Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging
Under normal physiological conditions, reactive oxygen species (ROS) serve as 'redox messengers' in the regulation of intracellular signalling, whereas excess ROS may induce irreversible damage to cellular components and lead to cell death by promoting the intrinsic apoptotic pathway throu...
Saved in:
Published in | Experimental biology and medicine (Maywood, N.J.) Vol. 238; no. 5; p. 450 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
01.05.2013
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Under normal physiological conditions, reactive oxygen species (ROS) serve as 'redox messengers' in the regulation of intracellular signalling, whereas excess ROS may induce irreversible damage to cellular components and lead to cell death by promoting the intrinsic apoptotic pathway through mitochondria. In the aging process, accumulation of mitochondria DNA mutations, impairment of oxidative phosphorylation as well as an imbalance in the expression of antioxidant enzymes result in further overproduction of ROS. This mitochondrial dysfunction-elicited ROS production axis forms a vicious cycle, which is the basis of mitochondrial free radical theory of aging. In addition, several lines of evidence have emerged recently to demonstrate that ROS play crucial roles in the regulation of cellular metabolism, antioxidant defence and posttranslational modification of proteins. We first discuss the oxidative stress responses, including metabolites redistribution and alteration of the acetylation status of proteins, in human cells with mitochondrial dysfunction and in aging. On the other hand, autophagy and mitophagy eliminate defective mitochondria and serve as a scavenger and apoptosis defender of cells in response to oxidative stress during aging. These scenarios mediate the restoration or adaptation of cells to respond to aging and age-related disorders for survival. In the natural course of aging, the homeostasis in the network of oxidative stress responses is disturbed by a progressive increase in the intracellular level of the ROS generated by defective mitochondria. Caloric restriction, which is generally thought to promote longevity, has been reported to enhance the efficiency of this network and provide multiple benefits to tissue cells. In this review, we emphasize the positive and integrative roles of mild oxidative stress elicited by mitochondria in the regulation of adaptation, anti-aging and scavenging pathway beyond their roles in the vicious cycle of mitochondrial dysfunction in the aging process. |
---|---|
AbstractList | Under normal physiological conditions, reactive oxygen species (ROS) serve as 'redox messengers' in the regulation of intracellular signalling, whereas excess ROS may induce irreversible damage to cellular components and lead to cell death by promoting the intrinsic apoptotic pathway through mitochondria. In the aging process, accumulation of mitochondria DNA mutations, impairment of oxidative phosphorylation as well as an imbalance in the expression of antioxidant enzymes result in further overproduction of ROS. This mitochondrial dysfunction-elicited ROS production axis forms a vicious cycle, which is the basis of mitochondrial free radical theory of aging. In addition, several lines of evidence have emerged recently to demonstrate that ROS play crucial roles in the regulation of cellular metabolism, antioxidant defence and posttranslational modification of proteins. We first discuss the oxidative stress responses, including metabolites redistribution and alteration of the acetylation status of proteins, in human cells with mitochondrial dysfunction and in aging. On the other hand, autophagy and mitophagy eliminate defective mitochondria and serve as a scavenger and apoptosis defender of cells in response to oxidative stress during aging. These scenarios mediate the restoration or adaptation of cells to respond to aging and age-related disorders for survival. In the natural course of aging, the homeostasis in the network of oxidative stress responses is disturbed by a progressive increase in the intracellular level of the ROS generated by defective mitochondria. Caloric restriction, which is generally thought to promote longevity, has been reported to enhance the efficiency of this network and provide multiple benefits to tissue cells. In this review, we emphasize the positive and integrative roles of mild oxidative stress elicited by mitochondria in the regulation of adaptation, anti-aging and scavenging pathway beyond their roles in the vicious cycle of mitochondrial dysfunction in the aging process. |
Author | Wei, Yau-Huei Wu, Yu-Ting Wang, Chih-Hao Wu, Shi-Bei |
Author_xml | – sequence: 1 givenname: Chih-Hao surname: Wang fullname: Wang, Chih-Hao organization: Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan – sequence: 2 givenname: Shi-Bei surname: Wu fullname: Wu, Shi-Bei – sequence: 3 givenname: Yu-Ting surname: Wu fullname: Wu, Yu-Ting – sequence: 4 givenname: Yau-Huei surname: Wei fullname: Wei, Yau-Huei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23856898$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j0tLxDAcxIMo7kPvniRfoJpXk9abLL5gYS97X9LknzbSJqXJiv327qJeZpgfw8Cs0GWIARC6o-SBUqUeaclLrgijXNScyPoCLc-o4LKuF2iV0ichtFRMXqMF41Upq7paon737a3O_gtwyhOkhE8yxpAAQ--Nz2BxM-PB52i6GOzkdY_tnNwxmOxjeMJ-GE9FfQ7YB5w7wKPOXRy7OfnYx3bG0WHd-tDeoCun-wS3f75G-9eX_ea92O7ePjbP28IIwnMhLNeKmgZM5ZRQTvGGCVs6IJU1YErrtLLQSN5QK7SqmdRcCs00ddxUjK3R_e_seGwGsIdx8oOe5sP_a_YD6O1dqw |
CitedBy_id | crossref_primary_10_18632_oncotarget_21885 crossref_primary_10_3892_mmr_2019_10725 crossref_primary_10_1016_j_mce_2021_111207 crossref_primary_10_1016_j_chemosphere_2022_134727 crossref_primary_10_3390_antiox7010013 crossref_primary_10_1002_ddr_21802 crossref_primary_10_1080_01480545_2020_1810259 crossref_primary_10_3390_nu16121907 crossref_primary_10_1016_j_mad_2020_111374 crossref_primary_10_1016_j_bbagen_2016_10_018 crossref_primary_10_1016_j_arr_2025_102657 crossref_primary_10_1080_09291016_2016_1263000 crossref_primary_10_1002_jcb_28109 crossref_primary_10_1016_j_jgr_2021_05_005 crossref_primary_10_1155_2015_945901 crossref_primary_10_1097_JCP_0000000000001166 crossref_primary_10_1155_2014_541230 crossref_primary_10_3390_molecules24183217 crossref_primary_10_2217_nnm_2016_0289 crossref_primary_10_1007_s11356_016_7859_7 crossref_primary_10_2174_1566524023666230407123727 crossref_primary_10_1007_s12035_018_1164_z crossref_primary_10_1016_j_mad_2018_07_008 crossref_primary_10_1038_nbt_4279 crossref_primary_10_1016_j_tox_2022_153296 crossref_primary_10_1089_dna_2019_5097 crossref_primary_10_1007_s11357_015_9841_6 crossref_primary_10_2478_ahem_2021_0018 crossref_primary_10_1038_srep05534 crossref_primary_10_1039_C5FO00505A crossref_primary_10_2174_011874205X319474240611070113 crossref_primary_10_3389_fnagi_2017_00281 crossref_primary_10_1155_2016_3030547 crossref_primary_10_1111_jne_12433 crossref_primary_10_1007_s00439_013_1402_4 crossref_primary_10_3390_cells10123474 crossref_primary_10_1038_s41598_018_31122_0 crossref_primary_10_3390_antiox10030405 crossref_primary_10_1007_s10863_014_9582_8 crossref_primary_10_1021_acs_analchem_0c04854 crossref_primary_10_3389_fphar_2019_01224 crossref_primary_10_12677_TCM_2017_62012 crossref_primary_10_1007_s12602_020_09667_2 crossref_primary_10_1016_j_neuint_2019_03_011 crossref_primary_10_1016_j_phymed_2015_03_014 crossref_primary_10_3390_ijms24043109 crossref_primary_10_3390_ijms20246338 crossref_primary_10_1016_j_bbamem_2017_04_013 crossref_primary_10_1016_j_mce_2018_02_016 crossref_primary_10_1007_s10863_019_09804_9 crossref_primary_10_3109_10715762_2014_920956 crossref_primary_10_3389_fnagi_2018_00032 crossref_primary_10_1016_j_exger_2017_08_017 crossref_primary_10_1007_s00441_022_03734_6 crossref_primary_10_1007_s10522_022_09960_3 crossref_primary_10_1007_s11481_020_09907_w crossref_primary_10_1183_16000617_0050_2015 crossref_primary_10_1016_j_jtemb_2021_126711 crossref_primary_10_1080_02648725_2022_2162232 crossref_primary_10_1242_dmm_026591 crossref_primary_10_2527_jas_2016_1233 crossref_primary_10_1007_s12035_019_1617_z crossref_primary_10_1016_j_freeradbiomed_2018_09_039 crossref_primary_10_1002_fsn3_529 crossref_primary_10_1016_j_neuint_2015_11_003 crossref_primary_10_1016_j_imlet_2014_06_006 crossref_primary_10_1128_AEM_00722_15 crossref_primary_10_1093_icb_icu029 crossref_primary_10_3390_cells13050415 crossref_primary_10_1038_s41598_021_97928_7 crossref_primary_10_3389_fcell_2020_00258 crossref_primary_10_1111_fcp_12258 crossref_primary_10_3390_brainsci11060723 crossref_primary_10_1155_2022_6568748 crossref_primary_10_1093_hmg_ddu073 crossref_primary_10_1016_j_neurobiolaging_2014_01_148 crossref_primary_10_3109_08923973_2015_1122619 crossref_primary_10_1186_s12958_019_0513_8 crossref_primary_10_1007_s40520_022_02201_0 crossref_primary_10_4236_aar_2014_32027 crossref_primary_10_3923_jpt_2020_44_57 crossref_primary_10_1007_s11332_019_00561_1 crossref_primary_10_1111_rda_13930 crossref_primary_10_1093_humrep_dead177 crossref_primary_10_1016_j_chmed_2023_09_006 crossref_primary_10_1080_01635581_2020_1856893 crossref_primary_10_1096_fj_201901175R crossref_primary_10_1089_neu_2022_0080 crossref_primary_10_1002_chem_201803521 crossref_primary_10_1016_j_bbamcr_2020_118854 crossref_primary_10_1177_0022034515573833 crossref_primary_10_23868_gc248366 crossref_primary_10_1016_j_nut_2020_110873 crossref_primary_10_3389_fphar_2020_00416 crossref_primary_10_1111_ppl_13374 crossref_primary_10_1113_JP274887 crossref_primary_10_1371_journal_pone_0095995 crossref_primary_10_1111_ajt_14266 crossref_primary_10_1530_ERC_15_0058 crossref_primary_10_1007_s12035_016_0372_7 crossref_primary_10_1007_s11033_020_05590_5 crossref_primary_10_3892_ijmm_2018_3901 crossref_primary_10_1016_j_mad_2022_111665 crossref_primary_10_1155_2023_1649842 crossref_primary_10_1016_j_arr_2014_12_010 crossref_primary_10_1111_dom_13497 crossref_primary_10_1128_MCB_00337_17 crossref_primary_10_1161_JAHA_117_006157 crossref_primary_10_18632_oncotarget_10685 crossref_primary_10_2139_ssrn_4076672 crossref_primary_10_1016_j_niox_2014_04_008 crossref_primary_10_1038_s41598_017_04530_x crossref_primary_10_1080_10408398_2018_1491022 crossref_primary_10_1111_jfbc_13639 crossref_primary_10_1016_j_neuroscience_2022_07_007 crossref_primary_10_1155_2016_4202437 crossref_primary_10_1016_j_jfca_2014_06_006 crossref_primary_10_3390_chemosensors11110558 crossref_primary_10_7243_2052_6199_1_7 crossref_primary_10_4236_wjns_2018_82019 crossref_primary_10_1155_2015_402386 crossref_primary_10_1016_j_bbr_2024_114866 crossref_primary_10_1016_j_bjp_2015_06_012 crossref_primary_10_3390_microbiolres12020029 crossref_primary_10_1371_journal_pone_0297664 crossref_primary_10_1016_j_jtherbio_2018_03_007 crossref_primary_10_1016_j_biopha_2019_109218 crossref_primary_10_1016_j_arr_2014_07_001 crossref_primary_10_1093_nutrit_nuad131 crossref_primary_10_1002_ange_201710910 crossref_primary_10_1002_jcp_27803 crossref_primary_10_3390_ijms19113520 crossref_primary_10_1093_brain_awu119 crossref_primary_10_1146_annurev_physiol_022516_034314 crossref_primary_10_1002_pmic_201600141 crossref_primary_10_3390_nu11112579 crossref_primary_10_1002_jcb_25242 crossref_primary_10_1016_j_biopha_2015_07_025 crossref_primary_10_1016_j_jnutbio_2018_07_003 crossref_primary_10_1016_j_neuropharm_2014_07_002 crossref_primary_10_1111_jcmm_12492 crossref_primary_10_1016_j_bbrc_2024_149747 crossref_primary_10_1186_s13023_014_0211_8 crossref_primary_10_1007_s00335_016_9651_x crossref_primary_10_1016_j_cbpa_2018_08_008 crossref_primary_10_1371_journal_pone_0131985 crossref_primary_10_18632_oncotarget_19710 crossref_primary_10_18699_VJGB_23_62 crossref_primary_10_3390_microorganisms8010091 crossref_primary_10_1016_j_surfcoat_2021_127578 crossref_primary_10_1016_j_ijsu_2020_04_057 crossref_primary_10_3892_br_2022_1513 crossref_primary_10_3389_fnins_2018_00868 crossref_primary_10_1152_ajplung_00224_2019 crossref_primary_10_1016_j_aquatox_2018_02_005 crossref_primary_10_1093_ismejo_wrae058 crossref_primary_10_1007_s10517_017_3772_4 crossref_primary_10_1155_2017_7529104 crossref_primary_10_1007_s12031_018_1236_6 crossref_primary_10_1371_journal_pone_0090420 crossref_primary_10_1016_j_freeradbiomed_2016_08_022 crossref_primary_10_1155_2020_4845028 crossref_primary_10_1183_09031936_00229714 crossref_primary_10_1038_s41423_022_00902_0 crossref_primary_10_1016_j_neuropharm_2019_107841 crossref_primary_10_31083_j_fbl2812356 crossref_primary_10_1111_bju_16454 crossref_primary_10_3892_etm_2017_4285 crossref_primary_10_3390_antiox12061168 crossref_primary_10_1186_s12920_024_01901_y crossref_primary_10_1007_s12035_020_02212_w crossref_primary_10_3233_JAD_215108 crossref_primary_10_3389_fpsyt_2019_00269 crossref_primary_10_1002_2016GH000017 crossref_primary_10_1007_s11064_019_02916_z crossref_primary_10_1007_s10522_014_9515_2 crossref_primary_10_1556_2060_104_2017_1_6 crossref_primary_10_3390_life11111257 crossref_primary_10_3390_biom13071133 crossref_primary_10_3389_fonc_2017_00081 crossref_primary_10_1016_j_arr_2025_102734 crossref_primary_10_1134_S0006297918110068 crossref_primary_10_1016_j_freeradbiomed_2014_07_026 crossref_primary_10_4236_aar_2014_34036 crossref_primary_10_1007_s10103_016_1882_2 crossref_primary_10_1155_2017_2398696 crossref_primary_10_3109_08916934_2016_1145675 crossref_primary_10_1177_0145561319864570 crossref_primary_10_3109_09513590_2014_938625 crossref_primary_10_1007_s10522_013_9475_y crossref_primary_10_3390_molecules23081955 crossref_primary_10_1002_ajmg_a_36748 crossref_primary_10_1371_journal_pone_0108394 crossref_primary_10_3164_jcbn_14_4 crossref_primary_10_1007_s11010_017_3086_x crossref_primary_10_1016_j_ijbiomac_2023_125409 crossref_primary_10_1016_j_fct_2019_04_040 crossref_primary_10_3389_fendo_2022_818888 crossref_primary_10_3892_mmr_2014_2653 crossref_primary_10_1002_anie_201710910 crossref_primary_10_1134_S0006297918050085 crossref_primary_10_3390_molecules27144396 crossref_primary_10_1530_EJE_13_0661 crossref_primary_10_1016_j_abb_2014_04_018 crossref_primary_10_2217_epi_2017_0141 crossref_primary_10_1074_mcp_M115_055616 crossref_primary_10_1007_s11033_018_4273_x crossref_primary_10_3390_membranes11120944 crossref_primary_10_1007_s11356_018_2485_1 crossref_primary_10_1016_j_bbagen_2014_03_004 crossref_primary_10_1249_JES_0000000000000325 crossref_primary_10_1039_C8FO01713A crossref_primary_10_1016_j_etap_2014_11_008 crossref_primary_10_1016_j_bbamem_2013_11_010 crossref_primary_10_1517_14712598_2014_900538 crossref_primary_10_1111_febs_12866 crossref_primary_10_1097_HXR_0000000000000005 crossref_primary_10_1007_s10863_017_9696_x crossref_primary_10_1016_j_scitotenv_2023_168966 crossref_primary_10_1152_ajpregu_00089_2019 crossref_primary_10_1016_j_rbmo_2020_09_002 crossref_primary_10_1249_MSS_0000000000002190 crossref_primary_10_1038_s41598_022_07851_8 crossref_primary_10_1093_qjmed_hcae208 crossref_primary_10_1111_cas_13482 crossref_primary_10_1007_s11626_013_9681_6 crossref_primary_10_1007_s10482_023_01847_8 crossref_primary_10_1038_s41380_020_00943_9 crossref_primary_10_1016_j_heliyon_2024_e37349 crossref_primary_10_1007_s10863_014_9550_3 crossref_primary_10_2174_1386207326666230515151302 crossref_primary_10_3389_fphar_2020_01234 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1177/1535370213493069 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology Biology |
EISSN | 1535-3699 |
ExternalDocumentID | 23856898 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- -~X .55 .GJ 0R~ 2WC 35A 3O- 4.4 53G 5GY 5I- 5I. 9T4 AACMV AATBZ ABWRX ACARO ACFIC ACGFS ACGZU ACNCT ACPTO ACSBE ADBBV ADWAY AEMJX AENEX AEWDL AEWLI AFIEG AFKRG AFNTS AFOSN AGCDD AGPXR AHOKE AI. AIIQI AIOMO AJUZI ALMA_UNASSIGNED_HOLDINGS AOIJS ARTOV AYAKG C1A C45 CGR CS3 CUY CVF DC. DU5 EBS ECM EIF EJD EMOBN F5P GROUPED_DOAJ H13 HYE HZ~ H~9 J8X L7B M4V MV1 MVM NPM O9- OK1 OVD P.B P.C RPM RSE SAUOL SCNPE SFC TEORI TRM UPT VH1 VXZ W8F WOQ X7M XOL YKV ZCA ZGI ~KM |
ID | FETCH-LOGICAL-c403t-4d3a71cbec8f747f73b24d5fe08dcec5dfa7deb63b1d4a7926a364a2a1f3c822 |
IngestDate | Wed Feb 19 01:52:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | mtDNA mutation vicious cycle autophagy caloric restriction Aging mitochondrial dysfunction oxidative stress |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c403t-4d3a71cbec8f747f73b24d5fe08dcec5dfa7deb63b1d4a7926a364a2a1f3c822 |
PMID | 23856898 |
ParticipantIDs | pubmed_primary_23856898 |
PublicationCentury | 2000 |
PublicationDate | 2013-05-01 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Experimental biology and medicine (Maywood, N.J.) |
PublicationTitleAlternate | Exp Biol Med (Maywood) |
PublicationYear | 2013 |
SSID | ssj0015726 |
Score | 2.519933 |
SecondaryResourceType | review_article |
Snippet | Under normal physiological conditions, reactive oxygen species (ROS) serve as 'redox messengers' in the regulation of intracellular signalling, whereas excess... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 450 |
SubjectTerms | Animals Apoptosis - genetics Autophagy - genetics DNA, Mitochondrial - genetics DNA, Mitochondrial - metabolism Humans Longevity Mitochondria - genetics Mitochondria - metabolism Mitochondria - pathology Mitochondrial Degradation - genetics Mutation Oxidative Stress Protein Processing, Post-Translational Reactive Oxygen Species - metabolism |
Title | Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23856898 |
Volume | 238 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2IBAXBC3vh3xAXJCXbOy8uLUVaFVpC4dFtKfK8YMN6iYVbCSW38SPZPzKustDwCWK7MSK_H0Zz4zHMwg9Y6VIKpVSUuaJJiyTCalFxoypotNSaZZw49CfHefT9-zoJDsZjb5HUUv9qh6Lb788V_I_qEIb4GpOyf4DssOg0AD3gC9cAWG4_hXGb7820iXu9kc-PruIV_VCnTfCKpOgXS7hpwUh10pboEOuv5i1LMR0NJuI8hDyaIoUd9bj4fIzmUiBj2GF-zSE7m0KA8SJnMJevdFcZ3wdInqOx0fjyOnwwXupDxfNgkx5N7T31hu7aMiBai43nvZkHj7C7iTZMIRT3pNp75_1zotJFCo4VkHgZoTmrkhSkMgpLSPqZZF8ZS5L7c9y3-48m8FokZgkdRWYQlX8KEzpxdLyAEbP8tLVvv5z71Ym7tC1g3bAJjFFVo1nyO9YZUUabYO_3P4Uk3Tav75lwFhFZn4L3fQWCN53dLqNRqrdRXv7LV91yzV-jt8NyO-iawfh7vrMA7uHzgfaYUc7HGiHA-1wvcaXaIcj2r3CEelw02IgHd4iHe40tqS7g-ZvXs8Pp8QX7SCCJXRFmKS8mAgQDaUGU1UXtE6ZzLRKSimUyKTmhVR1TuuJZLyo0pzTnPGUTzQVoK3eRVfarlX3EdYU5lRUVV0kJeBeVQUsIKkQiqqcVzp5gO65eTy7cIlZzsIMP_xtzyN0Y0PDx-iqBkmgnoBauaqfWjx_AG0Mec0 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxidative+stress+response+elicited+by+mitochondrial+dysfunction%3A+implication+in+the+pathophysiology+of+aging&rft.jtitle=Experimental+biology+and+medicine+%28Maywood%2C+N.J.%29&rft.au=Wang%2C+Chih-Hao&rft.au=Wu%2C+Shi-Bei&rft.au=Wu%2C+Yu-Ting&rft.au=Wei%2C+Yau-Huei&rft.date=2013-05-01&rft.eissn=1535-3699&rft.volume=238&rft.issue=5&rft.spage=450&rft_id=info:doi/10.1177%2F1535370213493069&rft_id=info%3Apmid%2F23856898&rft_id=info%3Apmid%2F23856898&rft.externalDocID=23856898 |