Less is more: a perspective on thinning lithium metal towards high-energy-density rechargeable lithium batteries

Lithium (Li) metal, owing to its high specific capacity and low redox potential as a Li + ion source in rechargeable lithium batteries, shows impressive prospects for electrochemical energy storage. However, engineering Li metal into thin foils has historically remained difficult, owing to its stick...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 52; no. 8; pp. 2553 - 2572
Main Authors Wu, Wangyan, Luo, Wei, Huang, Yunhui
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 24.04.2023
Subjects
Online AccessGet full text
ISSN0306-0012
1460-4744
1460-4744
DOI10.1039/d2cs00606e

Cover

Loading…
Abstract Lithium (Li) metal, owing to its high specific capacity and low redox potential as a Li + ion source in rechargeable lithium batteries, shows impressive prospects for electrochemical energy storage. However, engineering Li metal into thin foils has historically remained difficult, owing to its stickiness and fragility upon mechanical rolling. Consequently, using thick Li in battery systems betrays the original target for achieving higher energy density, results in material waste, and creates illusions on evaluating modification strategies for taming the highly reactive Li metal anode. Being apprehensive of this, in the tutorial review, we illustrate the argument of applying thin Li (<50 μm, preferably ≤30 μm) to achieve more realistic and advanced battery systems. A brief overview of Li is sketched first to help understand its role in batteries. Then, the reasons for pursuing thin Li are critically analyzed. Next, seminal technologies enabling the fabrication of thin Li are summarized and compared, which calls for the participation of experts from mechanical engineering, metallurgy, electrochemistry, and other fields. Subsequently, the possible applications of thin Li in batteries are presented. With the deployment of thin Li, there are new challenges and opportunities to encounter and an outlook is afforded thereof. Holy-grail Li metal anodes, combined with the subtraction operation in thickness and compatible modification strategies, would bring about a truly great leap forward in electrochemical energy storage. This review provides a systematic analysis on the mechanism, fabrication technologies, applications, challenges and future opportunities of applying thin Li for advanced batteries.
AbstractList Lithium (Li) metal, owing to its high specific capacity and low redox potential as a Li + ion source in rechargeable lithium batteries, shows impressive prospects for electrochemical energy storage. However, engineering Li metal into thin foils has historically remained difficult, owing to its stickiness and fragility upon mechanical rolling. Consequently, using thick Li in battery systems betrays the original target for achieving higher energy density, results in material waste, and creates illusions on evaluating modification strategies for taming the highly reactive Li metal anode. Being apprehensive of this, in the tutorial review, we illustrate the argument of applying thin Li (<50 μm, preferably ≤30 μm) to achieve more realistic and advanced battery systems. A brief overview of Li is sketched first to help understand its role in batteries. Then, the reasons for pursuing thin Li are critically analyzed. Next, seminal technologies enabling the fabrication of thin Li are summarized and compared, which calls for the participation of experts from mechanical engineering, metallurgy, electrochemistry, and other fields. Subsequently, the possible applications of thin Li in batteries are presented. With the deployment of thin Li, there are new challenges and opportunities to encounter and an outlook is afforded thereof. Holy-grail Li metal anodes, combined with the subtraction operation in thickness and compatible modification strategies, would bring about a truly great leap forward in electrochemical energy storage. This review provides a systematic analysis on the mechanism, fabrication technologies, applications, challenges and future opportunities of applying thin Li for advanced batteries.
Lithium (Li) metal, owing to its high specific capacity and low redox potential as a Li+ ion source in rechargeable lithium batteries, shows impressive prospects for electrochemical energy storage. However, engineering Li metal into thin foils has historically remained difficult, owing to its stickiness and fragility upon mechanical rolling. Consequently, using thick Li in battery systems betrays the original target for achieving higher energy density, results in material waste, and creates illusions on evaluating modification strategies for taming the highly reactive Li metal anode. Being apprehensive of this, in the tutorial review, we illustrate the argument of applying thin Li (<50 μm, preferably ≤30 μm) to achieve more realistic and advanced battery systems. A brief overview of Li is sketched first to help understand its role in batteries. Then, the reasons for pursuing thin Li are critically analyzed. Next, seminal technologies enabling the fabrication of thin Li are summarized and compared, which calls for the participation of experts from mechanical engineering, metallurgy, electrochemistry, and other fields. Subsequently, the possible applications of thin Li in batteries are presented. With the deployment of thin Li, there are new challenges and opportunities to encounter and an outlook is afforded thereof. Holy-grail Li metal anodes, combined with the subtraction operation in thickness and compatible modification strategies, would bring about a truly great leap forward in electrochemical energy storage.Lithium (Li) metal, owing to its high specific capacity and low redox potential as a Li+ ion source in rechargeable lithium batteries, shows impressive prospects for electrochemical energy storage. However, engineering Li metal into thin foils has historically remained difficult, owing to its stickiness and fragility upon mechanical rolling. Consequently, using thick Li in battery systems betrays the original target for achieving higher energy density, results in material waste, and creates illusions on evaluating modification strategies for taming the highly reactive Li metal anode. Being apprehensive of this, in the tutorial review, we illustrate the argument of applying thin Li (<50 μm, preferably ≤30 μm) to achieve more realistic and advanced battery systems. A brief overview of Li is sketched first to help understand its role in batteries. Then, the reasons for pursuing thin Li are critically analyzed. Next, seminal technologies enabling the fabrication of thin Li are summarized and compared, which calls for the participation of experts from mechanical engineering, metallurgy, electrochemistry, and other fields. Subsequently, the possible applications of thin Li in batteries are presented. With the deployment of thin Li, there are new challenges and opportunities to encounter and an outlook is afforded thereof. Holy-grail Li metal anodes, combined with the subtraction operation in thickness and compatible modification strategies, would bring about a truly great leap forward in electrochemical energy storage.
Lithium (Li) metal, owing to its high specific capacity and low redox potential as a Li ion source in rechargeable lithium batteries, shows impressive prospects for electrochemical energy storage. However, engineering Li metal into thin foils has historically remained difficult, owing to its stickiness and fragility upon mechanical rolling. Consequently, using thick Li in battery systems betrays the original target for achieving higher energy density, results in material waste, and creates illusions on evaluating modification strategies for taming the highly reactive Li metal anode. Being apprehensive of this, in the tutorial review, we illustrate the argument of applying thin Li (<50 μm, preferably ≤30 μm) to achieve more realistic and advanced battery systems. A brief overview of Li is sketched first to help understand its role in batteries. Then, the reasons for pursuing thin Li are critically analyzed. Next, seminal technologies enabling the fabrication of thin Li are summarized and compared, which calls for the participation of experts from mechanical engineering, metallurgy, electrochemistry, and other fields. Subsequently, the possible applications of thin Li in batteries are presented. With the deployment of thin Li, there are new challenges and opportunities to encounter and an outlook is afforded thereof. Holy-grail Li metal anodes, combined with the subtraction operation in thickness and compatible modification strategies, would bring about a truly great leap forward in electrochemical energy storage.
Lithium (Li) metal, owing to its high specific capacity and low redox potential as a Li+ ion source in rechargeable lithium batteries, shows impressive prospects for electrochemical energy storage. However, engineering Li metal into thin foils has historically remained difficult, owing to its stickiness and fragility upon mechanical rolling. Consequently, using thick Li in battery systems betrays the original target for achieving higher energy density, results in material waste, and creates illusions on evaluating modification strategies for taming the highly reactive Li metal anode. Being apprehensive of this, in the tutorial review, we illustrate the argument of applying thin Li (<50 μm, preferably ≤30 μm) to achieve more realistic and advanced battery systems. A brief overview of Li is sketched first to help understand its role in batteries. Then, the reasons for pursuing thin Li are critically analyzed. Next, seminal technologies enabling the fabrication of thin Li are summarized and compared, which calls for the participation of experts from mechanical engineering, metallurgy, electrochemistry, and other fields. Subsequently, the possible applications of thin Li in batteries are presented. With the deployment of thin Li, there are new challenges and opportunities to encounter and an outlook is afforded thereof. Holy-grail Li metal anodes, combined with the subtraction operation in thickness and compatible modification strategies, would bring about a truly great leap forward in electrochemical energy storage.
Lithium (Li) metal, owing to its high specific capacity and low redox potential as a Li + ion source in rechargeable lithium batteries, shows impressive prospects for electrochemical energy storage. However, engineering Li metal into thin foils has historically remained difficult, owing to its stickiness and fragility upon mechanical rolling. Consequently, using thick Li in battery systems betrays the original target for achieving higher energy density, results in material waste, and creates illusions on evaluating modification strategies for taming the highly reactive Li metal anode. Being apprehensive of this, in the tutorial review, we illustrate the argument of applying thin Li (<50 μm, preferably ≤30 μm) to achieve more realistic and advanced battery systems. A brief overview of Li is sketched first to help understand its role in batteries. Then, the reasons for pursuing thin Li are critically analyzed. Next, seminal technologies enabling the fabrication of thin Li are summarized and compared, which calls for the participation of experts from mechanical engineering, metallurgy, electrochemistry, and other fields. Subsequently, the possible applications of thin Li in batteries are presented. With the deployment of thin Li, there are new challenges and opportunities to encounter and an outlook is afforded thereof. Holy-grail Li metal anodes, combined with the subtraction operation in thickness and compatible modification strategies, would bring about a truly great leap forward in electrochemical energy storage.
Author Wu, Wangyan
Luo, Wei
Huang, Yunhui
AuthorAffiliation Shanghai Key Lab. of D&A for Metal-Functional Materials
Institute of New Energy for Vehicles
School of Materials Science and Engineering
Tongji University
Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education
School of Materials Science and Engineering, Tongji University
Huazhong University of Science and Technology
State Key Laboratory of Material Processing and Die & Mould Technology
AuthorAffiliation_xml – sequence: 0
  name: School of Materials Science and Engineering
– sequence: 0
  name: Tongji University
– sequence: 0
  name: Institute of New Energy for Vehicles
– sequence: 0
  name: School of Materials Science and Engineering, Tongji University
– sequence: 0
  name: State Key Laboratory of Material Processing and Die & Mould Technology
– sequence: 0
  name: Huazhong University of Science and Technology
– sequence: 0
  name: Shanghai Key Lab. of D&A for Metal-Functional Materials
– sequence: 0
  name: Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education
Author_xml – sequence: 1
  givenname: Wangyan
  surname: Wu
  fullname: Wu, Wangyan
– sequence: 2
  givenname: Wei
  surname: Luo
  fullname: Luo, Wei
– sequence: 3
  givenname: Yunhui
  surname: Huang
  fullname: Huang, Yunhui
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36920421$$D View this record in MEDLINE/PubMed
BookMark eNpt0c1rFDEYBvAgLXZbvXhXAl5EGM3HTDLpTdbaCgse1HPIJO_spswkY5JR9r931u0HFE95D7_n5SXPOToJMQBCryj5QAlXHx2zmRBBBDxDK1oLUtWyrk_QinAiKkIoO0PnOd8uE5WCPUdnXChGakZXaNpAzthnPMYEl9jgCVKewBb_G3AMuOx8CD5s8eCXcR7xCMUMuMQ_JrmMd367qyBA2u4rByH7sscJ7M6kLZhugIdYZ0qB5CG_QKe9GTK8vHsv0M8vVz_WN9Xm2_XX9adNZWvCS9UslwphBO-p4rWzpmlaYdqm6aRyvXLCdoJI13eSATTCqr6XvWi5cK2STLb8Ar077p1S_DVDLnr02cIwmABxznoxklGm6IG-fUJv45zCcp1mLamVXC46qDd3au5GcHpKfjRpr-__cgHkCGyKOSfotfXFFB9DScYPmhJ9qEt_Zuvv_-q6WiLvn0Tut_4Xvz7ilO2De-ye_wVqT57w
CitedBy_id crossref_primary_10_1016_j_electacta_2024_144570
crossref_primary_10_1016_j_ensm_2024_103579
crossref_primary_10_1016_j_enchem_2024_100122
crossref_primary_10_1016_j_mattod_2025_02_018
crossref_primary_10_1038_s41560_024_01676_7
crossref_primary_10_1016_j_cej_2024_152087
crossref_primary_10_1016_j_est_2024_112399
crossref_primary_10_1557_s43577_024_00677_x
crossref_primary_10_1039_D4SC04454A
crossref_primary_10_1016_j_cej_2024_149188
crossref_primary_10_1016_j_scib_2023_11_039
crossref_primary_10_1016_j_nanoen_2024_110464
crossref_primary_10_1016_j_ensm_2023_103062
crossref_primary_10_1016_j_ensm_2024_103564
crossref_primary_10_1002_admt_202301315
crossref_primary_10_1016_j_ensm_2024_103204
crossref_primary_10_1002_smll_202404437
crossref_primary_10_1002_ange_202423454
crossref_primary_10_1016_j_ensm_2023_103067
crossref_primary_10_1002_ange_202409327
crossref_primary_10_1007_s11664_024_11684_8
crossref_primary_10_1021_acs_nanolett_3c03639
crossref_primary_10_1038_s43246_024_00619_9
crossref_primary_10_1016_j_jpowsour_2024_235218
crossref_primary_10_1039_D4TA02002B
crossref_primary_10_1149_1945_7111_ad8482
crossref_primary_10_1016_j_actamat_2024_120228
crossref_primary_10_1016_j_ensm_2024_103837
crossref_primary_10_3390_molecules29194761
crossref_primary_10_1002_cnl2_147
crossref_primary_10_1002_chem_202304152
crossref_primary_10_1016_j_est_2025_116307
crossref_primary_10_1016_j_ensm_2023_102897
crossref_primary_10_1016_j_jpowsour_2025_236534
crossref_primary_10_1016_j_mtener_2025_101801
crossref_primary_10_1016_j_jma_2024_04_010
crossref_primary_10_1002_anie_202413065
crossref_primary_10_1002_smll_202308273
crossref_primary_10_1002_adfm_202307281
crossref_primary_10_1002_smll_202311044
crossref_primary_10_1002_smll_202312132
crossref_primary_10_1021_acsanm_4c06446
crossref_primary_10_1016_j_jechem_2024_04_033
crossref_primary_10_1039_D4TA05556J
crossref_primary_10_1016_j_mtphys_2024_101342
crossref_primary_10_1016_j_enchem_2025_100152
crossref_primary_10_1039_D4CS01072H
crossref_primary_10_1021_acsami_4c05023
crossref_primary_10_1039_D4CC03177F
crossref_primary_10_1002_idm2_12174
crossref_primary_10_1039_D3TA04259F
crossref_primary_10_1002_adfm_202409618
crossref_primary_10_1177_09544062251327065
crossref_primary_10_1002_adfm_202310711
crossref_primary_10_1002_aenm_202402109
crossref_primary_10_1002_anie_202409327
crossref_primary_10_1039_D4TA02431A
crossref_primary_10_1002_adfm_202408379
crossref_primary_10_1016_j_nanoen_2023_108639
crossref_primary_10_1002_adfm_202314994
crossref_primary_10_1016_j_cclet_2024_110753
crossref_primary_10_1021_acsami_4c07814
crossref_primary_10_1002_adma_202403570
crossref_primary_10_1002_ange_202318859
crossref_primary_10_1002_advs_202402156
crossref_primary_10_1021_acsami_3c18043
crossref_primary_10_1016_j_scriptamat_2023_115951
crossref_primary_10_1021_acsnano_3c04748
crossref_primary_10_1016_j_cej_2024_157200
crossref_primary_10_3390_gels10120812
crossref_primary_10_1002_adma_202411197
crossref_primary_10_1039_D3MH01434G
crossref_primary_10_1002_adfm_202405890
crossref_primary_10_1039_D3EE03740A
crossref_primary_10_1002_smll_202306994
crossref_primary_10_1016_j_jelechem_2024_118314
crossref_primary_10_1021_acssuschemeng_3c05049
crossref_primary_10_1002_ange_202413065
crossref_primary_10_1002_adfm_202314186
crossref_primary_10_1016_j_jcis_2024_02_090
crossref_primary_10_1021_acs_inorgchem_4c00622
crossref_primary_10_1039_D4TA06163B
crossref_primary_10_1002_anie_202318859
crossref_primary_10_1021_acsaem_4c00855
crossref_primary_10_1021_acs_energyfuels_4c05358
crossref_primary_10_1002_smll_202403831
crossref_primary_10_1016_j_nanoms_2024_08_005
crossref_primary_10_1039_D4TC02188F
crossref_primary_10_1002_anie_202423454
crossref_primary_10_1016_j_cej_2024_157793
crossref_primary_10_1002_adma_202307370
crossref_primary_10_1016_j_cej_2024_155256
crossref_primary_10_1016_j_cej_2024_153873
crossref_primary_10_1002_EXP_20210255
crossref_primary_10_1039_D3CS00741C
crossref_primary_10_1016_j_ensm_2024_103504
crossref_primary_10_1002_advs_202414396
crossref_primary_10_1002_adfm_202407729
crossref_primary_10_1016_j_jma_2024_05_024
crossref_primary_10_1016_j_est_2024_112301
crossref_primary_10_1039_D4EE03097D
crossref_primary_10_1016_j_scib_2025_01_030
crossref_primary_10_6023_A24120362
crossref_primary_10_1126_sciadv_adl4842
crossref_primary_10_1016_j_jallcom_2024_173530
Cites_doi 10.2172/804180
10.1016/j.cej.2020.126834
10.1021/acs.nanolett.0c00201
10.1039/C9EE01404G
10.1021/acs.chemrev.8b00422
10.1016/j.ensm.2021.01.012
10.1002/aenm.202000017
10.1073/pnas.2212777119
10.1149/1945-7111/ac5cf1
10.1002/aenm.201903441
10.1002/adma.201601180
10.1021/acs.nanolett.2c00385
10.1038/s41557-018-0166-9
10.1002/eem2.12073
10.1002/aenm.202101809
10.1016/j.ensm.2018.06.024
10.1039/C9EE00716D
10.1016/j.jpowsour.2013.06.062
10.1016/j.scitotenv.2018.05.223
10.1021/ja02193a004
10.1063/1.323539
10.1002/aenm.201900161
10.1016/j.joule.2017.10.007
10.1002/anie.201905251
10.1016/j.ceja.2021.100218
10.1002/adfm.202009805
10.1002/aenm.202200999
10.1038/s41560-021-00839-0
10.1016/j.nanoen.2020.104817
10.1016/j.actamat.2021.116730
10.1002/adma.202007428
10.1038/s41560-018-0237-6
10.1002/adma.201202196
10.1016/0016-7037(95)00038-2
10.1021/ja312241y
10.1038/s41467-020-14550-3
10.1007/s10853-018-2971-3
10.1038/s41560-019-0338-x
10.1016/j.joule.2019.07.011
10.1002/adma.202004798
10.1002/aenm.202101565
10.1002/adma.201504241
10.1038/s41565-019-0371-8
10.1021/jacs.7b05251
10.1021/acsami.8b02740
10.1016/j.joule.2019.03.028
10.1002/anie.201707093
10.3390/batteries4010004
10.1002/anie.201812523
10.1021/acsnano.9b04843
10.1016/j.joule.2022.06.028
10.1002/aesr.202000110
10.1002/adma.202005305
10.1149/1.2793574
10.1016/j.trechm.2019.02.015
10.1002/adma.201203445
10.1039/C9TA06663B
10.1016/j.electacta.2014.12.005
10.1039/D0EE02714F
10.1149/1.1393226
10.1002/aenm.201401408
10.1149/2.0641814jes
10.1016/j.nanoen.2019.104399
10.1038/s41467-019-12938-4
10.1073/pnas.2001923117
10.1039/C4CP05786D
10.1038/nature13700
10.1016/S0167-2738(00)00327-1
10.1149/MA2021-023362mtgabs
10.1038/nenergy.2016.10
10.1038/s41560-017-0047-2
10.1002/aenm.202102233
10.1002/aenm.201903953
10.1021/acs.chemrev.7b00115
10.1016/j.scib.2020.07.012
10.1016/j.ensm.2018.05.021
10.1038/ncomms7362
10.1002/adfm.202105776
10.1038/s41560-018-0107-2
10.1038/s41560-021-00852-3
10.1002/adma.202002325
10.1016/j.jpowsour.2015.07.027
10.1016/j.nanoen.2017.07.023
10.1038/s41560-021-00833-6
10.1038/nnano.2016.32
10.1021/acs.jpcc.8b06650
10.1021/acsenergylett.2c00255
10.1016/S0378-7753(01)00616-4
10.1039/C7TA08531A
10.1021/acsenergylett.9b02574
10.1007/s12274-019-2565-7
10.1002/adfm.202211067
10.1002/aenm.201803170
10.1038/s41467-017-02364-9
10.1021/acsomega.7b01501
10.1038/s41467-019-08767-0
10.1002/adfm.202106740
10.1016/j.ensm.2018.05.009
10.1016/j.elecom.2022.107238
10.1038/s41557-018-0203-8
10.1002/adma.201902785
10.1016/j.electacta.2014.01.114
10.1021/acs.nanolett.1c00140
10.1016/j.elecom.2011.04.003
10.1038/s41560-022-01065-y
10.1149/2.0351702jes
10.1021/acs.nanolett.2c00338
10.1016/j.joule.2019.05.022
10.1021/acsenergylett.1c01977
10.1149/2.018303jes
10.1016/j.electacta.2021.139270
10.1016/j.electacta.2004.03.065
10.1016/B978-0-12-801417-2.00003-7
10.1002/aenm.202000804
10.1007/s11837-998-0027-x
10.1038/s41467-018-06879-7
10.1021/acsami.0c04355
10.1038/s41560-019-0390-6
10.1021/acscentsci.8b00845
10.1038/s41560-019-0428-9
10.1007/s12598-021-01708-1
10.1016/j.apenergy.2014.11.051
10.3390/ma13081884
10.1016/j.seppur.2016.08.031
10.1016/B978-0-12-801417-2.00001-3
10.1038/s41467-018-07599-8
10.1002/anie.201912217
10.1038/s41578-021-00324-w
10.1016/j.joule.2019.02.004
10.3390/min2010065
10.1115/1.4052043
10.1016/j.ensm.2018.03.018
10.1002/anie.201909339
10.1002/aenm.202102259
10.1038/s41560-020-0648-z
10.1016/j.electacta.2012.03.161
10.1149/2.1701709jes
10.1002/adma.201905440
10.1038/s41565-019-0427-9
10.1002/aenm.201901457
10.1088/0029-5515/51/10/102002
10.1002/aenm.201300815
10.1038/s41467-019-09924-1
10.1016/S1044-5803(00)00079-6
10.1073/pnas.2009221117
10.1038/nenergy.2016.99
10.1007/s11426-020-9810-1
10.3934/matersci.2019.2.174
10.1016/j.jpowsour.2011.05.035
10.1021/acs.nanolett.9b02560
10.1038/s41467-019-12542-6
10.1002/aenm.202003769
10.1039/D0MH00067A
10.1007/s12274-019-2368-x
10.1002/advs.201901776
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d2cs00606e
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 2572
ExternalDocumentID 36920421
10_1039_D2CS00606E
d2cs00606e
Genre Journal Article
Review
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29B
4.4
53G
5GY
6J9
705
70~
7~J
85S
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
COF
CS3
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
O9-
OK1
P2P
R7B
R7D
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
~02
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
NPM
YIN
Z5M
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c403t-517666a63f1934dca5586a855b79df9d6cb607dfb72ee56c9ff7f6836d8972783
ISSN 0306-0012
1460-4744
IngestDate Fri Jul 11 16:06:12 EDT 2025
Mon Jun 30 07:12:15 EDT 2025
Wed Feb 19 02:24:03 EST 2025
Thu Apr 24 23:09:05 EDT 2025
Tue Jul 01 04:28:19 EDT 2025
Tue Dec 17 20:58:24 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c403t-517666a63f1934dca5586a855b79df9d6cb607dfb72ee56c9ff7f6836d8972783
Notes Yunhui Huang received his BS, MS, and PhD from Peking University. He worked with Prof. John B. Goodenough at the University of Texas at Austin from 2004 to 2007. In 2008, he became a Chair Professor of Materials Science at Huazhong University of Science and Technology. In 2017, he built up the Institute of New Energy for Vehicles at Tongji University. His research group mainly works on rechargeable batteries.
https://doi.org/10.1039/d2cs00606e
Wangyan Wu received his BE degree in Materials Science and Engineering at Tongji University in 2019. He is currently a PhD candidate in the School of Materials Science and Engineering at Tongji University, under the supervision of Prof. Wei Luo. His research interests focus on building LIBs with high energy density and liquid metals.
Wei Luo is currently a Professor in the School of Materials Science and Engineering at Tongji University. He received his BE and ME from Northwestern Polytechnical University, and PhD from Huazhong University of Science and Technology. Prior to his current position, Wei worked as a postdoctoral researcher at Oregon State University and the University of Maryland (UMD) until being promoted to Assistant Research Professor at UMD. His research interests include solid-state batteries, liquid metals, and high-entropy materials.
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4019-4634
0000-0003-1687-1938
PMID 36920421
PQID 2804974038
PQPubID 2047503
PageCount 2
ParticipantIDs crossref_citationtrail_10_1039_D2CS00606E
pubmed_primary_36920421
crossref_primary_10_1039_D2CS00606E
proquest_journals_2804974038
rsc_primary_d2cs00606e
proquest_miscellaneous_2787212918
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-24
PublicationDateYYYYMMDD 2023-04-24
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-24
  day: 24
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Hans Wedepohl (D2CS00606E/cit40/1) 1995; 59
D2CS00606E/cit6/1
Kang (D2CS00606E/cit21/1) 2019; 10
D2CS00606E/cit91/1
Ju (D2CS00606E/cit18/1) 2022; 119
Huang (D2CS00606E/cit62/1) 2021; 40
Zhu (D2CS00606E/cit37/1) 2020; 117
Corporation (D2CS00606E/cit112/1)
Kalantar-Zadeh (D2CS00606E/cit50/1) 2019; 13
Li (D2CS00606E/cit146/1) 2021; 37
Zhang (D2CS00606E/cit78/1) 2018; 122
D2CS00606E/cit125/1
Sadoway (D2CS00606E/cit49/1) 1998; 50
(D2CS00606E/cit121/1) 2020
Li (D2CS00606E/cit204/1) 2019; 3
Kuang (D2CS00606E/cit16/1) 2019; 9
Kang (D2CS00606E/cit201/1) 2019; 5
Wang (D2CS00606E/cit88/1) 2021; 31
Liu (D2CS00606E/cit34/1) 2019; 4
Samarasingha (D2CS00606E/cit188/1) 2021; 397
Corporation (D2CS00606E/cit111/1) 1998
Joint Venture (D2CS00606E/cit130/1)
Qian (D2CS00606E/cit155/1) 2015; 6
Peng (D2CS00606E/cit207/1) 2022; 32
Schmuch (D2CS00606E/cit1/1) 2018; 3
D2CS00606E/cit159/1
Fitch (D2CS00606E/cit58/1) 2007; 3
Zhou (D2CS00606E/cit30/1) 2020; 10
Betz (D2CS00606E/cit14/1) 2019; 9
Schultz (D2CS00606E/cit51/1) 2002
Winter (D2CS00606E/cit39/1) 2018; 118
Niu (D2CS00606E/cit35/1) 2021; 6
Swain (D2CS00606E/cit43/1) 2017; 172
D2CS00606E/cit90/1
Yan (D2CS00606E/cit153/1) 2016; 1
Sander (D2CS00606E/cit17/1) 2016; 1
Delta (D2CS00606E/cit144/1) 2022
Wang (D2CS00606E/cit85/1) 2020; 117
D2CS00606E/cit124/1
D2CS00606E/cit101/1
(D2CS00606E/cit138/1) 2018
Lee (D2CS00606E/cit117/1) 2014; 131
Lin (D2CS00606E/cit182/1) 2019; 11
D2CS00606E/cit41/1
Gu (D2CS00606E/cit154/1) 2019; 58
Krystian (D2CS00606E/cit105/1) 2001; 46
(D2CS00606E/cit109/1) 2015
Xiang (D2CS00606E/cit114/1) 2013; 160
(D2CS00606E/cit160/1) 2016
Fang (D2CS00606E/cit178/1) 2016; 28
Yan (D2CS00606E/cit170/1) 2017; 164
Bates (D2CS00606E/cit162/1) 2000; 135
Genovese (D2CS00606E/cit31/1) 2018; 165
Ding (D2CS00606E/cit152/1) 2013; 135
Tran (D2CS00606E/cit44/1) 2015
Mashtalir (D2CS00606E/cit82/1) 2018; 3
Ruzic (D2CS00606E/cit64/1) 2011; 51
Holtstiege (D2CS00606E/cit166/1) 2018; 4
Kwon (D2CS00606E/cit176/1) 2012; 24
Zhao (D2CS00606E/cit23/1) 2020; 59
(D2CS00606E/cit97/1) 1998
Ho (D2CS00606E/cit161/1) 2022; 7
Zhao (D2CS00606E/cit69/1) 2015; 139
Li (D2CS00606E/cit106/1) 2019; 12
(D2CS00606E/cit142/1) 2021
Gao (D2CS00606E/cit136/1) 2021; 33
(D2CS00606E/cit139/1) 2019
Wei (D2CS00606E/cit157/1) 2019; 7
Neudecker (D2CS00606E/cit173/1) 2000; 147
Olayinka Oluwatosin (D2CS00606E/cit89/1) 2019; 6
(D2CS00606E/cit115/1) 1996
Li (D2CS00606E/cit197/1) 2017; 39
Shi (D2CS00606E/cit36/1) 2019; 31
D2CS00606E/cit100/1
Wang (D2CS00606E/cit150/1) 2020; 74
Zhu (D2CS00606E/cit84/1) 2019; 10
Jin (D2CS00606E/cit184/1) 2021; 406
Lin (D2CS00606E/cit27/1) 2016; 11
Kersey (D2CS00606E/cit4/1) 2022; 7
Deng (D2CS00606E/cit206/1) 2020; 10
Wang (D2CS00606E/cit59/1) 2019; 10
Dienemann (D2CS00606E/cit54/1) 2021; 18
Brodd (D2CS00606E/cit158/1)
D2CS00606E/cit92/1
Sun (D2CS00606E/cit81/1) 2022; 6
Pu (D2CS00606E/cit203/1) 2019; 6
Son (D2CS00606E/cit73/1) 2013; 243
Liu (D2CS00606E/cit196/1) 2016; 28
Xiao (D2CS00606E/cit32/1) 2020; 5
Cao (D2CS00606E/cit10/1) 2019; 14
Wang (D2CS00606E/cit63/1) 2018; 14
(D2CS00606E/cit99/1) 2003
Cheng (D2CS00606E/cit181/1) 2017; 117
Usiskin (D2CS00606E/cit56/1) 2021; 6
Lohrberg (D2CS00606E/cit71/1) 2022; 169
Zhang (D2CS00606E/cit149/1) 2017; 56
D2CS00606E/cit107/1
Li (D2CS00606E/cit15/1) 2019; 3
Hu (D2CS00606E/cit128/1) 2022; 22
Koch (D2CS00606E/cit186/1) 2015; 296
Lewis (D2CS00606E/cit66/1) 1913; 35
Du (D2CS00606E/cit133/1) 2021; 11
Chen (D2CS00606E/cit11/1) 2019; 3
Wan (D2CS00606E/cit28/1) 2020; 11
(D2CS00606E/cit102/1) 2018
Tang (D2CS00606E/cit103/1) 2020; 69
Nanda (D2CS00606E/cit172/1) 2021; 11
D2CS00606E/cit95/1
Hwang (D2CS00606E/cit193/1) 2019; 12
Chen (D2CS00606E/cit77/1) 2020; 3
Chang (D2CS00606E/cit179/1) 2018; 9
Ma (D2CS00606E/cit60/1) 2019; 11
Matheson (D2CS00606E/cit174/1)
Li (D2CS00606E/cit163/1) 2015; 5
Weber (D2CS00606E/cit70/1) 2019; 4
Albertus (D2CS00606E/cit33/1) 2018; 3
D2CS00606E/cit129/1
Wang (D2CS00606E/cit3/1) 2014; 514
Chen (D2CS00606E/cit38/1) 2021; 6
Jónsson (D2CS00606E/cit80/1) 2016
Ue (D2CS00606E/cit12/1) 2020; 7
Christmann (D2CS00606E/cit47/1) 2015
Mohr (D2CS00606E/cit42/1) 2012; 2
Masias (D2CS00606E/cit53/1) 2019; 54
Meng (D2CS00606E/cit156/1) 2019; 16
Deng (D2CS00606E/cit192/1) 2021; 21
Xia (D2CS00606E/cit120/1) 2021; MA2021-02
Hamon (D2CS00606E/cit165/1) 2001; 97–98
Gao (D2CS00606E/cit180/1) 2021; 11
D2CS00606E/cit9/1
D2CS00606E/cit79/1
Jia (D2CS00606E/cit61/1) 2020; 65
Cao (D2CS00606E/cit168/1) 2016; 164
D2CS00606E/cit94/1
Michaelson (D2CS00606E/cit57/1) 1977; 48
Reddy (D2CS00606E/cit67/1) 2020; 13
Du Pont de Nemours & Co. (D2CS00606E/cit137/1)
Tang (D2CS00606E/cit127/1) 2018; 14
D2CS00606E/cit143/1
Wang (D2CS00606E/cit175/1) 2019; 3
Salvatierra (D2CS00606E/cit171/1) 2021; 2
Vishnugopi (D2CS00606E/cit83/1) 2020; 12
Niu (D2CS00606E/cit145/1) 2019; 14
(D2CS00606E/cit131/1) 2015
(D2CS00606E/cit93/1) 2021
Guo (D2CS00606E/cit199/1) 2018; 15
Jarratt (D2CS00606E/cit24/1)
(D2CS00606E/cit122/1) 2020
Wu (D2CS00606E/cit135/1) 2020; 63
Qiao (D2CS00606E/cit72/1) 2021; 6
Wu (D2CS00606E/cit185/1) 2011; 196
Jin (D2CS00606E/cit194/1) 2021; 11
Zhan (D2CS00606E/cit167/1) 2021; 11
(D2CS00606E/cit104/1) 2021
(D2CS00606E/cit141/1) 2019
Kim (D2CS00606E/cit189/1) 2018; 3
Aryanfar (D2CS00606E/cit86/1) 2015; 17
D2CS00606E/cit8/1
Yan (D2CS00606E/cit87/1) 2019; 58
Ren (D2CS00606E/cit177/1) 2013; 25
Fukami (D2CS00606E/cit148/1) 2022; 136
Guo (D2CS00606E/cit200/1) 2019; 19
Singh (D2CS00606E/cit164/1) 2023; 33
Fan (D2CS00606E/cit65/1) 2020; 32
Jiao (D2CS00606E/cit75/1) 2018; 2
Kim (D2CS00606E/cit74/1) 2015; 155
Heine (D2CS00606E/cit116/1) 2014; 4
Kolesnikov (D2CS00606E/cit183/1) 2020; 10
Li (D2CS00606E/cit118/1) 2011; 13
Tongji University (D2CS00606E/cit108/1)
Zeng (D2CS00606E/cit2/1) 2019; 9
Lin (D2CS00606E/cit13/1) 2018; 9
(D2CS00606E/cit132/1) 2017
Sun (D2CS00606E/cit147/1) 2020; 59
Schneider (D2CS00606E/cit151/1) 2017; 8
Wu (D2CS00606E/cit29/1) 2021; 33
Zhang (D2CS00606E/cit20/1) 2022; 12
D2CS00606E/cit48/1
Schönherr (D2CS00606E/cit140/1) 2022; 9
Zhang (D2CS00606E/cit205/1) 2021; 6
Chen (D2CS00606E/cit191/1) 2020; 20
Fu (D2CS00606E/cit26/1) 2021; 31
Battistel (D2CS00606E/cit45/1) 2020; 32
Shen (D2CS00606E/cit190/1) 2019; 10
Hong (D2CS00606E/cit113/1) 2004; 50
Chen (D2CS00606E/cit195/1) 2021; 33
Bills (D2CS00606E/cit5/1) 2020; 5
Niu (D2CS00606E/cit76/1) 2019; 4
(D2CS00606E/cit98/1) 1998
Zhao (D2CS00606E/cit187/1) 2017; 139
D2CS00606E/cit7/1
Sedlatschek (D2CS00606E/cit55/1) 2021; 208
D2CS00606E/cit96/1
Tariq (D2CS00606E/cit52/1)
Lithium Corporation (D2CS00606E/cit123/1) 2020
Wang (D2CS00606E/cit198/1) 2017; 5
Corporation (D2CS00606E/cit110/1)
Yang (D2CS00606E/cit22/1) 2021; 14
Xu (D2CS00606E/cit169/1) 2019; 12
Jin (D2CS00606E/cit119/1) 2018; 10
Zheng (D2CS00606E/cit68/1) 2012; 71
Flexer (D2CS00606E/cit46/1) 2018; 639
D2CS00606E/cit126/1
Wu (D2CS00606E/cit134/1) 2022; 12
Zheng (D2CS00606E/cit202/1) 2020; 13
Fang (D2CS00606E/cit25/1) 2019; 1
Zhang (D2CS00606E/cit19/1) 2022; 22
References_xml – publication-title: US Pat.
– issn: 2015
– issn: 2015
  end-page: p 81-124
  publication-title: Lithium Process Chemistry
  doi: Tran Luong
– publication-title: US Pat.
  doi: Brodd
– doi: Jarratt
– end-page: 1998
– issn: 2020
  doi: Lithium Corporation
– issn: 2019
– issn: 2017
– issn: 2022
  doi: Delta
– doi: Matheson
– doi: Tongji University
– issn: 2020
– issn: 2003
– issn: 2002
  publication-title: Lithium: Measurement of Young's Modulus and Yield Strength
  doi: Schultz
– issn: 2016
– issn: 1998
  doi: Corporation
– doi: Joint Venture
– issn: 2018
– issn: 1996
– issn: 1998
– publication-title: US Pat.
  doi: Du Pont de Nemours & Co.
– issn: 2015
  end-page: p 1-40
  publication-title: Lithium Process Chemistry
  doi: Christmann Gloaguen Labbé Melleton Piantone
– issn: 2021
– doi: Corporation
– doi: Tariq Ammigan Hurh Schultz Liu Shang
– issn: 2016
  publication-title: Master of Science Thesis in the Supply Chain Management Programme
  doi: Jónsson Larsson
– ident: D2CS00606E/cit7/1
– volume-title: Lithium: Measurement of Young's Modulus and Yield Strength
  year: 2002
  ident: D2CS00606E/cit51/1
  doi: 10.2172/804180
– volume: 406
  start-page: 126834
  year: 2021
  ident: D2CS00606E/cit184/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126834
– volume: 20
  start-page: 2639
  year: 2020
  ident: D2CS00606E/cit191/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c00201
– volume: 12
  start-page: 2991
  year: 2019
  ident: D2CS00606E/cit169/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01404G
– volume: 118
  start-page: 11433
  year: 2018
  ident: D2CS00606E/cit39/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00422
– volume: 37
  start-page: 40
  year: 2021
  ident: D2CS00606E/cit146/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.01.012
– volume: 10
  start-page: 2000017
  year: 2020
  ident: D2CS00606E/cit183/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000017
– volume: 119
  start-page: e2212777119
  year: 2022
  ident: D2CS00606E/cit18/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2212777119
– ident: D2CS00606E/cit108/1
– volume: 169
  start-page: 030543
  year: 2022
  ident: D2CS00606E/cit71/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ac5cf1
– volume: 10
  start-page: 1903441
  year: 2020
  ident: D2CS00606E/cit30/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903441
– volume: 28
  start-page: 8170
  year: 2016
  ident: D2CS00606E/cit196/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601180
– volume: 22
  start-page: 2521
  year: 2022
  ident: D2CS00606E/cit19/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c00385
– year: 1998
  ident: D2CS00606E/cit111/1
– ident: D2CS00606E/cit100/1
– volume: 11
  start-page: 64
  year: 2019
  ident: D2CS00606E/cit60/1
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0166-9
– volume: 3
  start-page: 160
  year: 2020
  ident: D2CS00606E/cit77/1
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12073
– volume: 11
  start-page: 2101809
  year: 2021
  ident: D2CS00606E/cit180/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202101809
– volume: 16
  start-page: 419
  year: 2019
  ident: D2CS00606E/cit156/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.06.024
– volume: 12
  start-page: 2174
  year: 2019
  ident: D2CS00606E/cit193/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00716D
– volume: 243
  start-page: 641
  year: 2013
  ident: D2CS00606E/cit73/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.06.062
– year: 1998
  ident: D2CS00606E/cit97/1
– volume: 639
  start-page: 1188
  year: 2018
  ident: D2CS00606E/cit46/1
  publication-title: Sci. Total Environ
  doi: 10.1016/j.scitotenv.2018.05.223
– volume: 35
  start-page: 340
  year: 1913
  ident: D2CS00606E/cit66/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja02193a004
– volume: 48
  start-page: 4729
  year: 1977
  ident: D2CS00606E/cit57/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.323539
– volume: 9
  start-page: 1900161
  year: 2019
  ident: D2CS00606E/cit2/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900161
– volume: 2
  start-page: 110
  year: 2018
  ident: D2CS00606E/cit75/1
  publication-title: Joule
  doi: 10.1016/j.joule.2017.10.007
– volume: 58
  start-page: 11364
  year: 2019
  ident: D2CS00606E/cit87/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201905251
– volume: 9
  start-page: 100218
  year: 2022
  ident: D2CS00606E/cit140/1
  publication-title: Chem. Eng. J. Adv.
  doi: 10.1016/j.ceja.2021.100218
– volume: 31
  start-page: 2009805
  year: 2021
  ident: D2CS00606E/cit26/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202009805
– volume: 12
  start-page: 2200999
  year: 2022
  ident: D2CS00606E/cit134/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202200999
– volume: 6
  start-page: 653
  year: 2021
  ident: D2CS00606E/cit72/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00839-0
– volume: 74
  start-page: 104817
  year: 2020
  ident: D2CS00606E/cit150/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104817
– volume: 208
  start-page: 116730
  year: 2021
  ident: D2CS00606E/cit55/1
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.116730
– volume: 33
  start-page: 2007428
  year: 2021
  ident: D2CS00606E/cit29/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007428
– volume: 3
  start-page: 889
  year: 2018
  ident: D2CS00606E/cit189/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0237-6
– volume: 24
  start-page: 5192
  year: 2012
  ident: D2CS00606E/cit176/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201202196
– volume: 59
  start-page: 1217
  year: 1995
  ident: D2CS00606E/cit40/1
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(95)00038-2
– ident: D2CS00606E/cit112/1
– volume: 135
  start-page: 4450
  year: 2013
  ident: D2CS00606E/cit152/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja312241y
– ident: D2CS00606E/cit130/1
– volume: 11
  start-page: 829
  year: 2020
  ident: D2CS00606E/cit28/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14550-3
– volume: 54
  start-page: 2585
  year: 2019
  ident: D2CS00606E/cit53/1
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-2971-3
– volume: 4
  start-page: 180
  year: 2019
  ident: D2CS00606E/cit34/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0338-x
– volume: 3
  start-page: 2086
  year: 2019
  ident: D2CS00606E/cit175/1
  publication-title: Joule
  doi: 10.1016/j.joule.2019.07.011
– volume: 32
  start-page: 2004798
  year: 2020
  ident: D2CS00606E/cit65/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202004798
– volume: 11
  start-page: 2101565
  year: 2021
  ident: D2CS00606E/cit167/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202101565
– volume: 28
  start-page: 491
  year: 2016
  ident: D2CS00606E/cit178/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504241
– volume: 14
  start-page: 200
  year: 2019
  ident: D2CS00606E/cit10/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0371-8
– year: 2022
  ident: D2CS00606E/cit144/1
– volume: 139
  start-page: 11550
  year: 2017
  ident: D2CS00606E/cit187/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05251
– volume-title: US Pat.
  ident: D2CS00606E/cit158/1
– volume: 10
  start-page: 16521
  year: 2018
  ident: D2CS00606E/cit119/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b02740
– volume: 3
  start-page: 911
  year: 2019
  ident: D2CS00606E/cit15/1
  publication-title: Joule
  doi: 10.1016/j.joule.2019.03.028
– ident: D2CS00606E/cit126/1
– volume: 56
  start-page: 14207
  year: 2017
  ident: D2CS00606E/cit149/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201707093
– volume: 4
  start-page: 4
  year: 2018
  ident: D2CS00606E/cit166/1
  publication-title: Batteries
  doi: 10.3390/batteries4010004
– volume: 58
  start-page: 3092
  year: 2019
  ident: D2CS00606E/cit154/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201812523
– year: 2021
  ident: D2CS00606E/cit104/1
– volume: 13
  start-page: 7388
  year: 2019
  ident: D2CS00606E/cit50/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b04843
– volume: 6
  start-page: 1738
  year: 2022
  ident: D2CS00606E/cit81/1
  publication-title: Joule
  doi: 10.1016/j.joule.2022.06.028
– ident: D2CS00606E/cit124/1
– volume: 2
  start-page: 2000110
  year: 2021
  ident: D2CS00606E/cit171/1
  publication-title: Adv. Energy Sustainability Res.
  doi: 10.1002/aesr.202000110
– volume: 33
  start-page: 2005305
  year: 2021
  ident: D2CS00606E/cit136/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202005305
– volume-title: US Pat.
  ident: D2CS00606E/cit137/1
– volume: 3
  start-page: 15
  year: 2007
  ident: D2CS00606E/cit58/1
  publication-title: ECS Trans.
  doi: 10.1149/1.2793574
– year: 2017
  ident: D2CS00606E/cit132/1
– volume: 1
  start-page: 152
  year: 2019
  ident: D2CS00606E/cit25/1
  publication-title: Trends Chem.
  doi: 10.1016/j.trechm.2019.02.015
– ident: D2CS00606E/cit52/1
– year: 2003
  ident: D2CS00606E/cit99/1
– volume: 25
  start-page: 1155
  year: 2013
  ident: D2CS00606E/cit177/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201203445
– year: 1998
  ident: D2CS00606E/cit98/1
– volume: 7
  start-page: 18861
  year: 2019
  ident: D2CS00606E/cit157/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA06663B
– volume: 155
  start-page: 431
  year: 2015
  ident: D2CS00606E/cit74/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.12.005
– ident: D2CS00606E/cit92/1
– ident: D2CS00606E/cit125/1
– volume: 14
  start-page: 643
  year: 2021
  ident: D2CS00606E/cit22/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02714F
– volume: 147
  start-page: 517
  year: 2000
  ident: D2CS00606E/cit173/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1393226
– volume: 5
  start-page: 1401408
  year: 2015
  ident: D2CS00606E/cit163/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201401408
– volume: 165
  start-page: A3321
  year: 2018
  ident: D2CS00606E/cit31/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0641814jes
– ident: D2CS00606E/cit24/1
– volume: 69
  start-page: 104399
  year: 2020
  ident: D2CS00606E/cit103/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104399
– volume: 10
  start-page: 4930
  year: 2019
  ident: D2CS00606E/cit59/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12938-4
– ident: D2CS00606E/cit110/1
– year: 2018
  ident: D2CS00606E/cit102/1
– volume: 117
  start-page: 27195
  year: 2020
  ident: D2CS00606E/cit37/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2001923117
– volume: 17
  start-page: 8000
  year: 2015
  ident: D2CS00606E/cit86/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP05786D
– volume: 514
  start-page: 348
  year: 2014
  ident: D2CS00606E/cit3/1
  publication-title: Nature
  doi: 10.1038/nature13700
– volume: 135
  start-page: 33
  year: 2000
  ident: D2CS00606E/cit162/1
  publication-title: Solid State Ion.
  doi: 10.1016/S0167-2738(00)00327-1
– volume: MA2021-02
  start-page: 362
  year: 2021
  ident: D2CS00606E/cit120/1
  publication-title: ECS Meeting Abstr.
  doi: 10.1149/MA2021-023362mtgabs
– volume: 1
  start-page: 16010
  year: 2016
  ident: D2CS00606E/cit153/1
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.10
– volume: 3
  start-page: 16
  year: 2018
  ident: D2CS00606E/cit33/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0047-2
– volume: 12
  start-page: 2102233
  year: 2022
  ident: D2CS00606E/cit20/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102233
– year: 2016
  ident: D2CS00606E/cit160/1
– volume: 10
  start-page: 1903953
  year: 2020
  ident: D2CS00606E/cit206/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903953
– ident: D2CS00606E/cit143/1
– volume: 117
  start-page: 10403
  year: 2017
  ident: D2CS00606E/cit181/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00115
– volume: 65
  start-page: 1907
  year: 2020
  ident: D2CS00606E/cit61/1
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2020.07.012
– volume: 14
  start-page: 345
  year: 2018
  ident: D2CS00606E/cit63/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.05.021
– volume: 6
  start-page: 6362
  year: 2015
  ident: D2CS00606E/cit155/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7362
– year: 2015
  ident: D2CS00606E/cit131/1
– volume: 32
  start-page: 2105776
  year: 2022
  ident: D2CS00606E/cit207/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202105776
– ident: D2CS00606E/cit79/1
– volume: 3
  start-page: 267
  year: 2018
  ident: D2CS00606E/cit1/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0107-2
– volume: 6
  start-page: 723
  year: 2021
  ident: D2CS00606E/cit35/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00852-3
– year: 2018
  ident: D2CS00606E/cit138/1
– volume: 33
  start-page: 2002325
  year: 2021
  ident: D2CS00606E/cit195/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002325
– volume: 296
  start-page: 150
  year: 2015
  ident: D2CS00606E/cit186/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.07.027
– ident: D2CS00606E/cit6/1
– volume: 39
  start-page: 654
  year: 2017
  ident: D2CS00606E/cit197/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.07.023
– volume: 6
  start-page: 790
  year: 2021
  ident: D2CS00606E/cit38/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00833-6
– volume: 11
  start-page: 626
  year: 2016
  ident: D2CS00606E/cit27/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.32
– volume: 122
  start-page: 21462
  year: 2018
  ident: D2CS00606E/cit78/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b06650
– volume: 7
  start-page: 1120
  year: 2022
  ident: D2CS00606E/cit161/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c00255
– volume: 97–98
  start-page: 185
  year: 2001
  ident: D2CS00606E/cit165/1
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)00616-4
– volume: 5
  start-page: 23434
  year: 2017
  ident: D2CS00606E/cit198/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA08531A
– volume: 5
  start-page: 663
  year: 2020
  ident: D2CS00606E/cit5/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b02574
– volume: 13
  start-page: 1324
  year: 2020
  ident: D2CS00606E/cit202/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2565-7
– volume: 33
  start-page: 2211067
  year: 2023
  ident: D2CS00606E/cit164/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202211067
– ident: D2CS00606E/cit101/1
– volume: 9
  start-page: 1803170
  year: 2019
  ident: D2CS00606E/cit14/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803170
– year: 1996
  ident: D2CS00606E/cit115/1
– volume: 8
  start-page: 2174
  year: 2017
  ident: D2CS00606E/cit151/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02364-9
– volume: 3
  start-page: 181
  year: 2018
  ident: D2CS00606E/cit82/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.7b01501
– volume: 10
  start-page: 900
  year: 2019
  ident: D2CS00606E/cit190/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08767-0
– volume: 31
  start-page: 2106740
  year: 2021
  ident: D2CS00606E/cit88/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202106740
– year: 2019
  ident: D2CS00606E/cit139/1
– volume-title: Master of Science Thesis in the Supply Chain Management Programme
  year: 2016
  ident: D2CS00606E/cit80/1
– ident: D2CS00606E/cit8/1
– volume: 14
  start-page: 289
  year: 2018
  ident: D2CS00606E/cit127/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.05.009
– volume: 136
  start-page: 107238
  year: 2022
  ident: D2CS00606E/cit148/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2022.107238
– volume: 11
  start-page: 382
  year: 2019
  ident: D2CS00606E/cit182/1
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0203-8
– volume-title: US Pat.
  ident: D2CS00606E/cit90/1
– volume: 31
  start-page: 1902785
  year: 2019
  ident: D2CS00606E/cit36/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902785
– volume: 131
  start-page: 202
  year: 2014
  ident: D2CS00606E/cit117/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.01.114
– volume: 21
  start-page: 1896
  year: 2021
  ident: D2CS00606E/cit192/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c00140
– volume: 13
  start-page: 664
  year: 2011
  ident: D2CS00606E/cit118/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2011.04.003
– volume: 7
  start-page: 664
  year: 2022
  ident: D2CS00606E/cit4/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-022-01065-y
– volume: 164
  start-page: A93
  year: 2016
  ident: D2CS00606E/cit168/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0351702jes
– volume: 22
  start-page: 3047
  year: 2022
  ident: D2CS00606E/cit128/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c00338
– ident: D2CS00606E/cit41/1
– volume: 3
  start-page: 1637
  year: 2019
  ident: D2CS00606E/cit204/1
  publication-title: Joule
  doi: 10.1016/j.joule.2019.05.022
– volume: 6
  start-page: 3761
  year: 2021
  ident: D2CS00606E/cit205/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c01977
– volume: 160
  start-page: A415
  year: 2013
  ident: D2CS00606E/cit114/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.018303jes
– year: 2021
  ident: D2CS00606E/cit93/1
– volume: 397
  start-page: 139270
  year: 2021
  ident: D2CS00606E/cit188/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.139270
– year: 2021
  ident: D2CS00606E/cit142/1
– volume: 50
  start-page: 535
  year: 2004
  ident: D2CS00606E/cit113/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2004.03.065
– start-page: 81
  volume-title: Lithium Process Chemistry
  year: 2015
  ident: D2CS00606E/cit44/1
  doi: 10.1016/B978-0-12-801417-2.00003-7
– volume: 11
  start-page: 2000804
  year: 2021
  ident: D2CS00606E/cit172/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000804
– volume: 50
  start-page: 24
  year: 1998
  ident: D2CS00606E/cit49/1
  publication-title: JOM
  doi: 10.1007/s11837-998-0027-x
– volume: 9
  start-page: 4480
  year: 2018
  ident: D2CS00606E/cit179/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06879-7
– volume: 12
  start-page: 23931
  year: 2020
  ident: D2CS00606E/cit83/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c04355
– year: 2020
  ident: D2CS00606E/cit121/1
– year: 2015
  ident: D2CS00606E/cit109/1
– volume: 4
  start-page: 551
  year: 2019
  ident: D2CS00606E/cit76/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0390-6
– volume: 5
  start-page: 468
  year: 2019
  ident: D2CS00606E/cit201/1
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.8b00845
– volume: 4
  start-page: 683
  year: 2019
  ident: D2CS00606E/cit70/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0428-9
– start-page: 1998
  ident: D2CS00606E/cit96/1
– volume: 40
  start-page: 3494
  year: 2021
  ident: D2CS00606E/cit62/1
  publication-title: Rare Met.
  doi: 10.1007/s12598-021-01708-1
– volume: 139
  start-page: 220
  year: 2015
  ident: D2CS00606E/cit69/1
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.11.051
– volume: 13
  start-page: 1884
  year: 2020
  ident: D2CS00606E/cit67/1
  publication-title: Materials
  doi: 10.3390/ma13081884
– ident: D2CS00606E/cit91/1
– ident: D2CS00606E/cit129/1
– ident: D2CS00606E/cit94/1
– volume: 172
  start-page: 388
  year: 2017
  ident: D2CS00606E/cit43/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.08.031
– start-page: 1
  volume-title: Lithium Process Chemistry
  year: 2015
  ident: D2CS00606E/cit47/1
  doi: 10.1016/B978-0-12-801417-2.00001-3
– ident: D2CS00606E/cit107/1
– volume: 9
  start-page: 5262
  year: 2018
  ident: D2CS00606E/cit13/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07599-8
– volume: 59
  start-page: 6665
  year: 2020
  ident: D2CS00606E/cit147/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201912217
– volume: 6
  start-page: 1020
  year: 2021
  ident: D2CS00606E/cit56/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-021-00324-w
– volume: 3
  start-page: 1094
  year: 2019
  ident: D2CS00606E/cit11/1
  publication-title: Joule
  doi: 10.1016/j.joule.2019.02.004
– volume: 2
  start-page: 65
  year: 2012
  ident: D2CS00606E/cit42/1
  publication-title: Minerals
  doi: 10.3390/min2010065
– volume: 18
  start-page: 040908
  year: 2021
  ident: D2CS00606E/cit54/1
  publication-title: J. Electrochem. Energy Convers. Storage
  doi: 10.1115/1.4052043
– volume: 15
  start-page: 116
  year: 2018
  ident: D2CS00606E/cit199/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.03.018
– volume: 59
  start-page: 12636
  year: 2020
  ident: D2CS00606E/cit23/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201909339
– volume: 11
  start-page: 2102259
  year: 2021
  ident: D2CS00606E/cit133/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102259
– volume: 5
  start-page: 561
  year: 2020
  ident: D2CS00606E/cit32/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0648-z
– volume: 71
  start-page: 258
  year: 2012
  ident: D2CS00606E/cit68/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.03.161
– volume: 164
  start-page: A2164
  year: 2017
  ident: D2CS00606E/cit170/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1701709jes
– year: 2020
  ident: D2CS00606E/cit123/1
– volume: 32
  start-page: 1905440
  year: 2020
  ident: D2CS00606E/cit45/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905440
– volume: 14
  start-page: 594
  year: 2019
  ident: D2CS00606E/cit145/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0427-9
– volume: 9
  start-page: 1901457
  year: 2019
  ident: D2CS00606E/cit16/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901457
– volume: 51
  start-page: 102002
  year: 2011
  ident: D2CS00606E/cit64/1
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/51/10/102002
– volume: 4
  start-page: 1300815
  year: 2014
  ident: D2CS00606E/cit116/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300815
– volume: 10
  start-page: 2067
  year: 2019
  ident: D2CS00606E/cit84/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09924-1
– year: 2019
  ident: D2CS00606E/cit141/1
– ident: D2CS00606E/cit48/1
– volume: 46
  start-page: 1
  year: 2001
  ident: D2CS00606E/cit105/1
  publication-title: Mater. Charact.
  doi: 10.1016/S1044-5803(00)00079-6
– volume: 117
  start-page: 29453
  year: 2020
  ident: D2CS00606E/cit85/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2009221117
– volume: 1
  start-page: 16099
  year: 2016
  ident: D2CS00606E/cit17/1
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.99
– ident: D2CS00606E/cit95/1
– year: 2020
  ident: D2CS00606E/cit122/1
– volume: 63
  start-page: 1483
  year: 2020
  ident: D2CS00606E/cit135/1
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-020-9810-1
– volume: 6
  start-page: 174
  year: 2019
  ident: D2CS00606E/cit89/1
  publication-title: AIMS Mater. Sci.
  doi: 10.3934/matersci.2019.2.174
– volume: 196
  start-page: 8091
  year: 2011
  ident: D2CS00606E/cit185/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.05.035
– volume: 19
  start-page: 6377
  year: 2019
  ident: D2CS00606E/cit200/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b02560
– volume-title: US Pat.
  ident: D2CS00606E/cit159/1
– ident: D2CS00606E/cit9/1
– volume: 10
  start-page: 4597
  year: 2019
  ident: D2CS00606E/cit21/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12542-6
– volume: 11
  start-page: 2003769
  year: 2021
  ident: D2CS00606E/cit194/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003769
– ident: D2CS00606E/cit174/1
– volume: 7
  start-page: 1937
  year: 2020
  ident: D2CS00606E/cit12/1
  publication-title: Mater. Horiz.
  doi: 10.1039/D0MH00067A
– volume: 12
  start-page: 2224
  year: 2019
  ident: D2CS00606E/cit106/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2368-x
– volume: 6
  start-page: 1901776
  year: 2019
  ident: D2CS00606E/cit203/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201901776
SSID ssj0011762
Score 2.6768992
SecondaryResourceType review_article
Snippet Lithium (Li) metal, owing to its high specific capacity and low redox potential as a Li + ion source in rechargeable lithium batteries, shows impressive...
Lithium (Li) metal, owing to its high specific capacity and low redox potential as a Li ion source in rechargeable lithium batteries, shows impressive...
Lithium (Li) metal, owing to its high specific capacity and low redox potential as a Li+ ion source in rechargeable lithium batteries, shows impressive...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2553
SubjectTerms Anodes
Electrochemistry
Energy storage
Foils
Fragility
Illusions
Ion sources
Lithium
Lithium batteries
Lithium ions
Mechanical engineering
Metallurgy
Rechargeable batteries
Title Less is more: a perspective on thinning lithium metal towards high-energy-density rechargeable lithium batteries
URI https://www.ncbi.nlm.nih.gov/pubmed/36920421
https://www.proquest.com/docview/2804974038
https://www.proquest.com/docview/2787212918
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gEuiNdCYUFGcEEokDp-JNxWpWhBCxe6YjlVjuPsRoK0ahsh-PXMOHYS2B4WLlGV2kmc-TIee2a-IeR5mnBWxoWKSp7aiPMijbS2NtImnhjk3-QK850_fpLHp_zDmTgbjX4Ms0u2-Svza2deyf9IFc6BXDFL9h8k210UTsBvkC8cQcJwvJKMT1BNVVjOZm3brOVVnzvZugEqV5IIM40vquY7FozG6HIXK7t5iVzFkXXZf1GBkexgkYMGRPIk61KqQrfcsXCGeMNAbBC4BkLkp2c27fR84wL4dH3-cxD407i92S-26gHlt6y_NvVFUw23IViCHpU2-zmkX-HWROxjom2rTbmMI65agsegbgUbwCod6k7R0gb7eRh0Cdup4-MEKVLfsulnJJORs34mC977vya4LuzQOdyTbNH3vUb2GawvQKPvH83m7086B9RESe-AakcVmG2T7HXf-09b5tICBcyVdSgj48yV-S1y068z6FELmttkZOs75Po0lPe7S1YIHlptKILnDdV0AB26rGmADvUYoA461EOH7oAOHUKn69ZB5x45fTebT48jX34jMjxOtpFA7lCpZVKCkc8Lo4VIpU6FyFVWlFkhTS5jVZS5YtYKaXD3v5RpIos0U1jA5YDs1cvaPiDUwLpYZqyAy2Rcc6VVkmRgjAqVT0rBzJi8CC9yYTw3PZZI-ba4LLIxeda1XbWMLDtbHQZ5LPwXu1mwFNbDCgaXjsnT7m947-gk07VdNtAGZjAw57IJtLnfyrG7TQJjgEluMiYHINjudMHMxt3VPrzSsz0iN_ov6JDsbdeNfQym7TZ_4mH4G1nuo_k
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Less+is+more%3A+a+perspective+on+thinning+lithium+metal+towards+high-energy-density+rechargeable+lithium+batteries&rft.jtitle=Chemical+Society+reviews&rft.au=Wu%2C+Wangyan&rft.au=Luo%2C+Wei&rft.au=Huang%2C+Yunhui&rft.date=2023-04-24&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=52&rft.issue=8&rft.spage=2553&rft.epage=2572&rft_id=info:doi/10.1039%2FD2CS00606E&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2CS00606E
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon