Microplastics Differ Between Indoor and Outdoor Air Masses: Insights from Multiple Microscopy Methodologies
The abundance and distribution of microplastic (<5 mm) has become a growing concern, particularly over the past decade. Research to date has focused on water, soil, and organism matrices but generally disregarded air. We explored airborne microplastic inside and outside of buildings in coastal Ca...
Saved in:
Published in | Applied spectroscopy p. 3702820920652 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.09.2020
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | The abundance and distribution of microplastic (<5 mm) has become a growing concern, particularly over the past decade. Research to date has focused on water, soil, and organism matrices but generally disregarded air. We explored airborne microplastic inside and outside of buildings in coastal California by filtering known volumes of air through glass fiber filters, which were then subsequently characterized with a variety of microscopy techniques: gross traditional microscopy, fluorescent microscopy following staining with Nile red, micro-Raman spectroscopy, and micro-Fourier transform infrared (µFT-IR) spectroscopy. Microplastics permeated the air, with indoor (3.3 ± 2.9 fibers and 12.6 ± 8.0 fragments m
; mean ± 1 SD) harboring twice as much as outdoor air (0.6 ± 0.6 fibers and 5.6 ± 3.2 fragments m
). Microplastic fiber length did not differ significantly between indoor and outdoor air, but indoor microplastic fragments (58.6 ± 55 µm) were half the size of outdoor fragments (104.8 ± 64.9 µm). Micro-Raman and FT-IR painted slightly different pictures of airborne plastic compounds, with micro-Raman suggesting polyvinyl chloride dominates indoor air, followed by polyethylene (PE) and µFT-IR showing polystyrene dominates followed by PE and polyethylene terephthalate. The ubiquity of airborne microplastic points to significant new potential sources of plastic inputs to terrestrial and marine ecosystems and raises significant concerns about inhalation exposure to humans both indoors and outdoors. |
---|---|
AbstractList | The abundance and distribution of microplastic (<5 mm) has become a growing concern, particularly over the past decade. Research to date has focused on water, soil, and organism matrices but generally disregarded air. We explored airborne microplastic inside and outside of buildings in coastal California by filtering known volumes of air through glass fiber filters, which were then subsequently characterized with a variety of microscopy techniques: gross traditional microscopy, fluorescent microscopy following staining with Nile red, micro-Raman spectroscopy, and micro-Fourier transform infrared (µFT-IR) spectroscopy. Microplastics permeated the air, with indoor (3.3 ± 2.9 fibers and 12.6 ± 8.0 fragments m
; mean ± 1 SD) harboring twice as much as outdoor air (0.6 ± 0.6 fibers and 5.6 ± 3.2 fragments m
). Microplastic fiber length did not differ significantly between indoor and outdoor air, but indoor microplastic fragments (58.6 ± 55 µm) were half the size of outdoor fragments (104.8 ± 64.9 µm). Micro-Raman and FT-IR painted slightly different pictures of airborne plastic compounds, with micro-Raman suggesting polyvinyl chloride dominates indoor air, followed by polyethylene (PE) and µFT-IR showing polystyrene dominates followed by PE and polyethylene terephthalate. The ubiquity of airborne microplastic points to significant new potential sources of plastic inputs to terrestrial and marine ecosystems and raises significant concerns about inhalation exposure to humans both indoors and outdoors. |
Author | Woo, Mary Gaston, Emily Anderson, Sean Sukumaran, Suja Steele, Clare |
Author_xml | – sequence: 1 givenname: Emily surname: Gaston fullname: Gaston, Emily organization: Environmental Science and Resource Management Program, California State University Channel Islands, California, USA – sequence: 2 givenname: Mary surname: Woo fullname: Woo, Mary organization: Environmental Science and Resource Management Program, California State University Channel Islands, California, USA – sequence: 3 givenname: Clare orcidid: 0000-0002-2430-9139 surname: Steele fullname: Steele, Clare organization: Environmental Science and Resource Management Program, California State University Channel Islands, California, USA – sequence: 4 givenname: Suja surname: Sukumaran fullname: Sukumaran, Suja organization: Thermo Fisher Scientific, San Jose, USA – sequence: 5 givenname: Sean surname: Anderson fullname: Anderson, Sean organization: Environmental Science and Resource Management Program, California State University Channel Islands, California, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32233850$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j0tLAzEYRYMo9qF7V5I_MJrHZCZxV-ur0KEbXZdM8qWNTidDkiL995aqq3vhHg7cCTrvQw8I3VByR2ld3xNCeE2YZEQxUgl2hsZUlbzggpMRmqT0eSSE4uISjThjnEtBxuir8SaGodMpe5Pwk3cOIn6E_A3Q40VvQ4hY9xav9vnUZz7iRqcE6eE4J7_Z5oRdDDvc7Lvshw7wSZlMGA64gbwNNnRh4yFdoQunuwTXfzlFHy_P7_O3Yrl6Xcxny8KUhOdClJxyWWtpbNka5sASBVbI2lRWGqqVq6Sr2spWTjsCRBEK2lQaqGJtqVo2Rbe_3mHf7sCuh-h3Oh7W_6_ZD2fcW8U |
CitedBy_id | crossref_primary_10_1007_s13530_025_00249_9 crossref_primary_10_3390_stresses5010012 crossref_primary_10_1016_j_envint_2022_107200 crossref_primary_10_1038_s41612_025_00914_3 crossref_primary_10_1016_j_xcrm_2024_101581 crossref_primary_10_1016_j_ecoenv_2024_116876 crossref_primary_10_1007_s11356_023_30902_0 crossref_primary_10_1016_j_eti_2021_101790 crossref_primary_10_1016_j_dibe_2023_100188 crossref_primary_10_1016_j_chemosphere_2025_144256 crossref_primary_10_1002_anie_202205713 crossref_primary_10_1016_j_scitotenv_2025_179051 crossref_primary_10_1016_j_scitotenv_2022_159041 crossref_primary_10_1016_j_jhazmat_2024_136726 crossref_primary_10_1007_s44274_024_00054_0 crossref_primary_10_3390_toxics12050320 crossref_primary_10_3390_su142114338 crossref_primary_10_1016_j_atmosenv_2021_118512 crossref_primary_10_1016_j_scitotenv_2022_157702 crossref_primary_10_1016_j_cofs_2021_01_004 crossref_primary_10_1016_j_envpol_2024_125074 crossref_primary_10_3390_microplastics3010006 crossref_primary_10_1016_j_envres_2021_112142 crossref_primary_10_1016_j_emcon_2024_100372 crossref_primary_10_1016_j_scitotenv_2023_168705 crossref_primary_10_1016_j_teac_2020_e00107 crossref_primary_10_1016_j_jhazmat_2024_134017 crossref_primary_10_1016_j_scitotenv_2023_166649 crossref_primary_10_1016_j_envadv_2024_100579 crossref_primary_10_1016_j_scitotenv_2023_166766 crossref_primary_10_3390_su132212840 crossref_primary_10_1016_j_ecoenv_2022_114105 crossref_primary_10_1061_JOEEDU_EEENG_7929 crossref_primary_10_1016_j_scitotenv_2021_150984 crossref_primary_10_1007_s41207_025_00743_z crossref_primary_10_1016_j_scitotenv_2021_150745 crossref_primary_10_1016_j_chemosphere_2023_138270 crossref_primary_10_3390_atmos15070863 crossref_primary_10_1016_j_scitotenv_2021_146020 crossref_primary_10_1016_j_scitotenv_2022_154487 crossref_primary_10_1016_j_scitotenv_2021_147358 crossref_primary_10_1007_s11869_022_01272_2 crossref_primary_10_1016_j_jhazmat_2024_136069 crossref_primary_10_1016_j_spc_2022_06_020 crossref_primary_10_3390_polym14153122 crossref_primary_10_1039_D1EM00301A crossref_primary_10_1039_D3AY00514C crossref_primary_10_1016_j_emcon_2023_100233 crossref_primary_10_1021_acs_est_3c01771 crossref_primary_10_1186_s43591_023_00071_5 crossref_primary_10_1016_j_psep_2023_10_002 crossref_primary_10_1016_j_scitotenv_2022_157601 crossref_primary_10_1021_acs_est_1c03859 crossref_primary_10_1038_s42004_025_01483_5 crossref_primary_10_1016_j_chemosphere_2023_138032 crossref_primary_10_1021_acs_est_2c05885 crossref_primary_10_1016_j_scitotenv_2023_164292 crossref_primary_10_1016_j_envpol_2025_125950 crossref_primary_10_1016_j_sciaf_2023_e01881 crossref_primary_10_1007_s11869_024_01593_4 crossref_primary_10_1016_j_aeaoa_2023_100225 crossref_primary_10_1007_s10661_024_12493_6 crossref_primary_10_1021_acs_analchem_4c05335 crossref_primary_10_1038_s41467_021_27454_7 crossref_primary_10_1007_s11869_024_01559_6 crossref_primary_10_1016_j_scitotenv_2023_163508 crossref_primary_10_3390_microplastics3040040 crossref_primary_10_1002_ange_202205713 crossref_primary_10_1016_j_envint_2023_108129 crossref_primary_10_1371_journal_pone_0309377 crossref_primary_10_1016_j_envpol_2024_123354 crossref_primary_10_1021_acs_est_4c01252 crossref_primary_10_3389_fenvs_2024_1437866 crossref_primary_10_1016_j_jece_2022_107359 crossref_primary_10_1186_s43591_021_00006_y crossref_primary_10_1016_j_envadv_2021_100134 crossref_primary_10_1016_j_jhazmat_2024_133981 crossref_primary_10_1177_00037028231199772 crossref_primary_10_3390_atmos14010028 crossref_primary_10_1021_acs_est_2c07016 crossref_primary_10_1016_j_scitotenv_2022_154907 crossref_primary_10_3390_su152014970 crossref_primary_10_4103_1673_5374_379016 crossref_primary_10_1016_j_cofs_2021_04_010 crossref_primary_10_1088_1748_9326_ac68f7 crossref_primary_10_3390_environments11110256 crossref_primary_10_1016_j_trac_2020_115981 crossref_primary_10_1016_j_ecoenv_2024_116022 crossref_primary_10_1016_j_scitotenv_2024_173966 crossref_primary_10_1039_D4RA04544K crossref_primary_10_1016_j_scitotenv_2021_150767 crossref_primary_10_1017_plc_2023_19 crossref_primary_10_1016_j_scitotenv_2021_149555 crossref_primary_10_1016_j_chemosphere_2024_143886 crossref_primary_10_1016_j_heliyon_2023_e20119 crossref_primary_10_1016_j_scitotenv_2021_151472 crossref_primary_10_15250_joie_2024_23_4_410 crossref_primary_10_1002_ieam_4742 crossref_primary_10_3389_ftox_2023_1193386 crossref_primary_10_1016_j_jhazmat_2024_135156 crossref_primary_10_1016_j_jhazmat_2024_135310 crossref_primary_10_1016_j_scitotenv_2021_147656 crossref_primary_10_1017_plc_2023_11 crossref_primary_10_1016_j_aquatox_2023_106690 crossref_primary_10_1016_j_scitotenv_2023_165923 crossref_primary_10_1088_2515_7620_ad75eb crossref_primary_10_1007_s11869_024_01548_9 crossref_primary_10_1007_s11356_023_29897_5 crossref_primary_10_1016_j_etap_2023_104248 crossref_primary_10_1164_rccm_202211_2099OC crossref_primary_10_1016_j_trac_2024_117859 crossref_primary_10_3390_w16141988 crossref_primary_10_1177_00037028221075065 crossref_primary_10_1021_acs_est_4c03182 crossref_primary_10_1016_j_jenvman_2024_121064 crossref_primary_10_3389_fpubh_2024_1458727 crossref_primary_10_1007_s10661_024_12345_3 crossref_primary_10_1007_s11356_020_11700_4 crossref_primary_10_1016_j_emcon_2024_100459 crossref_primary_10_1016_j_rsma_2024_103731 crossref_primary_10_3390_su142315817 crossref_primary_10_1016_j_envpol_2022_119707 crossref_primary_10_1016_j_scitotenv_2021_152051 crossref_primary_10_1016_j_scitotenv_2023_169678 crossref_primary_10_1016_j_scitotenv_2024_178049 crossref_primary_10_1016_j_heliyon_2023_e23232 crossref_primary_10_1039_D2EA00041E crossref_primary_10_1016_j_mtsust_2024_100833 crossref_primary_10_1016_j_pce_2024_103604 crossref_primary_10_1016_j_ecoenv_2023_115858 crossref_primary_10_1016_j_jwpe_2024_105696 crossref_primary_10_1038_s41586_021_03864_x crossref_primary_10_1186_s43591_022_00029_z crossref_primary_10_1016_j_envpol_2022_119957 crossref_primary_10_3390_ani12030297 crossref_primary_10_3390_atmos15111380 crossref_primary_10_1177_1420326X241248054 crossref_primary_10_3389_ftox_2021_636640 crossref_primary_10_1007_s11356_021_16665_6 crossref_primary_10_1038_s41370_023_00634_x crossref_primary_10_1016_j_cotox_2021_08_004 crossref_primary_10_1016_j_jhazmat_2022_128585 crossref_primary_10_1016_j_hazadv_2024_100487 crossref_primary_10_3390_life14020255 crossref_primary_10_5985_jec_34_61 crossref_primary_10_1016_j_hazadv_2023_100346 crossref_primary_10_1021_acs_est_2c05850 crossref_primary_10_1007_s11356_023_28422_y crossref_primary_10_1016_j_scitotenv_2024_172951 crossref_primary_10_1016_j_scitotenv_2023_168696 crossref_primary_10_1177_0003702820945713 crossref_primary_10_1016_j_scitotenv_2022_155256 crossref_primary_10_1016_j_earscirev_2024_104864 crossref_primary_10_1016_j_scitotenv_2023_169308 crossref_primary_10_1021_acs_est_3c03517 crossref_primary_10_3390_atmos14030470 crossref_primary_10_1016_j_jhazmat_2022_128391 crossref_primary_10_1016_j_envpol_2022_120984 crossref_primary_10_1016_j_emcon_2023_100274 crossref_primary_10_3390_atmos13122017 crossref_primary_10_1007_s11356_022_20653_9 crossref_primary_10_1016_j_envpol_2024_124629 crossref_primary_10_1007_s11869_024_01624_0 crossref_primary_10_1016_j_scitotenv_2022_159943 crossref_primary_10_1007_s40726_023_00273_8 crossref_primary_10_1007_s11783_021_1441_3 crossref_primary_10_1016_j_envres_2024_120250 crossref_primary_10_3390_ani13040661 crossref_primary_10_1016_j_scitotenv_2023_162193 crossref_primary_10_1016_j_scitotenv_2023_165291 crossref_primary_10_1016_j_jhazmat_2021_126245 crossref_primary_10_1016_j_ese_2023_100316 crossref_primary_10_1007_s11356_024_34819_0 crossref_primary_10_1016_j_envpol_2022_119808 crossref_primary_10_1016_j_envpol_2024_123673 crossref_primary_10_1021_acs_est_3c09189 crossref_primary_10_1007_s11356_024_35472_3 crossref_primary_10_1016_j_scitotenv_2023_164400 crossref_primary_10_1016_j_jhazmat_2024_136656 crossref_primary_10_1016_j_joclim_2021_100037 crossref_primary_10_1016_j_jhazmat_2021_127171 crossref_primary_10_1007_s11356_023_31228_7 crossref_primary_10_1016_j_cscee_2024_100682 crossref_primary_10_1016_j_scitotenv_2021_151812 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1177/0003702820920652 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1943-3530 |
ExternalDocumentID | 32233850 |
Genre | Journal Article |
GroupedDBID | --- -~X 0R~ 23M 4.4 54M 5GY 6J9 8SL 8WZ A6W AAIKC AAJPV AAMNW AANSI AAPEO AAQXI AATAA AAWJZ ABAWP ABCCA ABCJG ABJNI ABLUO ABPNF ABQKF ABQXT ABUJY ACBEA ACDXX ACGFO ACGFS ACJER ACNCT ACOXC ACROE ACSIQ ACTQU ACUAV ACUIR ACXKE ADRRZ ADVBO AEDJG AENEX AEPTA AESZF AEWDL AEWHI AFKRG AFMOU AFQAA AGKLV AGWFA AHDMH AIOMO AJUZI ALFTD ALMA_UNASSIGNED_HOLDINGS ARTOV ATHME AUTPY AYAKG AYPRP AZSQR BBRGL BDDNI BPACV CS3 DSZJF DV7 EBS F5P FHBDP GQ3 GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 H~9 J8X K.F L7B M4V NPM O9- OFLFD OPJBK P2P Q1R RNS ROL ROP ROS SAUOL SCNPE SFC SPV TN5 TR6 UPT WH7 ~02 |
ID | FETCH-LOGICAL-c403t-5431387a8cd4bc2fed09ed587c6d8c1a9f68f6b6d6faf0e0901eac6ae192b49b2 |
IngestDate | Wed Feb 19 02:31:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | polymer waste Nile red inhalation Pollution ecotoxicology FT-IR Fourier transform infrared spectroscopy Raman microspectroscopy air quality |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c403t-5431387a8cd4bc2fed09ed587c6d8c1a9f68f6b6d6faf0e0901eac6ae192b49b2 |
ORCID | 0000-0002-2430-9139 |
PMID | 32233850 |
ParticipantIDs | pubmed_primary_32233850 |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Applied spectroscopy |
PublicationTitleAlternate | Appl Spectrosc |
PublicationYear | 2020 |
SSID | ssj0005935 |
Score | 2.6519706 |
Snippet | The abundance and distribution of microplastic (<5 mm) has become a growing concern, particularly over the past decade. Research to date has focused on water,... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 3702820920652 |
Title | Microplastics Differ Between Indoor and Outdoor Air Masses: Insights from Multiple Microscopy Methodologies |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32233850 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaWIrVcKh4t0ALygdsq1CReb9Ib5SFAChwAiRuyHVsCRHbFZiXor--MH1lYQQVcoshOosjzZTIz_maGkM2KFVXW1zLRTKYJ59okubU6AYFbzTmvKoWOYnkiDi_48WXvstN5eMJaGjdqS_99Ma_kI1KFMZArZsm-Q7LtQ2EAzkG-cAQJw_FNMi6RTTcE-9fVWt5zvU66fwLz6qiuBoEheTpu3PnO9X23lLjNi4GAo3qEnvnIp5iUkVnoHorJKo_d0rWXduoxUA1jvdpgu7o8zXB1y-SRo0DJ38fYSav1B4OQG9QOnTXGeDYzsoRahJ2Nb5H3HSKz4xv5NDIBbmikXsGPxWvTgmdJ1gsbL15DZn308liRgu2TvqzD3S6yq4zzyqWwRsM7J1NQR-Bj-9K1_5-dqqodp2bIDPgX2DAVozyRGlRkvcmW9q_pV5kjn-PtU86IM0rO58nX4E3QHQ-NBdIx9SL5shub-C2R22cQoR4iNECEeohQgAgNEKEAEeoh8ptGgFAECI0AoROA0GcA-UYuDvbPdw-T0F8j0ZxlTYJlELK8L7F_ldKpNfDhmqqX97Wocr0tCytyK5SohJWWGQamI_ymhTTgFSheqPQ7-VQParNCqNi2OgNtoAVTXLBcYdk6Zi14o0aAnbRKlv06XQ19EZWruII_Xp35SeYmqFojsxa-WrMOJmCjNpy8_gG_vl0W |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microplastics+Differ+Between+Indoor+and+Outdoor+Air+Masses%3A+Insights+from+Multiple+Microscopy+Methodologies&rft.jtitle=Applied+spectroscopy&rft.au=Gaston%2C+Emily&rft.au=Woo%2C+Mary&rft.au=Steele%2C+Clare&rft.au=Sukumaran%2C+Suja&rft.date=2020-09-01&rft.eissn=1943-3530&rft.spage=3702820920652&rft_id=info:doi/10.1177%2F0003702820920652&rft_id=info%3Apmid%2F32233850&rft_id=info%3Apmid%2F32233850&rft.externalDocID=32233850 |