Less is more: a perspective on thinning lithium metal towards high-energy-density rechargeable lithium batteries
Lithium (Li) metal, owing to its high specific capacity and low redox potential as a Li + ion source in rechargeable lithium batteries, shows impressive prospects for electrochemical energy storage. However, engineering Li metal into thin foils has historically remained difficult, owing to its stick...
Saved in:
Published in | Chemical Society reviews Vol. 52; no. 8; pp. 2553 - 2572 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
24.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0306-0012 1460-4744 1460-4744 |
DOI | 10.1039/d2cs00606e |
Cover
Loading…
Abstract | Lithium (Li) metal, owing to its high specific capacity and low redox potential as a Li
+
ion source in rechargeable lithium batteries, shows impressive prospects for electrochemical energy storage. However, engineering Li metal into thin foils has historically remained difficult, owing to its stickiness and fragility upon mechanical rolling. Consequently, using thick Li in battery systems betrays the original target for achieving higher energy density, results in material waste, and creates illusions on evaluating modification strategies for taming the highly reactive Li metal anode. Being apprehensive of this, in the tutorial review, we illustrate the argument of applying thin Li (<50 μm, preferably ≤30 μm) to achieve more realistic and advanced battery systems. A brief overview of Li is sketched first to help understand its role in batteries. Then, the reasons for pursuing thin Li are critically analyzed. Next, seminal technologies enabling the fabrication of thin Li are summarized and compared, which calls for the participation of experts from mechanical engineering, metallurgy, electrochemistry, and other fields. Subsequently, the possible applications of thin Li in batteries are presented. With the deployment of thin Li, there are new challenges and opportunities to encounter and an outlook is afforded thereof. Holy-grail Li metal anodes, combined with the subtraction operation in thickness and compatible modification strategies, would bring about a truly great leap forward in electrochemical energy storage.
This review provides a systematic analysis on the mechanism, fabrication technologies, applications, challenges and future opportunities of applying thin Li for advanced batteries. |
---|---|
AbstractList | Lithium (Li) metal, owing to its high specific capacity and low redox potential as a Li
+
ion source in rechargeable lithium batteries, shows impressive prospects for electrochemical energy storage. However, engineering Li metal into thin foils has historically remained difficult, owing to its stickiness and fragility upon mechanical rolling. Consequently, using thick Li in battery systems betrays the original target for achieving higher energy density, results in material waste, and creates illusions on evaluating modification strategies for taming the highly reactive Li metal anode. Being apprehensive of this, in the tutorial review, we illustrate the argument of applying thin Li (<50 μm, preferably ≤30 μm) to achieve more realistic and advanced battery systems. A brief overview of Li is sketched first to help understand its role in batteries. Then, the reasons for pursuing thin Li are critically analyzed. Next, seminal technologies enabling the fabrication of thin Li are summarized and compared, which calls for the participation of experts from mechanical engineering, metallurgy, electrochemistry, and other fields. Subsequently, the possible applications of thin Li in batteries are presented. With the deployment of thin Li, there are new challenges and opportunities to encounter and an outlook is afforded thereof. Holy-grail Li metal anodes, combined with the subtraction operation in thickness and compatible modification strategies, would bring about a truly great leap forward in electrochemical energy storage.
This review provides a systematic analysis on the mechanism, fabrication technologies, applications, challenges and future opportunities of applying thin Li for advanced batteries. Lithium (Li) metal, owing to its high specific capacity and low redox potential as a Li+ ion source in rechargeable lithium batteries, shows impressive prospects for electrochemical energy storage. However, engineering Li metal into thin foils has historically remained difficult, owing to its stickiness and fragility upon mechanical rolling. Consequently, using thick Li in battery systems betrays the original target for achieving higher energy density, results in material waste, and creates illusions on evaluating modification strategies for taming the highly reactive Li metal anode. Being apprehensive of this, in the tutorial review, we illustrate the argument of applying thin Li (<50 μm, preferably ≤30 μm) to achieve more realistic and advanced battery systems. A brief overview of Li is sketched first to help understand its role in batteries. Then, the reasons for pursuing thin Li are critically analyzed. Next, seminal technologies enabling the fabrication of thin Li are summarized and compared, which calls for the participation of experts from mechanical engineering, metallurgy, electrochemistry, and other fields. Subsequently, the possible applications of thin Li in batteries are presented. With the deployment of thin Li, there are new challenges and opportunities to encounter and an outlook is afforded thereof. Holy-grail Li metal anodes, combined with the subtraction operation in thickness and compatible modification strategies, would bring about a truly great leap forward in electrochemical energy storage.Lithium (Li) metal, owing to its high specific capacity and low redox potential as a Li+ ion source in rechargeable lithium batteries, shows impressive prospects for electrochemical energy storage. However, engineering Li metal into thin foils has historically remained difficult, owing to its stickiness and fragility upon mechanical rolling. Consequently, using thick Li in battery systems betrays the original target for achieving higher energy density, results in material waste, and creates illusions on evaluating modification strategies for taming the highly reactive Li metal anode. Being apprehensive of this, in the tutorial review, we illustrate the argument of applying thin Li (<50 μm, preferably ≤30 μm) to achieve more realistic and advanced battery systems. A brief overview of Li is sketched first to help understand its role in batteries. Then, the reasons for pursuing thin Li are critically analyzed. Next, seminal technologies enabling the fabrication of thin Li are summarized and compared, which calls for the participation of experts from mechanical engineering, metallurgy, electrochemistry, and other fields. Subsequently, the possible applications of thin Li in batteries are presented. With the deployment of thin Li, there are new challenges and opportunities to encounter and an outlook is afforded thereof. Holy-grail Li metal anodes, combined with the subtraction operation in thickness and compatible modification strategies, would bring about a truly great leap forward in electrochemical energy storage. Lithium (Li) metal, owing to its high specific capacity and low redox potential as a Li ion source in rechargeable lithium batteries, shows impressive prospects for electrochemical energy storage. However, engineering Li metal into thin foils has historically remained difficult, owing to its stickiness and fragility upon mechanical rolling. Consequently, using thick Li in battery systems betrays the original target for achieving higher energy density, results in material waste, and creates illusions on evaluating modification strategies for taming the highly reactive Li metal anode. Being apprehensive of this, in the tutorial review, we illustrate the argument of applying thin Li (<50 μm, preferably ≤30 μm) to achieve more realistic and advanced battery systems. A brief overview of Li is sketched first to help understand its role in batteries. Then, the reasons for pursuing thin Li are critically analyzed. Next, seminal technologies enabling the fabrication of thin Li are summarized and compared, which calls for the participation of experts from mechanical engineering, metallurgy, electrochemistry, and other fields. Subsequently, the possible applications of thin Li in batteries are presented. With the deployment of thin Li, there are new challenges and opportunities to encounter and an outlook is afforded thereof. Holy-grail Li metal anodes, combined with the subtraction operation in thickness and compatible modification strategies, would bring about a truly great leap forward in electrochemical energy storage. Lithium (Li) metal, owing to its high specific capacity and low redox potential as a Li+ ion source in rechargeable lithium batteries, shows impressive prospects for electrochemical energy storage. However, engineering Li metal into thin foils has historically remained difficult, owing to its stickiness and fragility upon mechanical rolling. Consequently, using thick Li in battery systems betrays the original target for achieving higher energy density, results in material waste, and creates illusions on evaluating modification strategies for taming the highly reactive Li metal anode. Being apprehensive of this, in the tutorial review, we illustrate the argument of applying thin Li (<50 μm, preferably ≤30 μm) to achieve more realistic and advanced battery systems. A brief overview of Li is sketched first to help understand its role in batteries. Then, the reasons for pursuing thin Li are critically analyzed. Next, seminal technologies enabling the fabrication of thin Li are summarized and compared, which calls for the participation of experts from mechanical engineering, metallurgy, electrochemistry, and other fields. Subsequently, the possible applications of thin Li in batteries are presented. With the deployment of thin Li, there are new challenges and opportunities to encounter and an outlook is afforded thereof. Holy-grail Li metal anodes, combined with the subtraction operation in thickness and compatible modification strategies, would bring about a truly great leap forward in electrochemical energy storage. Lithium (Li) metal, owing to its high specific capacity and low redox potential as a Li + ion source in rechargeable lithium batteries, shows impressive prospects for electrochemical energy storage. However, engineering Li metal into thin foils has historically remained difficult, owing to its stickiness and fragility upon mechanical rolling. Consequently, using thick Li in battery systems betrays the original target for achieving higher energy density, results in material waste, and creates illusions on evaluating modification strategies for taming the highly reactive Li metal anode. Being apprehensive of this, in the tutorial review, we illustrate the argument of applying thin Li (<50 μm, preferably ≤30 μm) to achieve more realistic and advanced battery systems. A brief overview of Li is sketched first to help understand its role in batteries. Then, the reasons for pursuing thin Li are critically analyzed. Next, seminal technologies enabling the fabrication of thin Li are summarized and compared, which calls for the participation of experts from mechanical engineering, metallurgy, electrochemistry, and other fields. Subsequently, the possible applications of thin Li in batteries are presented. With the deployment of thin Li, there are new challenges and opportunities to encounter and an outlook is afforded thereof. Holy-grail Li metal anodes, combined with the subtraction operation in thickness and compatible modification strategies, would bring about a truly great leap forward in electrochemical energy storage. |
Author | Wu, Wangyan Luo, Wei Huang, Yunhui |
AuthorAffiliation | Shanghai Key Lab. of D&A for Metal-Functional Materials Institute of New Energy for Vehicles School of Materials Science and Engineering Tongji University Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education School of Materials Science and Engineering, Tongji University Huazhong University of Science and Technology State Key Laboratory of Material Processing and Die & Mould Technology |
AuthorAffiliation_xml | – sequence: 0 name: School of Materials Science and Engineering – sequence: 0 name: Tongji University – sequence: 0 name: Institute of New Energy for Vehicles – sequence: 0 name: School of Materials Science and Engineering, Tongji University – sequence: 0 name: State Key Laboratory of Material Processing and Die & Mould Technology – sequence: 0 name: Huazhong University of Science and Technology – sequence: 0 name: Shanghai Key Lab. of D&A for Metal-Functional Materials – sequence: 0 name: Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education |
Author_xml | – sequence: 1 givenname: Wangyan surname: Wu fullname: Wu, Wangyan – sequence: 2 givenname: Wei surname: Luo fullname: Luo, Wei – sequence: 3 givenname: Yunhui surname: Huang fullname: Huang, Yunhui |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36920421$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0c1rFDEYBvAgLXZbvXhXAl5EGM3HTDLpTdbaCgse1HPIJO_spswkY5JR9r931u0HFE95D7_n5SXPOToJMQBCryj5QAlXHx2zmRBBBDxDK1oLUtWyrk_QinAiKkIoO0PnOd8uE5WCPUdnXChGakZXaNpAzthnPMYEl9jgCVKewBb_G3AMuOx8CD5s8eCXcR7xCMUMuMQ_JrmMd367qyBA2u4rByH7sscJ7M6kLZhugIdYZ0qB5CG_QKe9GTK8vHsv0M8vVz_WN9Xm2_XX9adNZWvCS9UslwphBO-p4rWzpmlaYdqm6aRyvXLCdoJI13eSATTCqr6XvWi5cK2STLb8Ar077p1S_DVDLnr02cIwmABxznoxklGm6IG-fUJv45zCcp1mLamVXC46qDd3au5GcHpKfjRpr-__cgHkCGyKOSfotfXFFB9DScYPmhJ9qEt_Zuvv_-q6WiLvn0Tut_4Xvz7ilO2De-ye_wVqT57w |
CitedBy_id | crossref_primary_10_1016_j_electacta_2024_144570 crossref_primary_10_1016_j_ensm_2024_103579 crossref_primary_10_1016_j_enchem_2024_100122 crossref_primary_10_1016_j_mattod_2025_02_018 crossref_primary_10_1038_s41560_024_01676_7 crossref_primary_10_1016_j_cej_2024_152087 crossref_primary_10_1016_j_est_2024_112399 crossref_primary_10_1557_s43577_024_00677_x crossref_primary_10_1039_D4SC04454A crossref_primary_10_1016_j_cej_2024_149188 crossref_primary_10_1016_j_scib_2023_11_039 crossref_primary_10_1016_j_nanoen_2024_110464 crossref_primary_10_1016_j_ensm_2023_103062 crossref_primary_10_1016_j_ensm_2024_103564 crossref_primary_10_1002_admt_202301315 crossref_primary_10_1016_j_ensm_2024_103204 crossref_primary_10_1002_smll_202404437 crossref_primary_10_1002_ange_202423454 crossref_primary_10_1016_j_ensm_2023_103067 crossref_primary_10_1002_ange_202409327 crossref_primary_10_1007_s11664_024_11684_8 crossref_primary_10_1021_acs_nanolett_3c03639 crossref_primary_10_1038_s43246_024_00619_9 crossref_primary_10_1016_j_jpowsour_2024_235218 crossref_primary_10_1039_D4TA02002B crossref_primary_10_1149_1945_7111_ad8482 crossref_primary_10_1016_j_actamat_2024_120228 crossref_primary_10_1016_j_ensm_2024_103837 crossref_primary_10_3390_molecules29194761 crossref_primary_10_1002_cnl2_147 crossref_primary_10_1002_chem_202304152 crossref_primary_10_1016_j_est_2025_116307 crossref_primary_10_1016_j_ensm_2023_102897 crossref_primary_10_1016_j_jpowsour_2025_236534 crossref_primary_10_1016_j_mtener_2025_101801 crossref_primary_10_1016_j_jma_2024_04_010 crossref_primary_10_1002_anie_202413065 crossref_primary_10_1002_smll_202308273 crossref_primary_10_1002_adfm_202307281 crossref_primary_10_1002_smll_202311044 crossref_primary_10_1002_smll_202312132 crossref_primary_10_1021_acsanm_4c06446 crossref_primary_10_1016_j_jechem_2024_04_033 crossref_primary_10_1039_D4TA05556J crossref_primary_10_1016_j_mtphys_2024_101342 crossref_primary_10_1016_j_enchem_2025_100152 crossref_primary_10_1039_D4CS01072H crossref_primary_10_1021_acsami_4c05023 crossref_primary_10_1039_D4CC03177F crossref_primary_10_1002_idm2_12174 crossref_primary_10_1039_D3TA04259F crossref_primary_10_1002_adfm_202409618 crossref_primary_10_1177_09544062251327065 crossref_primary_10_1002_adfm_202310711 crossref_primary_10_1002_aenm_202402109 crossref_primary_10_1002_anie_202409327 crossref_primary_10_1039_D4TA02431A crossref_primary_10_1002_adfm_202408379 crossref_primary_10_1016_j_nanoen_2023_108639 crossref_primary_10_1002_adfm_202314994 crossref_primary_10_1016_j_cclet_2024_110753 crossref_primary_10_1021_acsami_4c07814 crossref_primary_10_1002_adma_202403570 crossref_primary_10_1002_ange_202318859 crossref_primary_10_1002_advs_202402156 crossref_primary_10_1021_acsami_3c18043 crossref_primary_10_1016_j_scriptamat_2023_115951 crossref_primary_10_1021_acsnano_3c04748 crossref_primary_10_1016_j_cej_2024_157200 crossref_primary_10_3390_gels10120812 crossref_primary_10_1002_adma_202411197 crossref_primary_10_1039_D3MH01434G crossref_primary_10_1002_adfm_202405890 crossref_primary_10_1039_D3EE03740A crossref_primary_10_1002_smll_202306994 crossref_primary_10_1016_j_jelechem_2024_118314 crossref_primary_10_1021_acssuschemeng_3c05049 crossref_primary_10_1002_ange_202413065 crossref_primary_10_1002_adfm_202314186 crossref_primary_10_1016_j_jcis_2024_02_090 crossref_primary_10_1021_acs_inorgchem_4c00622 crossref_primary_10_1039_D4TA06163B crossref_primary_10_1002_anie_202318859 crossref_primary_10_1021_acsaem_4c00855 crossref_primary_10_1021_acs_energyfuels_4c05358 crossref_primary_10_1002_smll_202403831 crossref_primary_10_1016_j_nanoms_2024_08_005 crossref_primary_10_1039_D4TC02188F crossref_primary_10_1002_anie_202423454 crossref_primary_10_1016_j_cej_2024_157793 crossref_primary_10_1002_adma_202307370 crossref_primary_10_1016_j_cej_2024_155256 crossref_primary_10_1016_j_cej_2024_153873 crossref_primary_10_1002_EXP_20210255 crossref_primary_10_1039_D3CS00741C crossref_primary_10_1016_j_ensm_2024_103504 crossref_primary_10_1002_advs_202414396 crossref_primary_10_1002_adfm_202407729 crossref_primary_10_1016_j_jma_2024_05_024 crossref_primary_10_1016_j_est_2024_112301 crossref_primary_10_1039_D4EE03097D crossref_primary_10_1016_j_scib_2025_01_030 crossref_primary_10_6023_A24120362 crossref_primary_10_1126_sciadv_adl4842 crossref_primary_10_1016_j_jallcom_2024_173530 |
Cites_doi | 10.2172/804180 10.1016/j.cej.2020.126834 10.1021/acs.nanolett.0c00201 10.1039/C9EE01404G 10.1021/acs.chemrev.8b00422 10.1016/j.ensm.2021.01.012 10.1002/aenm.202000017 10.1073/pnas.2212777119 10.1149/1945-7111/ac5cf1 10.1002/aenm.201903441 10.1002/adma.201601180 10.1021/acs.nanolett.2c00385 10.1038/s41557-018-0166-9 10.1002/eem2.12073 10.1002/aenm.202101809 10.1016/j.ensm.2018.06.024 10.1039/C9EE00716D 10.1016/j.jpowsour.2013.06.062 10.1016/j.scitotenv.2018.05.223 10.1021/ja02193a004 10.1063/1.323539 10.1002/aenm.201900161 10.1016/j.joule.2017.10.007 10.1002/anie.201905251 10.1016/j.ceja.2021.100218 10.1002/adfm.202009805 10.1002/aenm.202200999 10.1038/s41560-021-00839-0 10.1016/j.nanoen.2020.104817 10.1016/j.actamat.2021.116730 10.1002/adma.202007428 10.1038/s41560-018-0237-6 10.1002/adma.201202196 10.1016/0016-7037(95)00038-2 10.1021/ja312241y 10.1038/s41467-020-14550-3 10.1007/s10853-018-2971-3 10.1038/s41560-019-0338-x 10.1016/j.joule.2019.07.011 10.1002/adma.202004798 10.1002/aenm.202101565 10.1002/adma.201504241 10.1038/s41565-019-0371-8 10.1021/jacs.7b05251 10.1021/acsami.8b02740 10.1016/j.joule.2019.03.028 10.1002/anie.201707093 10.3390/batteries4010004 10.1002/anie.201812523 10.1021/acsnano.9b04843 10.1016/j.joule.2022.06.028 10.1002/aesr.202000110 10.1002/adma.202005305 10.1149/1.2793574 10.1016/j.trechm.2019.02.015 10.1002/adma.201203445 10.1039/C9TA06663B 10.1016/j.electacta.2014.12.005 10.1039/D0EE02714F 10.1149/1.1393226 10.1002/aenm.201401408 10.1149/2.0641814jes 10.1016/j.nanoen.2019.104399 10.1038/s41467-019-12938-4 10.1073/pnas.2001923117 10.1039/C4CP05786D 10.1038/nature13700 10.1016/S0167-2738(00)00327-1 10.1149/MA2021-023362mtgabs 10.1038/nenergy.2016.10 10.1038/s41560-017-0047-2 10.1002/aenm.202102233 10.1002/aenm.201903953 10.1021/acs.chemrev.7b00115 10.1016/j.scib.2020.07.012 10.1016/j.ensm.2018.05.021 10.1038/ncomms7362 10.1002/adfm.202105776 10.1038/s41560-018-0107-2 10.1038/s41560-021-00852-3 10.1002/adma.202002325 10.1016/j.jpowsour.2015.07.027 10.1016/j.nanoen.2017.07.023 10.1038/s41560-021-00833-6 10.1038/nnano.2016.32 10.1021/acs.jpcc.8b06650 10.1021/acsenergylett.2c00255 10.1016/S0378-7753(01)00616-4 10.1039/C7TA08531A 10.1021/acsenergylett.9b02574 10.1007/s12274-019-2565-7 10.1002/adfm.202211067 10.1002/aenm.201803170 10.1038/s41467-017-02364-9 10.1021/acsomega.7b01501 10.1038/s41467-019-08767-0 10.1002/adfm.202106740 10.1016/j.ensm.2018.05.009 10.1016/j.elecom.2022.107238 10.1038/s41557-018-0203-8 10.1002/adma.201902785 10.1016/j.electacta.2014.01.114 10.1021/acs.nanolett.1c00140 10.1016/j.elecom.2011.04.003 10.1038/s41560-022-01065-y 10.1149/2.0351702jes 10.1021/acs.nanolett.2c00338 10.1016/j.joule.2019.05.022 10.1021/acsenergylett.1c01977 10.1149/2.018303jes 10.1016/j.electacta.2021.139270 10.1016/j.electacta.2004.03.065 10.1016/B978-0-12-801417-2.00003-7 10.1002/aenm.202000804 10.1007/s11837-998-0027-x 10.1038/s41467-018-06879-7 10.1021/acsami.0c04355 10.1038/s41560-019-0390-6 10.1021/acscentsci.8b00845 10.1038/s41560-019-0428-9 10.1007/s12598-021-01708-1 10.1016/j.apenergy.2014.11.051 10.3390/ma13081884 10.1016/j.seppur.2016.08.031 10.1016/B978-0-12-801417-2.00001-3 10.1038/s41467-018-07599-8 10.1002/anie.201912217 10.1038/s41578-021-00324-w 10.1016/j.joule.2019.02.004 10.3390/min2010065 10.1115/1.4052043 10.1016/j.ensm.2018.03.018 10.1002/anie.201909339 10.1002/aenm.202102259 10.1038/s41560-020-0648-z 10.1016/j.electacta.2012.03.161 10.1149/2.1701709jes 10.1002/adma.201905440 10.1038/s41565-019-0427-9 10.1002/aenm.201901457 10.1088/0029-5515/51/10/102002 10.1002/aenm.201300815 10.1038/s41467-019-09924-1 10.1016/S1044-5803(00)00079-6 10.1073/pnas.2009221117 10.1038/nenergy.2016.99 10.1007/s11426-020-9810-1 10.3934/matersci.2019.2.174 10.1016/j.jpowsour.2011.05.035 10.1021/acs.nanolett.9b02560 10.1038/s41467-019-12542-6 10.1002/aenm.202003769 10.1039/D0MH00067A 10.1007/s12274-019-2368-x 10.1002/advs.201901776 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d2cs00606e |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 2572 |
ExternalDocumentID | 36920421 10_1039_D2CS00606E d2cs00606e |
Genre | Journal Article Review |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 29B 4.4 53G 5GY 6J9 705 70~ 7~J 85S AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K COF CS3 DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- OK1 P2P R7B R7D RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 ~02 AAYXX AFRZK AKMSF ALUYA CITATION R56 NPM YIN Z5M 7SP 7SR 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c403t-517666a63f1934dca5586a855b79df9d6cb607dfb72ee56c9ff7f6836d8972783 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Fri Jul 11 16:06:12 EDT 2025 Mon Jun 30 07:12:15 EDT 2025 Wed Feb 19 02:24:03 EST 2025 Thu Apr 24 23:09:05 EDT 2025 Tue Jul 01 04:28:19 EDT 2025 Tue Dec 17 20:58:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c403t-517666a63f1934dca5586a855b79df9d6cb607dfb72ee56c9ff7f6836d8972783 |
Notes | Yunhui Huang received his BS, MS, and PhD from Peking University. He worked with Prof. John B. Goodenough at the University of Texas at Austin from 2004 to 2007. In 2008, he became a Chair Professor of Materials Science at Huazhong University of Science and Technology. In 2017, he built up the Institute of New Energy for Vehicles at Tongji University. His research group mainly works on rechargeable batteries. https://doi.org/10.1039/d2cs00606e Wangyan Wu received his BE degree in Materials Science and Engineering at Tongji University in 2019. He is currently a PhD candidate in the School of Materials Science and Engineering at Tongji University, under the supervision of Prof. Wei Luo. His research interests focus on building LIBs with high energy density and liquid metals. Wei Luo is currently a Professor in the School of Materials Science and Engineering at Tongji University. He received his BE and ME from Northwestern Polytechnical University, and PhD from Huazhong University of Science and Technology. Prior to his current position, Wei worked as a postdoctoral researcher at Oregon State University and the University of Maryland (UMD) until being promoted to Assistant Research Professor at UMD. His research interests include solid-state batteries, liquid metals, and high-entropy materials. Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4019-4634 0000-0003-1687-1938 |
PMID | 36920421 |
PQID | 2804974038 |
PQPubID | 2047503 |
PageCount | 2 |
ParticipantIDs | crossref_citationtrail_10_1039_D2CS00606E pubmed_primary_36920421 crossref_primary_10_1039_D2CS00606E proquest_journals_2804974038 rsc_primary_d2cs00606e proquest_miscellaneous_2787212918 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-24 |
PublicationDateYYYYMMDD | 2023-04-24 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Chemical Society reviews |
PublicationTitleAlternate | Chem Soc Rev |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Hans Wedepohl (D2CS00606E/cit40/1) 1995; 59 D2CS00606E/cit6/1 Kang (D2CS00606E/cit21/1) 2019; 10 D2CS00606E/cit91/1 Ju (D2CS00606E/cit18/1) 2022; 119 Huang (D2CS00606E/cit62/1) 2021; 40 Zhu (D2CS00606E/cit37/1) 2020; 117 Corporation (D2CS00606E/cit112/1) Kalantar-Zadeh (D2CS00606E/cit50/1) 2019; 13 Li (D2CS00606E/cit146/1) 2021; 37 Zhang (D2CS00606E/cit78/1) 2018; 122 D2CS00606E/cit125/1 Sadoway (D2CS00606E/cit49/1) 1998; 50 (D2CS00606E/cit121/1) 2020 Li (D2CS00606E/cit204/1) 2019; 3 Kuang (D2CS00606E/cit16/1) 2019; 9 Kang (D2CS00606E/cit201/1) 2019; 5 Wang (D2CS00606E/cit88/1) 2021; 31 Liu (D2CS00606E/cit34/1) 2019; 4 Samarasingha (D2CS00606E/cit188/1) 2021; 397 Corporation (D2CS00606E/cit111/1) 1998 Joint Venture (D2CS00606E/cit130/1) Qian (D2CS00606E/cit155/1) 2015; 6 Peng (D2CS00606E/cit207/1) 2022; 32 Schmuch (D2CS00606E/cit1/1) 2018; 3 D2CS00606E/cit159/1 Fitch (D2CS00606E/cit58/1) 2007; 3 Zhou (D2CS00606E/cit30/1) 2020; 10 Betz (D2CS00606E/cit14/1) 2019; 9 Schultz (D2CS00606E/cit51/1) 2002 Winter (D2CS00606E/cit39/1) 2018; 118 Niu (D2CS00606E/cit35/1) 2021; 6 Swain (D2CS00606E/cit43/1) 2017; 172 D2CS00606E/cit90/1 Yan (D2CS00606E/cit153/1) 2016; 1 Sander (D2CS00606E/cit17/1) 2016; 1 Delta (D2CS00606E/cit144/1) 2022 Wang (D2CS00606E/cit85/1) 2020; 117 D2CS00606E/cit124/1 D2CS00606E/cit101/1 (D2CS00606E/cit138/1) 2018 Lee (D2CS00606E/cit117/1) 2014; 131 Lin (D2CS00606E/cit182/1) 2019; 11 D2CS00606E/cit41/1 Gu (D2CS00606E/cit154/1) 2019; 58 Krystian (D2CS00606E/cit105/1) 2001; 46 (D2CS00606E/cit109/1) 2015 Xiang (D2CS00606E/cit114/1) 2013; 160 (D2CS00606E/cit160/1) 2016 Fang (D2CS00606E/cit178/1) 2016; 28 Yan (D2CS00606E/cit170/1) 2017; 164 Bates (D2CS00606E/cit162/1) 2000; 135 Genovese (D2CS00606E/cit31/1) 2018; 165 Ding (D2CS00606E/cit152/1) 2013; 135 Tran (D2CS00606E/cit44/1) 2015 Mashtalir (D2CS00606E/cit82/1) 2018; 3 Ruzic (D2CS00606E/cit64/1) 2011; 51 Holtstiege (D2CS00606E/cit166/1) 2018; 4 Kwon (D2CS00606E/cit176/1) 2012; 24 Zhao (D2CS00606E/cit23/1) 2020; 59 (D2CS00606E/cit97/1) 1998 Ho (D2CS00606E/cit161/1) 2022; 7 Zhao (D2CS00606E/cit69/1) 2015; 139 Li (D2CS00606E/cit106/1) 2019; 12 (D2CS00606E/cit142/1) 2021 Gao (D2CS00606E/cit136/1) 2021; 33 (D2CS00606E/cit139/1) 2019 Wei (D2CS00606E/cit157/1) 2019; 7 Neudecker (D2CS00606E/cit173/1) 2000; 147 Olayinka Oluwatosin (D2CS00606E/cit89/1) 2019; 6 (D2CS00606E/cit115/1) 1996 Li (D2CS00606E/cit197/1) 2017; 39 Shi (D2CS00606E/cit36/1) 2019; 31 D2CS00606E/cit100/1 Wang (D2CS00606E/cit150/1) 2020; 74 Zhu (D2CS00606E/cit84/1) 2019; 10 Jin (D2CS00606E/cit184/1) 2021; 406 Lin (D2CS00606E/cit27/1) 2016; 11 Kersey (D2CS00606E/cit4/1) 2022; 7 Deng (D2CS00606E/cit206/1) 2020; 10 Wang (D2CS00606E/cit59/1) 2019; 10 Dienemann (D2CS00606E/cit54/1) 2021; 18 Brodd (D2CS00606E/cit158/1) D2CS00606E/cit92/1 Sun (D2CS00606E/cit81/1) 2022; 6 Pu (D2CS00606E/cit203/1) 2019; 6 Son (D2CS00606E/cit73/1) 2013; 243 Liu (D2CS00606E/cit196/1) 2016; 28 Xiao (D2CS00606E/cit32/1) 2020; 5 Cao (D2CS00606E/cit10/1) 2019; 14 Wang (D2CS00606E/cit63/1) 2018; 14 (D2CS00606E/cit99/1) 2003 Cheng (D2CS00606E/cit181/1) 2017; 117 Usiskin (D2CS00606E/cit56/1) 2021; 6 Lohrberg (D2CS00606E/cit71/1) 2022; 169 Zhang (D2CS00606E/cit149/1) 2017; 56 D2CS00606E/cit107/1 Li (D2CS00606E/cit15/1) 2019; 3 Hu (D2CS00606E/cit128/1) 2022; 22 Koch (D2CS00606E/cit186/1) 2015; 296 Lewis (D2CS00606E/cit66/1) 1913; 35 Du (D2CS00606E/cit133/1) 2021; 11 Chen (D2CS00606E/cit11/1) 2019; 3 Wan (D2CS00606E/cit28/1) 2020; 11 (D2CS00606E/cit102/1) 2018 Tang (D2CS00606E/cit103/1) 2020; 69 Nanda (D2CS00606E/cit172/1) 2021; 11 D2CS00606E/cit95/1 Hwang (D2CS00606E/cit193/1) 2019; 12 Chen (D2CS00606E/cit77/1) 2020; 3 Chang (D2CS00606E/cit179/1) 2018; 9 Ma (D2CS00606E/cit60/1) 2019; 11 Matheson (D2CS00606E/cit174/1) Li (D2CS00606E/cit163/1) 2015; 5 Weber (D2CS00606E/cit70/1) 2019; 4 Albertus (D2CS00606E/cit33/1) 2018; 3 D2CS00606E/cit129/1 Wang (D2CS00606E/cit3/1) 2014; 514 Chen (D2CS00606E/cit38/1) 2021; 6 Jónsson (D2CS00606E/cit80/1) 2016 Ue (D2CS00606E/cit12/1) 2020; 7 Christmann (D2CS00606E/cit47/1) 2015 Mohr (D2CS00606E/cit42/1) 2012; 2 Masias (D2CS00606E/cit53/1) 2019; 54 Meng (D2CS00606E/cit156/1) 2019; 16 Deng (D2CS00606E/cit192/1) 2021; 21 Xia (D2CS00606E/cit120/1) 2021; MA2021-02 Hamon (D2CS00606E/cit165/1) 2001; 97–98 Gao (D2CS00606E/cit180/1) 2021; 11 D2CS00606E/cit9/1 D2CS00606E/cit79/1 Jia (D2CS00606E/cit61/1) 2020; 65 Cao (D2CS00606E/cit168/1) 2016; 164 D2CS00606E/cit94/1 Michaelson (D2CS00606E/cit57/1) 1977; 48 Reddy (D2CS00606E/cit67/1) 2020; 13 Du Pont de Nemours & Co. (D2CS00606E/cit137/1) Tang (D2CS00606E/cit127/1) 2018; 14 D2CS00606E/cit143/1 Wang (D2CS00606E/cit175/1) 2019; 3 Salvatierra (D2CS00606E/cit171/1) 2021; 2 Vishnugopi (D2CS00606E/cit83/1) 2020; 12 Niu (D2CS00606E/cit145/1) 2019; 14 (D2CS00606E/cit131/1) 2015 (D2CS00606E/cit93/1) 2021 Guo (D2CS00606E/cit199/1) 2018; 15 Jarratt (D2CS00606E/cit24/1) (D2CS00606E/cit122/1) 2020 Wu (D2CS00606E/cit135/1) 2020; 63 Qiao (D2CS00606E/cit72/1) 2021; 6 Wu (D2CS00606E/cit185/1) 2011; 196 Jin (D2CS00606E/cit194/1) 2021; 11 Zhan (D2CS00606E/cit167/1) 2021; 11 (D2CS00606E/cit104/1) 2021 (D2CS00606E/cit141/1) 2019 Kim (D2CS00606E/cit189/1) 2018; 3 Aryanfar (D2CS00606E/cit86/1) 2015; 17 D2CS00606E/cit8/1 Yan (D2CS00606E/cit87/1) 2019; 58 Ren (D2CS00606E/cit177/1) 2013; 25 Fukami (D2CS00606E/cit148/1) 2022; 136 Guo (D2CS00606E/cit200/1) 2019; 19 Singh (D2CS00606E/cit164/1) 2023; 33 Fan (D2CS00606E/cit65/1) 2020; 32 Jiao (D2CS00606E/cit75/1) 2018; 2 Kim (D2CS00606E/cit74/1) 2015; 155 Heine (D2CS00606E/cit116/1) 2014; 4 Kolesnikov (D2CS00606E/cit183/1) 2020; 10 Li (D2CS00606E/cit118/1) 2011; 13 Tongji University (D2CS00606E/cit108/1) Zeng (D2CS00606E/cit2/1) 2019; 9 Lin (D2CS00606E/cit13/1) 2018; 9 (D2CS00606E/cit132/1) 2017 Sun (D2CS00606E/cit147/1) 2020; 59 Schneider (D2CS00606E/cit151/1) 2017; 8 Wu (D2CS00606E/cit29/1) 2021; 33 Zhang (D2CS00606E/cit20/1) 2022; 12 D2CS00606E/cit48/1 Schönherr (D2CS00606E/cit140/1) 2022; 9 Zhang (D2CS00606E/cit205/1) 2021; 6 Chen (D2CS00606E/cit191/1) 2020; 20 Fu (D2CS00606E/cit26/1) 2021; 31 Battistel (D2CS00606E/cit45/1) 2020; 32 Shen (D2CS00606E/cit190/1) 2019; 10 Hong (D2CS00606E/cit113/1) 2004; 50 Chen (D2CS00606E/cit195/1) 2021; 33 Bills (D2CS00606E/cit5/1) 2020; 5 Niu (D2CS00606E/cit76/1) 2019; 4 (D2CS00606E/cit98/1) 1998 Zhao (D2CS00606E/cit187/1) 2017; 139 D2CS00606E/cit7/1 Sedlatschek (D2CS00606E/cit55/1) 2021; 208 D2CS00606E/cit96/1 Tariq (D2CS00606E/cit52/1) Lithium Corporation (D2CS00606E/cit123/1) 2020 Wang (D2CS00606E/cit198/1) 2017; 5 Corporation (D2CS00606E/cit110/1) Yang (D2CS00606E/cit22/1) 2021; 14 Xu (D2CS00606E/cit169/1) 2019; 12 Jin (D2CS00606E/cit119/1) 2018; 10 Zheng (D2CS00606E/cit68/1) 2012; 71 Flexer (D2CS00606E/cit46/1) 2018; 639 D2CS00606E/cit126/1 Wu (D2CS00606E/cit134/1) 2022; 12 Zheng (D2CS00606E/cit202/1) 2020; 13 Fang (D2CS00606E/cit25/1) 2019; 1 Zhang (D2CS00606E/cit19/1) 2022; 22 |
References_xml | – publication-title: US Pat. – issn: 2015 – issn: 2015 end-page: p 81-124 publication-title: Lithium Process Chemistry doi: Tran Luong – publication-title: US Pat. doi: Brodd – doi: Jarratt – end-page: 1998 – issn: 2020 doi: Lithium Corporation – issn: 2019 – issn: 2017 – issn: 2022 doi: Delta – doi: Matheson – doi: Tongji University – issn: 2020 – issn: 2003 – issn: 2002 publication-title: Lithium: Measurement of Young's Modulus and Yield Strength doi: Schultz – issn: 2016 – issn: 1998 doi: Corporation – doi: Joint Venture – issn: 2018 – issn: 1996 – issn: 1998 – publication-title: US Pat. doi: Du Pont de Nemours & Co. – issn: 2015 end-page: p 1-40 publication-title: Lithium Process Chemistry doi: Christmann Gloaguen Labbé Melleton Piantone – issn: 2021 – doi: Corporation – doi: Tariq Ammigan Hurh Schultz Liu Shang – issn: 2016 publication-title: Master of Science Thesis in the Supply Chain Management Programme doi: Jónsson Larsson – ident: D2CS00606E/cit7/1 – volume-title: Lithium: Measurement of Young's Modulus and Yield Strength year: 2002 ident: D2CS00606E/cit51/1 doi: 10.2172/804180 – volume: 406 start-page: 126834 year: 2021 ident: D2CS00606E/cit184/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126834 – volume: 20 start-page: 2639 year: 2020 ident: D2CS00606E/cit191/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c00201 – volume: 12 start-page: 2991 year: 2019 ident: D2CS00606E/cit169/1 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01404G – volume: 118 start-page: 11433 year: 2018 ident: D2CS00606E/cit39/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00422 – volume: 37 start-page: 40 year: 2021 ident: D2CS00606E/cit146/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.01.012 – volume: 10 start-page: 2000017 year: 2020 ident: D2CS00606E/cit183/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000017 – volume: 119 start-page: e2212777119 year: 2022 ident: D2CS00606E/cit18/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2212777119 – ident: D2CS00606E/cit108/1 – volume: 169 start-page: 030543 year: 2022 ident: D2CS00606E/cit71/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ac5cf1 – volume: 10 start-page: 1903441 year: 2020 ident: D2CS00606E/cit30/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903441 – volume: 28 start-page: 8170 year: 2016 ident: D2CS00606E/cit196/1 publication-title: Adv. Mater. doi: 10.1002/adma.201601180 – volume: 22 start-page: 2521 year: 2022 ident: D2CS00606E/cit19/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c00385 – year: 1998 ident: D2CS00606E/cit111/1 – ident: D2CS00606E/cit100/1 – volume: 11 start-page: 64 year: 2019 ident: D2CS00606E/cit60/1 publication-title: Nat. Chem. doi: 10.1038/s41557-018-0166-9 – volume: 3 start-page: 160 year: 2020 ident: D2CS00606E/cit77/1 publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12073 – volume: 11 start-page: 2101809 year: 2021 ident: D2CS00606E/cit180/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202101809 – volume: 16 start-page: 419 year: 2019 ident: D2CS00606E/cit156/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.06.024 – volume: 12 start-page: 2174 year: 2019 ident: D2CS00606E/cit193/1 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00716D – volume: 243 start-page: 641 year: 2013 ident: D2CS00606E/cit73/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.06.062 – year: 1998 ident: D2CS00606E/cit97/1 – volume: 639 start-page: 1188 year: 2018 ident: D2CS00606E/cit46/1 publication-title: Sci. Total Environ doi: 10.1016/j.scitotenv.2018.05.223 – volume: 35 start-page: 340 year: 1913 ident: D2CS00606E/cit66/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja02193a004 – volume: 48 start-page: 4729 year: 1977 ident: D2CS00606E/cit57/1 publication-title: J. Appl. Phys. doi: 10.1063/1.323539 – volume: 9 start-page: 1900161 year: 2019 ident: D2CS00606E/cit2/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900161 – volume: 2 start-page: 110 year: 2018 ident: D2CS00606E/cit75/1 publication-title: Joule doi: 10.1016/j.joule.2017.10.007 – volume: 58 start-page: 11364 year: 2019 ident: D2CS00606E/cit87/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201905251 – volume: 9 start-page: 100218 year: 2022 ident: D2CS00606E/cit140/1 publication-title: Chem. Eng. J. Adv. doi: 10.1016/j.ceja.2021.100218 – volume: 31 start-page: 2009805 year: 2021 ident: D2CS00606E/cit26/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202009805 – volume: 12 start-page: 2200999 year: 2022 ident: D2CS00606E/cit134/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202200999 – volume: 6 start-page: 653 year: 2021 ident: D2CS00606E/cit72/1 publication-title: Nat. Energy doi: 10.1038/s41560-021-00839-0 – volume: 74 start-page: 104817 year: 2020 ident: D2CS00606E/cit150/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104817 – volume: 208 start-page: 116730 year: 2021 ident: D2CS00606E/cit55/1 publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.116730 – volume: 33 start-page: 2007428 year: 2021 ident: D2CS00606E/cit29/1 publication-title: Adv. Mater. doi: 10.1002/adma.202007428 – volume: 3 start-page: 889 year: 2018 ident: D2CS00606E/cit189/1 publication-title: Nat. Energy doi: 10.1038/s41560-018-0237-6 – volume: 24 start-page: 5192 year: 2012 ident: D2CS00606E/cit176/1 publication-title: Adv. Mater. doi: 10.1002/adma.201202196 – volume: 59 start-page: 1217 year: 1995 ident: D2CS00606E/cit40/1 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(95)00038-2 – ident: D2CS00606E/cit112/1 – volume: 135 start-page: 4450 year: 2013 ident: D2CS00606E/cit152/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja312241y – ident: D2CS00606E/cit130/1 – volume: 11 start-page: 829 year: 2020 ident: D2CS00606E/cit28/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-14550-3 – volume: 54 start-page: 2585 year: 2019 ident: D2CS00606E/cit53/1 publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-2971-3 – volume: 4 start-page: 180 year: 2019 ident: D2CS00606E/cit34/1 publication-title: Nat. Energy doi: 10.1038/s41560-019-0338-x – volume: 3 start-page: 2086 year: 2019 ident: D2CS00606E/cit175/1 publication-title: Joule doi: 10.1016/j.joule.2019.07.011 – volume: 32 start-page: 2004798 year: 2020 ident: D2CS00606E/cit65/1 publication-title: Adv. Mater. doi: 10.1002/adma.202004798 – volume: 11 start-page: 2101565 year: 2021 ident: D2CS00606E/cit167/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202101565 – volume: 28 start-page: 491 year: 2016 ident: D2CS00606E/cit178/1 publication-title: Adv. Mater. doi: 10.1002/adma.201504241 – volume: 14 start-page: 200 year: 2019 ident: D2CS00606E/cit10/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0371-8 – year: 2022 ident: D2CS00606E/cit144/1 – volume: 139 start-page: 11550 year: 2017 ident: D2CS00606E/cit187/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05251 – volume-title: US Pat. ident: D2CS00606E/cit158/1 – volume: 10 start-page: 16521 year: 2018 ident: D2CS00606E/cit119/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b02740 – volume: 3 start-page: 911 year: 2019 ident: D2CS00606E/cit15/1 publication-title: Joule doi: 10.1016/j.joule.2019.03.028 – ident: D2CS00606E/cit126/1 – volume: 56 start-page: 14207 year: 2017 ident: D2CS00606E/cit149/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201707093 – volume: 4 start-page: 4 year: 2018 ident: D2CS00606E/cit166/1 publication-title: Batteries doi: 10.3390/batteries4010004 – volume: 58 start-page: 3092 year: 2019 ident: D2CS00606E/cit154/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201812523 – year: 2021 ident: D2CS00606E/cit104/1 – volume: 13 start-page: 7388 year: 2019 ident: D2CS00606E/cit50/1 publication-title: ACS Nano doi: 10.1021/acsnano.9b04843 – volume: 6 start-page: 1738 year: 2022 ident: D2CS00606E/cit81/1 publication-title: Joule doi: 10.1016/j.joule.2022.06.028 – ident: D2CS00606E/cit124/1 – volume: 2 start-page: 2000110 year: 2021 ident: D2CS00606E/cit171/1 publication-title: Adv. Energy Sustainability Res. doi: 10.1002/aesr.202000110 – volume: 33 start-page: 2005305 year: 2021 ident: D2CS00606E/cit136/1 publication-title: Adv. Mater. doi: 10.1002/adma.202005305 – volume-title: US Pat. ident: D2CS00606E/cit137/1 – volume: 3 start-page: 15 year: 2007 ident: D2CS00606E/cit58/1 publication-title: ECS Trans. doi: 10.1149/1.2793574 – year: 2017 ident: D2CS00606E/cit132/1 – volume: 1 start-page: 152 year: 2019 ident: D2CS00606E/cit25/1 publication-title: Trends Chem. doi: 10.1016/j.trechm.2019.02.015 – ident: D2CS00606E/cit52/1 – year: 2003 ident: D2CS00606E/cit99/1 – volume: 25 start-page: 1155 year: 2013 ident: D2CS00606E/cit177/1 publication-title: Adv. Mater. doi: 10.1002/adma.201203445 – year: 1998 ident: D2CS00606E/cit98/1 – volume: 7 start-page: 18861 year: 2019 ident: D2CS00606E/cit157/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA06663B – volume: 155 start-page: 431 year: 2015 ident: D2CS00606E/cit74/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.12.005 – ident: D2CS00606E/cit92/1 – ident: D2CS00606E/cit125/1 – volume: 14 start-page: 643 year: 2021 ident: D2CS00606E/cit22/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02714F – volume: 147 start-page: 517 year: 2000 ident: D2CS00606E/cit173/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1393226 – volume: 5 start-page: 1401408 year: 2015 ident: D2CS00606E/cit163/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201401408 – volume: 165 start-page: A3321 year: 2018 ident: D2CS00606E/cit31/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0641814jes – ident: D2CS00606E/cit24/1 – volume: 69 start-page: 104399 year: 2020 ident: D2CS00606E/cit103/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104399 – volume: 10 start-page: 4930 year: 2019 ident: D2CS00606E/cit59/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12938-4 – ident: D2CS00606E/cit110/1 – year: 2018 ident: D2CS00606E/cit102/1 – volume: 117 start-page: 27195 year: 2020 ident: D2CS00606E/cit37/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2001923117 – volume: 17 start-page: 8000 year: 2015 ident: D2CS00606E/cit86/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP05786D – volume: 514 start-page: 348 year: 2014 ident: D2CS00606E/cit3/1 publication-title: Nature doi: 10.1038/nature13700 – volume: 135 start-page: 33 year: 2000 ident: D2CS00606E/cit162/1 publication-title: Solid State Ion. doi: 10.1016/S0167-2738(00)00327-1 – volume: MA2021-02 start-page: 362 year: 2021 ident: D2CS00606E/cit120/1 publication-title: ECS Meeting Abstr. doi: 10.1149/MA2021-023362mtgabs – volume: 1 start-page: 16010 year: 2016 ident: D2CS00606E/cit153/1 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.10 – volume: 3 start-page: 16 year: 2018 ident: D2CS00606E/cit33/1 publication-title: Nat. Energy doi: 10.1038/s41560-017-0047-2 – volume: 12 start-page: 2102233 year: 2022 ident: D2CS00606E/cit20/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102233 – year: 2016 ident: D2CS00606E/cit160/1 – volume: 10 start-page: 1903953 year: 2020 ident: D2CS00606E/cit206/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903953 – ident: D2CS00606E/cit143/1 – volume: 117 start-page: 10403 year: 2017 ident: D2CS00606E/cit181/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00115 – volume: 65 start-page: 1907 year: 2020 ident: D2CS00606E/cit61/1 publication-title: Sci. Bull. doi: 10.1016/j.scib.2020.07.012 – volume: 14 start-page: 345 year: 2018 ident: D2CS00606E/cit63/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.05.021 – volume: 6 start-page: 6362 year: 2015 ident: D2CS00606E/cit155/1 publication-title: Nat. Commun. doi: 10.1038/ncomms7362 – year: 2015 ident: D2CS00606E/cit131/1 – volume: 32 start-page: 2105776 year: 2022 ident: D2CS00606E/cit207/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202105776 – ident: D2CS00606E/cit79/1 – volume: 3 start-page: 267 year: 2018 ident: D2CS00606E/cit1/1 publication-title: Nat. Energy doi: 10.1038/s41560-018-0107-2 – volume: 6 start-page: 723 year: 2021 ident: D2CS00606E/cit35/1 publication-title: Nat. Energy doi: 10.1038/s41560-021-00852-3 – year: 2018 ident: D2CS00606E/cit138/1 – volume: 33 start-page: 2002325 year: 2021 ident: D2CS00606E/cit195/1 publication-title: Adv. Mater. doi: 10.1002/adma.202002325 – volume: 296 start-page: 150 year: 2015 ident: D2CS00606E/cit186/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.07.027 – ident: D2CS00606E/cit6/1 – volume: 39 start-page: 654 year: 2017 ident: D2CS00606E/cit197/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.07.023 – volume: 6 start-page: 790 year: 2021 ident: D2CS00606E/cit38/1 publication-title: Nat. Energy doi: 10.1038/s41560-021-00833-6 – volume: 11 start-page: 626 year: 2016 ident: D2CS00606E/cit27/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.32 – volume: 122 start-page: 21462 year: 2018 ident: D2CS00606E/cit78/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b06650 – volume: 7 start-page: 1120 year: 2022 ident: D2CS00606E/cit161/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c00255 – volume: 97–98 start-page: 185 year: 2001 ident: D2CS00606E/cit165/1 publication-title: J. Power Sources doi: 10.1016/S0378-7753(01)00616-4 – volume: 5 start-page: 23434 year: 2017 ident: D2CS00606E/cit198/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA08531A – volume: 5 start-page: 663 year: 2020 ident: D2CS00606E/cit5/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b02574 – volume: 13 start-page: 1324 year: 2020 ident: D2CS00606E/cit202/1 publication-title: Nano Res. doi: 10.1007/s12274-019-2565-7 – volume: 33 start-page: 2211067 year: 2023 ident: D2CS00606E/cit164/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202211067 – ident: D2CS00606E/cit101/1 – volume: 9 start-page: 1803170 year: 2019 ident: D2CS00606E/cit14/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803170 – year: 1996 ident: D2CS00606E/cit115/1 – volume: 8 start-page: 2174 year: 2017 ident: D2CS00606E/cit151/1 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02364-9 – volume: 3 start-page: 181 year: 2018 ident: D2CS00606E/cit82/1 publication-title: ACS Omega doi: 10.1021/acsomega.7b01501 – volume: 10 start-page: 900 year: 2019 ident: D2CS00606E/cit190/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08767-0 – volume: 31 start-page: 2106740 year: 2021 ident: D2CS00606E/cit88/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202106740 – year: 2019 ident: D2CS00606E/cit139/1 – volume-title: Master of Science Thesis in the Supply Chain Management Programme year: 2016 ident: D2CS00606E/cit80/1 – ident: D2CS00606E/cit8/1 – volume: 14 start-page: 289 year: 2018 ident: D2CS00606E/cit127/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.05.009 – volume: 136 start-page: 107238 year: 2022 ident: D2CS00606E/cit148/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2022.107238 – volume: 11 start-page: 382 year: 2019 ident: D2CS00606E/cit182/1 publication-title: Nat. Chem. doi: 10.1038/s41557-018-0203-8 – volume-title: US Pat. ident: D2CS00606E/cit90/1 – volume: 31 start-page: 1902785 year: 2019 ident: D2CS00606E/cit36/1 publication-title: Adv. Mater. doi: 10.1002/adma.201902785 – volume: 131 start-page: 202 year: 2014 ident: D2CS00606E/cit117/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.01.114 – volume: 21 start-page: 1896 year: 2021 ident: D2CS00606E/cit192/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c00140 – volume: 13 start-page: 664 year: 2011 ident: D2CS00606E/cit118/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2011.04.003 – volume: 7 start-page: 664 year: 2022 ident: D2CS00606E/cit4/1 publication-title: Nat. Energy doi: 10.1038/s41560-022-01065-y – volume: 164 start-page: A93 year: 2016 ident: D2CS00606E/cit168/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0351702jes – volume: 22 start-page: 3047 year: 2022 ident: D2CS00606E/cit128/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c00338 – ident: D2CS00606E/cit41/1 – volume: 3 start-page: 1637 year: 2019 ident: D2CS00606E/cit204/1 publication-title: Joule doi: 10.1016/j.joule.2019.05.022 – volume: 6 start-page: 3761 year: 2021 ident: D2CS00606E/cit205/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c01977 – volume: 160 start-page: A415 year: 2013 ident: D2CS00606E/cit114/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.018303jes – year: 2021 ident: D2CS00606E/cit93/1 – volume: 397 start-page: 139270 year: 2021 ident: D2CS00606E/cit188/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.139270 – year: 2021 ident: D2CS00606E/cit142/1 – volume: 50 start-page: 535 year: 2004 ident: D2CS00606E/cit113/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2004.03.065 – start-page: 81 volume-title: Lithium Process Chemistry year: 2015 ident: D2CS00606E/cit44/1 doi: 10.1016/B978-0-12-801417-2.00003-7 – volume: 11 start-page: 2000804 year: 2021 ident: D2CS00606E/cit172/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000804 – volume: 50 start-page: 24 year: 1998 ident: D2CS00606E/cit49/1 publication-title: JOM doi: 10.1007/s11837-998-0027-x – volume: 9 start-page: 4480 year: 2018 ident: D2CS00606E/cit179/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06879-7 – volume: 12 start-page: 23931 year: 2020 ident: D2CS00606E/cit83/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c04355 – year: 2020 ident: D2CS00606E/cit121/1 – year: 2015 ident: D2CS00606E/cit109/1 – volume: 4 start-page: 551 year: 2019 ident: D2CS00606E/cit76/1 publication-title: Nat. Energy doi: 10.1038/s41560-019-0390-6 – volume: 5 start-page: 468 year: 2019 ident: D2CS00606E/cit201/1 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.8b00845 – volume: 4 start-page: 683 year: 2019 ident: D2CS00606E/cit70/1 publication-title: Nat. Energy doi: 10.1038/s41560-019-0428-9 – start-page: 1998 ident: D2CS00606E/cit96/1 – volume: 40 start-page: 3494 year: 2021 ident: D2CS00606E/cit62/1 publication-title: Rare Met. doi: 10.1007/s12598-021-01708-1 – volume: 139 start-page: 220 year: 2015 ident: D2CS00606E/cit69/1 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.11.051 – volume: 13 start-page: 1884 year: 2020 ident: D2CS00606E/cit67/1 publication-title: Materials doi: 10.3390/ma13081884 – ident: D2CS00606E/cit91/1 – ident: D2CS00606E/cit129/1 – ident: D2CS00606E/cit94/1 – volume: 172 start-page: 388 year: 2017 ident: D2CS00606E/cit43/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2016.08.031 – start-page: 1 volume-title: Lithium Process Chemistry year: 2015 ident: D2CS00606E/cit47/1 doi: 10.1016/B978-0-12-801417-2.00001-3 – ident: D2CS00606E/cit107/1 – volume: 9 start-page: 5262 year: 2018 ident: D2CS00606E/cit13/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07599-8 – volume: 59 start-page: 6665 year: 2020 ident: D2CS00606E/cit147/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201912217 – volume: 6 start-page: 1020 year: 2021 ident: D2CS00606E/cit56/1 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00324-w – volume: 3 start-page: 1094 year: 2019 ident: D2CS00606E/cit11/1 publication-title: Joule doi: 10.1016/j.joule.2019.02.004 – volume: 2 start-page: 65 year: 2012 ident: D2CS00606E/cit42/1 publication-title: Minerals doi: 10.3390/min2010065 – volume: 18 start-page: 040908 year: 2021 ident: D2CS00606E/cit54/1 publication-title: J. Electrochem. Energy Convers. Storage doi: 10.1115/1.4052043 – volume: 15 start-page: 116 year: 2018 ident: D2CS00606E/cit199/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.03.018 – volume: 59 start-page: 12636 year: 2020 ident: D2CS00606E/cit23/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201909339 – volume: 11 start-page: 2102259 year: 2021 ident: D2CS00606E/cit133/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102259 – volume: 5 start-page: 561 year: 2020 ident: D2CS00606E/cit32/1 publication-title: Nat. Energy doi: 10.1038/s41560-020-0648-z – volume: 71 start-page: 258 year: 2012 ident: D2CS00606E/cit68/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.03.161 – volume: 164 start-page: A2164 year: 2017 ident: D2CS00606E/cit170/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.1701709jes – year: 2020 ident: D2CS00606E/cit123/1 – volume: 32 start-page: 1905440 year: 2020 ident: D2CS00606E/cit45/1 publication-title: Adv. Mater. doi: 10.1002/adma.201905440 – volume: 14 start-page: 594 year: 2019 ident: D2CS00606E/cit145/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0427-9 – volume: 9 start-page: 1901457 year: 2019 ident: D2CS00606E/cit16/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901457 – volume: 51 start-page: 102002 year: 2011 ident: D2CS00606E/cit64/1 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/51/10/102002 – volume: 4 start-page: 1300815 year: 2014 ident: D2CS00606E/cit116/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300815 – volume: 10 start-page: 2067 year: 2019 ident: D2CS00606E/cit84/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09924-1 – year: 2019 ident: D2CS00606E/cit141/1 – ident: D2CS00606E/cit48/1 – volume: 46 start-page: 1 year: 2001 ident: D2CS00606E/cit105/1 publication-title: Mater. Charact. doi: 10.1016/S1044-5803(00)00079-6 – volume: 117 start-page: 29453 year: 2020 ident: D2CS00606E/cit85/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2009221117 – volume: 1 start-page: 16099 year: 2016 ident: D2CS00606E/cit17/1 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.99 – ident: D2CS00606E/cit95/1 – year: 2020 ident: D2CS00606E/cit122/1 – volume: 63 start-page: 1483 year: 2020 ident: D2CS00606E/cit135/1 publication-title: Sci. China: Chem. doi: 10.1007/s11426-020-9810-1 – volume: 6 start-page: 174 year: 2019 ident: D2CS00606E/cit89/1 publication-title: AIMS Mater. Sci. doi: 10.3934/matersci.2019.2.174 – volume: 196 start-page: 8091 year: 2011 ident: D2CS00606E/cit185/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.05.035 – volume: 19 start-page: 6377 year: 2019 ident: D2CS00606E/cit200/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b02560 – volume-title: US Pat. ident: D2CS00606E/cit159/1 – ident: D2CS00606E/cit9/1 – volume: 10 start-page: 4597 year: 2019 ident: D2CS00606E/cit21/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12542-6 – volume: 11 start-page: 2003769 year: 2021 ident: D2CS00606E/cit194/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003769 – ident: D2CS00606E/cit174/1 – volume: 7 start-page: 1937 year: 2020 ident: D2CS00606E/cit12/1 publication-title: Mater. Horiz. doi: 10.1039/D0MH00067A – volume: 12 start-page: 2224 year: 2019 ident: D2CS00606E/cit106/1 publication-title: Nano Res. doi: 10.1007/s12274-019-2368-x – volume: 6 start-page: 1901776 year: 2019 ident: D2CS00606E/cit203/1 publication-title: Adv. Sci. doi: 10.1002/advs.201901776 |
SSID | ssj0011762 |
Score | 2.6768992 |
SecondaryResourceType | review_article |
Snippet | Lithium (Li) metal, owing to its high specific capacity and low redox potential as a Li
+
ion source in rechargeable lithium batteries, shows impressive... Lithium (Li) metal, owing to its high specific capacity and low redox potential as a Li ion source in rechargeable lithium batteries, shows impressive... Lithium (Li) metal, owing to its high specific capacity and low redox potential as a Li+ ion source in rechargeable lithium batteries, shows impressive... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2553 |
SubjectTerms | Anodes Electrochemistry Energy storage Foils Fragility Illusions Ion sources Lithium Lithium batteries Lithium ions Mechanical engineering Metallurgy Rechargeable batteries |
Title | Less is more: a perspective on thinning lithium metal towards high-energy-density rechargeable lithium batteries |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36920421 https://www.proquest.com/docview/2804974038 https://www.proquest.com/docview/2787212918 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gEuiNdCYUFGcEEokDp-JNxWpWhBCxe6YjlVjuPsRoK0ahsh-PXMOHYS2B4WLlGV2kmc-TIee2a-IeR5mnBWxoWKSp7aiPMijbS2NtImnhjk3-QK850_fpLHp_zDmTgbjX4Ms0u2-Svza2deyf9IFc6BXDFL9h8k210UTsBvkC8cQcJwvJKMT1BNVVjOZm3brOVVnzvZugEqV5IIM40vquY7FozG6HIXK7t5iVzFkXXZf1GBkexgkYMGRPIk61KqQrfcsXCGeMNAbBC4BkLkp2c27fR84wL4dH3-cxD407i92S-26gHlt6y_NvVFUw23IViCHpU2-zmkX-HWROxjom2rTbmMI65agsegbgUbwCod6k7R0gb7eRh0Cdup4-MEKVLfsulnJJORs34mC977vya4LuzQOdyTbNH3vUb2GawvQKPvH83m7086B9RESe-AakcVmG2T7HXf-09b5tICBcyVdSgj48yV-S1y068z6FELmttkZOs75Po0lPe7S1YIHlptKILnDdV0AB26rGmADvUYoA461EOH7oAOHUKn69ZB5x45fTebT48jX34jMjxOtpFA7lCpZVKCkc8Lo4VIpU6FyFVWlFkhTS5jVZS5YtYKaXD3v5RpIos0U1jA5YDs1cvaPiDUwLpYZqyAy2Rcc6VVkmRgjAqVT0rBzJi8CC9yYTw3PZZI-ba4LLIxeda1XbWMLDtbHQZ5LPwXu1mwFNbDCgaXjsnT7m947-gk07VdNtAGZjAw57IJtLnfyrG7TQJjgEluMiYHINjudMHMxt3VPrzSsz0iN_ov6JDsbdeNfQym7TZ_4mH4G1nuo_k |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Less+is+more%3A+a+perspective+on+thinning+lithium+metal+towards+high-energy-density+rechargeable+lithium+batteries&rft.jtitle=Chemical+Society+reviews&rft.au=Wu%2C+Wangyan&rft.au=Luo%2C+Wei&rft.au=Huang%2C+Yunhui&rft.date=2023-04-24&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=52&rft.issue=8&rft.spage=2553&rft.epage=2572&rft_id=info:doi/10.1039%2FD2CS00606E&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2CS00606E |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |