Korean flowering cherry (Prunus × yedoensis Matsum.) response to elevated ozone: physiological traits and biogenic volatile organic compounds emission
Ozone (O 3 ) absorption through leaf stomata disrupts plant physiological processes, prompting various defense mechanisms to mitigate O 3 -induced harm. This study measured parameters including cell structure, gas exchange, carbon assimilation, lipid peroxidation, and biogenic volatile organic compo...
Saved in:
Published in | Horticulture, environment and biotechnology Vol. 65; no. 6; pp. 1025 - 1042 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2024
한국원예학회 |
Subjects | |
Online Access | Get full text |
ISSN | 2211-3452 2211-3460 |
DOI | 10.1007/s13580-024-00628-0 |
Cover
Abstract | Ozone (O
3
) absorption through leaf stomata disrupts plant physiological processes, prompting various defense mechanisms to mitigate O
3
-induced harm. This study measured parameters including cell structure, gas exchange, carbon assimilation, lipid peroxidation, and biogenic volatile organic compounds (BVOCs) emissions to evaluate the physiological impact of
Prunus × yedoensis
under elevated ozone (E-O
3
) exposure. The seedlings exhibited a slight stimulatory effect during the early phases of E–O
3
exposure; however, E–O
3
beyond a specific threshold significantly and negatively affected photosynthetic parameters, pigment content, and potential antioxidant capacity, and E–O
3
was significantly correlated with the BVOCs emission rate. After three weeks of E–O
3
exposure, no significant differences were observed in leaf stomatal appearance in the field emission scanning electron microscopy results, but according to the results of leaf mesophyll cell ultrastructure, grana degradation, membrane decomposition, cell wall thickening, wart–like protrusion formation, and increased plastoglobulus density within the chloroplasts were observed. Chlorophyll content significantly decreased by 38.71%, and solute leakage increased by 20.57% in the E–O
3
group. The net photosynthetic rate was almost two times lower with E–O
3
. In contrast, there were no significant differences in stomatal conductance. In conclusion, E–O
3
can induce a hormetic stimulatory effect during the early exposure phase. However, when the critical threshold is exceeded, O
3
adversely affects the physiology of
P. × yedoensis
seedlings. Therefore, E–O
3
is a harmful air pollutant that hinders the growth of woody plants, and urban trees require the continuous management of O
3
phytotoxicity. |
---|---|
AbstractList | Ozone (O
3
) absorption through leaf stomata disrupts plant physiological processes, prompting various defense mechanisms to mitigate O
3
-induced harm. This study measured parameters including cell structure, gas exchange, carbon assimilation, lipid peroxidation, and biogenic volatile organic compounds (BVOCs) emissions to evaluate the physiological impact of
Prunus × yedoensis
under elevated ozone (E-O
3
) exposure. The seedlings exhibited a slight stimulatory effect during the early phases of E–O
3
exposure; however, E–O
3
beyond a specific threshold significantly and negatively affected photosynthetic parameters, pigment content, and potential antioxidant capacity, and E–O
3
was significantly correlated with the BVOCs emission rate. After three weeks of E–O
3
exposure, no significant differences were observed in leaf stomatal appearance in the field emission scanning electron microscopy results, but according to the results of leaf mesophyll cell ultrastructure, grana degradation, membrane decomposition, cell wall thickening, wart–like protrusion formation, and increased plastoglobulus density within the chloroplasts were observed. Chlorophyll content significantly decreased by 38.71%, and solute leakage increased by 20.57% in the E–O
3
group. The net photosynthetic rate was almost two times lower with E–O
3
. In contrast, there were no significant differences in stomatal conductance. In conclusion, E–O
3
can induce a hormetic stimulatory effect during the early exposure phase. However, when the critical threshold is exceeded, O
3
adversely affects the physiology of
P. × yedoensis
seedlings. Therefore, E–O
3
is a harmful air pollutant that hinders the growth of woody plants, and urban trees require the continuous management of O
3
phytotoxicity. Ozone (O 3 ) absorption through leaf stomata disrupts plant physiological processes, prompting various defense mechanisms to mitigate O 3 -induced harm. This study measured parameters including cell structure, gas exchange, carbon assimilation, lipid peroxidation, and biogenic volatile organic compounds (BVOCs) emissions to evaluate the physiological impact of Prunus × yedoensis under elevated ozone (E-O ) exposure. The seedlings exhibited a slight stimulatory eff ect during the early phases of E–O exposure; however, E–O beyond a specifi c threshold signifi cantly and negatively aff ected photo- 3 synthetic parameters, pigment content, and potential antioxidant capacity, and E–O 3 was signifi cantly correlated with the BVOCs emission rate. After three weeks of E–O 3 exposure, no signifi cant diff erences were observed in leaf stomatal appearance in the fi eld emission scanning electron microscopy results, but according to the results of leaf mesophyll cell ultrastructure, grana degradation, membrane decomposition, cell wall thickening, wart–like protrusion formation, and increased plastoglobulus density within the chloroplasts were observed. Chlorophyll content signifi cantly decreased by 38.71%, and solute leakage increased by 20.57% in the E–O 3 group. The net photosynthetic rate was almost two times lower with E–O . In contrast, there were no signifi cant diff erences in stomatal conductance. In conclusion, E–O can 3 3 3 3 3 induce a hormetic stimulatory eff ect during the early exposure phase. However, when the critical threshold is exceeded, O adversely aff ects the physiology of P. × yedoensis seedlings. Therefore, E–O is a harmful air pollutant that hinders the growth of woody plants, and urban trees require the continuous management of O 3 phytotoxicity. KCI Citation Count: 0 Ozone (O₃) absorption through leaf stomata disrupts plant physiological processes, prompting various defense mechanisms to mitigate O₃-induced harm. This study measured parameters including cell structure, gas exchange, carbon assimilation, lipid peroxidation, and biogenic volatile organic compounds (BVOCs) emissions to evaluate the physiological impact of Prunus × yedoensis under elevated ozone (E-O₃) exposure. The seedlings exhibited a slight stimulatory effect during the early phases of E–O₃ exposure; however, E–O₃ beyond a specific threshold significantly and negatively affected photosynthetic parameters, pigment content, and potential antioxidant capacity, and E–O₃ was significantly correlated with the BVOCs emission rate. After three weeks of E–O₃ exposure, no significant differences were observed in leaf stomatal appearance in the field emission scanning electron microscopy results, but according to the results of leaf mesophyll cell ultrastructure, grana degradation, membrane decomposition, cell wall thickening, wart–like protrusion formation, and increased plastoglobulus density within the chloroplasts were observed. Chlorophyll content significantly decreased by 38.71%, and solute leakage increased by 20.57% in the E–O₃ group. The net photosynthetic rate was almost two times lower with E–O₃. In contrast, there were no significant differences in stomatal conductance. In conclusion, E–O₃ can induce a hormetic stimulatory effect during the early exposure phase. However, when the critical threshold is exceeded, O₃ adversely affects the physiology of P. × yedoensis seedlings. Therefore, E–O₃ is a harmful air pollutant that hinders the growth of woody plants, and urban trees require the continuous management of O₃ phytotoxicity. |
Author | Lim, Yea Ji Kang, Dawon Woo, Su Young Je, Sun Mi Kwak, Myeong Ja Lee, Jongkyu |
Author_xml | – sequence: 1 givenname: Yea Ji surname: Lim fullname: Lim, Yea Ji organization: Department of Environmental Horticulture, University of Seoul – sequence: 2 givenname: Myeong Ja orcidid: 0000-0002-6334-3268 surname: Kwak fullname: Kwak, Myeong Ja organization: Department of Environmental Horticulture, University of Seoul – sequence: 3 givenname: Jongkyu orcidid: 0000-0002-5276-549X surname: Lee fullname: Lee, Jongkyu organization: Department of Environmental Horticulture, University of Seoul – sequence: 4 givenname: Dawon surname: Kang fullname: Kang, Dawon organization: Department of Environmental Horticulture, University of Seoul – sequence: 5 givenname: Sun Mi surname: Je fullname: Je, Sun Mi organization: Urban Forests Research Center, National Institute of Forest Science – sequence: 6 givenname: Su Young orcidid: 0000-0002-5801-948X surname: Woo fullname: Woo, Su Young email: wsy@uos.ac.kr organization: Department of Environmental Horticulture, University of Seoul |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003145597$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kc1u1TAQhSNUJErpC7DysiCl-Cdx7mVXVfxUFIFQWVuOM0nd-nqCJym6vEgfiBfDaRALFvVmrNE5ozPzPS8OIkYoipeCnwrOmzckVL3hJZdVybmWm5I_KQ6lFKJUleYH__61fFYcE93w_CotNlwcFvefMIGNrA_4E5KPA3PXkNKenXxNc5yJ_b5ne-gQInlin-1E8-70FUtAI0YCNiGDAHd2go7hr5zrLRuv9-Qx4OCdDWxK1k_EbOxY63GA6B27w2AnH4BhGuzScLgbcY4dMdh5yu74onja20Bw_LceFd_fv7s6_1hefvlwcX52WbqKq6msVSOqjVaVFbKFtlayc2Lba9n2ciuVrpwE2NpWirxx16imqWXX1Krroe5zUx0Vr9e5MfXm1nmD1j_UAc1tMmffri6M4LpWWsssPlnFY8IfM9BkcloHIdgIOJNRoq5kpZXSWbpZpS4hUYLeOD_lpTEuBwl5plnYmZWdyezMAzuzRJL_WcfkdzbtHzep1UTjQhGSucE5xXy6x1x_AJxzsC8 |
CitedBy_id | crossref_primary_10_1007_s11676_025_01823_0 crossref_primary_10_1016_j_jes_2024_08_024 |
Cites_doi | 10.1016/j.sjbs.2019.04.018 10.1016/j.envpol.2009.07.034 10.1007/s00468-013-0942-5 10.1016/j.envpol.2008.09.029 10.2478/s11756-006-0012-1 10.1038/nclimate3354 10.1016/j.pbi.2006.03.014 10.1046/j.1365-3040.2001.00778.x 10.1111/j.1469-8137.2005.01385.x 10.1016/j.envpol.2010.04.024 10.1016/j.envpol.2015.12.047 10.1016/S0269-7491(00)00052-X 10.1111/j.1399-3054.2006.00750.x 10.5194/acp-15-10093-2015 10.1016/j.envexpbot.2012.04.014 10.1007/s11270-007-9560-4 10.1002/9780470988565.ch6 10.1016/j.ecoenv.2020.111225 10.1016/j.envexpbot.2018.08.002 10.1016/j.envpol.2011.12.035 10.1006/anbo.1995.1023 10.1371/journal.pone.0208825 10.1093/treephys/24.7.833 10.1080/21580103.2018.1471010 10.1007/s11270-022-05667-w 10.1021/acs.chemrev.7b00439 10.1016/j.envpol.2017.04.068 10.1111/j.1399-3054.2007.00894.x 10.1016/j.scitotenv.2020.144358 10.1016/0003-9861(68)90654-1 10.1111/j.1751-1097.2008.00459.x 10.1016/j.envpol.2020.114909 10.1016/j.scitotenv.2018.11.179 10.1111/j.1365-3040.2007.01710.x 10.1016/j.scitotenv.2018.08.264 10.1016/j.envexpbot.2012.11.003 10.1038/s41612-020-0115-3 10.1093/jxb/46.12.1843 10.1016/j.envpol.2005.01.043 10.1029/2019RG000670 10.1016/j.envpol.2008.09.042 10.1007/s11356-023-28634-2 10.1016/j.postharvbio.2020.111277 10.1007/s11270-022-05638-1 10.1021/jacs.0c02360 10.1007/s11099-009-0005-8 10.1016/0092-8674(94)90544-4 10.1093/treephys/3.1.63 10.1104/pp.24.1.1 10.1111/pce.12798 10.1042/bj3220681 10.1023/A:1005249231882 10.1016/j.envpol.2020.115679 10.5194/acp-13-2063-2013 10.1007/s11099-017-0747-7 10.1034/j.1399-3054.1998.1040423.x 10.1016/j.tplants.2009.12.006 10.1029/96JD03610 10.1016/j.scitotenv.2008.11.061 10.1016/j.ecolind.2016.03.011 10.1111/gcb.15049 10.1007/s10343-019-00476-4 10.1016/j.envexpbot.2012.07.001 10.1016/S0981-9428(02)01416-X 10.3389/fpls.2019.00785 10.1016/1352-2310(94)90472-3 10.1111/j.1365-2486.2005.00938.x 10.1111/j.1365-2486.2010.02184.x 10.1016/j.envpol.2008.06.028 10.1111/plb.12971 10.1111/pce.13007 10.3389/ffgc.2019.00050 10.1007/s11356-017-0744-1 10.1016/j.scitotenv.2018.11.195 10.1080/00139157.1999.10544295 10.1016/S1352-2310(99)00394-5 10.3390/plants4010112 10.1371/journal.pone.0098572 10.3390/atmos10030154 10.1007/s10661-019-7714-7 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 |
Copyright_xml | – notice: The Author(s) 2024 |
DBID | C6C AAYXX CITATION 7S9 L.6 ACYCR |
DOI | 10.1007/s13580-024-00628-0 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef AGRICOLA AGRICOLA - Academic Korean Citation Index |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2211-3460 |
EndPage | 1042 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10653662 10_1007_s13580_024_00628_0 |
GrantInformation_xml | – fundername: Ministry of Education grantid: No. 2021R1A2C2013068 funderid: http://dx.doi.org/10.13039/501100002701 |
GroupedDBID | 06D 0R~ 0VY 203 29~ 2KG 2KM 2LR 2VQ 30V 4.4 406 408 67N 96X AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABJNI ABJOX ABKCH ABMQK ABPLI ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACPIV ACPRK ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG ATHPR AVWKF AXYYD AYFIA AZFZN BGNMA C6C CSCUP DBRKI DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ7 GW5 H13 HF~ HMJXF HRMNR HZ~ IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O9J PT4 R9I ROL RSV S1Z S27 S3A S3B SBL SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE T13 TDB TSG U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 Y6R ZMTXR ZOVNA ~A9 AAYXX CITATION 7S9 L.6 ACYCR |
ID | FETCH-LOGICAL-c403t-537148634a12beb532dc19f62bf292364c2ee9ab21046d737752d753dfe5f2103 |
IEDL.DBID | U2A |
ISSN | 2211-3452 |
IngestDate | Thu Jun 26 03:50:21 EDT 2025 Fri Jul 11 12:08:25 EDT 2025 Thu Apr 24 22:56:28 EDT 2025 Tue Jul 01 04:29:57 EDT 2025 Mon Jul 21 06:09:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Reactive oxygen species Green infrastructure Antioxidant defense systems Korean flowering cherry Isoprene emissions tolerance O |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-537148634a12beb532dc19f62bf292364c2ee9ab21046d737752d753dfe5f2103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5276-549X 0000-0002-6334-3268 0000-0002-5801-948X |
OpenAccessLink | https://link.springer.com/10.1007/s13580-024-00628-0 |
PQID | 3154246336 |
PQPubID | 24069 |
PageCount | 18 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10653662 proquest_miscellaneous_3154246336 crossref_citationtrail_10_1007_s13580_024_00628_0 crossref_primary_10_1007_s13580_024_00628_0 springer_journals_10_1007_s13580_024_00628_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241200 2024-12-00 20241201 2024-12 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 20241200 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Horticulture, environment and biotechnology |
PublicationTitleAbbrev | Hortic. Environ. Biotechnol |
PublicationYear | 2024 |
Publisher | Springer Nature Singapore 한국원예학회 |
Publisher_xml | – name: Springer Nature Singapore – name: 한국원예학회 |
References | E Oksanen (628_CR56) 2005; 11 G Gerosa (628_CR29) 2009; 157 TG Reichenauer (628_CR62) 1998; 104 A Castagna (628_CR15) 2009; 157 T Sugai (628_CR71) 2018; 56 J Zhang (628_CR82) 2019; 655 628_CR72 C Bréhélin (628_CR11) 2008; 84 M El-Zaidy (628_CR22) 2020; 27 628_CR36 HL Le Gall (628_CR45) 2015; 4 PO Wennberg (628_CR75) 2018; 118 JV Bison (628_CR8) 2018; 25 A Jalal (628_CR41) 2021; 207 WJF Acton (628_CR1) 2018; 13 MS Günthardt-Goerg (628_CR33) 2000; 109 SZ Ryang (628_CR65) 2009; 47 SG Baek (628_CR6) 2018; 14 E Agathokleous (628_CR2) 2019; 649 Y Fu (628_CR28) 2015; 15 SC Grace (628_CR31) 2005 DJ Nowak (628_CR55) 2000; 34 P Wojtaszek (628_CR76) 1997; 322 L Dai (628_CR19) 2017; 227 L Dai (628_CR20) 2020; 26 Y Hoshika (628_CR37) 2013; 90 628_CR61 X Yuan (628_CR79) 2016; 39 AA Singh (628_CR69) 2023; 30 628_CR21 628_CR66 S Tian (628_CR73) 2019; 10 M Hasanuzzaman (628_CR35) 2020; 72 A Cesur (628_CR16) 2022; 233 E Bourtsoukidis (628_CR9) 2014; 28 F Bussotti (628_CR12) 2005; 166 M Vitale (628_CR74) 2008; 189 628_CR7 F Bussotti (628_CR13) 2007; 130 K Hartikainen (628_CR34) 2012; 84 G Carriero (628_CR14) 2016; 213 Z Feng (628_CR24) 2011; 17 DI Arnon (628_CR5) 1949; 24 J Riikonen (628_CR64) 2010; 158 E Bozdogan Sert (628_CR10) 2019; 191 S Fares (628_CR23) 2006; 128 R Hunt (628_CR39) 1982 T Piechowiak (628_CR60) 2020; 168 X Yuan (628_CR80) 2017; 40 F Loreto (628_CR49) 2010; 15 PJ Young (628_CR78) 2013; 13 A Kanagendran (628_CR42) 2018; 155 E Paoletti (628_CR58) 2009; 407 628_CR53 C Langebartels (628_CR44) 2002; 40 T Repo (628_CR63) 2004; 24 M Kumar (628_CR43) 2020; 142 ES Alves (628_CR4) 2016; 67 J Niu (628_CR54) 2014; 9 AC Fitzky (628_CR26) 2019; 2 A Levine (628_CR46) 1994; 79 628_CR59 World Health Organization (628_CR77) 2006 Z Li (628_CR47) 2021; 767 628_CR18 V Alexieva (628_CR3) 2001; 24 W Zhang (628_CR83) 2012; 163 NE Grulke (628_CR32) 2020; 22 Y Hoshika (628_CR38) 2020; 267 Z Feng (628_CR25) 2019; 654 B Maňkovská (628_CR51) 2005; 137 MM Millán (628_CR52) 1997; 102 H Simon (628_CR68) 2019; 10 628_CR40 N Ljubešić (628_CR48) 2006; 61 E Pääkkönen (628_CR57) 1995; 75 M Cetin (628_CR17) 2022; 233 X Yuan (628_CR81) 2020; 265 RA Silva (628_CR67) 2017; 7 D Fowler (628_CR27) 1999; 116 S Lutts (628_CR50) 1995; 46 G Gerosa (628_CR30) 2009; 157 JI Steinfeld (628_CR70) 1998 |
References_xml | – volume: 27 start-page: 60 year: 2020 ident: 628_CR22 publication-title: Saudi J Biol Sci doi: 10.1016/j.sjbs.2019.04.018 – volume: 158 start-page: 1029 year: 2010 ident: 628_CR64 publication-title: Environ Pollut doi: 10.1016/j.envpol.2009.07.034 – volume: 28 start-page: 193 year: 2014 ident: 628_CR9 publication-title: Trees doi: 10.1007/s00468-013-0942-5 – volume: 157 start-page: 1461 year: 2009 ident: 628_CR15 publication-title: Environ Pollut doi: 10.1016/j.envpol.2008.09.029 – volume: 61 start-page: 85 year: 2006 ident: 628_CR48 publication-title: Biol doi: 10.2478/s11756-006-0012-1 – volume: 7 start-page: 647 year: 2017 ident: 628_CR67 publication-title: Nat Clim Change doi: 10.1038/nclimate3354 – ident: 628_CR72 doi: 10.1016/j.pbi.2006.03.014 – volume: 24 start-page: 1337 year: 2001 ident: 628_CR3 publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.2001.00778.x – volume: 166 start-page: 941 year: 2005 ident: 628_CR12 publication-title: New Phytol doi: 10.1111/j.1469-8137.2005.01385.x – ident: 628_CR59 doi: 10.1016/j.envpol.2010.04.024 – volume: 213 start-page: 988 year: 2016 ident: 628_CR14 publication-title: Environ Pollut doi: 10.1016/j.envpol.2015.12.047 – volume: 109 start-page: 489 year: 2000 ident: 628_CR33 publication-title: Environ Pollut doi: 10.1016/S0269-7491(00)00052-X – volume: 128 start-page: 456 year: 2006 ident: 628_CR23 publication-title: Physiol Plant doi: 10.1111/j.1399-3054.2006.00750.x – volume: 15 start-page: 10093 year: 2015 ident: 628_CR28 publication-title: Atmos Chem Phys doi: 10.5194/acp-15-10093-2015 – volume: 84 start-page: 33 year: 2012 ident: 628_CR34 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2012.04.014 – volume: 189 start-page: 113 year: 2008 ident: 628_CR74 publication-title: Water Air Soil Pollut doi: 10.1007/s11270-007-9560-4 – start-page: 141 volume-title: Antioxidants and reactive oxygen species in plants year: 2005 ident: 628_CR31 doi: 10.1002/9780470988565.ch6 – volume: 207 start-page: 111225 year: 2021 ident: 628_CR41 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2020.111225 – volume: 155 start-page: 552 year: 2018 ident: 628_CR42 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2018.08.002 – volume: 163 start-page: 149 year: 2012 ident: 628_CR83 publication-title: Environ Pollut doi: 10.1016/j.envpol.2011.12.035 – volume: 75 start-page: 285 year: 1995 ident: 628_CR57 publication-title: Ann Bot doi: 10.1006/anbo.1995.1023 – volume: 13 start-page: e0208825 year: 2018 ident: 628_CR1 publication-title: PLoS ONE doi: 10.1371/journal.pone.0208825 – volume: 24 start-page: 833 year: 2004 ident: 628_CR63 publication-title: Tree Physiol doi: 10.1093/treephys/24.7.833 – volume-title: Plant growth curves. The functional approach to plant growth analysis year: 1982 ident: 628_CR39 – volume: 14 start-page: 105 year: 2018 ident: 628_CR6 publication-title: Sci Technol doi: 10.1080/21580103.2018.1471010 – volume: 233 start-page: 193 issue: 6 year: 2022 ident: 628_CR16 publication-title: Water Air Soil Pollut doi: 10.1007/s11270-022-05667-w – volume: 118 start-page: 3337 year: 2018 ident: 628_CR75 publication-title: Chem Rev doi: 10.1021/acs.chemrev.7b00439 – volume: 227 start-page: 380 year: 2017 ident: 628_CR19 publication-title: Environ Pollut doi: 10.1016/j.envpol.2017.04.068 – volume: 130 start-page: 122 year: 2007 ident: 628_CR13 publication-title: Physiol Plant doi: 10.1111/j.1399-3054.2007.00894.x – volume: 767 start-page: 144358 year: 2021 ident: 628_CR47 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.144358 – ident: 628_CR36 doi: 10.1016/0003-9861(68)90654-1 – volume: 84 start-page: 1388 year: 2008 ident: 628_CR11 publication-title: Photochem Photobiol doi: 10.1111/j.1751-1097.2008.00459.x – volume: 265 start-page: 114909 year: 2020 ident: 628_CR81 publication-title: Environ Pollut doi: 10.1016/j.envpol.2020.114909 – volume: 654 start-page: 832 year: 2019 ident: 628_CR25 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.11.179 – ident: 628_CR66 doi: 10.1111/j.1365-3040.2007.01710.x – volume-title: WHO Air Quality guidelines for Particulate Matter, ozone, Nitrogen Dioxide and Sulfur Dioxide: global update 2005, Summary of Risk Assessment year: 2006 ident: 628_CR77 – volume: 649 start-page: 61 year: 2019 ident: 628_CR2 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.08.264 – volume: 90 start-page: 12 year: 2013 ident: 628_CR37 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2012.11.003 – ident: 628_CR7 doi: 10.1038/s41612-020-0115-3 – volume: 46 start-page: 1843 year: 1995 ident: 628_CR50 publication-title: J Exp Bot doi: 10.1093/jxb/46.12.1843 – volume: 137 start-page: 580 issue: 3 year: 2005 ident: 628_CR51 publication-title: Environ Pollut doi: 10.1016/j.envpol.2005.01.043 – ident: 628_CR18 doi: 10.1029/2019RG000670 – volume: 157 start-page: 1497 year: 2009 ident: 628_CR29 publication-title: Environ Pollut doi: 10.1016/j.envpol.2008.09.042 – volume: 30 start-page: 88281 year: 2023 ident: 628_CR69 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-023-28634-2 – volume: 168 start-page: 111277 year: 2020 ident: 628_CR60 publication-title: Postharvest Biol Technol doi: 10.1016/j.postharvbio.2020.111277 – volume: 233 start-page: 163 issue: 5 year: 2022 ident: 628_CR17 publication-title: Water Air Soil Pollut doi: 10.1007/s11270-022-05638-1 – volume: 142 start-page: 10806 year: 2020 ident: 628_CR43 publication-title: J Am Chem Soc doi: 10.1021/jacs.0c02360 – volume: 47 start-page: 19 year: 2009 ident: 628_CR65 publication-title: Photosynthetica doi: 10.1007/s11099-009-0005-8 – volume: 79 start-page: 583 year: 1994 ident: 628_CR46 publication-title: Cell doi: 10.1016/0092-8674(94)90544-4 – ident: 628_CR61 doi: 10.1093/treephys/3.1.63 – volume: 24 start-page: 1 year: 1949 ident: 628_CR5 publication-title: Plant Physiol doi: 10.1104/pp.24.1.1 – volume: 39 start-page: 2276 year: 2016 ident: 628_CR79 publication-title: Plant Cell Environ doi: 10.1111/pce.12798 – volume: 322 start-page: 681 year: 1997 ident: 628_CR76 publication-title: Biochem J doi: 10.1042/bj3220681 – volume: 116 start-page: 5 year: 1999 ident: 628_CR27 publication-title: Water Air Soil Pollut doi: 10.1023/A:1005249231882 – volume: 267 start-page: 115679 year: 2020 ident: 628_CR38 publication-title: Environ Pollut doi: 10.1016/j.envpol.2020.115679 – volume: 13 start-page: 2063 year: 2013 ident: 628_CR78 publication-title: Atmospheric Chem Phys doi: 10.5194/acp-13-2063-2013 – volume: 56 start-page: 901 year: 2018 ident: 628_CR71 publication-title: Photosynthetica doi: 10.1007/s11099-017-0747-7 – volume: 104 start-page: 681 year: 1998 ident: 628_CR62 publication-title: Physiol Plant doi: 10.1034/j.1399-3054.1998.1040423.x – volume: 15 start-page: 154 year: 2010 ident: 628_CR49 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2009.12.006 – volume: 102 start-page: 8811 year: 1997 ident: 628_CR52 publication-title: J Geophys Res Atmos doi: 10.1029/96JD03610 – volume: 407 start-page: 1631 year: 2009 ident: 628_CR58 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2008.11.061 – volume: 67 start-page: 417 year: 2016 ident: 628_CR4 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2016.03.011 – ident: 628_CR53 – volume: 26 start-page: 3147 year: 2020 ident: 628_CR20 publication-title: Glob Chang Biol doi: 10.1111/gcb.15049 – volume: 72 start-page: 3 year: 2020 ident: 628_CR35 publication-title: Gesunde Pflanz doi: 10.1007/s10343-019-00476-4 – ident: 628_CR40 doi: 10.1016/j.envexpbot.2012.07.001 – volume: 40 start-page: 567 year: 2002 ident: 628_CR44 publication-title: Plant Physiol Biochem doi: 10.1016/S0981-9428(02)01416-X – volume: 10 start-page: 785 year: 2019 ident: 628_CR73 publication-title: Front Plant Sci doi: 10.3389/fpls.2019.00785 – ident: 628_CR21 doi: 10.1016/1352-2310(94)90472-3 – volume: 11 start-page: 732 year: 2005 ident: 628_CR56 publication-title: Glob Chang Biol doi: 10.1111/j.1365-2486.2005.00938.x – volume: 17 start-page: 580 year: 2011 ident: 628_CR24 publication-title: Glob Chang Biol doi: 10.1111/j.1365-2486.2010.02184.x – volume: 157 start-page: 1727 year: 2009 ident: 628_CR30 publication-title: Environ Pollut doi: 10.1016/j.envpol.2008.06.028 – volume: 22 start-page: 12 year: 2020 ident: 628_CR32 publication-title: Plant Biol doi: 10.1111/plb.12971 – volume: 40 start-page: 1960 year: 2017 ident: 628_CR80 publication-title: Plant Cell Environ doi: 10.1111/pce.13007 – volume: 2 start-page: 50 year: 2019 ident: 628_CR26 publication-title: Front Glob Change doi: 10.3389/ffgc.2019.00050 – volume: 25 start-page: 3840 year: 2018 ident: 628_CR8 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-017-0744-1 – volume: 655 start-page: 1364 year: 2019 ident: 628_CR82 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.11.195 – year: 1998 ident: 628_CR70 publication-title: Environment doi: 10.1080/00139157.1999.10544295 – volume: 34 start-page: 1601 year: 2000 ident: 628_CR55 publication-title: Atmos Environ doi: 10.1016/S1352-2310(99)00394-5 – volume: 4 start-page: 112 year: 2015 ident: 628_CR45 publication-title: Plants doi: 10.3390/plants4010112 – volume: 9 start-page: e98572 year: 2014 ident: 628_CR54 publication-title: PLoS ONE doi: 10.1371/journal.pone.0098572 – volume: 10 start-page: 154 year: 2019 ident: 628_CR68 publication-title: Atmosphere doi: 10.3390/atmos10030154 – volume: 191 start-page: 1 year: 2019 ident: 628_CR10 publication-title: Environ Monit Assess doi: 10.1007/s10661-019-7714-7 |
SSID | ssj0000461801 |
Score | 2.320666 |
Snippet | Ozone (O
3
) absorption through leaf stomata disrupts plant physiological processes, prompting various defense mechanisms to mitigate O
3
-induced harm. This... Ozone (O₃) absorption through leaf stomata disrupts plant physiological processes, prompting various defense mechanisms to mitigate O₃-induced harm. This study... Ozone (O 3 ) absorption through leaf stomata disrupts plant physiological processes, prompting various defense mechanisms to mitigate O 3 -induced harm. This... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1025 |
SubjectTerms | absorption Agriculture air pollutants antioxidant activity Biomedical and Life Sciences carbon dioxide fixation cell walls cherries chlorophyll electron microscopy gas exchange grana leaves Life Sciences lipid peroxidation mesophyll ozone photosynthesis phytotoxicity Plant Breeding/Biotechnology Plant Ecology Plant Physiology Prunus Research Report solutes stomatal conductance ultrastructure volatile organic compounds 농학 |
Title | Korean flowering cherry (Prunus × yedoensis Matsum.) response to elevated ozone: physiological traits and biogenic volatile organic compounds emission |
URI | https://link.springer.com/article/10.1007/s13580-024-00628-0 https://www.proquest.com/docview/3154246336 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003145597 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Horticulture, 2024, Environment, and Biotechnology, 65(6), , pp.1025-1042 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZoe4ED4ldsgdUgOIAgaGPHTsJttWopVCAOrFROlu3Y1aqrBCXZQ3mRPhAvxow3aVWEKnGKFMVO4m9sz3hmvmHsleGeuzwtE595lWQul0lRUJhYZW1ReeuKEKN8v6qjZfb5RJ4MSWHdGO0-uiTjSn2V7EYeuwT3lCQm_iVoqO9JtN1pOi75_PJkhSjEi1j3mHPi6MskH7Jl_t3NtR1pp27DNWXzL_9o3HYO77G7g74I8y3A99ktXz9gd-an7cCZ4R-yi-MGNb8awpoqnmEvQEC05_D6W7upNx38voBzXzUUqt7BF9Oj8L1_A-02OtZD3wAlmaPSWUHzq6n9B4jnHeOyCFRGou_A1BXYVYMSt3KAqxpiuvawLQvlgGLTqURTB1RBjs7gHrHl4cH3xVEy1FtIXDYTfSKJva9QIjMpt95KwSuXlkFxG3hJRPOOe18ay8kvXOUizyWv0NypgpcBb4rHbLfGr3zCAM1OxLrA9UT6zIRQ5jZP3czk3oTUFbMJS8cx124gI6efWesrGmXCSSNOOuKksc3byzY_t1QcNz79EqHUZ26liUGbrqeNPms12gmfsJGSQik-YS9GqDUODjlLTO2bTacF6pY8U0KoCXs3yoAeJnh3w4v3_-_xp-w2J2GMETLP2G7fbvxz1HN6O2V7848_jg-mbGehFtMo5H8Aa473dA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagHIAD4im2vAbBAQRGG-fNbYWotvQhDl2pN8uPcbXqKkFJ9tD-kf4g_hgz2aRVEarEKVJkO4m_iT3jmflGiPdGoXJ5VEpMMJOJy1NZFBwm5q0tPFpXhD7K9zCbL5Ifx-nxkBTWjtHuo0uyX6mvkt3YYydpT5F94p8kQ_0OKQMF1y1YqNnlyQpTiBd93WOlmKMvSdWQLfPvYa7tSLerJlxTNv_yj_bbzs5D8WDQF2G2AfiRuIXVY3F_dtIMnBn4RFzs1aT5VRBWXPGMRgEGojmDDz-bdbVu4fcFnKGvOVS9hQPTkfB9-QjNJjoWoauBk8xJ6fRQn9cVfoX-vGNcFoHLSHQtmMqDXdYkcUsHtKoRpiuETVkoBxybziWaWuAKcnwG91Qsdr4ffZvLod6CdMk07mTK7H1FFicmUhZtGivvojJkygZVMtG8U4ilsYr9wj6P8zxVnswdHzANdDN-JrYqesvnAsjsJKwLWk9STEwIZW7zyE1NjiZErphORDTOuXYDGTl_zEpf0SgzTppw0j1Omvp8uuzza0PFcWPrdwSlPnVLzQzafD2p9WmjyU7YpU5ZGmeZmoi3I9SaJoedJabCet3qmHRLlWRxnE3E51EG9PCDtzc8ePv_mr8Rd-dHB_t6f_dw74W4p1gw-2iZl2Kra9b4inSezr7uRfwPqrH39g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagSAgOVfkTS2kZBAcQhG6cxEl6qwqrlkLVA5V6s_xbrbpKqiR7KC_SB-LFmHGSliJUiVOkyHYSfxN7xjPzDWNvFXfc5HEZudSJKDV5FhUFhYlZrQvrtCl8iPI9FHvH6deT7OSPLP4Q7T66JPucBmJpqrqtc-u3rhPfyHsX4f4ShSTACI32eyltfeSuFbtXpyxEJ16EGsicE19fmvEhc-bfw9zYne5Wjb-heP7lKw1b0GyNrQ66I-z0YD9id1z1mD3cOW0G_gz3hF0e1KgFVuAXVP0MRwECpbmAd0fNslq28OsSLpytKWy9he-qQ0H89B6aPlLWQVcDJZyjAmqh_llXbhvC2ce4RAKVlOhaUJUFPa9R-uYGcIVDfBcO-hJRBihOnco1tUDV5Og87ik7nn35sbsXDbUXIpNOky7KiMmvEEmqYq6dzhJuTVx6wbXnJZHOG-5cqTQnH7HNkzzPuEXTx3qXebyZPGMrFb7lcwZogiLuBa4tmUuV92Wu89hMVe6Uj00xnbB4nHNpBmJy-piFvKZUJpwk4iQDThL7fLjqc97Tctza-g1CKc_MXBKbNl1Pa3nWSLQZ9rGTyBIh-IS9HqGWODnkOFGVq5etTFDP5KlIEjFhH0cZkMPP3t7y4Bf_1_wVu3_0eSa_7R8erLMHnOQyBM68ZCtds3QbqP50ejNI-G-6e_wc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Korean+flowering+cherry+%28Prunus+%C3%97+yedoensis+Matsum.%29+response+to+elevated+ozone%3A+physiological+traits+and+biogenic+volatile+organic+compounds+emission&rft.jtitle=Horticulture%2C+environment+and+biotechnology&rft.au=Lim%2C+Yea+Ji&rft.au=Kwak%2C+Myeong+Ja&rft.au=Lee%2C+Jongkyu&rft.au=Kang%2C+Dawon&rft.date=2024-12-01&rft.issn=2211-3452&rft.eissn=2211-3460&rft.volume=65&rft.issue=6&rft.spage=1025&rft.epage=1042&rft_id=info:doi/10.1007%2Fs13580-024-00628-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13580_024_00628_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3452&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3452&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3452&client=summon |