Calculating LLRs via Saddlepoint Approximation in Front-End MIMO Receivers
In this work, we consider the front-end receivers for flat fading MIMO transmission, whose essential feature is the calculation of the log-likelihood ratios (LLRs) for the transmitted bits. When the number of transmit antennas and the modulation size grow, the exact calculation of the LLRs becomes u...
Saved in:
Published in | IEEE transactions on communications Vol. 61; no. 6; pp. 2330 - 2338 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.06.2013
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, we consider the front-end receivers for flat fading MIMO transmission, whose essential feature is the calculation of the log-likelihood ratios (LLRs) for the transmitted bits. When the number of transmit antennas and the modulation size grow, the exact calculation of the LLRs becomes unfeasible due to the necessity to enumerate the symbols affecting the output. In this work, to avoid the burden of explicit enumeration, instead of calculating the likelihoods exactly, we explore the possibilities offered by the saddlepoint approximation of the likelihood functions. The resulting fixed-complexity approach significantly outperforms the well known linear-filter based minimum mean square error detection. A complexity analysis identifies the main computational bottleneck of the proposed detection algorithm. |
---|---|
AbstractList | In this work, we consider the front-end receivers for flat fading MIMO transmission, whose essential feature is the calculation of the log-likelihood ratios (LLRs) for the transmitted bits. When the number of transmit antennas and the modulation size grow, the exact calculation of the LLRs becomes unfeasible due to the necessity to enumerate the symbols affecting the output. In this work, to avoid the burden of explicit enumeration, instead of calculating the likelihoods exactly, we explore the possibilities offered by the saddlepoint approximation of the likelihood functions. The resulting fixed-complexity approach significantly outperforms the well known linear-filter based minimum mean square error detection. A complexity analysis identifies the main computational bottleneck of the proposed detection algorithm. |
Author | Senst, M. Szczecinski, L. Krzymien, L. Labeau, F. |
Author_xml | – sequence: 1 givenname: M. surname: Senst fullname: Senst, M. email: msenst@ice.rwth-aachen.de organization: Dept. of Integrated Signal Process. Syst., RWTH Aachen Univ., Aachen, Germany – sequence: 2 givenname: L. surname: Krzymien fullname: Krzymien, L. email: lukasz.krzymien@huawei.com organization: INRS-EMT, Montreal, QC, Canada – sequence: 3 givenname: L. surname: Szczecinski fullname: Szczecinski, L. email: leszek@emt.inrs.ca organization: INRS-EMT, Montreal, QC, Canada – sequence: 4 givenname: F. surname: Labeau fullname: Labeau, F. email: fabrice.labeau@mcgill.ca organization: Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, QC, Canada |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27530550$$DView record in Pascal Francis |
BookMark | eNpdkFtLAzEQhYMoWC-_wJeACL5snWw2m91HKdYLLQUvzyFNZiVlm63Jtui_N3XFB58GZr6Zc-ackEPfeSSEMhgzBvXN62Qxn49zYHwMPJeppLbk5QEZMSGqDCohD8kIoIaslLI6JicxrgCgAM5H5GmiW7Ntde_8O53NniPdOU1ftLUtbjrne3q72YTu060T0nnqPJ2GzvfZnbd0_jhf0Gc06HYY4hk5anQb8fy3npK36d3r5CGbLe4fJ7ezzCTJPhMCeVEUzdIwvSyXdYFa5yCanIvGlogWmNFSgG1MYW3OmVhasDlYjnlVc85PyfVwN_n62GLs1dpFg22rPXbbqFjBZFXXpawSevkPXXXb4JM7xbjkyQ8TkKhqoEzoYgzYqE1I_4YvxUDtQ1Y_Iat9yGoIWQ0hp9WrXwEdjW6boL1x8W8_l4KD-JG4GDiHiH_jsqh5nX76Bnc1hmU |
CODEN | IECMBT |
CitedBy_id | crossref_primary_10_1109_TCOMM_2015_2496592 |
Cites_doi | 10.1109/18.749007 10.1109/TSP.2005.843746 10.1109/78.869048 10.1109/TCOMM.2003.809789 10.1109/TWC.2006.04857 10.1109/TIT.2010.2059730 10.1109/26.774855 10.1109/TIT.2009.2034893 10.1109/TSP.2008.925260 10.1109/TIT.2005.860450 10.1017/CBO9780511619083 |
ContentType | Journal Article |
Copyright | 2014 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2013 |
Copyright_xml | – notice: 2014 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2013 |
DBID | 97E RIA RIE IQODW AAYXX CITATION 7SP 8FD L7M F28 FR3 |
DOI | 10.1109/TCOMM.2013.032713.110736 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Xplore / Electronic Library Online (IEL) Pascal-Francis CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Engineering Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore / Electronic Library Online (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1558-0857 |
EndPage | 2338 |
ExternalDocumentID | 3010483221 10_1109_TCOMM_2013_032713_110736 27530550 6493989 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AASAJ AAYOK ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV B-7 BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RIG RNS TAE TN5 VH1 XFK ZCA ZCG 8W4 ABPTK IPNFZ IQODW AAYXX CITATION 7SP 8FD L7M F28 FR3 |
ID | FETCH-LOGICAL-c403t-55e3444fbc1ab6b94eaa205f235fd6eed01ca750dfc4dd2315bd0d20d3e289333 |
IEDL.DBID | RIE |
ISSN | 0090-6778 |
IngestDate | Fri Aug 16 22:37:31 EDT 2024 Thu Oct 10 18:46:23 EDT 2024 Fri Aug 23 01:40:09 EDT 2024 Thu Nov 24 18:25:53 EST 2022 Wed Jun 26 19:28:14 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Performance evaluation Fading MIMO system Logarithmic function Likelihood ratio Man machine dialogue Algorithm LMMSE Mean square error Saddlepoint approximation (SPA) Transmitting antenna User interface Linear filter Modulation MIMO MAP Likelihood function ML |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-55e3444fbc1ab6b94eaa205f235fd6eed01ca750dfc4dd2315bd0d20d3e289333 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1373403150 |
PQPubID | 85472 |
PageCount | 9 |
ParticipantIDs | pascalfrancis_primary_27530550 crossref_primary_10_1109_TCOMM_2013_032713_110736 proquest_miscellaneous_1417899678 proquest_journals_1373403150 ieee_primary_6493989 |
PublicationCentury | 2000 |
PublicationDate | 2013-06-01 |
PublicationDateYYYYMMDD | 2013-06-01 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: New York |
PublicationTitle | IEEE transactions on communications |
PublicationTitleAbbrev | TCOMM |
PublicationYear | 2013 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref8 ref12 ref7 ref9 ref4 ref3 ref6 ref10 ref5 moon (ref11) 2000 ref2 ref1 |
References_xml | – ident: ref4 doi: 10.1109/18.749007 – ident: ref2 doi: 10.1109/TSP.2005.843746 – ident: ref6 doi: 10.1109/78.869048 – year: 2000 ident: ref11 publication-title: Mathematical Methods and Algorithms for Signal Processing contributor: fullname: moon – ident: ref1 doi: 10.1109/TCOMM.2003.809789 – ident: ref9 doi: 10.1109/TWC.2006.04857 – ident: ref12 doi: 10.1109/TIT.2010.2059730 – ident: ref5 doi: 10.1109/26.774855 – ident: ref7 doi: 10.1109/TIT.2009.2034893 – ident: ref3 doi: 10.1109/TSP.2008.925260 – ident: ref10 doi: 10.1109/TIT.2005.860450 – ident: ref8 doi: 10.1017/CBO9780511619083 |
SSID | ssj0004033 |
Score | 2.1233187 |
Snippet | In this work, we consider the front-end receivers for flat fading MIMO transmission, whose essential feature is the calculation of the log-likelihood ratios... |
SourceID | proquest crossref pascalfrancis ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2330 |
SubjectTerms | Algorithms Antennas Applied sciences Approximation Approximation methods Complexity theory Detection, estimation, filtering, equalization, prediction Detectors Error detection Exact sciences and technology Information, signal and communications theory LMMSE Mathematical analysis MIMO Modulation Modulation, demodulation Noise Radiocommunications Receivers Saddlepoint approximation (SPA) Signal and communications theory Signal, noise Symbols Telecommunications Telecommunications and information theory Vectors |
Title | Calculating LLRs via Saddlepoint Approximation in Front-End MIMO Receivers |
URI | https://ieeexplore.ieee.org/document/6493989 https://www.proquest.com/docview/1373403150 https://search.proquest.com/docview/1417899678 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4BJzjwWEB0ecgrcSTFsZ2Hj6iiYhEBiYfELbJjB1WgFG1ThPj1jO207AKHvUWxpSQzdub7PC-Aw9QgDtXCRNrloAmuRaS1QoVUKbMUEUCeuWzk4jI9uxPn98n9AhzNc2GstT74zPbdpfflm3E1dUdlx6mQXOZyERYzKUOu1kcOJOVdxUkXzp7ls6gdKo9vB1dF4aK4eJ9yhqzM3c58UeYPU-R7q7jISDVB4dShq8WXH7S3OsM1KGbvG4JNHvvTVvert0-lHP_3g9ZhtYOf5CSslw1YsM0PWPmrKOEmnA_UU-WbejUP5OLiekJeRorcKHeQ8TweNS05cXXIX0ch6ZGMGjJ0VRCi08aQ4ndxRRCKWh_usQV3w9PbwVnUdVyIKpRfGyWJ5UKIWlex0qmWwirFaFIzntQmRXNK40ohxjB1JYxBaJhoQw2jhlskbpzzbVhqxo3dAWIRydRMMmZziRwylkJpnhtunCe2Tm0P4pnwy-dQWKP0hITK0iusdAorg8LKoLAebDoZzud34uvBwT9am48z5GIUKVgP9mZqLLstOiljnnHhelzg8K_5MG4u5zFRjR1PcY6IMySkaNB_fv_oXVhmoT9GROM9WGr_TO0-opRWH_jl-Q5FYuFJ |
link.rule.ids | 315,783,787,799,27938,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N8QB74GsgOrZhJB5J59jOhx-nalU3mk2CTtqbZcfOVIHSaU0R2l_P2U47YDzwFsWWktzZud_5fncH8DG3iEONsInxOWiCG5EYo1Ehdc4cRQRQFj4buTrPJ5fi7Cq72oJPm1wY51wgn7mhvwyxfLuoV_6o7CgXkstSPoLHmccVMVvrPguS8r7mpCe0F-Wat0Pl0Wx0UVWex8WHlDP0y_ztIpRlvjdGobuK50bqJYqniX0tHvyig90ZP4dq_caRbvJtuOrMsL77q5jj_37SC3jWA1ByHFfMS9hy7SvY-a0s4S6cjfT3OrT1aq_JdPplSX7MNfmq_VHGzWLeduTYVyL_OY9pj2TekrGvg5CctJZUp9UFQTDqAuHjNVyOT2ajSdL3XEhqlF-XZJnjQojG1Kk2uZHCac1o1jCeNTZHg0rTWiPKsE0trEVwmBlLLaOWO3TdOOdvYLtdtO4tEIdYpmGSMVdK9CJTKbThpeXWx2Kb3A0gXQtf3cTSGiq4JFSqoDDlFaaiwlRU2AB2vQw383vxDeDwD61txhl6YxQXywD212pU_SZdqpQXXPguFzj8YTOM28vHTHTrFiucI9ICXVI06Xv_fvR7eDKZVVM1PT3__A6estgtI6HpPmx3tyt3gJilM4dhqf4COkzklg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calculating+LLRs+via+Saddlepoint+Approximation+in+Front-End+MIMO+Receivers&rft.jtitle=IEEE+transactions+on+communications&rft.au=Senst%2C+Martin&rft.au=Krzymien%2C+Lukasz&rft.au=Szczecinski%2C+Leszek&rft.au=Labeau%2C+Fabrice&rft.date=2013-06-01&rft.issn=0090-6778&rft.volume=61&rft.issue=6&rft.spage=2330&rft.epage=2338&rft_id=info:doi/10.1109%2FTCOMM.2013.032713.110736&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon |