Korean flowering cherry (Prunus × yedoensis Matsum.) response to elevated ozone: physiological traits and biogenic volatile organic compounds emission

Ozone (O 3 ) absorption through leaf stomata disrupts plant physiological processes, prompting various defense mechanisms to mitigate O 3 -induced harm. This study measured parameters including cell structure, gas exchange, carbon assimilation, lipid peroxidation, and biogenic volatile organic compo...

Full description

Saved in:
Bibliographic Details
Published inHorticulture, environment and biotechnology Vol. 65; no. 6; pp. 1025 - 1042
Main Authors Lim, Yea Ji, Kwak, Myeong Ja, Lee, Jongkyu, Kang, Dawon, Je, Sun Mi, Woo, Su Young
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2024
한국원예학회
Subjects
Online AccessGet full text
ISSN2211-3452
2211-3460
DOI10.1007/s13580-024-00628-0

Cover

Abstract Ozone (O 3 ) absorption through leaf stomata disrupts plant physiological processes, prompting various defense mechanisms to mitigate O 3 -induced harm. This study measured parameters including cell structure, gas exchange, carbon assimilation, lipid peroxidation, and biogenic volatile organic compounds (BVOCs) emissions to evaluate the physiological impact of Prunus × yedoensis under elevated ozone (E-O 3 ) exposure. The seedlings exhibited a slight stimulatory effect during the early phases of E–O 3 exposure; however, E–O 3 beyond a specific threshold significantly and negatively affected photosynthetic parameters, pigment content, and potential antioxidant capacity, and E–O 3 was significantly correlated with the BVOCs emission rate. After three weeks of E–O 3 exposure, no significant differences were observed in leaf stomatal appearance in the field emission scanning electron microscopy results, but according to the results of leaf mesophyll cell ultrastructure, grana degradation, membrane decomposition, cell wall thickening, wart–like protrusion formation, and increased plastoglobulus density within the chloroplasts were observed. Chlorophyll content significantly decreased by 38.71%, and solute leakage increased by 20.57% in the E–O 3 group. The net photosynthetic rate was almost two times lower with E–O 3 . In contrast, there were no significant differences in stomatal conductance. In conclusion, E–O 3 can induce a hormetic stimulatory effect during the early exposure phase. However, when the critical threshold is exceeded, O 3 adversely affects the physiology of P. × yedoensis seedlings. Therefore, E–O 3 is a harmful air pollutant that hinders the growth of woody plants, and urban trees require the continuous management of O 3 phytotoxicity.
AbstractList Ozone (O 3 ) absorption through leaf stomata disrupts plant physiological processes, prompting various defense mechanisms to mitigate O 3 -induced harm. This study measured parameters including cell structure, gas exchange, carbon assimilation, lipid peroxidation, and biogenic volatile organic compounds (BVOCs) emissions to evaluate the physiological impact of Prunus × yedoensis under elevated ozone (E-O 3 ) exposure. The seedlings exhibited a slight stimulatory effect during the early phases of E–O 3 exposure; however, E–O 3 beyond a specific threshold significantly and negatively affected photosynthetic parameters, pigment content, and potential antioxidant capacity, and E–O 3 was significantly correlated with the BVOCs emission rate. After three weeks of E–O 3 exposure, no significant differences were observed in leaf stomatal appearance in the field emission scanning electron microscopy results, but according to the results of leaf mesophyll cell ultrastructure, grana degradation, membrane decomposition, cell wall thickening, wart–like protrusion formation, and increased plastoglobulus density within the chloroplasts were observed. Chlorophyll content significantly decreased by 38.71%, and solute leakage increased by 20.57% in the E–O 3 group. The net photosynthetic rate was almost two times lower with E–O 3 . In contrast, there were no significant differences in stomatal conductance. In conclusion, E–O 3 can induce a hormetic stimulatory effect during the early exposure phase. However, when the critical threshold is exceeded, O 3 adversely affects the physiology of P. × yedoensis seedlings. Therefore, E–O 3 is a harmful air pollutant that hinders the growth of woody plants, and urban trees require the continuous management of O 3 phytotoxicity.
Ozone (O 3 ) absorption through leaf stomata disrupts plant physiological processes, prompting various defense mechanisms to mitigate O 3 -induced harm. This study measured parameters including cell structure, gas exchange, carbon assimilation, lipid peroxidation, and biogenic volatile organic compounds (BVOCs) emissions to evaluate the physiological impact of Prunus × yedoensis under elevated ozone (E-O ) exposure. The seedlings exhibited a slight stimulatory eff ect during the early phases of E–O exposure; however, E–O beyond a specifi c threshold signifi cantly and negatively aff ected photo- 3 synthetic parameters, pigment content, and potential antioxidant capacity, and E–O 3 was signifi cantly correlated with the BVOCs emission rate. After three weeks of E–O 3 exposure, no signifi cant diff erences were observed in leaf stomatal appearance in the fi eld emission scanning electron microscopy results, but according to the results of leaf mesophyll cell ultrastructure, grana degradation, membrane decomposition, cell wall thickening, wart–like protrusion formation, and increased plastoglobulus density within the chloroplasts were observed. Chlorophyll content signifi cantly decreased by 38.71%, and solute leakage increased by 20.57% in the E–O 3 group. The net photosynthetic rate was almost two times lower with E–O . In contrast, there were no signifi cant diff erences in stomatal conductance. In conclusion, E–O can 3 3 3 3 3 induce a hormetic stimulatory eff ect during the early exposure phase. However, when the critical threshold is exceeded, O adversely aff ects the physiology of P. × yedoensis seedlings. Therefore, E–O is a harmful air pollutant that hinders the growth of woody plants, and urban trees require the continuous management of O 3 phytotoxicity. KCI Citation Count: 0
Ozone (O₃) absorption through leaf stomata disrupts plant physiological processes, prompting various defense mechanisms to mitigate O₃-induced harm. This study measured parameters including cell structure, gas exchange, carbon assimilation, lipid peroxidation, and biogenic volatile organic compounds (BVOCs) emissions to evaluate the physiological impact of Prunus × yedoensis under elevated ozone (E-O₃) exposure. The seedlings exhibited a slight stimulatory effect during the early phases of E–O₃ exposure; however, E–O₃ beyond a specific threshold significantly and negatively affected photosynthetic parameters, pigment content, and potential antioxidant capacity, and E–O₃ was significantly correlated with the BVOCs emission rate. After three weeks of E–O₃ exposure, no significant differences were observed in leaf stomatal appearance in the field emission scanning electron microscopy results, but according to the results of leaf mesophyll cell ultrastructure, grana degradation, membrane decomposition, cell wall thickening, wart–like protrusion formation, and increased plastoglobulus density within the chloroplasts were observed. Chlorophyll content significantly decreased by 38.71%, and solute leakage increased by 20.57% in the E–O₃ group. The net photosynthetic rate was almost two times lower with E–O₃. In contrast, there were no significant differences in stomatal conductance. In conclusion, E–O₃ can induce a hormetic stimulatory effect during the early exposure phase. However, when the critical threshold is exceeded, O₃ adversely affects the physiology of P. × yedoensis seedlings. Therefore, E–O₃ is a harmful air pollutant that hinders the growth of woody plants, and urban trees require the continuous management of O₃ phytotoxicity.
Author Lim, Yea Ji
Kang, Dawon
Woo, Su Young
Je, Sun Mi
Kwak, Myeong Ja
Lee, Jongkyu
Author_xml – sequence: 1
  givenname: Yea Ji
  surname: Lim
  fullname: Lim, Yea Ji
  organization: Department of Environmental Horticulture, University of Seoul
– sequence: 2
  givenname: Myeong Ja
  orcidid: 0000-0002-6334-3268
  surname: Kwak
  fullname: Kwak, Myeong Ja
  organization: Department of Environmental Horticulture, University of Seoul
– sequence: 3
  givenname: Jongkyu
  orcidid: 0000-0002-5276-549X
  surname: Lee
  fullname: Lee, Jongkyu
  organization: Department of Environmental Horticulture, University of Seoul
– sequence: 4
  givenname: Dawon
  surname: Kang
  fullname: Kang, Dawon
  organization: Department of Environmental Horticulture, University of Seoul
– sequence: 5
  givenname: Sun Mi
  surname: Je
  fullname: Je, Sun Mi
  organization: Urban Forests Research Center, National Institute of Forest Science
– sequence: 6
  givenname: Su Young
  orcidid: 0000-0002-5801-948X
  surname: Woo
  fullname: Woo, Su Young
  email: wsy@uos.ac.kr
  organization: Department of Environmental Horticulture, University of Seoul
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003145597$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kc1u1TAQhSNUJErpC7DysiCl-Cdx7mVXVfxUFIFQWVuOM0nd-nqCJym6vEgfiBfDaRALFvVmrNE5ozPzPS8OIkYoipeCnwrOmzckVL3hJZdVybmWm5I_KQ6lFKJUleYH__61fFYcE93w_CotNlwcFvefMIGNrA_4E5KPA3PXkNKenXxNc5yJ_b5ne-gQInlin-1E8-70FUtAI0YCNiGDAHd2go7hr5zrLRuv9-Qx4OCdDWxK1k_EbOxY63GA6B27w2AnH4BhGuzScLgbcY4dMdh5yu74onja20Bw_LceFd_fv7s6_1hefvlwcX52WbqKq6msVSOqjVaVFbKFtlayc2Lba9n2ciuVrpwE2NpWirxx16imqWXX1Krroe5zUx0Vr9e5MfXm1nmD1j_UAc1tMmffri6M4LpWWsssPlnFY8IfM9BkcloHIdgIOJNRoq5kpZXSWbpZpS4hUYLeOD_lpTEuBwl5plnYmZWdyezMAzuzRJL_WcfkdzbtHzep1UTjQhGSucE5xXy6x1x_AJxzsC8
CitedBy_id crossref_primary_10_1007_s11676_025_01823_0
crossref_primary_10_1016_j_jes_2024_08_024
Cites_doi 10.1016/j.sjbs.2019.04.018
10.1016/j.envpol.2009.07.034
10.1007/s00468-013-0942-5
10.1016/j.envpol.2008.09.029
10.2478/s11756-006-0012-1
10.1038/nclimate3354
10.1016/j.pbi.2006.03.014
10.1046/j.1365-3040.2001.00778.x
10.1111/j.1469-8137.2005.01385.x
10.1016/j.envpol.2010.04.024
10.1016/j.envpol.2015.12.047
10.1016/S0269-7491(00)00052-X
10.1111/j.1399-3054.2006.00750.x
10.5194/acp-15-10093-2015
10.1016/j.envexpbot.2012.04.014
10.1007/s11270-007-9560-4
10.1002/9780470988565.ch6
10.1016/j.ecoenv.2020.111225
10.1016/j.envexpbot.2018.08.002
10.1016/j.envpol.2011.12.035
10.1006/anbo.1995.1023
10.1371/journal.pone.0208825
10.1093/treephys/24.7.833
10.1080/21580103.2018.1471010
10.1007/s11270-022-05667-w
10.1021/acs.chemrev.7b00439
10.1016/j.envpol.2017.04.068
10.1111/j.1399-3054.2007.00894.x
10.1016/j.scitotenv.2020.144358
10.1016/0003-9861(68)90654-1
10.1111/j.1751-1097.2008.00459.x
10.1016/j.envpol.2020.114909
10.1016/j.scitotenv.2018.11.179
10.1111/j.1365-3040.2007.01710.x
10.1016/j.scitotenv.2018.08.264
10.1016/j.envexpbot.2012.11.003
10.1038/s41612-020-0115-3
10.1093/jxb/46.12.1843
10.1016/j.envpol.2005.01.043
10.1029/2019RG000670
10.1016/j.envpol.2008.09.042
10.1007/s11356-023-28634-2
10.1016/j.postharvbio.2020.111277
10.1007/s11270-022-05638-1
10.1021/jacs.0c02360
10.1007/s11099-009-0005-8
10.1016/0092-8674(94)90544-4
10.1093/treephys/3.1.63
10.1104/pp.24.1.1
10.1111/pce.12798
10.1042/bj3220681
10.1023/A:1005249231882
10.1016/j.envpol.2020.115679
10.5194/acp-13-2063-2013
10.1007/s11099-017-0747-7
10.1034/j.1399-3054.1998.1040423.x
10.1016/j.tplants.2009.12.006
10.1029/96JD03610
10.1016/j.scitotenv.2008.11.061
10.1016/j.ecolind.2016.03.011
10.1111/gcb.15049
10.1007/s10343-019-00476-4
10.1016/j.envexpbot.2012.07.001
10.1016/S0981-9428(02)01416-X
10.3389/fpls.2019.00785
10.1016/1352-2310(94)90472-3
10.1111/j.1365-2486.2005.00938.x
10.1111/j.1365-2486.2010.02184.x
10.1016/j.envpol.2008.06.028
10.1111/plb.12971
10.1111/pce.13007
10.3389/ffgc.2019.00050
10.1007/s11356-017-0744-1
10.1016/j.scitotenv.2018.11.195
10.1080/00139157.1999.10544295
10.1016/S1352-2310(99)00394-5
10.3390/plants4010112
10.1371/journal.pone.0098572
10.3390/atmos10030154
10.1007/s10661-019-7714-7
ContentType Journal Article
Copyright The Author(s) 2024
Copyright_xml – notice: The Author(s) 2024
DBID C6C
AAYXX
CITATION
7S9
L.6
ACYCR
DOI 10.1007/s13580-024-00628-0
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
AGRICOLA
AGRICOLA - Academic
Korean Citation Index
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef

AGRICOLA
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2211-3460
EndPage 1042
ExternalDocumentID oai_kci_go_kr_ARTI_10653662
10_1007_s13580_024_00628_0
GrantInformation_xml – fundername: Ministry of Education
  grantid: No. 2021R1A2C2013068
  funderid: http://dx.doi.org/10.13039/501100002701
GroupedDBID 06D
0R~
0VY
203
29~
2KG
2KM
2LR
2VQ
30V
4.4
406
408
67N
96X
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABPLI
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACPRK
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
BGNMA
C6C
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
GW5
H13
HF~
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
PT4
R9I
ROL
RSV
S1Z
S27
S3A
S3B
SBL
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
T13
TDB
TSG
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
Y6R
ZMTXR
ZOVNA
~A9
AAYXX
CITATION
7S9
L.6
ACYCR
ID FETCH-LOGICAL-c403t-537148634a12beb532dc19f62bf292364c2ee9ab21046d737752d753dfe5f2103
IEDL.DBID U2A
ISSN 2211-3452
IngestDate Thu Jun 26 03:50:21 EDT 2025
Fri Jul 11 12:08:25 EDT 2025
Thu Apr 24 22:56:28 EDT 2025
Tue Jul 01 04:29:57 EDT 2025
Mon Jul 21 06:09:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Reactive oxygen species
Green infrastructure
Antioxidant defense systems
Korean flowering cherry
Isoprene emissions
tolerance
O
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-537148634a12beb532dc19f62bf292364c2ee9ab21046d737752d753dfe5f2103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5276-549X
0000-0002-6334-3268
0000-0002-5801-948X
OpenAccessLink https://link.springer.com/10.1007/s13580-024-00628-0
PQID 3154246336
PQPubID 24069
PageCount 18
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10653662
proquest_miscellaneous_3154246336
crossref_citationtrail_10_1007_s13580_024_00628_0
crossref_primary_10_1007_s13580_024_00628_0
springer_journals_10_1007_s13580_024_00628_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241200
2024-12-00
20241201
2024-12
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Horticulture, environment and biotechnology
PublicationTitleAbbrev Hortic. Environ. Biotechnol
PublicationYear 2024
Publisher Springer Nature Singapore
한국원예학회
Publisher_xml – name: Springer Nature Singapore
– name: 한국원예학회
References E Oksanen (628_CR56) 2005; 11
G Gerosa (628_CR29) 2009; 157
TG Reichenauer (628_CR62) 1998; 104
A Castagna (628_CR15) 2009; 157
T Sugai (628_CR71) 2018; 56
J Zhang (628_CR82) 2019; 655
628_CR72
C Bréhélin (628_CR11) 2008; 84
M El-Zaidy (628_CR22) 2020; 27
628_CR36
HL Le Gall (628_CR45) 2015; 4
PO Wennberg (628_CR75) 2018; 118
JV Bison (628_CR8) 2018; 25
A Jalal (628_CR41) 2021; 207
WJF Acton (628_CR1) 2018; 13
MS Günthardt-Goerg (628_CR33) 2000; 109
SZ Ryang (628_CR65) 2009; 47
SG Baek (628_CR6) 2018; 14
E Agathokleous (628_CR2) 2019; 649
Y Fu (628_CR28) 2015; 15
SC Grace (628_CR31) 2005
DJ Nowak (628_CR55) 2000; 34
P Wojtaszek (628_CR76) 1997; 322
L Dai (628_CR19) 2017; 227
L Dai (628_CR20) 2020; 26
Y Hoshika (628_CR37) 2013; 90
628_CR61
X Yuan (628_CR79) 2016; 39
AA Singh (628_CR69) 2023; 30
628_CR21
628_CR66
S Tian (628_CR73) 2019; 10
M Hasanuzzaman (628_CR35) 2020; 72
A Cesur (628_CR16) 2022; 233
E Bourtsoukidis (628_CR9) 2014; 28
F Bussotti (628_CR12) 2005; 166
M Vitale (628_CR74) 2008; 189
628_CR7
F Bussotti (628_CR13) 2007; 130
K Hartikainen (628_CR34) 2012; 84
G Carriero (628_CR14) 2016; 213
Z Feng (628_CR24) 2011; 17
DI Arnon (628_CR5) 1949; 24
J Riikonen (628_CR64) 2010; 158
E Bozdogan Sert (628_CR10) 2019; 191
S Fares (628_CR23) 2006; 128
R Hunt (628_CR39) 1982
T Piechowiak (628_CR60) 2020; 168
X Yuan (628_CR80) 2017; 40
F Loreto (628_CR49) 2010; 15
PJ Young (628_CR78) 2013; 13
A Kanagendran (628_CR42) 2018; 155
E Paoletti (628_CR58) 2009; 407
628_CR53
C Langebartels (628_CR44) 2002; 40
T Repo (628_CR63) 2004; 24
M Kumar (628_CR43) 2020; 142
ES Alves (628_CR4) 2016; 67
J Niu (628_CR54) 2014; 9
AC Fitzky (628_CR26) 2019; 2
A Levine (628_CR46) 1994; 79
628_CR59
World Health Organization (628_CR77) 2006
Z Li (628_CR47) 2021; 767
628_CR18
V Alexieva (628_CR3) 2001; 24
W Zhang (628_CR83) 2012; 163
NE Grulke (628_CR32) 2020; 22
Y Hoshika (628_CR38) 2020; 267
Z Feng (628_CR25) 2019; 654
B Maňkovská (628_CR51) 2005; 137
MM Millán (628_CR52) 1997; 102
H Simon (628_CR68) 2019; 10
628_CR40
N Ljubešić (628_CR48) 2006; 61
E Pääkkönen (628_CR57) 1995; 75
M Cetin (628_CR17) 2022; 233
X Yuan (628_CR81) 2020; 265
RA Silva (628_CR67) 2017; 7
D Fowler (628_CR27) 1999; 116
S Lutts (628_CR50) 1995; 46
G Gerosa (628_CR30) 2009; 157
JI Steinfeld (628_CR70) 1998
References_xml – volume: 27
  start-page: 60
  year: 2020
  ident: 628_CR22
  publication-title: Saudi J Biol Sci
  doi: 10.1016/j.sjbs.2019.04.018
– volume: 158
  start-page: 1029
  year: 2010
  ident: 628_CR64
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2009.07.034
– volume: 28
  start-page: 193
  year: 2014
  ident: 628_CR9
  publication-title: Trees
  doi: 10.1007/s00468-013-0942-5
– volume: 157
  start-page: 1461
  year: 2009
  ident: 628_CR15
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2008.09.029
– volume: 61
  start-page: 85
  year: 2006
  ident: 628_CR48
  publication-title: Biol
  doi: 10.2478/s11756-006-0012-1
– volume: 7
  start-page: 647
  year: 2017
  ident: 628_CR67
  publication-title: Nat Clim Change
  doi: 10.1038/nclimate3354
– ident: 628_CR72
  doi: 10.1016/j.pbi.2006.03.014
– volume: 24
  start-page: 1337
  year: 2001
  ident: 628_CR3
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.2001.00778.x
– volume: 166
  start-page: 941
  year: 2005
  ident: 628_CR12
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2005.01385.x
– ident: 628_CR59
  doi: 10.1016/j.envpol.2010.04.024
– volume: 213
  start-page: 988
  year: 2016
  ident: 628_CR14
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2015.12.047
– volume: 109
  start-page: 489
  year: 2000
  ident: 628_CR33
  publication-title: Environ Pollut
  doi: 10.1016/S0269-7491(00)00052-X
– volume: 128
  start-page: 456
  year: 2006
  ident: 628_CR23
  publication-title: Physiol Plant
  doi: 10.1111/j.1399-3054.2006.00750.x
– volume: 15
  start-page: 10093
  year: 2015
  ident: 628_CR28
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-15-10093-2015
– volume: 84
  start-page: 33
  year: 2012
  ident: 628_CR34
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2012.04.014
– volume: 189
  start-page: 113
  year: 2008
  ident: 628_CR74
  publication-title: Water Air Soil Pollut
  doi: 10.1007/s11270-007-9560-4
– start-page: 141
  volume-title: Antioxidants and reactive oxygen species in plants
  year: 2005
  ident: 628_CR31
  doi: 10.1002/9780470988565.ch6
– volume: 207
  start-page: 111225
  year: 2021
  ident: 628_CR41
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2020.111225
– volume: 155
  start-page: 552
  year: 2018
  ident: 628_CR42
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2018.08.002
– volume: 163
  start-page: 149
  year: 2012
  ident: 628_CR83
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2011.12.035
– volume: 75
  start-page: 285
  year: 1995
  ident: 628_CR57
  publication-title: Ann Bot
  doi: 10.1006/anbo.1995.1023
– volume: 13
  start-page: e0208825
  year: 2018
  ident: 628_CR1
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0208825
– volume: 24
  start-page: 833
  year: 2004
  ident: 628_CR63
  publication-title: Tree Physiol
  doi: 10.1093/treephys/24.7.833
– volume-title: Plant growth curves. The functional approach to plant growth analysis
  year: 1982
  ident: 628_CR39
– volume: 14
  start-page: 105
  year: 2018
  ident: 628_CR6
  publication-title: Sci Technol
  doi: 10.1080/21580103.2018.1471010
– volume: 233
  start-page: 193
  issue: 6
  year: 2022
  ident: 628_CR16
  publication-title: Water Air Soil Pollut
  doi: 10.1007/s11270-022-05667-w
– volume: 118
  start-page: 3337
  year: 2018
  ident: 628_CR75
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.7b00439
– volume: 227
  start-page: 380
  year: 2017
  ident: 628_CR19
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2017.04.068
– volume: 130
  start-page: 122
  year: 2007
  ident: 628_CR13
  publication-title: Physiol Plant
  doi: 10.1111/j.1399-3054.2007.00894.x
– volume: 767
  start-page: 144358
  year: 2021
  ident: 628_CR47
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.144358
– ident: 628_CR36
  doi: 10.1016/0003-9861(68)90654-1
– volume: 84
  start-page: 1388
  year: 2008
  ident: 628_CR11
  publication-title: Photochem Photobiol
  doi: 10.1111/j.1751-1097.2008.00459.x
– volume: 265
  start-page: 114909
  year: 2020
  ident: 628_CR81
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2020.114909
– volume: 654
  start-page: 832
  year: 2019
  ident: 628_CR25
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.11.179
– ident: 628_CR66
  doi: 10.1111/j.1365-3040.2007.01710.x
– volume-title: WHO Air Quality guidelines for Particulate Matter, ozone, Nitrogen Dioxide and Sulfur Dioxide: global update 2005, Summary of Risk Assessment
  year: 2006
  ident: 628_CR77
– volume: 649
  start-page: 61
  year: 2019
  ident: 628_CR2
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.08.264
– volume: 90
  start-page: 12
  year: 2013
  ident: 628_CR37
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2012.11.003
– ident: 628_CR7
  doi: 10.1038/s41612-020-0115-3
– volume: 46
  start-page: 1843
  year: 1995
  ident: 628_CR50
  publication-title: J Exp Bot
  doi: 10.1093/jxb/46.12.1843
– volume: 137
  start-page: 580
  issue: 3
  year: 2005
  ident: 628_CR51
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2005.01.043
– ident: 628_CR18
  doi: 10.1029/2019RG000670
– volume: 157
  start-page: 1497
  year: 2009
  ident: 628_CR29
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2008.09.042
– volume: 30
  start-page: 88281
  year: 2023
  ident: 628_CR69
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-023-28634-2
– volume: 168
  start-page: 111277
  year: 2020
  ident: 628_CR60
  publication-title: Postharvest Biol Technol
  doi: 10.1016/j.postharvbio.2020.111277
– volume: 233
  start-page: 163
  issue: 5
  year: 2022
  ident: 628_CR17
  publication-title: Water Air Soil Pollut
  doi: 10.1007/s11270-022-05638-1
– volume: 142
  start-page: 10806
  year: 2020
  ident: 628_CR43
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.0c02360
– volume: 47
  start-page: 19
  year: 2009
  ident: 628_CR65
  publication-title: Photosynthetica
  doi: 10.1007/s11099-009-0005-8
– volume: 79
  start-page: 583
  year: 1994
  ident: 628_CR46
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90544-4
– ident: 628_CR61
  doi: 10.1093/treephys/3.1.63
– volume: 24
  start-page: 1
  year: 1949
  ident: 628_CR5
  publication-title: Plant Physiol
  doi: 10.1104/pp.24.1.1
– volume: 39
  start-page: 2276
  year: 2016
  ident: 628_CR79
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.12798
– volume: 322
  start-page: 681
  year: 1997
  ident: 628_CR76
  publication-title: Biochem J
  doi: 10.1042/bj3220681
– volume: 116
  start-page: 5
  year: 1999
  ident: 628_CR27
  publication-title: Water Air Soil Pollut
  doi: 10.1023/A:1005249231882
– volume: 267
  start-page: 115679
  year: 2020
  ident: 628_CR38
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2020.115679
– volume: 13
  start-page: 2063
  year: 2013
  ident: 628_CR78
  publication-title: Atmospheric Chem Phys
  doi: 10.5194/acp-13-2063-2013
– volume: 56
  start-page: 901
  year: 2018
  ident: 628_CR71
  publication-title: Photosynthetica
  doi: 10.1007/s11099-017-0747-7
– volume: 104
  start-page: 681
  year: 1998
  ident: 628_CR62
  publication-title: Physiol Plant
  doi: 10.1034/j.1399-3054.1998.1040423.x
– volume: 15
  start-page: 154
  year: 2010
  ident: 628_CR49
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2009.12.006
– volume: 102
  start-page: 8811
  year: 1997
  ident: 628_CR52
  publication-title: J Geophys Res Atmos
  doi: 10.1029/96JD03610
– volume: 407
  start-page: 1631
  year: 2009
  ident: 628_CR58
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2008.11.061
– volume: 67
  start-page: 417
  year: 2016
  ident: 628_CR4
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2016.03.011
– ident: 628_CR53
– volume: 26
  start-page: 3147
  year: 2020
  ident: 628_CR20
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.15049
– volume: 72
  start-page: 3
  year: 2020
  ident: 628_CR35
  publication-title: Gesunde Pflanz
  doi: 10.1007/s10343-019-00476-4
– ident: 628_CR40
  doi: 10.1016/j.envexpbot.2012.07.001
– volume: 40
  start-page: 567
  year: 2002
  ident: 628_CR44
  publication-title: Plant Physiol Biochem
  doi: 10.1016/S0981-9428(02)01416-X
– volume: 10
  start-page: 785
  year: 2019
  ident: 628_CR73
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2019.00785
– ident: 628_CR21
  doi: 10.1016/1352-2310(94)90472-3
– volume: 11
  start-page: 732
  year: 2005
  ident: 628_CR56
  publication-title: Glob Chang Biol
  doi: 10.1111/j.1365-2486.2005.00938.x
– volume: 17
  start-page: 580
  year: 2011
  ident: 628_CR24
  publication-title: Glob Chang Biol
  doi: 10.1111/j.1365-2486.2010.02184.x
– volume: 157
  start-page: 1727
  year: 2009
  ident: 628_CR30
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2008.06.028
– volume: 22
  start-page: 12
  year: 2020
  ident: 628_CR32
  publication-title: Plant Biol
  doi: 10.1111/plb.12971
– volume: 40
  start-page: 1960
  year: 2017
  ident: 628_CR80
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.13007
– volume: 2
  start-page: 50
  year: 2019
  ident: 628_CR26
  publication-title: Front Glob Change
  doi: 10.3389/ffgc.2019.00050
– volume: 25
  start-page: 3840
  year: 2018
  ident: 628_CR8
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-017-0744-1
– volume: 655
  start-page: 1364
  year: 2019
  ident: 628_CR82
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.11.195
– year: 1998
  ident: 628_CR70
  publication-title: Environment
  doi: 10.1080/00139157.1999.10544295
– volume: 34
  start-page: 1601
  year: 2000
  ident: 628_CR55
  publication-title: Atmos Environ
  doi: 10.1016/S1352-2310(99)00394-5
– volume: 4
  start-page: 112
  year: 2015
  ident: 628_CR45
  publication-title: Plants
  doi: 10.3390/plants4010112
– volume: 9
  start-page: e98572
  year: 2014
  ident: 628_CR54
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0098572
– volume: 10
  start-page: 154
  year: 2019
  ident: 628_CR68
  publication-title: Atmosphere
  doi: 10.3390/atmos10030154
– volume: 191
  start-page: 1
  year: 2019
  ident: 628_CR10
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-019-7714-7
SSID ssj0000461801
Score 2.320666
Snippet Ozone (O 3 ) absorption through leaf stomata disrupts plant physiological processes, prompting various defense mechanisms to mitigate O 3 -induced harm. This...
Ozone (O₃) absorption through leaf stomata disrupts plant physiological processes, prompting various defense mechanisms to mitigate O₃-induced harm. This study...
Ozone (O 3 ) absorption through leaf stomata disrupts plant physiological processes, prompting various defense mechanisms to mitigate O 3 -induced harm. This...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1025
SubjectTerms absorption
Agriculture
air pollutants
antioxidant activity
Biomedical and Life Sciences
carbon dioxide fixation
cell walls
cherries
chlorophyll
electron microscopy
gas exchange
grana
leaves
Life Sciences
lipid peroxidation
mesophyll
ozone
photosynthesis
phytotoxicity
Plant Breeding/Biotechnology
Plant Ecology
Plant Physiology
Prunus
Research Report
solutes
stomatal conductance
ultrastructure
volatile organic compounds
농학
Title Korean flowering cherry (Prunus × yedoensis Matsum.) response to elevated ozone: physiological traits and biogenic volatile organic compounds emission
URI https://link.springer.com/article/10.1007/s13580-024-00628-0
https://www.proquest.com/docview/3154246336
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003145597
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Horticulture, 2024, Environment, and Biotechnology, 65(6), , pp.1025-1042
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZoe4ED4ldsgdUgOIAgaGPHTsJttWopVCAOrFROlu3Y1aqrBCXZQ3mRPhAvxow3aVWEKnGKFMVO4m9sz3hmvmHsleGeuzwtE595lWQul0lRUJhYZW1ReeuKEKN8v6qjZfb5RJ4MSWHdGO0-uiTjSn2V7EYeuwT3lCQm_iVoqO9JtN1pOi75_PJkhSjEi1j3mHPi6MskH7Jl_t3NtR1pp27DNWXzL_9o3HYO77G7g74I8y3A99ktXz9gd-an7cCZ4R-yi-MGNb8awpoqnmEvQEC05_D6W7upNx38voBzXzUUqt7BF9Oj8L1_A-02OtZD3wAlmaPSWUHzq6n9B4jnHeOyCFRGou_A1BXYVYMSt3KAqxpiuvawLQvlgGLTqURTB1RBjs7gHrHl4cH3xVEy1FtIXDYTfSKJva9QIjMpt95KwSuXlkFxG3hJRPOOe18ay8kvXOUizyWv0NypgpcBb4rHbLfGr3zCAM1OxLrA9UT6zIRQ5jZP3czk3oTUFbMJS8cx124gI6efWesrGmXCSSNOOuKksc3byzY_t1QcNz79EqHUZ26liUGbrqeNPms12gmfsJGSQik-YS9GqDUODjlLTO2bTacF6pY8U0KoCXs3yoAeJnh3w4v3_-_xp-w2J2GMETLP2G7fbvxz1HN6O2V7848_jg-mbGehFtMo5H8Aa473dA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagHIAD4im2vAbBAQRGG-fNbYWotvQhDl2pN8uPcbXqKkFJ9tD-kf4g_hgz2aRVEarEKVJkO4m_iT3jmflGiPdGoXJ5VEpMMJOJy1NZFBwm5q0tPFpXhD7K9zCbL5Ifx-nxkBTWjtHuo0uyX6mvkt3YYydpT5F94p8kQ_0OKQMF1y1YqNnlyQpTiBd93WOlmKMvSdWQLfPvYa7tSLerJlxTNv_yj_bbzs5D8WDQF2G2AfiRuIXVY3F_dtIMnBn4RFzs1aT5VRBWXPGMRgEGojmDDz-bdbVu4fcFnKGvOVS9hQPTkfB9-QjNJjoWoauBk8xJ6fRQn9cVfoX-vGNcFoHLSHQtmMqDXdYkcUsHtKoRpiuETVkoBxybziWaWuAKcnwG91Qsdr4ffZvLod6CdMk07mTK7H1FFicmUhZtGivvojJkygZVMtG8U4ilsYr9wj6P8zxVnswdHzANdDN-JrYqesvnAsjsJKwLWk9STEwIZW7zyE1NjiZErphORDTOuXYDGTl_zEpf0SgzTppw0j1Omvp8uuzza0PFcWPrdwSlPnVLzQzafD2p9WmjyU7YpU5ZGmeZmoi3I9SaJoedJabCet3qmHRLlWRxnE3E51EG9PCDtzc8ePv_mr8Rd-dHB_t6f_dw74W4p1gw-2iZl2Kra9b4inSezr7uRfwPqrH39g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagSAgOVfkTS2kZBAcQhG6cxEl6qwqrlkLVA5V6s_xbrbpKqiR7KC_SB-LFmHGSliJUiVOkyHYSfxN7xjPzDWNvFXfc5HEZudSJKDV5FhUFhYlZrQvrtCl8iPI9FHvH6deT7OSPLP4Q7T66JPucBmJpqrqtc-u3rhPfyHsX4f4ShSTACI32eyltfeSuFbtXpyxEJ16EGsicE19fmvEhc-bfw9zYne5Wjb-heP7lKw1b0GyNrQ66I-z0YD9id1z1mD3cOW0G_gz3hF0e1KgFVuAXVP0MRwECpbmAd0fNslq28OsSLpytKWy9he-qQ0H89B6aPlLWQVcDJZyjAmqh_llXbhvC2ce4RAKVlOhaUJUFPa9R-uYGcIVDfBcO-hJRBihOnco1tUDV5Og87ik7nn35sbsXDbUXIpNOky7KiMmvEEmqYq6dzhJuTVx6wbXnJZHOG-5cqTQnH7HNkzzPuEXTx3qXebyZPGMrFb7lcwZogiLuBa4tmUuV92Wu89hMVe6Uj00xnbB4nHNpBmJy-piFvKZUJpwk4iQDThL7fLjqc97Tctza-g1CKc_MXBKbNl1Pa3nWSLQZ9rGTyBIh-IS9HqGWODnkOFGVq5etTFDP5KlIEjFhH0cZkMPP3t7y4Bf_1_wVu3_0eSa_7R8erLMHnOQyBM68ZCtds3QbqP50ejNI-G-6e_wc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Korean+flowering+cherry+%28Prunus+%C3%97+yedoensis+Matsum.%29+response+to+elevated+ozone%3A+physiological+traits+and+biogenic+volatile+organic+compounds+emission&rft.jtitle=Horticulture%2C+environment+and+biotechnology&rft.au=Lim%2C+Yea+Ji&rft.au=Kwak%2C+Myeong+Ja&rft.au=Lee%2C+Jongkyu&rft.au=Kang%2C+Dawon&rft.date=2024-12-01&rft.issn=2211-3452&rft.eissn=2211-3460&rft.volume=65&rft.issue=6&rft.spage=1025&rft.epage=1042&rft_id=info:doi/10.1007%2Fs13580-024-00628-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13580_024_00628_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3452&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3452&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3452&client=summon