Microplastics Differ Between Indoor and Outdoor Air Masses: Insights from Multiple Microscopy Methodologies

The abundance and distribution of microplastic (<5 mm) has become a growing concern, particularly over the past decade. Research to date has focused on water, soil, and organism matrices but generally disregarded air. We explored airborne microplastic inside and outside of buildings in coastal Ca...

Full description

Saved in:
Bibliographic Details
Published inApplied spectroscopy p. 3702820920652
Main Authors Gaston, Emily, Woo, Mary, Steele, Clare, Sukumaran, Suja, Anderson, Sean
Format Journal Article
LanguageEnglish
Published United States 01.09.2020
Subjects
Online AccessGet more information

Cover

Loading…
Abstract The abundance and distribution of microplastic (<5 mm) has become a growing concern, particularly over the past decade. Research to date has focused on water, soil, and organism matrices but generally disregarded air. We explored airborne microplastic inside and outside of buildings in coastal California by filtering known volumes of air through glass fiber filters, which were then subsequently characterized with a variety of microscopy techniques: gross traditional microscopy, fluorescent microscopy following staining with Nile red, micro-Raman spectroscopy, and micro-Fourier transform infrared (µFT-IR) spectroscopy. Microplastics permeated the air, with indoor (3.3 ± 2.9 fibers and 12.6 ± 8.0 fragments m ; mean ± 1 SD) harboring twice as much as outdoor air (0.6 ± 0.6 fibers and 5.6 ± 3.2 fragments m ). Microplastic fiber length did not differ significantly between indoor and outdoor air, but indoor microplastic fragments (58.6 ± 55 µm) were half the size of outdoor fragments (104.8 ± 64.9 µm). Micro-Raman and FT-IR painted slightly different pictures of airborne plastic compounds, with micro-Raman suggesting polyvinyl chloride dominates indoor air, followed by polyethylene (PE) and µFT-IR showing polystyrene dominates followed by PE and polyethylene terephthalate. The ubiquity of airborne microplastic points to significant new potential sources of plastic inputs to terrestrial and marine ecosystems and raises significant concerns about inhalation exposure to humans both indoors and outdoors.
AbstractList The abundance and distribution of microplastic (<5 mm) has become a growing concern, particularly over the past decade. Research to date has focused on water, soil, and organism matrices but generally disregarded air. We explored airborne microplastic inside and outside of buildings in coastal California by filtering known volumes of air through glass fiber filters, which were then subsequently characterized with a variety of microscopy techniques: gross traditional microscopy, fluorescent microscopy following staining with Nile red, micro-Raman spectroscopy, and micro-Fourier transform infrared (µFT-IR) spectroscopy. Microplastics permeated the air, with indoor (3.3 ± 2.9 fibers and 12.6 ± 8.0 fragments m ; mean ± 1 SD) harboring twice as much as outdoor air (0.6 ± 0.6 fibers and 5.6 ± 3.2 fragments m ). Microplastic fiber length did not differ significantly between indoor and outdoor air, but indoor microplastic fragments (58.6 ± 55 µm) were half the size of outdoor fragments (104.8 ± 64.9 µm). Micro-Raman and FT-IR painted slightly different pictures of airborne plastic compounds, with micro-Raman suggesting polyvinyl chloride dominates indoor air, followed by polyethylene (PE) and µFT-IR showing polystyrene dominates followed by PE and polyethylene terephthalate. The ubiquity of airborne microplastic points to significant new potential sources of plastic inputs to terrestrial and marine ecosystems and raises significant concerns about inhalation exposure to humans both indoors and outdoors.
Author Woo, Mary
Gaston, Emily
Anderson, Sean
Sukumaran, Suja
Steele, Clare
Author_xml – sequence: 1
  givenname: Emily
  surname: Gaston
  fullname: Gaston, Emily
  organization: Environmental Science and Resource Management Program, California State University Channel Islands, California, USA
– sequence: 2
  givenname: Mary
  surname: Woo
  fullname: Woo, Mary
  organization: Environmental Science and Resource Management Program, California State University Channel Islands, California, USA
– sequence: 3
  givenname: Clare
  orcidid: 0000-0002-2430-9139
  surname: Steele
  fullname: Steele, Clare
  organization: Environmental Science and Resource Management Program, California State University Channel Islands, California, USA
– sequence: 4
  givenname: Suja
  surname: Sukumaran
  fullname: Sukumaran, Suja
  organization: Thermo Fisher Scientific, San Jose, USA
– sequence: 5
  givenname: Sean
  surname: Anderson
  fullname: Anderson, Sean
  organization: Environmental Science and Resource Management Program, California State University Channel Islands, California, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32233850$$D View this record in MEDLINE/PubMed
BookMark eNo1j0tLAzEYRYMo9qF7V5I_MJrHZCZxV-ur0KEbXZdM8qWNTidDkiL995aqq3vhHg7cCTrvQw8I3VByR2ld3xNCeE2YZEQxUgl2hsZUlbzggpMRmqT0eSSE4uISjThjnEtBxuir8SaGodMpe5Pwk3cOIn6E_A3Q40VvQ4hY9xav9vnUZz7iRqcE6eE4J7_Z5oRdDDvc7Lvshw7wSZlMGA64gbwNNnRh4yFdoQunuwTXfzlFHy_P7_O3Yrl6Xcxny8KUhOdClJxyWWtpbNka5sASBVbI2lRWGqqVq6Sr2spWTjsCRBEK2lQaqGJtqVo2Rbe_3mHf7sCuh-h3Oh7W_6_ZD2fcW8U
CitedBy_id crossref_primary_10_1007_s13530_025_00249_9
crossref_primary_10_3390_stresses5010012
crossref_primary_10_1016_j_envint_2022_107200
crossref_primary_10_1038_s41612_025_00914_3
crossref_primary_10_1016_j_xcrm_2024_101581
crossref_primary_10_1016_j_ecoenv_2024_116876
crossref_primary_10_1007_s11356_023_30902_0
crossref_primary_10_1016_j_eti_2021_101790
crossref_primary_10_1016_j_dibe_2023_100188
crossref_primary_10_1016_j_chemosphere_2025_144256
crossref_primary_10_1002_anie_202205713
crossref_primary_10_1016_j_scitotenv_2025_179051
crossref_primary_10_1016_j_scitotenv_2022_159041
crossref_primary_10_1016_j_jhazmat_2024_136726
crossref_primary_10_1007_s44274_024_00054_0
crossref_primary_10_3390_toxics12050320
crossref_primary_10_3390_su142114338
crossref_primary_10_1016_j_atmosenv_2021_118512
crossref_primary_10_1016_j_scitotenv_2022_157702
crossref_primary_10_1016_j_cofs_2021_01_004
crossref_primary_10_1016_j_envpol_2024_125074
crossref_primary_10_3390_microplastics3010006
crossref_primary_10_1016_j_envres_2021_112142
crossref_primary_10_1016_j_emcon_2024_100372
crossref_primary_10_1016_j_scitotenv_2023_168705
crossref_primary_10_1016_j_teac_2020_e00107
crossref_primary_10_1016_j_jhazmat_2024_134017
crossref_primary_10_1016_j_scitotenv_2023_166649
crossref_primary_10_1016_j_envadv_2024_100579
crossref_primary_10_1016_j_scitotenv_2023_166766
crossref_primary_10_3390_su132212840
crossref_primary_10_1016_j_ecoenv_2022_114105
crossref_primary_10_1061_JOEEDU_EEENG_7929
crossref_primary_10_1016_j_scitotenv_2021_150984
crossref_primary_10_1007_s41207_025_00743_z
crossref_primary_10_1016_j_scitotenv_2021_150745
crossref_primary_10_1016_j_chemosphere_2023_138270
crossref_primary_10_3390_atmos15070863
crossref_primary_10_1016_j_scitotenv_2021_146020
crossref_primary_10_1016_j_scitotenv_2022_154487
crossref_primary_10_1016_j_scitotenv_2021_147358
crossref_primary_10_1007_s11869_022_01272_2
crossref_primary_10_1016_j_jhazmat_2024_136069
crossref_primary_10_1016_j_spc_2022_06_020
crossref_primary_10_3390_polym14153122
crossref_primary_10_1039_D1EM00301A
crossref_primary_10_1039_D3AY00514C
crossref_primary_10_1016_j_emcon_2023_100233
crossref_primary_10_1021_acs_est_3c01771
crossref_primary_10_1186_s43591_023_00071_5
crossref_primary_10_1016_j_psep_2023_10_002
crossref_primary_10_1016_j_scitotenv_2022_157601
crossref_primary_10_1021_acs_est_1c03859
crossref_primary_10_1038_s42004_025_01483_5
crossref_primary_10_1016_j_chemosphere_2023_138032
crossref_primary_10_1021_acs_est_2c05885
crossref_primary_10_1016_j_scitotenv_2023_164292
crossref_primary_10_1016_j_envpol_2025_125950
crossref_primary_10_1016_j_sciaf_2023_e01881
crossref_primary_10_1007_s11869_024_01593_4
crossref_primary_10_1016_j_aeaoa_2023_100225
crossref_primary_10_1007_s10661_024_12493_6
crossref_primary_10_1021_acs_analchem_4c05335
crossref_primary_10_1038_s41467_021_27454_7
crossref_primary_10_1007_s11869_024_01559_6
crossref_primary_10_1016_j_scitotenv_2023_163508
crossref_primary_10_3390_microplastics3040040
crossref_primary_10_1002_ange_202205713
crossref_primary_10_1016_j_envint_2023_108129
crossref_primary_10_1371_journal_pone_0309377
crossref_primary_10_1016_j_envpol_2024_123354
crossref_primary_10_1021_acs_est_4c01252
crossref_primary_10_3389_fenvs_2024_1437866
crossref_primary_10_1016_j_jece_2022_107359
crossref_primary_10_1186_s43591_021_00006_y
crossref_primary_10_1016_j_envadv_2021_100134
crossref_primary_10_1016_j_jhazmat_2024_133981
crossref_primary_10_1177_00037028231199772
crossref_primary_10_3390_atmos14010028
crossref_primary_10_1021_acs_est_2c07016
crossref_primary_10_1016_j_scitotenv_2022_154907
crossref_primary_10_3390_su152014970
crossref_primary_10_4103_1673_5374_379016
crossref_primary_10_1016_j_cofs_2021_04_010
crossref_primary_10_1088_1748_9326_ac68f7
crossref_primary_10_3390_environments11110256
crossref_primary_10_1016_j_trac_2020_115981
crossref_primary_10_1016_j_ecoenv_2024_116022
crossref_primary_10_1016_j_scitotenv_2024_173966
crossref_primary_10_1039_D4RA04544K
crossref_primary_10_1016_j_scitotenv_2021_150767
crossref_primary_10_1017_plc_2023_19
crossref_primary_10_1016_j_scitotenv_2021_149555
crossref_primary_10_1016_j_chemosphere_2024_143886
crossref_primary_10_1016_j_heliyon_2023_e20119
crossref_primary_10_1016_j_scitotenv_2021_151472
crossref_primary_10_15250_joie_2024_23_4_410
crossref_primary_10_1002_ieam_4742
crossref_primary_10_3389_ftox_2023_1193386
crossref_primary_10_1016_j_jhazmat_2024_135156
crossref_primary_10_1016_j_jhazmat_2024_135310
crossref_primary_10_1016_j_scitotenv_2021_147656
crossref_primary_10_1017_plc_2023_11
crossref_primary_10_1016_j_aquatox_2023_106690
crossref_primary_10_1016_j_scitotenv_2023_165923
crossref_primary_10_1088_2515_7620_ad75eb
crossref_primary_10_1007_s11869_024_01548_9
crossref_primary_10_1007_s11356_023_29897_5
crossref_primary_10_1016_j_etap_2023_104248
crossref_primary_10_1164_rccm_202211_2099OC
crossref_primary_10_1016_j_trac_2024_117859
crossref_primary_10_3390_w16141988
crossref_primary_10_1177_00037028221075065
crossref_primary_10_1021_acs_est_4c03182
crossref_primary_10_1016_j_jenvman_2024_121064
crossref_primary_10_3389_fpubh_2024_1458727
crossref_primary_10_1007_s10661_024_12345_3
crossref_primary_10_1007_s11356_020_11700_4
crossref_primary_10_1016_j_emcon_2024_100459
crossref_primary_10_1016_j_rsma_2024_103731
crossref_primary_10_3390_su142315817
crossref_primary_10_1016_j_envpol_2022_119707
crossref_primary_10_1016_j_scitotenv_2021_152051
crossref_primary_10_1016_j_scitotenv_2023_169678
crossref_primary_10_1016_j_scitotenv_2024_178049
crossref_primary_10_1016_j_heliyon_2023_e23232
crossref_primary_10_1039_D2EA00041E
crossref_primary_10_1016_j_mtsust_2024_100833
crossref_primary_10_1016_j_pce_2024_103604
crossref_primary_10_1016_j_ecoenv_2023_115858
crossref_primary_10_1016_j_jwpe_2024_105696
crossref_primary_10_1038_s41586_021_03864_x
crossref_primary_10_1186_s43591_022_00029_z
crossref_primary_10_1016_j_envpol_2022_119957
crossref_primary_10_3390_ani12030297
crossref_primary_10_3390_atmos15111380
crossref_primary_10_1177_1420326X241248054
crossref_primary_10_3389_ftox_2021_636640
crossref_primary_10_1007_s11356_021_16665_6
crossref_primary_10_1038_s41370_023_00634_x
crossref_primary_10_1016_j_cotox_2021_08_004
crossref_primary_10_1016_j_jhazmat_2022_128585
crossref_primary_10_1016_j_hazadv_2024_100487
crossref_primary_10_3390_life14020255
crossref_primary_10_5985_jec_34_61
crossref_primary_10_1016_j_hazadv_2023_100346
crossref_primary_10_1021_acs_est_2c05850
crossref_primary_10_1007_s11356_023_28422_y
crossref_primary_10_1016_j_scitotenv_2024_172951
crossref_primary_10_1016_j_scitotenv_2023_168696
crossref_primary_10_1177_0003702820945713
crossref_primary_10_1016_j_scitotenv_2022_155256
crossref_primary_10_1016_j_earscirev_2024_104864
crossref_primary_10_1016_j_scitotenv_2023_169308
crossref_primary_10_1021_acs_est_3c03517
crossref_primary_10_3390_atmos14030470
crossref_primary_10_1016_j_jhazmat_2022_128391
crossref_primary_10_1016_j_envpol_2022_120984
crossref_primary_10_1016_j_emcon_2023_100274
crossref_primary_10_3390_atmos13122017
crossref_primary_10_1007_s11356_022_20653_9
crossref_primary_10_1016_j_envpol_2024_124629
crossref_primary_10_1007_s11869_024_01624_0
crossref_primary_10_1016_j_scitotenv_2022_159943
crossref_primary_10_1007_s40726_023_00273_8
crossref_primary_10_1007_s11783_021_1441_3
crossref_primary_10_1016_j_envres_2024_120250
crossref_primary_10_3390_ani13040661
crossref_primary_10_1016_j_scitotenv_2023_162193
crossref_primary_10_1016_j_scitotenv_2023_165291
crossref_primary_10_1016_j_jhazmat_2021_126245
crossref_primary_10_1016_j_ese_2023_100316
crossref_primary_10_1007_s11356_024_34819_0
crossref_primary_10_1016_j_envpol_2022_119808
crossref_primary_10_1016_j_envpol_2024_123673
crossref_primary_10_1021_acs_est_3c09189
crossref_primary_10_1007_s11356_024_35472_3
crossref_primary_10_1016_j_scitotenv_2023_164400
crossref_primary_10_1016_j_jhazmat_2024_136656
crossref_primary_10_1016_j_joclim_2021_100037
crossref_primary_10_1016_j_jhazmat_2021_127171
crossref_primary_10_1007_s11356_023_31228_7
crossref_primary_10_1016_j_cscee_2024_100682
crossref_primary_10_1016_j_scitotenv_2021_151812
ContentType Journal Article
DBID NPM
DOI 10.1177/0003702820920652
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1943-3530
ExternalDocumentID 32233850
Genre Journal Article
GroupedDBID ---
-~X
0R~
23M
4.4
54M
5GY
6J9
8SL
8WZ
A6W
AAIKC
AAJPV
AAMNW
AANSI
AAPEO
AAQXI
AATAA
AAWJZ
ABAWP
ABCCA
ABCJG
ABJNI
ABLUO
ABPNF
ABQKF
ABQXT
ABUJY
ACBEA
ACDXX
ACGFO
ACGFS
ACJER
ACNCT
ACOXC
ACROE
ACSIQ
ACTQU
ACUAV
ACUIR
ACXKE
ADRRZ
ADVBO
AEDJG
AENEX
AEPTA
AESZF
AEWDL
AEWHI
AFKRG
AFMOU
AFQAA
AGKLV
AGWFA
AHDMH
AIOMO
AJUZI
ALFTD
ALMA_UNASSIGNED_HOLDINGS
ARTOV
ATHME
AUTPY
AYAKG
AYPRP
AZSQR
BBRGL
BDDNI
BPACV
CS3
DSZJF
DV7
EBS
F5P
FHBDP
GQ3
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
H~9
J8X
K.F
L7B
M4V
NPM
O9-
OFLFD
OPJBK
P2P
Q1R
RNS
ROL
ROP
ROS
SAUOL
SCNPE
SFC
SPV
TN5
TR6
UPT
WH7
~02
ID FETCH-LOGICAL-c403t-5431387a8cd4bc2fed09ed587c6d8c1a9f68f6b6d6faf0e0901eac6ae192b49b2
IngestDate Wed Feb 19 02:31:12 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords polymer
waste
Nile red
inhalation
Pollution
ecotoxicology
FT-IR
Fourier transform infrared spectroscopy
Raman
microspectroscopy
air quality
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c403t-5431387a8cd4bc2fed09ed587c6d8c1a9f68f6b6d6faf0e0901eac6ae192b49b2
ORCID 0000-0002-2430-9139
PMID 32233850
ParticipantIDs pubmed_primary_32233850
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Applied spectroscopy
PublicationTitleAlternate Appl Spectrosc
PublicationYear 2020
SSID ssj0005935
Score 2.6519706
Snippet The abundance and distribution of microplastic (<5 mm) has become a growing concern, particularly over the past decade. Research to date has focused on water,...
SourceID pubmed
SourceType Index Database
StartPage 3702820920652
Title Microplastics Differ Between Indoor and Outdoor Air Masses: Insights from Multiple Microscopy Methodologies
URI https://www.ncbi.nlm.nih.gov/pubmed/32233850
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaWIrVcKh4t0ALygdsq1CReb9Ib5SFAChwAiRuyHVsCRHbFZiXor--MH1lYQQVcoshOosjzZTIz_maGkM2KFVXW1zLRTKYJ59okubU6AYFbzTmvKoWOYnkiDi_48WXvstN5eMJaGjdqS_99Ma_kI1KFMZArZsm-Q7LtQ2EAzkG-cAQJw_FNMi6RTTcE-9fVWt5zvU66fwLz6qiuBoEheTpu3PnO9X23lLjNi4GAo3qEnvnIp5iUkVnoHorJKo_d0rWXduoxUA1jvdpgu7o8zXB1y-SRo0DJ38fYSav1B4OQG9QOnTXGeDYzsoRahJ2Nb5H3HSKz4xv5NDIBbmikXsGPxWvTgmdJ1gsbL15DZn308liRgu2TvqzD3S6yq4zzyqWwRsM7J1NQR-Bj-9K1_5-dqqodp2bIDPgX2DAVozyRGlRkvcmW9q_pV5kjn-PtU86IM0rO58nX4E3QHQ-NBdIx9SL5shub-C2R22cQoR4iNECEeohQgAgNEKEAEeoh8ptGgFAECI0AoROA0GcA-UYuDvbPdw-T0F8j0ZxlTYJlELK8L7F_ldKpNfDhmqqX97Wocr0tCytyK5SohJWWGQamI_ymhTTgFSheqPQ7-VQParNCqNi2OgNtoAVTXLBcYdk6Zi14o0aAnbRKlv06XQ19EZWruII_Xp35SeYmqFojsxa-WrMOJmCjNpy8_gG_vl0W
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microplastics+Differ+Between+Indoor+and+Outdoor+Air+Masses%3A+Insights+from+Multiple+Microscopy+Methodologies&rft.jtitle=Applied+spectroscopy&rft.au=Gaston%2C+Emily&rft.au=Woo%2C+Mary&rft.au=Steele%2C+Clare&rft.au=Sukumaran%2C+Suja&rft.date=2020-09-01&rft.eissn=1943-3530&rft.spage=3702820920652&rft_id=info:doi/10.1177%2F0003702820920652&rft_id=info%3Apmid%2F32233850&rft_id=info%3Apmid%2F32233850&rft.externalDocID=32233850