Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging

Under normal physiological conditions, reactive oxygen species (ROS) serve as 'redox messengers' in the regulation of intracellular signalling, whereas excess ROS may induce irreversible damage to cellular components and lead to cell death by promoting the intrinsic apoptotic pathway throu...

Full description

Saved in:
Bibliographic Details
Published inExperimental biology and medicine (Maywood, N.J.) Vol. 238; no. 5; p. 450
Main Authors Wang, Chih-Hao, Wu, Shi-Bei, Wu, Yu-Ting, Wei, Yau-Huei
Format Journal Article
LanguageEnglish
Published England 01.05.2013
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Under normal physiological conditions, reactive oxygen species (ROS) serve as 'redox messengers' in the regulation of intracellular signalling, whereas excess ROS may induce irreversible damage to cellular components and lead to cell death by promoting the intrinsic apoptotic pathway through mitochondria. In the aging process, accumulation of mitochondria DNA mutations, impairment of oxidative phosphorylation as well as an imbalance in the expression of antioxidant enzymes result in further overproduction of ROS. This mitochondrial dysfunction-elicited ROS production axis forms a vicious cycle, which is the basis of mitochondrial free radical theory of aging. In addition, several lines of evidence have emerged recently to demonstrate that ROS play crucial roles in the regulation of cellular metabolism, antioxidant defence and posttranslational modification of proteins. We first discuss the oxidative stress responses, including metabolites redistribution and alteration of the acetylation status of proteins, in human cells with mitochondrial dysfunction and in aging. On the other hand, autophagy and mitophagy eliminate defective mitochondria and serve as a scavenger and apoptosis defender of cells in response to oxidative stress during aging. These scenarios mediate the restoration or adaptation of cells to respond to aging and age-related disorders for survival. In the natural course of aging, the homeostasis in the network of oxidative stress responses is disturbed by a progressive increase in the intracellular level of the ROS generated by defective mitochondria. Caloric restriction, which is generally thought to promote longevity, has been reported to enhance the efficiency of this network and provide multiple benefits to tissue cells. In this review, we emphasize the positive and integrative roles of mild oxidative stress elicited by mitochondria in the regulation of adaptation, anti-aging and scavenging pathway beyond their roles in the vicious cycle of mitochondrial dysfunction in the aging process.
AbstractList Under normal physiological conditions, reactive oxygen species (ROS) serve as 'redox messengers' in the regulation of intracellular signalling, whereas excess ROS may induce irreversible damage to cellular components and lead to cell death by promoting the intrinsic apoptotic pathway through mitochondria. In the aging process, accumulation of mitochondria DNA mutations, impairment of oxidative phosphorylation as well as an imbalance in the expression of antioxidant enzymes result in further overproduction of ROS. This mitochondrial dysfunction-elicited ROS production axis forms a vicious cycle, which is the basis of mitochondrial free radical theory of aging. In addition, several lines of evidence have emerged recently to demonstrate that ROS play crucial roles in the regulation of cellular metabolism, antioxidant defence and posttranslational modification of proteins. We first discuss the oxidative stress responses, including metabolites redistribution and alteration of the acetylation status of proteins, in human cells with mitochondrial dysfunction and in aging. On the other hand, autophagy and mitophagy eliminate defective mitochondria and serve as a scavenger and apoptosis defender of cells in response to oxidative stress during aging. These scenarios mediate the restoration or adaptation of cells to respond to aging and age-related disorders for survival. In the natural course of aging, the homeostasis in the network of oxidative stress responses is disturbed by a progressive increase in the intracellular level of the ROS generated by defective mitochondria. Caloric restriction, which is generally thought to promote longevity, has been reported to enhance the efficiency of this network and provide multiple benefits to tissue cells. In this review, we emphasize the positive and integrative roles of mild oxidative stress elicited by mitochondria in the regulation of adaptation, anti-aging and scavenging pathway beyond their roles in the vicious cycle of mitochondrial dysfunction in the aging process.
Author Wei, Yau-Huei
Wu, Yu-Ting
Wang, Chih-Hao
Wu, Shi-Bei
Author_xml – sequence: 1
  givenname: Chih-Hao
  surname: Wang
  fullname: Wang, Chih-Hao
  organization: Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
– sequence: 2
  givenname: Shi-Bei
  surname: Wu
  fullname: Wu, Shi-Bei
– sequence: 3
  givenname: Yu-Ting
  surname: Wu
  fullname: Wu, Yu-Ting
– sequence: 4
  givenname: Yau-Huei
  surname: Wei
  fullname: Wei, Yau-Huei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23856898$$D View this record in MEDLINE/PubMed
BookMark eNo1j0tLxDAcxIMo7kPvniRfoJpXk9abLL5gYS97X9LknzbSJqXJiv327qJeZpgfw8Cs0GWIARC6o-SBUqUeaclLrgijXNScyPoCLc-o4LKuF2iV0ichtFRMXqMF41Upq7paon737a3O_gtwyhOkhE8yxpAAQ--Nz2BxM-PB52i6GOzkdY_tnNwxmOxjeMJ-GE9FfQ7YB5w7wKPOXRy7OfnYx3bG0WHd-tDeoCun-wS3f75G-9eX_ea92O7ePjbP28IIwnMhLNeKmgZM5ZRQTvGGCVs6IJU1YErrtLLQSN5QK7SqmdRcCs00ddxUjK3R_e_seGwGsIdx8oOe5sP_a_YD6O1dqw
CitedBy_id crossref_primary_10_18632_oncotarget_21885
crossref_primary_10_3892_mmr_2019_10725
crossref_primary_10_1016_j_mce_2021_111207
crossref_primary_10_1016_j_chemosphere_2022_134727
crossref_primary_10_3390_antiox7010013
crossref_primary_10_1002_ddr_21802
crossref_primary_10_1080_01480545_2020_1810259
crossref_primary_10_3390_nu16121907
crossref_primary_10_1016_j_mad_2020_111374
crossref_primary_10_1016_j_bbagen_2016_10_018
crossref_primary_10_1016_j_arr_2025_102657
crossref_primary_10_1080_09291016_2016_1263000
crossref_primary_10_1002_jcb_28109
crossref_primary_10_1016_j_jgr_2021_05_005
crossref_primary_10_1155_2015_945901
crossref_primary_10_1097_JCP_0000000000001166
crossref_primary_10_1155_2014_541230
crossref_primary_10_3390_molecules24183217
crossref_primary_10_2217_nnm_2016_0289
crossref_primary_10_1007_s11356_016_7859_7
crossref_primary_10_2174_1566524023666230407123727
crossref_primary_10_1007_s12035_018_1164_z
crossref_primary_10_1016_j_mad_2018_07_008
crossref_primary_10_1038_nbt_4279
crossref_primary_10_1016_j_tox_2022_153296
crossref_primary_10_1089_dna_2019_5097
crossref_primary_10_1007_s11357_015_9841_6
crossref_primary_10_2478_ahem_2021_0018
crossref_primary_10_1038_srep05534
crossref_primary_10_1039_C5FO00505A
crossref_primary_10_2174_011874205X319474240611070113
crossref_primary_10_3389_fnagi_2017_00281
crossref_primary_10_1155_2016_3030547
crossref_primary_10_1111_jne_12433
crossref_primary_10_1007_s00439_013_1402_4
crossref_primary_10_3390_cells10123474
crossref_primary_10_1038_s41598_018_31122_0
crossref_primary_10_3390_antiox10030405
crossref_primary_10_1007_s10863_014_9582_8
crossref_primary_10_1021_acs_analchem_0c04854
crossref_primary_10_3389_fphar_2019_01224
crossref_primary_10_12677_TCM_2017_62012
crossref_primary_10_1007_s12602_020_09667_2
crossref_primary_10_1016_j_neuint_2019_03_011
crossref_primary_10_1016_j_phymed_2015_03_014
crossref_primary_10_3390_ijms24043109
crossref_primary_10_3390_ijms20246338
crossref_primary_10_1016_j_bbamem_2017_04_013
crossref_primary_10_1016_j_mce_2018_02_016
crossref_primary_10_1007_s10863_019_09804_9
crossref_primary_10_3109_10715762_2014_920956
crossref_primary_10_3389_fnagi_2018_00032
crossref_primary_10_1016_j_exger_2017_08_017
crossref_primary_10_1007_s00441_022_03734_6
crossref_primary_10_1007_s10522_022_09960_3
crossref_primary_10_1007_s11481_020_09907_w
crossref_primary_10_1183_16000617_0050_2015
crossref_primary_10_1016_j_jtemb_2021_126711
crossref_primary_10_1080_02648725_2022_2162232
crossref_primary_10_1242_dmm_026591
crossref_primary_10_2527_jas_2016_1233
crossref_primary_10_1007_s12035_019_1617_z
crossref_primary_10_1016_j_freeradbiomed_2018_09_039
crossref_primary_10_1002_fsn3_529
crossref_primary_10_1016_j_neuint_2015_11_003
crossref_primary_10_1016_j_imlet_2014_06_006
crossref_primary_10_1128_AEM_00722_15
crossref_primary_10_1093_icb_icu029
crossref_primary_10_3390_cells13050415
crossref_primary_10_1038_s41598_021_97928_7
crossref_primary_10_3389_fcell_2020_00258
crossref_primary_10_1111_fcp_12258
crossref_primary_10_3390_brainsci11060723
crossref_primary_10_1155_2022_6568748
crossref_primary_10_1093_hmg_ddu073
crossref_primary_10_1016_j_neurobiolaging_2014_01_148
crossref_primary_10_3109_08923973_2015_1122619
crossref_primary_10_1186_s12958_019_0513_8
crossref_primary_10_1007_s40520_022_02201_0
crossref_primary_10_4236_aar_2014_32027
crossref_primary_10_3923_jpt_2020_44_57
crossref_primary_10_1007_s11332_019_00561_1
crossref_primary_10_1111_rda_13930
crossref_primary_10_1093_humrep_dead177
crossref_primary_10_1016_j_chmed_2023_09_006
crossref_primary_10_1080_01635581_2020_1856893
crossref_primary_10_1096_fj_201901175R
crossref_primary_10_1089_neu_2022_0080
crossref_primary_10_1002_chem_201803521
crossref_primary_10_1016_j_bbamcr_2020_118854
crossref_primary_10_1177_0022034515573833
crossref_primary_10_23868_gc248366
crossref_primary_10_1016_j_nut_2020_110873
crossref_primary_10_3389_fphar_2020_00416
crossref_primary_10_1111_ppl_13374
crossref_primary_10_1113_JP274887
crossref_primary_10_1371_journal_pone_0095995
crossref_primary_10_1111_ajt_14266
crossref_primary_10_1530_ERC_15_0058
crossref_primary_10_1007_s12035_016_0372_7
crossref_primary_10_1007_s11033_020_05590_5
crossref_primary_10_3892_ijmm_2018_3901
crossref_primary_10_1016_j_mad_2022_111665
crossref_primary_10_1155_2023_1649842
crossref_primary_10_1016_j_arr_2014_12_010
crossref_primary_10_1111_dom_13497
crossref_primary_10_1128_MCB_00337_17
crossref_primary_10_1161_JAHA_117_006157
crossref_primary_10_18632_oncotarget_10685
crossref_primary_10_2139_ssrn_4076672
crossref_primary_10_1016_j_niox_2014_04_008
crossref_primary_10_1038_s41598_017_04530_x
crossref_primary_10_1080_10408398_2018_1491022
crossref_primary_10_1111_jfbc_13639
crossref_primary_10_1016_j_neuroscience_2022_07_007
crossref_primary_10_1155_2016_4202437
crossref_primary_10_1016_j_jfca_2014_06_006
crossref_primary_10_3390_chemosensors11110558
crossref_primary_10_7243_2052_6199_1_7
crossref_primary_10_4236_wjns_2018_82019
crossref_primary_10_1155_2015_402386
crossref_primary_10_1016_j_bbr_2024_114866
crossref_primary_10_1016_j_bjp_2015_06_012
crossref_primary_10_3390_microbiolres12020029
crossref_primary_10_1371_journal_pone_0297664
crossref_primary_10_1016_j_jtherbio_2018_03_007
crossref_primary_10_1016_j_biopha_2019_109218
crossref_primary_10_1016_j_arr_2014_07_001
crossref_primary_10_1093_nutrit_nuad131
crossref_primary_10_1002_ange_201710910
crossref_primary_10_1002_jcp_27803
crossref_primary_10_3390_ijms19113520
crossref_primary_10_1093_brain_awu119
crossref_primary_10_1146_annurev_physiol_022516_034314
crossref_primary_10_1002_pmic_201600141
crossref_primary_10_3390_nu11112579
crossref_primary_10_1002_jcb_25242
crossref_primary_10_1016_j_biopha_2015_07_025
crossref_primary_10_1016_j_jnutbio_2018_07_003
crossref_primary_10_1016_j_neuropharm_2014_07_002
crossref_primary_10_1111_jcmm_12492
crossref_primary_10_1016_j_bbrc_2024_149747
crossref_primary_10_1186_s13023_014_0211_8
crossref_primary_10_1007_s00335_016_9651_x
crossref_primary_10_1016_j_cbpa_2018_08_008
crossref_primary_10_1371_journal_pone_0131985
crossref_primary_10_18632_oncotarget_19710
crossref_primary_10_18699_VJGB_23_62
crossref_primary_10_3390_microorganisms8010091
crossref_primary_10_1016_j_surfcoat_2021_127578
crossref_primary_10_1016_j_ijsu_2020_04_057
crossref_primary_10_3892_br_2022_1513
crossref_primary_10_3389_fnins_2018_00868
crossref_primary_10_1152_ajplung_00224_2019
crossref_primary_10_1016_j_aquatox_2018_02_005
crossref_primary_10_1093_ismejo_wrae058
crossref_primary_10_1007_s10517_017_3772_4
crossref_primary_10_1155_2017_7529104
crossref_primary_10_1007_s12031_018_1236_6
crossref_primary_10_1371_journal_pone_0090420
crossref_primary_10_1016_j_freeradbiomed_2016_08_022
crossref_primary_10_1155_2020_4845028
crossref_primary_10_1183_09031936_00229714
crossref_primary_10_1038_s41423_022_00902_0
crossref_primary_10_1016_j_neuropharm_2019_107841
crossref_primary_10_31083_j_fbl2812356
crossref_primary_10_1111_bju_16454
crossref_primary_10_3892_etm_2017_4285
crossref_primary_10_3390_antiox12061168
crossref_primary_10_1186_s12920_024_01901_y
crossref_primary_10_1007_s12035_020_02212_w
crossref_primary_10_3233_JAD_215108
crossref_primary_10_3389_fpsyt_2019_00269
crossref_primary_10_1002_2016GH000017
crossref_primary_10_1007_s11064_019_02916_z
crossref_primary_10_1007_s10522_014_9515_2
crossref_primary_10_1556_2060_104_2017_1_6
crossref_primary_10_3390_life11111257
crossref_primary_10_3390_biom13071133
crossref_primary_10_3389_fonc_2017_00081
crossref_primary_10_1016_j_arr_2025_102734
crossref_primary_10_1134_S0006297918110068
crossref_primary_10_1016_j_freeradbiomed_2014_07_026
crossref_primary_10_4236_aar_2014_34036
crossref_primary_10_1007_s10103_016_1882_2
crossref_primary_10_1155_2017_2398696
crossref_primary_10_3109_08916934_2016_1145675
crossref_primary_10_1177_0145561319864570
crossref_primary_10_3109_09513590_2014_938625
crossref_primary_10_1007_s10522_013_9475_y
crossref_primary_10_3390_molecules23081955
crossref_primary_10_1002_ajmg_a_36748
crossref_primary_10_1371_journal_pone_0108394
crossref_primary_10_3164_jcbn_14_4
crossref_primary_10_1007_s11010_017_3086_x
crossref_primary_10_1016_j_ijbiomac_2023_125409
crossref_primary_10_1016_j_fct_2019_04_040
crossref_primary_10_3389_fendo_2022_818888
crossref_primary_10_3892_mmr_2014_2653
crossref_primary_10_1002_anie_201710910
crossref_primary_10_1134_S0006297918050085
crossref_primary_10_3390_molecules27144396
crossref_primary_10_1530_EJE_13_0661
crossref_primary_10_1016_j_abb_2014_04_018
crossref_primary_10_2217_epi_2017_0141
crossref_primary_10_1074_mcp_M115_055616
crossref_primary_10_1007_s11033_018_4273_x
crossref_primary_10_3390_membranes11120944
crossref_primary_10_1007_s11356_018_2485_1
crossref_primary_10_1016_j_bbagen_2014_03_004
crossref_primary_10_1249_JES_0000000000000325
crossref_primary_10_1039_C8FO01713A
crossref_primary_10_1016_j_etap_2014_11_008
crossref_primary_10_1016_j_bbamem_2013_11_010
crossref_primary_10_1517_14712598_2014_900538
crossref_primary_10_1111_febs_12866
crossref_primary_10_1097_HXR_0000000000000005
crossref_primary_10_1007_s10863_017_9696_x
crossref_primary_10_1016_j_scitotenv_2023_168966
crossref_primary_10_1152_ajpregu_00089_2019
crossref_primary_10_1016_j_rbmo_2020_09_002
crossref_primary_10_1249_MSS_0000000000002190
crossref_primary_10_1038_s41598_022_07851_8
crossref_primary_10_1093_qjmed_hcae208
crossref_primary_10_1111_cas_13482
crossref_primary_10_1007_s11626_013_9681_6
crossref_primary_10_1007_s10482_023_01847_8
crossref_primary_10_1038_s41380_020_00943_9
crossref_primary_10_1016_j_heliyon_2024_e37349
crossref_primary_10_1007_s10863_014_9550_3
crossref_primary_10_2174_1386207326666230515151302
crossref_primary_10_3389_fphar_2020_01234
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1177/1535370213493069
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
Biology
EISSN 1535-3699
ExternalDocumentID 23856898
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-~X
.55
.GJ
0R~
2WC
35A
3O-
4.4
53G
5GY
5I-
5I.
9T4
AACMV
AATBZ
ABWRX
ACARO
ACFIC
ACGFS
ACGZU
ACNCT
ACPTO
ACSBE
ADBBV
ADWAY
AEMJX
AENEX
AEWDL
AEWLI
AFIEG
AFKRG
AFNTS
AFOSN
AGCDD
AGPXR
AHOKE
AI.
AIIQI
AIOMO
AJUZI
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARTOV
AYAKG
C1A
C45
CGR
CS3
CUY
CVF
DC.
DU5
EBS
ECM
EIF
EJD
EMOBN
F5P
GROUPED_DOAJ
H13
HYE
HZ~
H~9
J8X
L7B
M4V
MV1
MVM
NPM
O9-
OK1
OVD
P.B
P.C
RPM
RSE
SAUOL
SCNPE
SFC
TEORI
TRM
UPT
VH1
VXZ
W8F
WOQ
X7M
XOL
YKV
ZCA
ZGI
~KM
ID FETCH-LOGICAL-c403t-4d3a71cbec8f747f73b24d5fe08dcec5dfa7deb63b1d4a7926a364a2a1f3c822
IngestDate Wed Feb 19 01:52:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords mtDNA mutation
vicious cycle
autophagy
caloric restriction
Aging
mitochondrial dysfunction
oxidative stress
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c403t-4d3a71cbec8f747f73b24d5fe08dcec5dfa7deb63b1d4a7926a364a2a1f3c822
PMID 23856898
ParticipantIDs pubmed_primary_23856898
PublicationCentury 2000
PublicationDate 2013-05-01
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Experimental biology and medicine (Maywood, N.J.)
PublicationTitleAlternate Exp Biol Med (Maywood)
PublicationYear 2013
SSID ssj0015726
Score 2.519933
SecondaryResourceType review_article
Snippet Under normal physiological conditions, reactive oxygen species (ROS) serve as 'redox messengers' in the regulation of intracellular signalling, whereas excess...
SourceID pubmed
SourceType Index Database
StartPage 450
SubjectTerms Animals
Apoptosis - genetics
Autophagy - genetics
DNA, Mitochondrial - genetics
DNA, Mitochondrial - metabolism
Humans
Longevity
Mitochondria - genetics
Mitochondria - metabolism
Mitochondria - pathology
Mitochondrial Degradation - genetics
Mutation
Oxidative Stress
Protein Processing, Post-Translational
Reactive Oxygen Species - metabolism
Title Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging
URI https://www.ncbi.nlm.nih.gov/pubmed/23856898
Volume 238
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2IBAXBC3vh3xAXJCXbOy8uLUVaFVpC4dFtKfK8YMN6iYVbCSW38SPZPzKustDwCWK7MSK_H0Zz4zHMwg9Y6VIKpVSUuaJJiyTCalFxoypotNSaZZw49CfHefT9-zoJDsZjb5HUUv9qh6Lb788V_I_qEIb4GpOyf4DssOg0AD3gC9cAWG4_hXGb7820iXu9kc-PruIV_VCnTfCKpOgXS7hpwUh10pboEOuv5i1LMR0NJuI8hDyaIoUd9bj4fIzmUiBj2GF-zSE7m0KA8SJnMJevdFcZ3wdInqOx0fjyOnwwXupDxfNgkx5N7T31hu7aMiBai43nvZkHj7C7iTZMIRT3pNp75_1zotJFCo4VkHgZoTmrkhSkMgpLSPqZZF8ZS5L7c9y3-48m8FokZgkdRWYQlX8KEzpxdLyAEbP8tLVvv5z71Ym7tC1g3bAJjFFVo1nyO9YZUUabYO_3P4Uk3Tav75lwFhFZn4L3fQWCN53dLqNRqrdRXv7LV91yzV-jt8NyO-iawfh7vrMA7uHzgfaYUc7HGiHA-1wvcaXaIcj2r3CEelw02IgHd4iHe40tqS7g-ZvXs8Pp8QX7SCCJXRFmKS8mAgQDaUGU1UXtE6ZzLRKSimUyKTmhVR1TuuJZLyo0pzTnPGUTzQVoK3eRVfarlX3EdYU5lRUVV0kJeBeVQUsIKkQiqqcVzp5gO65eTy7cIlZzsIMP_xtzyN0Y0PDx-iqBkmgnoBauaqfWjx_AG0Mec0
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxidative+stress+response+elicited+by+mitochondrial+dysfunction%3A+implication+in+the+pathophysiology+of+aging&rft.jtitle=Experimental+biology+and+medicine+%28Maywood%2C+N.J.%29&rft.au=Wang%2C+Chih-Hao&rft.au=Wu%2C+Shi-Bei&rft.au=Wu%2C+Yu-Ting&rft.au=Wei%2C+Yau-Huei&rft.date=2013-05-01&rft.eissn=1535-3699&rft.volume=238&rft.issue=5&rft.spage=450&rft_id=info:doi/10.1177%2F1535370213493069&rft_id=info%3Apmid%2F23856898&rft_id=info%3Apmid%2F23856898&rft.externalDocID=23856898