Calculating LLRs via Saddlepoint Approximation in Front-End MIMO Receivers

In this work, we consider the front-end receivers for flat fading MIMO transmission, whose essential feature is the calculation of the log-likelihood ratios (LLRs) for the transmitted bits. When the number of transmit antennas and the modulation size grow, the exact calculation of the LLRs becomes u...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications Vol. 61; no. 6; pp. 2330 - 2338
Main Authors Senst, M., Krzymien, L., Szczecinski, L., Labeau, F.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.06.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, we consider the front-end receivers for flat fading MIMO transmission, whose essential feature is the calculation of the log-likelihood ratios (LLRs) for the transmitted bits. When the number of transmit antennas and the modulation size grow, the exact calculation of the LLRs becomes unfeasible due to the necessity to enumerate the symbols affecting the output. In this work, to avoid the burden of explicit enumeration, instead of calculating the likelihoods exactly, we explore the possibilities offered by the saddlepoint approximation of the likelihood functions. The resulting fixed-complexity approach significantly outperforms the well known linear-filter based minimum mean square error detection. A complexity analysis identifies the main computational bottleneck of the proposed detection algorithm.
AbstractList In this work, we consider the front-end receivers for flat fading MIMO transmission, whose essential feature is the calculation of the log-likelihood ratios (LLRs) for the transmitted bits. When the number of transmit antennas and the modulation size grow, the exact calculation of the LLRs becomes unfeasible due to the necessity to enumerate the symbols affecting the output. In this work, to avoid the burden of explicit enumeration, instead of calculating the likelihoods exactly, we explore the possibilities offered by the saddlepoint approximation of the likelihood functions. The resulting fixed-complexity approach significantly outperforms the well known linear-filter based minimum mean square error detection. A complexity analysis identifies the main computational bottleneck of the proposed detection algorithm.
Author Senst, M.
Szczecinski, L.
Krzymien, L.
Labeau, F.
Author_xml – sequence: 1
  givenname: M.
  surname: Senst
  fullname: Senst, M.
  email: msenst@ice.rwth-aachen.de
  organization: Dept. of Integrated Signal Process. Syst., RWTH Aachen Univ., Aachen, Germany
– sequence: 2
  givenname: L.
  surname: Krzymien
  fullname: Krzymien, L.
  email: lukasz.krzymien@huawei.com
  organization: INRS-EMT, Montreal, QC, Canada
– sequence: 3
  givenname: L.
  surname: Szczecinski
  fullname: Szczecinski, L.
  email: leszek@emt.inrs.ca
  organization: INRS-EMT, Montreal, QC, Canada
– sequence: 4
  givenname: F.
  surname: Labeau
  fullname: Labeau, F.
  email: fabrice.labeau@mcgill.ca
  organization: Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, QC, Canada
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27530550$$DView record in Pascal Francis
BookMark eNpdkFtLAzEQhYMoWC-_wJeACL5snWw2m91HKdYLLQUvzyFNZiVlm63Jtui_N3XFB58GZr6Zc-ackEPfeSSEMhgzBvXN62Qxn49zYHwMPJeppLbk5QEZMSGqDCohD8kIoIaslLI6JicxrgCgAM5H5GmiW7Ntde_8O53NniPdOU1ftLUtbjrne3q72YTu060T0nnqPJ2GzvfZnbd0_jhf0Gc06HYY4hk5anQb8fy3npK36d3r5CGbLe4fJ7ezzCTJPhMCeVEUzdIwvSyXdYFa5yCanIvGlogWmNFSgG1MYW3OmVhasDlYjnlVc85PyfVwN_n62GLs1dpFg22rPXbbqFjBZFXXpawSevkPXXXb4JM7xbjkyQ8TkKhqoEzoYgzYqE1I_4YvxUDtQ1Y_Iat9yGoIWQ0hp9WrXwEdjW6boL1x8W8_l4KD-JG4GDiHiH_jsqh5nX76Bnc1hmU
CODEN IECMBT
CitedBy_id crossref_primary_10_1109_TCOMM_2015_2496592
Cites_doi 10.1109/18.749007
10.1109/TSP.2005.843746
10.1109/78.869048
10.1109/TCOMM.2003.809789
10.1109/TWC.2006.04857
10.1109/TIT.2010.2059730
10.1109/26.774855
10.1109/TIT.2009.2034893
10.1109/TSP.2008.925260
10.1109/TIT.2005.860450
10.1017/CBO9780511619083
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2013
Copyright_xml – notice: 2014 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2013
DBID 97E
RIA
RIE
IQODW
AAYXX
CITATION
7SP
8FD
L7M
F28
FR3
DOI 10.1109/TCOMM.2013.032713.110736
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Xplore / Electronic Library Online (IEL)
Pascal-Francis
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Engineering Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore / Electronic Library Online (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1558-0857
EndPage 2338
ExternalDocumentID 3010483221
10_1109_TCOMM_2013_032713_110736
27530550
6493989
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AASAJ
AAYOK
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
B-7
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TAE
TN5
VH1
XFK
ZCA
ZCG
8W4
ABPTK
IPNFZ
IQODW
AAYXX
CITATION
7SP
8FD
L7M
F28
FR3
ID FETCH-LOGICAL-c403t-55e3444fbc1ab6b94eaa205f235fd6eed01ca750dfc4dd2315bd0d20d3e289333
IEDL.DBID RIE
ISSN 0090-6778
IngestDate Fri Aug 16 22:37:31 EDT 2024
Thu Oct 10 18:46:23 EDT 2024
Fri Aug 23 01:40:09 EDT 2024
Thu Nov 24 18:25:53 EST 2022
Wed Jun 26 19:28:14 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Performance evaluation
Fading
MIMO system
Logarithmic function
Likelihood ratio
Man machine dialogue
Algorithm
LMMSE
Mean square error
Saddlepoint approximation (SPA)
Transmitting antenna
User interface
Linear filter
Modulation
MIMO
MAP
Likelihood function
ML
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-55e3444fbc1ab6b94eaa205f235fd6eed01ca750dfc4dd2315bd0d20d3e289333
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1373403150
PQPubID 85472
PageCount 9
ParticipantIDs pascalfrancis_primary_27530550
crossref_primary_10_1109_TCOMM_2013_032713_110736
proquest_miscellaneous_1417899678
proquest_journals_1373403150
ieee_primary_6493989
PublicationCentury 2000
PublicationDate 2013-06-01
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on communications
PublicationTitleAbbrev TCOMM
PublicationYear 2013
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref8
ref12
ref7
ref9
ref4
ref3
ref6
ref10
ref5
moon (ref11) 2000
ref2
ref1
References_xml – ident: ref4
  doi: 10.1109/18.749007
– ident: ref2
  doi: 10.1109/TSP.2005.843746
– ident: ref6
  doi: 10.1109/78.869048
– year: 2000
  ident: ref11
  publication-title: Mathematical Methods and Algorithms for Signal Processing
  contributor:
    fullname: moon
– ident: ref1
  doi: 10.1109/TCOMM.2003.809789
– ident: ref9
  doi: 10.1109/TWC.2006.04857
– ident: ref12
  doi: 10.1109/TIT.2010.2059730
– ident: ref5
  doi: 10.1109/26.774855
– ident: ref7
  doi: 10.1109/TIT.2009.2034893
– ident: ref3
  doi: 10.1109/TSP.2008.925260
– ident: ref10
  doi: 10.1109/TIT.2005.860450
– ident: ref8
  doi: 10.1017/CBO9780511619083
SSID ssj0004033
Score 2.1233187
Snippet In this work, we consider the front-end receivers for flat fading MIMO transmission, whose essential feature is the calculation of the log-likelihood ratios...
SourceID proquest
crossref
pascalfrancis
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 2330
SubjectTerms Algorithms
Antennas
Applied sciences
Approximation
Approximation methods
Complexity theory
Detection, estimation, filtering, equalization, prediction
Detectors
Error detection
Exact sciences and technology
Information, signal and communications theory
LMMSE
Mathematical analysis
MIMO
Modulation
Modulation, demodulation
Noise
Radiocommunications
Receivers
Saddlepoint approximation (SPA)
Signal and communications theory
Signal, noise
Symbols
Telecommunications
Telecommunications and information theory
Vectors
Title Calculating LLRs via Saddlepoint Approximation in Front-End MIMO Receivers
URI https://ieeexplore.ieee.org/document/6493989
https://www.proquest.com/docview/1373403150
https://search.proquest.com/docview/1417899678
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4BJzjwWEB0ecgrcSTFsZ2Hj6iiYhEBiYfELbJjB1WgFG1ThPj1jO207AKHvUWxpSQzdub7PC-Aw9QgDtXCRNrloAmuRaS1QoVUKbMUEUCeuWzk4jI9uxPn98n9AhzNc2GstT74zPbdpfflm3E1dUdlx6mQXOZyERYzKUOu1kcOJOVdxUkXzp7ls6gdKo9vB1dF4aK4eJ9yhqzM3c58UeYPU-R7q7jISDVB4dShq8WXH7S3OsM1KGbvG4JNHvvTVvert0-lHP_3g9ZhtYOf5CSslw1YsM0PWPmrKOEmnA_UU-WbejUP5OLiekJeRorcKHeQ8TweNS05cXXIX0ch6ZGMGjJ0VRCi08aQ4ndxRRCKWh_usQV3w9PbwVnUdVyIKpRfGyWJ5UKIWlex0qmWwirFaFIzntQmRXNK40ohxjB1JYxBaJhoQw2jhlskbpzzbVhqxo3dAWIRydRMMmZziRwylkJpnhtunCe2Tm0P4pnwy-dQWKP0hITK0iusdAorg8LKoLAebDoZzud34uvBwT9am48z5GIUKVgP9mZqLLstOiljnnHhelzg8K_5MG4u5zFRjR1PcY6IMySkaNB_fv_oXVhmoT9GROM9WGr_TO0-opRWH_jl-Q5FYuFJ
link.rule.ids 315,783,787,799,27938,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N8QB74GsgOrZhJB5J59jOhx-nalU3mk2CTtqbZcfOVIHSaU0R2l_P2U47YDzwFsWWktzZud_5fncH8DG3iEONsInxOWiCG5EYo1Ehdc4cRQRQFj4buTrPJ5fi7Cq72oJPm1wY51wgn7mhvwyxfLuoV_6o7CgXkstSPoLHmccVMVvrPguS8r7mpCe0F-Wat0Pl0Wx0UVWex8WHlDP0y_ztIpRlvjdGobuK50bqJYqniX0tHvyig90ZP4dq_caRbvJtuOrMsL77q5jj_37SC3jWA1ByHFfMS9hy7SvY-a0s4S6cjfT3OrT1aq_JdPplSX7MNfmq_VHGzWLeduTYVyL_OY9pj2TekrGvg5CctJZUp9UFQTDqAuHjNVyOT2ajSdL3XEhqlF-XZJnjQojG1Kk2uZHCac1o1jCeNTZHg0rTWiPKsE0trEVwmBlLLaOWO3TdOOdvYLtdtO4tEIdYpmGSMVdK9CJTKbThpeXWx2Kb3A0gXQtf3cTSGiq4JFSqoDDlFaaiwlRU2AB2vQw383vxDeDwD61txhl6YxQXywD212pU_SZdqpQXXPguFzj8YTOM28vHTHTrFiucI9ICXVI06Xv_fvR7eDKZVVM1PT3__A6estgtI6HpPmx3tyt3gJilM4dhqf4COkzklg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calculating+LLRs+via+Saddlepoint+Approximation+in+Front-End+MIMO+Receivers&rft.jtitle=IEEE+transactions+on+communications&rft.au=Senst%2C+Martin&rft.au=Krzymien%2C+Lukasz&rft.au=Szczecinski%2C+Leszek&rft.au=Labeau%2C+Fabrice&rft.date=2013-06-01&rft.issn=0090-6778&rft.volume=61&rft.issue=6&rft.spage=2330&rft.epage=2338&rft_id=info:doi/10.1109%2FTCOMM.2013.032713.110736&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon