.2015.07.021_bib71) 2010; 51 Lange (10.1016/j.rser.2015.07.021_bib34) 2009; 2 Hayes (10.1016/j.rser.2015.07.021_bib106) 2006; 1 Liu (10.1016/j.rser.2015.07.021_bib90) 2013; 15 Corma (10.1016/j.rser.2015.07.021_bib29) 2007; 107 Shen (10.1016/j.rser.2015.07.021_bib96) 2014; 9 Chambon (10.1016/j.rser.2015.07.021_bib76) 2011; 105 Zúñiga (10.1016/j.rser.2015.07.021_bib88) 2012; 53 10.1016/j.rser.2015.07.021_bib32 Salak (10.1016/j.rser.2015.07.021_bib68) 2006; 45 Dabrowski (10.1016/j.rser.2015.07.021_bib105) 2003; 60 Wang (10.1016/j.rser.2015.07.021_bib104) 1997; 38 Yang (10.1016/j.rser.2015.07.021_bib73) 2014; 53 Kricheldorf (10.1016/j.rser.2015.07.021_bib89) 2003; 44 Appleton (10.1016/j.rser.2015.07.021_bib107) 1998; 1 Bourne (10.1016/j.rser.2015.07.021_bib115) 2007; 44 Lange (10.1016/j.rser.2015.07.021_bib112) 2010; 49 Kayser (10.1016/j.rser.2015.07.021_bib136) 2012; 445 Yan (10.1016/j.rser.2015.07.021_bib83) 2008; 36 Leshkov (10.1016/j.rser.2015.07.021_bib47) 2009; 52 Yan (10.1016/j.rser.2015.07.021_bib8) 2015; 51 Antal (10.1016/j.rser.2015.07.021_bib40) 1990; 199 Tarabanko (10.1016/j.rser.2015.07.021_bib64) 2002; 75 Yan (10.1016/j.rser.2015.07.021_bib28) 2014; 201 Assary (10.1016/j.rser.2015.07.021_bib39) 2010; 114 Hayes (10.1016/j.rser.2015.07.021_bib128) 2009; 145 Lourvanij (10.1016/j.rser.2015.07.021_bib61) 1994; 109 Yan (10.1016/j.rser.2015.07.021_bib116) 2013; 3 10.1016/j.rser.2015.07.021_bib59 Alonso (10.1016/j.rser.2015.07.021_bib5) 2010; 12 Horvat (10.1016/j.rser.2015.07.021_bib42) 1985; 26 Girisuta (10.1016/j.rser.2015.07.021_bib46) 2006; 84 Serrano-Ruiz (10.1016/j.rser.2015.07.021_bib75) 2010; 100 Mukherjee (10.1016/j.rser.2015.07.021_bib10) 2015; 72 Yang (10.1016/j.rser.2015.07.021_bib122) 2013; 49 Tolan (10.1016/j.rser.2015.07.021_bib17) 2006 Bozell (10.1016/j.rser.2015.07.021_bib85) 2000; 28 Li (10.1016/j.rser.2015.07.021_bib93) 2009; 19 Rebeiz (10.1016/j.rser.2015.07.021_bib99) 1984; 6 Hu (10.1016/j.rser.2015.07.021_bib131) 2013; 1 Pasquale (10.1016/j.rser.2015.07.021_bib140) 2012; 18 MacDonald (10.1016/j.rser.2015.07.021_bib102) 1974; 52 Horváth (10.1016/j.rser.2015.07.021_bib110) 2008; 10 Shafizadeh (10.1016/j.rser.2015.07.021_bib38) 1972; 25 Amarasekara (10.1016/j.rser.2015.07.021_bib35) 2008; 343 Bharathiraja (10.1016/j.rser.2015.07.021_bib135) 2014; 38 Zhang (10.1016/j.rser.2015.07.021_bib12) 2012; 4 Jow (10.1016/j.rser.2015.07.021_bib66) 1987; 14 Bozell (10.1016/j.rser.2015.07.021_bib25) 2010; 12 Gurbuz (10.1016/j.rser.2015.07.021_bib55) 2012; 5 Moreau (10.1016/j.rser.2015.07.021_bib37) 1996; 145 Sievers (10.1016/j.rser.2015.07.021_bib45) 2009; 2 Suganuma (10.1016/j.rser.2015.07.021_bib27) 2008; 130 Zhao (10.1016/j.rser.2015.07.021_bib69) 2011; 90 Geilen (10.1016/j.rser.2015.07.021_bib22) 2011; 50 Bedwell (10.1016/j.rser.2015.07.021_bib101) 1992; 65 Girisuta (10.1016/j.rser.2015.07.021_bib74) 2007; 46 Vyver (10.1016/j.rser.2015.07.021_bib94) 2012; 48 Demirbas (10.1016/j.rser.2015.07.021_bib127) 2011; 88 Huber (10.1016/j.rser.2015.07.021_bib11) 2006; 106 Tang (10.1016/j.rser.2015.07.021_bib18) 2014; 40 10.1016/j.rser.2015.07.021_bib60 Yan (10.1016/j.rser.2015.07.021_bib16) 2013; 6 Takeuchi (10.1016/j.rser.2015.07.021_bib52) 2008; 43 Mascal (10.1016/j.rser.2015.07.021_bib57) 2009; 2 Zuo (10.1016/j.rser.2015.07.021_bib125) 2013; 129 Maity (10.1016/j.rser.2015.07.021_bib30) 2015; 43 Serrano-Ruiz (10.1016/j.rser.2015.07.021_bib20) 2010; 1 Efremov (10.1016/j.rser.2015.07.021_bib70) 1998; 34 Qi (10.1016/j.rser.2015.07.021_bib48) 2008; 10 Kröger (10.1016/j.rser.2015.07.021_bib67) 2000; 13 Guo (10.1016/j.rser.2015.07.021_bib92) 2008; 81 Kuo (10.1016/j.rser.2015.07.021_bib50) 2014; 16 Zúñiga (10.1016/j.rser.2015.07.021_bib87) 2011; 49 Yan (10.1016/j.rser.2015.07.021_bib109) 2013; 468 Kudakasseril (10.1016/j.rser.2015.07.021_bib9) 2013; 25 Yan (10.1016/j.rser.2015.07.021_bib119) 2014; 115 Yan (10.1016/j.rser.2015.07.021_bib6) 2014; 38 Kuster (10.1016/j.rser.2015.07.021_bib44) 1990; 42 Bader (10.1016/j.rser.2015.07.021_bib86) 1954; 76 Román-Leshkov (10.1016/j.rser.2015.07.021_bib54) 2006; 312 Rebeiz (10.1016/j.rser.2015.07.021_bib100) 1995; 14 Bond (10.1016/j.rser.2015.07.021_bib84) 2010; 327 Peng (10.1016/j.rser.2015.07.021_bib56) 2010; 15 Vyver (10.1016/j.rser.2015.07.021_bib95) 2011; 4 Lilja (10.1016/j.rser.2015.07.021_bib134) 2002; 182 Girisuta (10.1016/j.rser.2015.07.021_bib78) 2008; 99 Jow (10.1016/j.rser.2015.07.021_bib41) 1987; 4 Wettstein (10.1016/j.rser.2015.07.021_bib53) 2012; 5 Lange (10.1016/j.rser.2015.07.021_bib23) 2007 Fernandes (10.1016/j.rser.2015.07.021_bib137) 2012; 425 10.1016/j.rser.2015.07.021_bib82 Chadwick (10.1016/j.rser.2015.07.021_bib7) 2014; 30 10.1016/j.rser.2015.07.021_bib81 Zeng (10.1016/j.rser.2015.07.021_bib65) 2009; 133 10.1016/j.rser.2015.07.021_bib80 Maity (10.1016/j.rser.2015.07.021_bib31) 2015; 43 Chen (10.1016/j.rser.2015.07.021_bib79) 2011; 102 Bart (10.1016/j.rser.2015.07.021_bib130) 1994; 33 Yan (10.1016/j.rser.2015.07.021_bib118) 2013; 58 10.1016/j.rser.2015.07.021_bib14 10.1016/j.rser.2015.07.021_bib13 Yan (10.1016/j.rser.2015.07.021_bib21) 2015; 179 Geilen (10.1016/j.rser.2015.07.021_bib113) 2010; 49 Zuo (10.1016/j.rser.2015.07.021_bib72) 2014; 6 Yan (10.1016/j.rser.2015.07.021_bib114) 2013; 15 Al-Shaal (10.1016/j.rser.2015.07.021_bib121) 2014; 16 Fang (10.1016/j.rser.2015.07.021_bib26) 2002; 81 Yan (10.1016/j.rser.2015.07.021_bib108) 2013; 3 Gibson (10.1016/j.rser.2015.07.021_bib97) 1958; 70 Moreau (10.1016/j.rser.2015.07.021_bib36) 1997; 16 Fábos (10.1016/j.rser.2015.07.021_bib111) 2009; 2 Olson (10.1016/j.rser.2015.07.021_bib129) 2001; 784 Saladino (10.1016/j.rser.2015.07.021_bib15) 2007; 954 Peng (10.1016/j.rser.2015.07.021_bib132) 2011; 88 Yan (10.1016/j.rser.2015.07.021_bib138) 2013; 34 10.1016/j.rser.2015.07.021_bib24 Hayes (10.1016/j.rser.2015.07.021_bib33) 2008 Mulder (10.1016/j.rser.2015.07.021_bib43) 1840; 21 Sah (10.1016/j.rser.2015.07.021_bib58) 1930; 52 10.1016/j.rser.2015.07.021_bib123 10.1016/j.rser.2015.07.021_bib124 Rinaldi (10.1016/j.rser.2015.07.021_bib49) 2010; 3 Guo (10.1016/j.rser.2015.07.021_bib91) 2007; 9 10.1016/j.rser.2015.07.021_bib126 Chang (10.1016/j.rser.2015.07.021_bib62) 2006; 14 Martiná (10.1016/j.rser.2015.07.021_bib77) 2013; 3 Ha (10.1016/j.rser.2015.07.021_bib103) 1994; 24 Mansoor (10.1016/j.rser.2015.07.021_bib4) 2013; 24 Mascal (10.1016/j.rser.2015.07.021_bib51) 2010; 12 10.1016/j.rser.2015.07.021_bib1 10.1016/j.rser.2015.07.021_bib2 10.1016/j.rser.2015.07.021_bib3 Liu (10.1016/j.rser.2015.07.021_bib133) 2006; 242 Saravanamurugan (10.1016/j.rser.2015.07.021_bib139) 2012; 17 |
References_xml | – volume: 53 start-page: 1613 year: 2012 end-page: 1617 ident: bib88 article-title: Renewable polybenzoxazines based in diphenolic acid publication-title: Polymer – volume: 12 start-page: 370 year: 2010 end-page: 373 ident: bib51 article-title: High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl) furfural, levulinic acid, and levulinic esters via 5-(chloromethyl) furfural publication-title: Green Chem – volume: 25 start-page: 23 year: 1972 end-page: 33 ident: bib38 article-title: Thermal degradation of xylan and related model compounds publication-title: Carbohydr Res – volume: 784 start-page: 51 year: 2001 end-page: 63 ident: bib129 article-title: Chemicals and materials from renewable resources publication-title: ACS Symp Ser – volume: 10 start-page: 799 year: 2008 end-page: 805 ident: bib48 article-title: Catalytic dehydration of fructose into 5-hydroxymethylfurfural by Ion-exchange resin in mixed-aqueous system by microwave heating publication-title: Green Chem – volume: 5 start-page: 383 year: 2012 end-page: 387 ident: bib55 article-title: Conversion of hemicellolose to furfural and levuinci acid using biphasic reators with alkyphenol solevents publication-title: ChemSusChem – volume: 145 start-page: 138 year: 2009 end-page: 151 ident: bib128 article-title: An examination of biorefining processes, catalysis and challenges publication-title: Catal Today – volume: 42 start-page: 314 year: 1990 end-page: 321 ident: bib44 article-title: 5-Hydroxymethylfurfural (HMF). a review focussing on its manufacture publication-title: Starch/Stärke – volume: 2 start-page: 767 year: 2009 end-page: 769 ident: bib111 article-title: Bio-oxygenates and the peroxide number: a safety issue alert publication-title: Energy Environ Sci – reference: Texaco/NYSERDA/Biofine. Ethyl levulinate D-975 Diesel Additive Test Program, Glenham, NY; 2000. – volume: 72 start-page: 143 year: 2015 end-page: 183 ident: bib10 article-title: Review: sustainable production of hydroxymethylfurfural and levulinic acid: challenges and opportunities publication-title: Biomass Bioenergy – volume: 34 start-page: 182 year: 1998 end-page: 185 ident: bib70 article-title: Production of levulinic acid from wood raw material in the presence of sulfuric acid and its salts publication-title: Chem Nat Compd – volume: 81 start-page: 182 year: 2008 end-page: 191 ident: bib92 article-title: Mesoporous H publication-title: Appl Catal, B – volume: 3 start-page: 927 year: 2013 end-page: 931 ident: bib77 article-title: Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts publication-title: Catal Sci Technol – volume: 425 start-page: 199 year: 2012 end-page: 204 ident: bib137 article-title: Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts publication-title: Appl Catal, A – volume: 327 start-page: 1110 year: 2010 end-page: 1114 ident: bib84 article-title: Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels publication-title: Science – volume: 9 start-page: 3264 year: 2014 end-page: 3275 ident: bib96 article-title: Catalytic synthesis of diphenolic acid from levulinic acid over Bronsted acidic ionic liquids publication-title: BioResources – volume: 21 start-page: 219 year: 1840 ident: bib43 publication-title: J Prakt Chem – reference: Redmon B.C. Process for the production of levulinic acid. US patent 2,738,367; 1956. – reference: ; 2004. – volume: 16 start-page: 785 year: 2014 end-page: 791 ident: bib50 article-title: Heterogeneous acidic TiO publication-title: Green Chem – volume: 40 start-page: 608 year: 2014 end-page: 620 ident: bib18 article-title: Production of γ-valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply publication-title: Renewable Sustainable Energy Rev – volume: 242 start-page: 278 year: 2006 end-page: 286 ident: bib133 article-title: A comparison of the esterification of acetic acid with methanol using heterogeneous versus homogeneous acid catalysis publication-title: J Catal – volume: 179 start-page: 292 year: 2015 end-page: 304 ident: bib21 article-title: Catalytic reactions of gamma-valerolactone: a platform to fuels and value-added chemicals publication-title: Appl Catal B – volume: 1 start-page: 89 year: 1998 end-page: 101 ident: bib107 article-title: Synthesis of analogues of publication-title: J Chem Soc Perkin Trans – volume: 14 start-page: 935 year: 2012 end-page: 939 ident: bib120 article-title: Tunable copper-catalyzed chemoselective hydrogenolysis of biomass-derived γ-valerolactone into 1,4-pentanediol or 2-methyltetrahydrofuran publication-title: Green Chem – volume: 15 start-page: 1 year: 2013 end-page: 7 ident: bib114 article-title: Facile synthesis of palladium nanoparticles supported on multi-walled carbon nanotube for efficient hydrogenation of biomass-derived levulinic acid publication-title: J Nanopart Res – volume: 9 start-page: 839 year: 2007 end-page: 841 ident: bib91 article-title: The synthesis of diphenolic acid using the periodic mesoporous H publication-title: Green Chem – volume: 58 start-page: 357 year: 2013 end-page: 363 ident: bib118 article-title: Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized Noble-metal-free Cu–Cr catalyst publication-title: Energy – volume: 90 start-page: 2289 year: 2011 end-page: 2293 ident: bib69 article-title: High selective production of 5-hydroymethylfurfural from fructose by a solid heteropolyacid catalyst publication-title: Fuel – volume: 24 start-page: 306 year: 2013 end-page: 313 ident: bib4 article-title: A guidance chart for most probable solution directions in sustainable energy developments publication-title: Renewable Sustainable Energy Rev – volume: 130 start-page: 12787 year: 2008 end-page: 12793 ident: bib27 article-title: Hydrolysis of cellulose by amorphous carbon bearing SO publication-title: J Am Chem Soc – volume: 19 start-page: 8628 year: 2009 end-page: 8638 ident: bib93 article-title: Design of mesostructured H publication-title: J Mater Chem – reference: Erner W.E. Synthetic liquid fuel and fuel mixtures for oil-burning devices. U.S. patent 4,364,743; 1982. – volume: 129 start-page: 342 year: 2013 end-page: 350 ident: bib125 article-title: Sulfonic acid functionalized mesoporous SBA-15 catalysts for biodiesel production publication-title: Appl Catal, B – volume: 4 start-page: 1749 year: 2012 end-page: 1752 ident: bib117 article-title: Direct hydrocyclization of biomass-derived levulinic acid to 2-methyltetrahydrofuran over nanocomposite copper/silica catalysts publication-title: ChemSusChem – volume: 49 start-page: 1219 year: 2011 end-page: 1227 ident: bib87 article-title: Polybenzoxazines from renewable diphenolic acid publication-title: J Polym Sci, Part A: Polym Chem – reference: Manzer L.E. In catalysis for the conversion of biomass and its derivatives, editors. M. Behrens and A. K. Datye; 2013. – volume: 26 start-page: 2111 year: 1985 end-page: 2114 ident: bib42 article-title: Mechanism of levulinic acid formation publication-title: Tetrahedron Lett – volume: 14 start-page: 329 year: 1995 end-page: 366 ident: bib100 article-title: Photodynamics of porphyric insecticides publication-title: Crit Rev Plant Sci – volume: 445 start-page: 180 year: 2012 end-page: 186 ident: bib136 article-title: Dried chitosan-gels as organocatalysts for the production of biomass-derived platform chemicals publication-title: Appl Catal, A – volume: 49 start-page: 4479 year: 2010 end-page: 4483 ident: bib112 article-title: Valeric biofuels: a platform of cellulosic transportation fuels publication-title: Angew Chem Int Ed – volume: 107 start-page: 2411 year: 2007 end-page: 2502 ident: bib29 article-title: Chemical routes for the transformation of biomass into chemicals publication-title: Chem Rev – start-page: 139 year: 2008 end-page: 164 ident: bib33 article-title: The biofine process-production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks publication-title: Biorefineries-industrial processes and products: status Quo and future directions – volume: 6 start-page: 753 year: 2014 end-page: 755 ident: bib72 article-title: Catalytic conversion of cellulose into levulinic acid by a sulfonated chloromethyl polystyrene solid acid catalyst publication-title: ChemCatChem – volume: 3 start-page: 3853 year: 2013 end-page: 3856 ident: bib116 article-title: A Noble-metal free Cu-catalyst derived from hydrotalcite for highly efficient hydrogenation of biomass-derived furfural and levulinic acid publication-title: RSC Adv – volume: 53 start-page: 6562 year: 2014 end-page: 6568 ident: bib73 article-title: Selective decomposition of cellulose into glucose and levulinic acid over Fe-resin catalyst in NaCl solution under hydrothermal conditions publication-title: Ind Eng Chem Res – volume: 15 start-page: 81 year: 2013 end-page: 84 ident: bib90 article-title: Brønsted acidic ionic liquids catalyze the high-yield production of diphenolic acid/esters from renewable levulinic acid publication-title: Green Chem – volume: 53 start-page: 297 year: 1974 end-page: 303 ident: bib98 article-title: The biosynthesis of delta-aminolevulinic acid in higher plants. II. Formation of 14C-delta-aminolevulinic acid from labelled precursors in greening plant tissues publication-title: Plant Phys – volume: 312 start-page: 1933 year: 2006 end-page: 1937 ident: bib54 article-title: Phase modifiers promote efficient production of hydroxymethylfurfural from fructose publication-title: Science – volume: 46 start-page: 1696 year: 2007 end-page: 1708 ident: bib74 article-title: Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid publication-title: Ind Eng Chem Res – volume: 48 start-page: 3497 year: 2012 end-page: 3499 ident: bib94 article-title: Thiol-promoted catalytic synthesis of diphenolic acid with sulfonated hyperbranched poly(arylene oxindole)s publication-title: Chem Commun – volume: 4 start-page: 185 year: 1987 end-page: 194 ident: bib41 article-title: Dehydration of publication-title: Biomass – volume: 34 start-page: 58 year: 2013 end-page: 63 ident: bib138 article-title: One-step synthesis of mesoporous H publication-title: Catal Commun – volume: 201 start-page: 456 year: 2014 end-page: 465 ident: bib28 article-title: Facile synthesis of reusable CoAl-hydrotalcite catalyst for dehydration of biomass-derived fructose into platform chemical 5-hydroxymethylfurfural publication-title: Chem Eng Commun – volume: 343 start-page: 3021 year: 2008 end-page: 3024 ident: bib35 article-title: Mechanism of the dehydration of publication-title: Carbohydr Res – volume: 50 start-page: 6831 year: 2011 end-page: 6834 ident: bib22 article-title: Highly selective decarbonylation of 5‐(hydroxymethyl) furfural in the presence of compressed carbon dioxide publication-title: Angew Chem Int Ed – volume: 12 start-page: 539 year: 2010 end-page: 554 ident: bib25 article-title: Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s top 10 revisited publication-title: Green Chem – volume: 3 start-page: 25865 year: 2013 end-page: 25871 ident: bib108 article-title: Novel synthesis of Pd nanoparticles for hydrogenation of biomass-derived platform chemicals showing enhanced catalytic performance publication-title: RSC Adv – reference: Conti J, Holtberg P, Doman LE, Smith KA, Vincent KR, Barden JL et al. World energy outlook 2011. In: Energy Information Administration; 2011. – volume: 1 start-page: 139 year: 2006 end-page: 164 ident: bib106 article-title: The biofine process: production of levulinic acid. furfural and formic acid from lignocellulosic feedstocks publication-title: Biorefineries – volume: 468 start-page: 52 year: 2013 end-page: 58 ident: bib109 article-title: Highly selective production of value-added γ-valerolactone from biomass-derived levulinic acid using the robust Pd nanoparticles publication-title: Appl Catal, A – volume: 954 start-page: 262 year: 2007 end-page: 279 ident: bib15 article-title: Production of chemicals from cellulose and biomass-derived compounds: advances in the oxidative functionalization of levulinic acid publication-title: ACS Symp Ser – volume: 38 start-page: 368 year: 2014 end-page: 382 ident: bib135 article-title: Biodiesel production using chemical and biological methods—a review of process, catalyst, acyl acceptor, source and process variables publication-title: Renewable Sustainable Energy Rev – volume: 70 start-page: 71 year: 1958 end-page: 81 ident: bib97 article-title: Initial stages in the biosynthesis of porphyrins. II. The formation of 5-aminolevulinic acid from glycine and succinyl-CoA by particles from chicken erythrocytes publication-title: Biochem J – volume: 4 start-page: 1230 year: 2012 end-page: 1237 ident: bib12 article-title: Advances in the catalytic production of valuable levulinic acid derivatives publication-title: ChemCatChem – volume: 10 start-page: 238 year: 2008 end-page: 242 ident: bib110 article-title: γ-Valerolactone—a sustainable liquid for energy and carbon-based chemicals publication-title: Green Chem – volume: 81 start-page: 187 year: 2002 end-page: 192 ident: bib26 article-title: Experimental studies for levulinic acid production from whole kernel grain sorghum publication-title: Bioresour Technol – volume: 84 start-page: 339 year: 2006 end-page: 349 ident: bib46 article-title: A kinetic study on the conversion of glucose to levulinic acid publication-title: Chem Eng Res Des – reference: Farone W.A., Cuzens J.E. Method for the production of levulinic acid and its derivatives. US patent 6054611; 2000. – volume: 49 start-page: 5328 year: 2013 end-page: 5330 ident: bib122 article-title: RANEY® Ni catalyzed transfer hydrogenation of levulinate esters to γ-valerolactone at room temperature publication-title: Chem Commun – reference: Energy Independence and Security Act of 2007. In: U.S. D.O. Energy (Eds.). United States Congress, Washington, D.C.; 2007. p. 30-37. – volume: 52 start-page: 297 year: 2009 end-page: 303 ident: bib47 article-title: Solvent effects on fructose dehydration to 5-hydroxymethylfurfural in biphasic systems saturated with inorganic salts publication-title: Top Catal – volume: 76 start-page: 4465 year: 1954 end-page: 4466 ident: bib86 article-title: γ,γ- publication-title: J Am Chem Soc – volume: 48 start-page: 6529 year: 2009 end-page: 6532 ident: bib63 article-title: Catalytic conversion of biomass‐derived carbohydrates into γ‐valerolactone without using an external H publication-title: Angew Chem Int Ed – volume: 2 start-page: 859 year: 2009 end-page: 861 ident: bib57 article-title: Dramatic advancements in the saccharide to 5-(chloromethyl) furfural conversion reaction publication-title: ChemSusChem – volume: 145 start-page: 211 year: 1996 end-page: 224 ident: bib37 article-title: Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites publication-title: Appl Catal, A – volume: 60 start-page: 219 year: 2003 end-page: 224 ident: bib105 article-title: The synthesis and applications of 5-aminolevulinic acid (ALA) derivatives in photodynamic therapy and photodiagnosis publication-title: Acta Pol Pharm – volume: 75 start-page: 117 year: 2002 end-page: 126 ident: bib64 article-title: Kinetics of levulinic acid formation from carbohydrates at moderate temperatures publication-title: React Kinet Catal Lett – volume: 2 start-page: 665 year: 2009 end-page: 671 ident: bib45 article-title: Acid-catalyzed conversion of sugars and furfurals in an ionic-liquid phase publication-title: ChemSusChem – volume: 36 start-page: 158 year: 2008 end-page: 163 ident: bib83 article-title: Production of levulinic acid from Bagasse and Paddy Straw by liquefaction in the presence of hydrochloride acid publication-title: Clean-Soil Air Water – volume: 44 start-page: 7361 year: 2003 end-page: 7368 ident: bib89 article-title: Cyclic hyperbranched polyesters derived from 4,4- publication-title: Polymer – volume: 16 start-page: 709 year: 1997 end-page: 714 ident: bib36 article-title: Hydrolysis of fructose and glucose precursors in the presence of H-form zeolites publication-title: J Carbohydr Chem – volume: 6 start-page: 134 year: 2013 end-page: 139 ident: bib16 article-title: Green and facile synthesis of palladium nanoparticles for efficient liquid-phase hydrogenation of biomass-derived furfural publication-title: Sci Adv Mater – reference: Carlson L.J. Process for the manufactures of levulinic acid. US patent 3,065,263 ; 1962. – volume: 1 start-page: 593 year: 2013 end-page: 599 ident: bib131 article-title: One-Pot synthesis of levulinic acid/ester from C5 carbohydrates in a methanol medium publication-title: ACS Sustainable Chem Eng – volume: 25 start-page: 205 year: 2013 end-page: 219 ident: bib9 article-title: Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: a comprehensive review publication-title: Renewable Sustainable Energy Rev – reference: Otsuka M., Hirose Y., Kinoshita T., Masawa T. Manufacture of levulinic acid. US patent 37552849; 1973. – volume: 38 start-page: 663 year: 2014 end-page: 676 ident: bib6 article-title: Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals publication-title: Renewable Sustainable Energy Rev – volume: 3 start-page: 266 year: 2010 end-page: 276 ident: bib49 article-title: Which controls the depolymerization of cellulose in ionic liquids: the solid acid catalyst or cellulose? publication-title: ChemSusChem – volume: 88 start-page: 4590 year: 2011 end-page: 4596 ident: bib132 article-title: Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts publication-title: Appl Energy – reference: BP. Statistical review of world energy. In: British Petroleum; 2012. – volume: 51 start-page: 6984 year: 2015 end-page: 6987 ident: bib8 article-title: Cascade upgrading of γ-valerolactone to biofuels publication-title: Chem Commun – volume: 52 start-page: 3257 year: 1974 end-page: 3258 ident: bib102 article-title: Methyl 5-bromolevulinate publication-title: Can J Chem – volume: 43 start-page: 2472 year: 2008 end-page: 2475 ident: bib52 article-title: Acid catalytic hydrothermal conversion of carbohydrate biomass into useful substances publication-title: J Mater Sci – volume: 1 start-page: 79 year: 2010 end-page: 100 ident: bib20 article-title: Catalytic conversion of renewable biomass resources to fuels and chemicals publication-title: Annu Rev Chem Biomol Eng – volume: 12 start-page: 1493 year: 2010 end-page: 1513 ident: bib5 article-title: Catalytic conversion of biomass to biofuels publication-title: Green Chem – volume: 14 start-page: 708 year: 2006 end-page: 712 ident: bib62 article-title: Kinetics of levulinic acid formation from glucose decomposition at high temperature publication-title: Chin J Chem Eng – volume: 28 start-page: 227 year: 2000 end-page: 239 ident: bib85 article-title: Production of levulinic acid and use as a platform chemical for derived products publication-title: Resour Conserv Recycl – volume: 99 start-page: 8367 year: 2008 end-page: 8375 ident: bib78 article-title: Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid publication-title: Bioresour Technol – volume: 44 start-page: 4632 year: 2007 end-page: 4634 ident: bib115 article-title: Maximising opportunities in supercritical chemistry: the continuous conversion of levulinic acid to γ-valerolactone in CO publication-title: Chem Commun – reference: Werpy T.A., Holladay J.E., White J.F. . Top value added chemicals from biomass: I. Results of screening for potential candidates from sugars and synthesis gas. US Department of Energy. – volume: 102 start-page: 3568 year: 2011 end-page: 3570 ident: bib79 article-title: Production of levulinic acid from steam exploded rice straw via solid superacid publication-title: Bioresour Technol – volume: 49 start-page: 5510 year: 2010 end-page: 5514 ident: bib113 article-title: Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system publication-title: Angew Chem Int Ed – reference: ; 2002. – start-page: 21 year: 2007 end-page: 51 ident: bib23 article-title: Lignocellulose conversion: an introduction to chemistry, process and economics publication-title: Catalysis for renewables: from feedstock to energy production – volume: 51 start-page: 2356 year: 2010 end-page: 2358 ident: bib71 article-title: Conversion of cellulose to glucose and levulinic acid via solid-supported acid catalysis publication-title: Tetrahedron Lett – volume: 33 start-page: 21 year: 1994 end-page: 25 ident: bib130 article-title: Kinetics of esterification of levulinic acid with publication-title: Ind Eng Chem Res – volume: 199 start-page: 91 year: 1990 end-page: 109 ident: bib40 article-title: Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from publication-title: Carbohydr Res – reference: Repice R, Adler R, Berry J, Michaels J, Schmitt R, King RF et al. Annual energy review United States energy information administration: Washington, D.C.; 2011. – reference: Elliott D.C., Frye J.G. Hydrogenated 5-carbon compound and method of making. U.S. patent 5,883,266; 1999. – volume: 43 start-page: 1446 year: 2015 end-page: 1466 ident: bib31 article-title: Opportunities, recent trends and challenges of integrated biorefinery: Part II publication-title: Renewable Sustainable Energy Rev – volume: 114 start-page: 9002 year: 2010 end-page: 9009 ident: bib39 article-title: Computational studies of the thermochemistry for conversion of glucose to levulinic acid publication-title: J Phys Chem B – volume: 100 start-page: 184 year: 2010 end-page: 189 ident: bib75 article-title: Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen publication-title: Appl Catal, B – volume: 18 start-page: 115 year: 2012 end-page: 120 ident: bib140 article-title: Catalytic upgrading of levulinic acid to ethyl levulinate using reusable silica-included Wells–Dawson heteropolyacid as catalyst publication-title: Catal Commun – volume: 43 start-page: 1427 year: 2015 end-page: 1445 ident: bib30 article-title: Opportunities, recent trends and challenges of integrated biorefinery: Part I publication-title: Renewable Sustainable Energy Rev – volume: 16 start-page: 1358 year: 2014 end-page: 1364 ident: bib121 article-title: Solvent-free γ-valerolactone hydrogenation to 2-methyltetrahydrofuran catalysed by Ru/C: a reaction network analysis publication-title: Green Chem – volume: 2 start-page: 437 year: 2009 end-page: 441 ident: bib34 article-title: Conversion of furfuryl alcohol into ethyl levulinate using solid acid catalysts publication-title: ChemSusChem – volume: 105 start-page: 171 year: 2011 end-page: 181 ident: bib76 article-title: Cellulose hydrothermal conversion promoted by heterogeneous Brønsted and Lewis acids: remarkable efficiency of solid lewis acids to produce lactic acid publication-title: Appl Catal, B – volume: 30 start-page: 672 year: 2014 end-page: 681 ident: bib7 article-title: Evaluation of infrared techniques for the assessment of biomass and biofuel quality parameters and conversion technology processes: a review publication-title: Renewable Sustainable Energy Rev – volume: 6 start-page: 390 year: 1984 end-page: 401 ident: bib99 article-title: Photodynamic herbicides: concept and phenomenology publication-title: Enzym Microb Technol – volume: 115 start-page: 101 year: 2014 end-page: 108 ident: bib119 article-title: Selective hydrogenation of furfural and levulinic acid to biofuels on the ecofriendly Cu–Fe catalyst publication-title: Fuel – volume: 88 start-page: 17 year: 2011 end-page: 28 ident: bib127 article-title: Competitive liquid biofuels from biomass publication-title: Appl Energy – start-page: 193 year: 2006 end-page: 207 ident: bib17 article-title: Iogen’s demonstration process for producing ethanol from cellulosic biomass publication-title: Biorefineries -industrial processes and products. Status quo and future directions – volume: 17 start-page: 71 year: 2012 end-page: 75 ident: bib139 article-title: Solid acid catalysed formation of ethyl levulinate and ethyl glucopyranoside from mono-and disaccharides publication-title: Catal Commun – volume: 5 start-page: 8199 year: 2012 end-page: 8203 ident: bib53 article-title: Production of levulinic acid and gamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasic systems publication-title: Energy Environ Sci – volume: 133 start-page: 221 year: 2009 end-page: 226 ident: bib65 article-title: Catalytic conversion of glucose on Al–Zr mixed oxides in hot compressed water publication-title: Catal Lett – volume: 38 start-page: 739 year: 1997 end-page: 740 ident: bib104 article-title: An efficient synthesis of publication-title: Tetrahedron Lett – reference: U.S. Dep. Energy. . Roadmap for biomass technologies in the United States. – volume: 52 start-page: 4880 year: 1930 end-page: 4883 ident: bib58 article-title: Levulinic acid and its esters publication-title: J Am Chem Soc – volume: 4 start-page: 3601 year: 2011 end-page: 3610 ident: bib95 article-title: Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly(aryleneoxindole)s publication-title: Energy Environ Sci – volume: 65 start-page: 818 year: 1992 end-page: 824 ident: bib101 article-title: Fluorescence distribution and photodynamic effect of ALA-induced PP IX in the DMF rat colonic tumor model publication-title: Br J Cancer – volume: 109 start-page: 147 year: 1994 end-page: 165 ident: bib61 article-title: Dehydration of glucose to organic acids in microporous pillared clay catalysts publication-title: Appl Catal, A – volume: 45 start-page: 2163 year: 2006 end-page: 2173 ident: bib68 article-title: Acid-catalyzed production of 5-hydroxymethylfurfural from publication-title: Ind Eng Chem Res – volume: 15 start-page: 584 year: 2013 end-page: 595 ident: bib19 article-title: Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass publication-title: Green Chem – volume: 182 start-page: 555 year: 2002 end-page: 563 ident: bib134 article-title: Esterification of different acids over heterogeneous and homogeneous catalysts and correlation with the Taft equation publication-title: J Mol Catal A – volume: 13 start-page: 237 year: 2000 end-page: 242 ident: bib67 article-title: A new approach for the production of 2,5-furandicarboxylic acid by in situ oxidation of 5-hydroxymethylfurfural starting from fructose publication-title: Top Catal – volume: 15 start-page: 5258 year: 2010 end-page: 5272 ident: bib56 article-title: Catalytic conversion of cellulose to levulinic acid by metal chlorides publication-title: Molecules – reference: Fitzpatrick S.W. Production of Levulinic acid from carbohydrate-containing materials. US patent 5608105; 1997. – volume: 14 start-page: 185 year: 1987 end-page: 194 ident: bib66 article-title: Dehydration of publication-title: Biomass – volume: 24 start-page: 2557 year: 1994 end-page: 2562 ident: bib103 article-title: Selective bromination of ketones. A convenient synthesis of 5-aminolevulinic acid publication-title: Synth Commun – volume: 106 start-page: 4044 year: 2006 end-page: 4098 ident: bib11 article-title: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering publication-title: Chem Rev – volume: 26 start-page: 2111 year: 1985 ident: 10.1016/j.rser.2015.07.021_bib42 article-title: Mechanism of levulinic acid formation publication-title: Tetrahedron Lett doi: 10.1016/S0040-4039(00)94793-2 – ident: 10.1016/j.rser.2015.07.021_bib2 – volume: 6 start-page: 390 year: 1984 ident: 10.1016/j.rser.2015.07.021_bib99 article-title: Photodynamic herbicides: concept and phenomenology publication-title: Enzym Microb Technol doi: 10.1016/0141-0229(84)90012-7 – volume: 49 start-page: 5510 year: 2010 ident: 10.1016/j.rser.2015.07.021_bib113 article-title: Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system publication-title: Angew Chem Int Ed doi: 10.1002/anie.201002060 – volume: 38 start-page: 368 year: 2014 ident: 10.1016/j.rser.2015.07.021_bib135 article-title: Biodiesel production using chemical and biological methods—a review of process, catalyst, acyl acceptor, source and process variables publication-title: Renewable Sustainable Energy Rev doi: 10.1016/j.rser.2014.05.084 – volume: 6 start-page: 753 year: 2014 ident: 10.1016/j.rser.2015.07.021_bib72 article-title: Catalytic conversion of cellulose into levulinic acid by a sulfonated chloromethyl polystyrene solid acid catalyst publication-title: ChemCatChem doi: 10.1002/cctc.201300956 – ident: 10.1016/j.rser.2015.07.021_bib59 – volume: 4 start-page: 1749 year: 2012 ident: 10.1016/j.rser.2015.07.021_bib117 article-title: Direct hydrocyclization of biomass-derived levulinic acid to 2-methyltetrahydrofuran over nanocomposite copper/silica catalysts publication-title: ChemSusChem doi: 10.1002/cssc.201100380 – ident: 10.1016/j.rser.2015.07.021_bib13 – ident: 10.1016/j.rser.2015.07.021_bib126 – volume: 3 start-page: 927 year: 2013 ident: 10.1016/j.rser.2015.07.021_bib77 article-title: Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts publication-title: Catal Sci Technol doi: 10.1039/C2CY20689G – volume: 107 start-page: 2411 year: 2007 ident: 10.1016/j.rser.2015.07.021_bib29 article-title: Chemical routes for the transformation of biomass into chemicals publication-title: Chem Rev doi: 10.1021/cr050989d – start-page: 139 year: 2008 ident: 10.1016/j.rser.2015.07.021_bib33 article-title: The biofine process-production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks – volume: 52 start-page: 297 year: 2009 ident: 10.1016/j.rser.2015.07.021_bib47 article-title: Solvent effects on fructose dehydration to 5-hydroxymethylfurfural in biphasic systems saturated with inorganic salts publication-title: Top Catal doi: 10.1007/s11244-008-9166-0 – volume: 106 start-page: 4044 year: 2006 ident: 10.1016/j.rser.2015.07.021_bib11 article-title: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering publication-title: Chem Rev doi: 10.1021/cr068360d – volume: 24 start-page: 2557 year: 1994 ident: 10.1016/j.rser.2015.07.021_bib103 article-title: Selective bromination of ketones. A convenient synthesis of 5-aminolevulinic acid publication-title: Synth Commun doi: 10.1080/00397919408010567 – volume: 28 start-page: 227 year: 2000 ident: 10.1016/j.rser.2015.07.021_bib85 article-title: Production of levulinic acid and use as a platform chemical for derived products publication-title: Resour Conserv Recycl doi: 10.1016/S0921-3449(99)00047-6 – volume: 17 start-page: 71 year: 2012 ident: 10.1016/j.rser.2015.07.021_bib139 article-title: Solid acid catalysed formation of ethyl levulinate and ethyl glucopyranoside from mono-and disaccharides publication-title: Catal Commun doi: 10.1016/j.catcom.2011.10.001 – volume: 12 start-page: 1493 issue: 9 year: 2010 ident: 10.1016/j.rser.2015.07.021_bib5 article-title: Catalytic conversion of biomass to biofuels publication-title: Green Chem doi: 10.1039/c004654j – volume: 2 start-page: 665 year: 2009 ident: 10.1016/j.rser.2015.07.021_bib45 article-title: Acid-catalyzed conversion of sugars and furfurals in an ionic-liquid phase publication-title: ChemSusChem doi: 10.1002/cssc.200900092 – volume: 15 start-page: 584 year: 2013 ident: 10.1016/j.rser.2015.07.021_bib19 article-title: Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass publication-title: Green Chem doi: 10.1039/c3gc37065h – volume: 5 start-page: 383 year: 2012 ident: 10.1016/j.rser.2015.07.021_bib55 article-title: Conversion of hemicellolose to furfural and levuinci acid using biphasic reators with alkyphenol solevents publication-title: ChemSusChem doi: 10.1002/cssc.201100608 – volume: 327 start-page: 1110 year: 2010 ident: 10.1016/j.rser.2015.07.021_bib84 article-title: Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels publication-title: Science doi: 10.1126/science.1184362 – volume: 3 start-page: 25865 year: 2013 ident: 10.1016/j.rser.2015.07.021_bib108 article-title: Novel synthesis of Pd nanoparticles for hydrogenation of biomass-derived platform chemicals showing enhanced catalytic performance publication-title: RSC Adv doi: 10.1039/c3ra43619e – volume: 2 start-page: 859 year: 2009 ident: 10.1016/j.rser.2015.07.021_bib57 article-title: Dramatic advancements in the saccharide to 5-(chloromethyl) furfural conversion reaction publication-title: ChemSusChem doi: 10.1002/cssc.200900136 – volume: 16 start-page: 1358 year: 2014 ident: 10.1016/j.rser.2015.07.021_bib121 article-title: Solvent-free γ-valerolactone hydrogenation to 2-methyltetrahydrofuran catalysed by Ru/C: a reaction network analysis publication-title: Green Chem doi: 10.1039/C3GC41803K – volume: 18 start-page: 115 year: 2012 ident: 10.1016/j.rser.2015.07.021_bib140 article-title: Catalytic upgrading of levulinic acid to ethyl levulinate using reusable silica-included Wells–Dawson heteropolyacid as catalyst publication-title: Catal Commun doi: 10.1016/j.catcom.2011.12.004 – volume: 25 start-page: 205 year: 2013 ident: 10.1016/j.rser.2015.07.021_bib9 article-title: Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: a comprehensive review publication-title: Renewable Sustainable Energy Rev doi: 10.1016/j.rser.2013.04.019 – volume: 16 start-page: 785 year: 2014 ident: 10.1016/j.rser.2015.07.021_bib50 article-title: Heterogeneous acidic TiO2 nanoparticles for efficient conversion of biomass derived carbohydrates publication-title: Green Chem doi: 10.1039/c3gc40909k – volume: 12 start-page: 539 issue: 4 year: 2010 ident: 10.1016/j.rser.2015.07.021_bib25 article-title: Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s top 10 revisited publication-title: Green Chem doi: 10.1039/b922014c – volume: 53 start-page: 1613 year: 2012 ident: 10.1016/j.rser.2015.07.021_bib88 article-title: Renewable polybenzoxazines based in diphenolic acid publication-title: Polymer doi: 10.1016/j.polymer.2012.02.026 – volume: 1 start-page: 79 year: 2010 ident: 10.1016/j.rser.2015.07.021_bib20 article-title: Catalytic conversion of renewable biomass resources to fuels and chemicals publication-title: Annu Rev Chem Biomol Eng doi: 10.1146/annurev-chembioeng-073009-100935 – volume: 10 start-page: 799 year: 2008 ident: 10.1016/j.rser.2015.07.021_bib48 article-title: Catalytic dehydration of fructose into 5-hydroxymethylfurfural by Ion-exchange resin in mixed-aqueous system by microwave heating publication-title: Green Chem doi: 10.1039/b801641k – ident: 10.1016/j.rser.2015.07.021_bib82 – volume: 182 start-page: 555 year: 2002 ident: 10.1016/j.rser.2015.07.021_bib134 article-title: Esterification of different acids over heterogeneous and homogeneous catalysts and correlation with the Taft equation publication-title: J Mol Catal A doi: 10.1016/S1381-1169(01)00495-2 – volume: 30 start-page: 672 year: 2014 ident: 10.1016/j.rser.2015.07.021_bib7 article-title: Evaluation of infrared techniques for the assessment of biomass and biofuel quality parameters and conversion technology processes: a review publication-title: Renewable Sustainable Energy Rev doi: 10.1016/j.rser.2013.11.006 – volume: 100 start-page: 184 year: 2010 ident: 10.1016/j.rser.2015.07.021_bib75 article-title: Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen publication-title: Appl Catal, B doi: 10.1016/j.apcatb.2010.07.029 – volume: 52 start-page: 4880 year: 1930 ident: 10.1016/j.rser.2015.07.021_bib58 article-title: Levulinic acid and its esters publication-title: J Am Chem Soc doi: 10.1021/ja01375a033 – volume: 1 start-page: 593 year: 2013 ident: 10.1016/j.rser.2015.07.021_bib131 article-title: One-Pot synthesis of levulinic acid/ester from C5 carbohydrates in a methanol medium publication-title: ACS Sustainable Chem Eng doi: 10.1021/sc400229w – volume: 34 start-page: 58 year: 2013 ident: 10.1016/j.rser.2015.07.021_bib138 article-title: One-step synthesis of mesoporous H4SiW12O40–SiO2 catalysts for production of methyl and ethyl levulinate biodiesel publication-title: Catal Commun doi: 10.1016/j.catcom.2013.01.010 – volume: 51 start-page: 6984 year: 2015 ident: 10.1016/j.rser.2015.07.021_bib8 article-title: Cascade upgrading of γ-valerolactone to biofuels publication-title: Chem Commun doi: 10.1039/C5CC01463H – volume: 88 start-page: 4590 year: 2011 ident: 10.1016/j.rser.2015.07.021_bib132 article-title: Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.05.049 – volume: 102 start-page: 3568 year: 2011 ident: 10.1016/j.rser.2015.07.021_bib79 article-title: Production of levulinic acid from steam exploded rice straw via solid superacid publication-title: Bioresour Technol doi: 10.1016/j.biortech.2010.10.018 – volume: 50 start-page: 6831 year: 2011 ident: 10.1016/j.rser.2015.07.021_bib22 article-title: Highly selective decarbonylation of 5‐(hydroxymethyl) furfural in the presence of compressed carbon dioxide publication-title: Angew Chem Int Ed doi: 10.1002/anie.201007582 – volume: 145 start-page: 211 year: 1996 ident: 10.1016/j.rser.2015.07.021_bib37 article-title: Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites publication-title: Appl Catal, A doi: 10.1016/0926-860X(96)00136-6 – volume: 3 start-page: 266 year: 2010 ident: 10.1016/j.rser.2015.07.021_bib49 article-title: Which controls the depolymerization of cellulose in ionic liquids: the solid acid catalyst or cellulose? publication-title: ChemSusChem doi: 10.1002/cssc.200900281 – volume: 38 start-page: 663 year: 2014 ident: 10.1016/j.rser.2015.07.021_bib6 article-title: Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals publication-title: Renewable Sustainable Energy Rev doi: 10.1016/j.rser.2014.07.003 – volume: 65 start-page: 818 year: 1992 ident: 10.1016/j.rser.2015.07.021_bib101 article-title: Fluorescence distribution and photodynamic effect of ALA-induced PP IX in the DMF rat colonic tumor model publication-title: Br J Cancer doi: 10.1038/bjc.1992.175 – volume: 52 start-page: 3257 year: 1974 ident: 10.1016/j.rser.2015.07.021_bib102 article-title: Methyl 5-bromolevulinate publication-title: Can J Chem doi: 10.1139/v74-480 – volume: 145 start-page: 138 year: 2009 ident: 10.1016/j.rser.2015.07.021_bib128 article-title: An examination of biorefining processes, catalysis and challenges publication-title: Catal Today doi: 10.1016/j.cattod.2008.04.017 – volume: 109 start-page: 147 year: 1994 ident: 10.1016/j.rser.2015.07.021_bib61 article-title: Dehydration of glucose to organic acids in microporous pillared clay catalysts publication-title: Appl Catal, A doi: 10.1016/0926-860X(94)85008-9 – volume: 44 start-page: 4632 year: 2007 ident: 10.1016/j.rser.2015.07.021_bib115 article-title: Maximising opportunities in supercritical chemistry: the continuous conversion of levulinic acid to γ-valerolactone in CO2 publication-title: Chem Commun doi: 10.1039/b708754c – ident: 10.1016/j.rser.2015.07.021_bib24 doi: 10.2172/926125 – volume: 312 start-page: 1933 year: 2006 ident: 10.1016/j.rser.2015.07.021_bib54 article-title: Phase modifiers promote efficient production of hydroxymethylfurfural from fructose publication-title: Science doi: 10.1126/science.1126337 – volume: 201 start-page: 456 year: 2014 ident: 10.1016/j.rser.2015.07.021_bib28 article-title: Facile synthesis of reusable CoAl-hydrotalcite catalyst for dehydration of biomass-derived fructose into platform chemical 5-hydroxymethylfurfural publication-title: Chem Eng Commun doi: 10.1080/00986445.2013.775646 – volume: 49 start-page: 4479 year: 2010 ident: 10.1016/j.rser.2015.07.021_bib112 article-title: Valeric biofuels: a platform of cellulosic transportation fuels publication-title: Angew Chem Int Ed doi: 10.1002/anie.201000655 – ident: 10.1016/j.rser.2015.07.021_bib14 – volume: 133 start-page: 221 year: 2009 ident: 10.1016/j.rser.2015.07.021_bib65 article-title: Catalytic conversion of glucose on Al–Zr mixed oxides in hot compressed water publication-title: Catal Lett doi: 10.1007/s10562-009-0160-3 – volume: 105 start-page: 171 year: 2011 ident: 10.1016/j.rser.2015.07.021_bib76 article-title: Cellulose hydrothermal conversion promoted by heterogeneous Brønsted and Lewis acids: remarkable efficiency of solid lewis acids to produce lactic acid publication-title: Appl Catal, B doi: 10.1016/j.apcatb.2011.04.009 – ident: 10.1016/j.rser.2015.07.021_bib123 – volume: 33 start-page: 21 year: 1994 ident: 10.1016/j.rser.2015.07.021_bib130 article-title: Kinetics of esterification of levulinic acid with n-butanol by homogeneous catalysis publication-title: Ind Eng Chem Res doi: 10.1021/ie00025a004 – volume: 1 start-page: 139 year: 2006 ident: 10.1016/j.rser.2015.07.021_bib106 article-title: The biofine process: production of levulinic acid. furfural and formic acid from lignocellulosic feedstocks publication-title: Biorefineries – volume: 75 start-page: 117 year: 2002 ident: 10.1016/j.rser.2015.07.021_bib64 article-title: Kinetics of levulinic acid formation from carbohydrates at moderate temperatures publication-title: React Kinet Catal Lett doi: 10.1023/A:1014857703817 – volume: 115 start-page: 101 year: 2014 ident: 10.1016/j.rser.2015.07.021_bib119 article-title: Selective hydrogenation of furfural and levulinic acid to biofuels on the ecofriendly Cu–Fe catalyst publication-title: Fuel doi: 10.1016/j.fuel.2013.06.042 – volume: 81 start-page: 182 year: 2008 ident: 10.1016/j.rser.2015.07.021_bib92 article-title: Mesoporous H3PW12O40-silica composite: efficient and reusable solid acid catalyst for the synthesis of diphenolic acid from levulinic acid publication-title: Appl Catal, B doi: 10.1016/j.apcatb.2007.12.020 – volume: 48 start-page: 3497 year: 2012 ident: 10.1016/j.rser.2015.07.021_bib94 article-title: Thiol-promoted catalytic synthesis of diphenolic acid with sulfonated hyperbranched poly(arylene oxindole)s publication-title: Chem Commun doi: 10.1039/c2cc30239j – volume: 48 start-page: 6529 year: 2009 ident: 10.1016/j.rser.2015.07.021_bib63 article-title: Catalytic conversion of biomass‐derived carbohydrates into γ‐valerolactone without using an external H2 supply publication-title: Angew Chem Int Ed doi: 10.1002/anie.200902281 – volume: 70 start-page: 71 year: 1958 ident: 10.1016/j.rser.2015.07.021_bib97 article-title: Initial stages in the biosynthesis of porphyrins. II. The formation of 5-aminolevulinic acid from glycine and succinyl-CoA by particles from chicken erythrocytes publication-title: Biochem J doi: 10.1042/bj0700071 – volume: 72 start-page: 143 year: 2015 ident: 10.1016/j.rser.2015.07.021_bib10 article-title: Review: sustainable production of hydroxymethylfurfural and levulinic acid: challenges and opportunities publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2014.11.007 – volume: 81 start-page: 187 year: 2002 ident: 10.1016/j.rser.2015.07.021_bib26 article-title: Experimental studies for levulinic acid production from whole kernel grain sorghum publication-title: Bioresour Technol doi: 10.1016/S0960-8524(01)00144-4 – volume: 44 start-page: 7361 year: 2003 ident: 10.1016/j.rser.2015.07.021_bib89 article-title: Cyclic hyperbranched polyesters derived from 4,4-bis(4′-hydroxyphenyl)valeric acid publication-title: Polymer doi: 10.1016/j.polymer.2003.09.041 – volume: 14 start-page: 935 year: 2012 ident: 10.1016/j.rser.2015.07.021_bib120 article-title: Tunable copper-catalyzed chemoselective hydrogenolysis of biomass-derived γ-valerolactone into 1,4-pentanediol or 2-methyltetrahydrofuran publication-title: Green Chem doi: 10.1039/c2gc16599f – volume: 15 start-page: 5258 year: 2010 ident: 10.1016/j.rser.2015.07.021_bib56 article-title: Catalytic conversion of cellulose to levulinic acid by metal chlorides publication-title: Molecules doi: 10.3390/molecules15085258 – volume: 46 start-page: 1696 year: 2007 ident: 10.1016/j.rser.2015.07.021_bib74 article-title: Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid publication-title: Ind Eng Chem Res doi: 10.1021/ie061186z – volume: 43 start-page: 2472 year: 2008 ident: 10.1016/j.rser.2015.07.021_bib52 article-title: Acid catalytic hydrothermal conversion of carbohydrate biomass into useful substances publication-title: J Mater Sci doi: 10.1007/s10853-007-2021-z – start-page: 193 year: 2006 ident: 10.1016/j.rser.2015.07.021_bib17 article-title: Iogen’s demonstration process for producing ethanol from cellulosic biomass – ident: 10.1016/j.rser.2015.07.021_bib32 – volume: 84 start-page: 339 year: 2006 ident: 10.1016/j.rser.2015.07.021_bib46 article-title: A kinetic study on the conversion of glucose to levulinic acid publication-title: Chem Eng Res Des doi: 10.1205/cherd05038 – volume: 99 start-page: 8367 year: 2008 ident: 10.1016/j.rser.2015.07.021_bib78 article-title: Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid publication-title: Bioresour Technol doi: 10.1016/j.biortech.2008.02.045 – volume: 16 start-page: 709 year: 1997 ident: 10.1016/j.rser.2015.07.021_bib36 article-title: Hydrolysis of fructose and glucose precursors in the presence of H-form zeolites publication-title: J Carbohydr Chem doi: 10.1080/07328309708007350 – volume: 130 start-page: 12787 year: 2008 ident: 10.1016/j.rser.2015.07.021_bib27 article-title: Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups publication-title: J Am Chem Soc doi: 10.1021/ja803983h – volume: 14 start-page: 708 year: 2006 ident: 10.1016/j.rser.2015.07.021_bib62 article-title: Kinetics of levulinic acid formation from glucose decomposition at high temperature publication-title: Chin J Chem Eng doi: 10.1016/S1004-9541(06)60139-0 – volume: 4 start-page: 3601 year: 2011 ident: 10.1016/j.rser.2015.07.021_bib95 article-title: Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly(aryleneoxindole)s publication-title: Energy Environ Sci doi: 10.1039/c1ee01418h – volume: 53 start-page: 297 year: 1974 ident: 10.1016/j.rser.2015.07.021_bib98 article-title: The biosynthesis of delta-aminolevulinic acid in higher plants. II. Formation of 14C-delta-aminolevulinic acid from labelled precursors in greening plant tissues publication-title: Plant Phys doi: 10.1104/pp.53.2.297 – volume: 425 start-page: 199 year: 2012 ident: 10.1016/j.rser.2015.07.021_bib137 article-title: Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts publication-title: Appl Catal, A doi: 10.1016/j.apcata.2012.03.020 – ident: 10.1016/j.rser.2015.07.021_bib81 – volume: 4 start-page: 1230 year: 2012 ident: 10.1016/j.rser.2015.07.021_bib12 article-title: Advances in the catalytic production of valuable levulinic acid derivatives publication-title: ChemCatChem doi: 10.1002/cctc.201200113 – volume: 49 start-page: 1219 year: 2011 ident: 10.1016/j.rser.2015.07.021_bib87 article-title: Polybenzoxazines from renewable diphenolic acid publication-title: J Polym Sci, Part A: Polym Chem doi: 10.1002/pola.24541 – volume: 21 start-page: 219 year: 1840 ident: 10.1016/j.rser.2015.07.021_bib43 publication-title: J Prakt Chem doi: 10.1002/prac.18400210121 – volume: 4 start-page: 185 year: 1987 ident: 10.1016/j.rser.2015.07.021_bib41 article-title: Dehydration of d-fructose to levulinic acid over LZY zeolite catalyst publication-title: Biomass doi: 10.1016/0144-4565(87)90046-1 – ident: 10.1016/j.rser.2015.07.021_bib3 – volume: 5 start-page: 8199 year: 2012 ident: 10.1016/j.rser.2015.07.021_bib53 article-title: Production of levulinic acid and gamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasic systems publication-title: Energy Environ Sci doi: 10.1039/c2ee22111j – volume: 6 start-page: 134 year: 2013 ident: 10.1016/j.rser.2015.07.021_bib16 article-title: Green and facile synthesis of palladium nanoparticles for efficient liquid-phase hydrogenation of biomass-derived furfural publication-title: Sci Adv Mater – volume: 40 start-page: 608 year: 2014 ident: 10.1016/j.rser.2015.07.021_bib18 article-title: Production of γ-valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply publication-title: Renewable Sustainable Energy Rev doi: 10.1016/j.rser.2014.07.209 – volume: 43 start-page: 1427 year: 2015 ident: 10.1016/j.rser.2015.07.021_bib30 article-title: Opportunities, recent trends and challenges of integrated biorefinery: Part I publication-title: Renewable Sustainable Energy Rev doi: 10.1016/j.rser.2014.11.092 – volume: 343 start-page: 3021 year: 2008 ident: 10.1016/j.rser.2015.07.021_bib35 article-title: Mechanism of the dehydration of d-Fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at 150°C: an NMR study publication-title: Carbohydr Res doi: 10.1016/j.carres.2008.09.008 – volume: 9 start-page: 3264 year: 2014 ident: 10.1016/j.rser.2015.07.021_bib96 article-title: Catalytic synthesis of diphenolic acid from levulinic acid over Bronsted acidic ionic liquids publication-title: BioResources doi: 10.15376/biores.9.2.3264-3275 – volume: 60 start-page: 219 year: 2003 ident: 10.1016/j.rser.2015.07.021_bib105 article-title: The synthesis and applications of 5-aminolevulinic acid (ALA) derivatives in photodynamic therapy and photodiagnosis publication-title: Acta Pol Pharm – volume: 53 start-page: 6562 year: 2014 ident: 10.1016/j.rser.2015.07.021_bib73 article-title: Selective decomposition of cellulose into glucose and levulinic acid over Fe-resin catalyst in NaCl solution under hydrothermal conditions publication-title: Ind Eng Chem Res doi: 10.1021/ie500318t – volume: 15 start-page: 1 year: 2013 ident: 10.1016/j.rser.2015.07.021_bib114 article-title: Facile synthesis of palladium nanoparticles supported on multi-walled carbon nanotube for efficient hydrogenation of biomass-derived levulinic acid publication-title: J Nanopart Res doi: 10.1007/s11051-013-1906-9 – volume: 199 start-page: 91 year: 1990 ident: 10.1016/j.rser.2015.07.021_bib40 article-title: Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose publication-title: Carbohydr Res doi: 10.1016/0008-6215(90)84096-D – volume: 88 start-page: 17 year: 2011 ident: 10.1016/j.rser.2015.07.021_bib127 article-title: Competitive liquid biofuels from biomass publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.07.016 – volume: 445 start-page: 180 year: 2012 ident: 10.1016/j.rser.2015.07.021_bib136 article-title: Dried chitosan-gels as organocatalysts for the production of biomass-derived platform chemicals publication-title: Appl Catal, A doi: 10.1016/j.apcata.2012.08.014 – volume: 2 start-page: 767 year: 2009 ident: 10.1016/j.rser.2015.07.021_bib111 article-title: Bio-oxygenates and the peroxide number: a safety issue alert publication-title: Energy Environ Sci doi: 10.1039/b900229b – volume: 49 start-page: 5328 year: 2013 ident: 10.1016/j.rser.2015.07.021_bib122 article-title: RANEY® Ni catalyzed transfer hydrogenation of levulinate esters to γ-valerolactone at room temperature publication-title: Chem Commun doi: 10.1039/c3cc40980e – volume: 14 start-page: 185 year: 1987 ident: 10.1016/j.rser.2015.07.021_bib66 article-title: Dehydration of d-fructose to levulinic acid over LZY zeolite Catalyst publication-title: Biomass doi: 10.1016/0144-4565(87)90046-1 – volume: 76 start-page: 4465 year: 1954 ident: 10.1016/j.rser.2015.07.021_bib86 article-title: γ,γ-Bis-(p-hydroxyphenyl)-valeric acid publication-title: J Am Chem Soc doi: 10.1021/ja01646a053 – volume: 179 start-page: 292 year: 2015 ident: 10.1016/j.rser.2015.07.021_bib21 article-title: Catalytic reactions of gamma-valerolactone: a platform to fuels and value-added chemicals publication-title: Appl Catal B doi: 10.1016/j.apcatb.2015.04.030 – volume: 42 start-page: 314 year: 1990 ident: 10.1016/j.rser.2015.07.021_bib44 article-title: 5-Hydroxymethylfurfural (HMF). a review focussing on its manufacture publication-title: Starch/Stärke doi: 10.1002/star.19900420808 – volume: 24 start-page: 306 year: 2013 ident: 10.1016/j.rser.2015.07.021_bib4 article-title: A guidance chart for most probable solution directions in sustainable energy developments publication-title: Renewable Sustainable Energy Rev doi: 10.1016/j.rser.2013.03.037 – volume: 129 start-page: 342 year: 2013 ident: 10.1016/j.rser.2015.07.021_bib125 article-title: Sulfonic acid functionalized mesoporous SBA-15 catalysts for biodiesel production publication-title: Appl Catal, B doi: 10.1016/j.apcatb.2012.09.029 – volume: 13 start-page: 237 year: 2000 ident: 10.1016/j.rser.2015.07.021_bib67 article-title: A new approach for the production of 2,5-furandicarboxylic acid by in situ oxidation of 5-hydroxymethylfurfural starting from fructose publication-title: Top Catal doi: 10.1023/A:1009017929727 – volume: 114 start-page: 9002 year: 2010 ident: 10.1016/j.rser.2015.07.021_bib39 article-title: Computational studies of the thermochemistry for conversion of glucose to levulinic acid publication-title: J Phys Chem B doi: 10.1021/jp101418f – volume: 242 start-page: 278 year: 2006 ident: 10.1016/j.rser.2015.07.021_bib133 article-title: A comparison of the esterification of acetic acid with methanol using heterogeneous versus homogeneous acid catalysis publication-title: J Catal doi: 10.1016/j.jcat.2006.05.026 – volume: 9 start-page: 839 year: 2007 ident: 10.1016/j.rser.2015.07.021_bib91 article-title: The synthesis of diphenolic acid using the periodic mesoporous H3PW12O40-silica composite catalysed reaction of levulinic acid publication-title: Green Chem doi: 10.1039/b702739g – volume: 2 start-page: 437 year: 2009 ident: 10.1016/j.rser.2015.07.021_bib34 article-title: Conversion of furfuryl alcohol into ethyl levulinate using solid acid catalysts publication-title: ChemSusChem doi: 10.1002/cssc.200800216 – volume: 15 start-page: 81 year: 2013 ident: 10.1016/j.rser.2015.07.021_bib90 article-title: Brønsted acidic ionic liquids catalyze the high-yield production of diphenolic acid/esters from renewable levulinic acid publication-title: Green Chem doi: 10.1039/C2GC36630D – volume: 3 start-page: 3853 year: 2013 ident: 10.1016/j.rser.2015.07.021_bib116 article-title: A Noble-metal free Cu-catalyst derived from hydrotalcite for highly efficient hydrogenation of biomass-derived furfural and levulinic acid publication-title: RSC Adv doi: 10.1039/c3ra22158j – volume: 34 start-page: 182 year: 1998 ident: 10.1016/j.rser.2015.07.021_bib70 article-title: Production of levulinic acid from wood raw material in the presence of sulfuric acid and its salts publication-title: Chem Nat Compd doi: 10.1007/BF02249141 – volume: 10 start-page: 238 year: 2008 ident: 10.1016/j.rser.2015.07.021_bib110 article-title: γ-Valerolactone—a sustainable liquid for energy and carbon-based chemicals publication-title: Green Chem doi: 10.1039/B712863K – ident: 10.1016/j.rser.2015.07.021_bib124 – volume: 954 start-page: 262 year: 2007 ident: 10.1016/j.rser.2015.07.021_bib15 article-title: Production of chemicals from cellulose and biomass-derived compounds: advances in the oxidative functionalization of levulinic acid publication-title: ACS Symp Ser doi: 10.1021/bk-2007-0954.ch017 – start-page: 21 year: 2007 ident: 10.1016/j.rser.2015.07.021_bib23 article-title: Lignocellulose conversion: an introduction to chemistry, process and economics – volume: 45 start-page: 2163 year: 2006 ident: 10.1016/j.rser.2015.07.021_bib68 article-title: Acid-catalyzed production of 5-hydroxymethylfurfural from d-fructose in subcritical water publication-title: Ind Eng Chem Res doi: 10.1021/ie051088y – volume: 51 start-page: 2356 year: 2010 ident: 10.1016/j.rser.2015.07.021_bib71 article-title: Conversion of cellulose to glucose and levulinic acid via solid-supported acid catalysis publication-title: Tetrahedron Lett doi: 10.1016/j.tetlet.2010.02.148 – volume: 14 start-page: 329 year: 1995 ident: 10.1016/j.rser.2015.07.021_bib100 article-title: Photodynamics of porphyric insecticides publication-title: Crit Rev Plant Sci doi: 10.1080/07352689509382363 – volume: 36 start-page: 158 year: 2008 ident: 10.1016/j.rser.2015.07.021_bib83 article-title: Production of levulinic acid from Bagasse and Paddy Straw by liquefaction in the presence of hydrochloride acid publication-title: Clean-Soil Air Water doi: 10.1002/clen.200700100 – ident: 10.1016/j.rser.2015.07.021_bib60 – volume: 25 start-page: 23 year: 1972 ident: 10.1016/j.rser.2015.07.021_bib38 article-title: Thermal degradation of xylan and related model compounds publication-title: Carbohydr Res doi: 10.1016/S0008-6215(00)82742-1 – ident: 10.1016/j.rser.2015.07.021_bib1 – volume: 38 start-page: 739 year: 1997 ident: 10.1016/j.rser.2015.07.021_bib104 article-title: An efficient synthesis of d-aminolevulinic acid (ala) and its isotopomers publication-title: Tetrahedron Lett doi: 10.1016/S0040-4039(96)02419-7 – volume: 58 start-page: 357 year: 2013 ident: 10.1016/j.rser.2015.07.021_bib118 article-title: Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized Noble-metal-free Cu–Cr catalyst publication-title: Energy doi: 10.1016/j.energy.2013.05.035 – volume: 12 start-page: 370 year: 2010 ident: 10.1016/j.rser.2015.07.021_bib51 article-title: High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl) furfural, levulinic acid, and levulinic esters via 5-(chloromethyl) furfural publication-title: Green Chem doi: 10.1039/B918922J – volume: 19 start-page: 8628 year: 2009 ident: 10.1016/j.rser.2015.07.021_bib93 article-title: Design of mesostructured H3PW12O40-silica materials with controllable ordered and disordered pore geometries and their application for the synthesis of diphenolic acid publication-title: J Mater Chem doi: 10.1039/b910416j – volume: 90 start-page: 2289 year: 2011 ident: 10.1016/j.rser.2015.07.021_bib69 article-title: High selective production of 5-hydroymethylfurfural from fructose by a solid heteropolyacid catalyst publication-title: Fuel doi: 10.1016/j.fuel.2011.02.022 – volume: 1 start-page: 89 year: 1998 ident: 10.1016/j.rser.2015.07.021_bib107 article-title: Synthesis of analogues of d-aminolaevulinic acid and inhibition of 5-aminolaevulinic acid dehydratase publication-title: J Chem Soc Perkin Trans doi: 10.1039/a704544a – volume: 784 start-page: 51 year: 2001 ident: 10.1016/j.rser.2015.07.021_bib129 article-title: Chemicals and materials from renewable resources publication-title: ACS Symp Ser doi: 10.1021/bk-2001-0784.ch005 – ident: 10.1016/j.rser.2015.07.021_bib80 – volume: 468 start-page: 52 year: 2013 ident: 10.1016/j.rser.2015.07.021_bib109 article-title: Highly selective production of value-added γ-valerolactone from biomass-derived levulinic acid using the robust Pd nanoparticles publication-title: Appl Catal, A doi: 10.1016/j.apcata.2013.08.037 – volume: 43 start-page: 1446 year: 2015 ident: 10.1016/j.rser.2015.07.021_bib31 article-title: Opportunities, recent trends and challenges of integrated biorefinery: Part II publication-title: Renewable Sustainable Energy Rev doi: 10.1016/j.rser.2014.08.075 |
SSID | ssj0015873 |
Score | 2.5996172 |
SecondaryResourceType | review_article |
Snippet | Lignocellulosic biomass is a renewable and abundant source that can be used as a replacement for fossil resources in the sustainable production of speciality... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 986 |
SubjectTerms | Biomass Fuels Levulinic acid Speciality chemicals Technologies |
Title | Production and catalytic transformation of levulinic acid: A platform for speciality chemicals and fuels |
URI | https://dx.doi.org/10.1016/j.rser.2015.07.021 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DL3oQP3F-jBy8SV3TJE3rbQzH_BpDHewW0jbFyejG1gle_Nt9r-3GBNnBS0vb90r4vfTlpXnvF0KujDQiMVw4nuXGESyNHGPCxPGVDWKpwjA1WJz83PO7A_EwlMMaaS9rYTCtsvL9pU8vvHV1p1mh2ZyORs1Xxn3hcg9DGhg3i_JrIRT28pvvVZoHk0GxyozCDkpXhTNljtcMzIzpXbIg8PTY34PT2oDT2Sd7VaRIW2VjDkjNZodkd40_8Ii890u-VsCWmiyhxb-YL5Cn-Vo8Cg8nKR3bz0VRBUlNPEpuaYtOxyZHEQoHOi_3oYeYnMYVh8C8eGe6gAYek0Hn7q3ddaqtE5wYMMkdGQRGxSKGyUmABFNgCJbiEqthQnHOjStT5aeeYia0nivgO0xkpIIIIybOIn5CtrJJZk8JhQmesS4HVaMEctnEkW_dRKmIpz5nok7YEjMdV7ziuL3FWC8TyD404qwRZ-0qDTjXyfVKZ1qyamyUlktT6F99Q4Pb36B39k-9c7KDV2XF4QXZymcLewmhRx41ir7VINut9stTH8_3j93eDyFn2oQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na8IwFA9DD9sOY5_Mfeaw2yg2TdLU3UQmuqkMpuAtpG3KHOJk1sH--73XRnEwPOzSQ_NeCb-kLy957_1CyJ2RRqSGCy-w3HiCZbFnTCP1QmWjRKpGIzNYnNwfhJ2ReBrL8Q5prWphMK3S2f7SphfW2r2pOzTr88mk_sp4KHweoEsD6yaWX1eRnUpWSLXZfe4M1sEEGRWBZpT3UMHVzpRpXp8w0pjhJQsOz4D9vT5trDntQ3LgnEXaLPtzRHbs7Jjsb1AInpC3l5KyFeClZpbS4jjmG-RpvuGSQuNHRqf2a1kUQlKTTNIH2qTzqclRhMKDLsqr6MEtp4mjEVgU38yW0MFTMmo_Dlsdz92e4CUAS-7JKDIqEQnsTyLkmIKxYBlGWQ0TinNufJmpMAsUMw0b-AJ-xVTGKorRaeIs5mekMvuY2XNCYY9nrM9B1SiBdDZJHFo_VSrmWciZqBG2wkwnjlocb7iY6lUO2btGnDXirH2lAecauV_rzEtija3ScjUU-tf00GD5t-hd_FPvlux2hv2e7nUHz5dkD1vKAsQrUsk_l_YaPJE8vnEz7QfRRdug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Production+and+catalytic+transformation+of+levulinic+acid%3A+A+platform+for+speciality+chemicals+and+fuels&rft.jtitle=Renewable+%26+sustainable+energy+reviews&rft.au=Yan%2C+Kai&rft.au=Jarvis%2C+Cody&rft.au=Gu%2C+Jing&rft.au=Yan%2C+Yong&rft.date=2015-11-01&rft.issn=1364-0321&rft.volume=51&rft.spage=986&rft.epage=997&rft_id=info:doi/10.1016%2Fj.rser.2015.07.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rser_2015_07_021 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-0321&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-0321&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-0321&client=summon |