Clutter Map Constant False Alarm Rate Mixed with the Gabor Transform for Target Detection via Monte Carlo Simulation
Radar detection is a technology frequently used to detect objects and measure the range, angle, or velocity of those objects. Several studies have been performed to improve the accuracy and performance of detection methods, but they encountered a strong challenge, which was the minimization of false...
Saved in:
Published in | Applied sciences Vol. 14; no. 7; p. 2967 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Radar detection is a technology frequently used to detect objects and measure the range, angle, or velocity of those objects. Several studies have been performed to improve the accuracy and performance of detection methods, but they encountered a strong challenge, which was the minimization of false alarms and the distinguishing of real targets from false alarms, especially in nonhomogeneous environments. We propose a new detection method that uses time-frequency analysis tools to improve detection performance and maintain a low constant false alarm rate. Different from existing works, this paper combines the clutter map constant false alarm rate technique with the Gabor transform for accurate target detection in cluttered environments. We suggest the combination of a CFAR detector with a time-frequency method that enables us to tackle challenging scenarios involving near targets. The proposed method allows for locating the exact position of the target by reducing the impact of clutter and maintaining a low rate of false alarms, while the Gabor transform facilitates the extraction of pertinent target characteristics and improves differentiation from clutter. Through experiments and simulations in different scenarios and clutter models, we demonstrate that the method is efficient in measurements and performs well in cluttered environments. This research has a major impact on signal processing and significantly improves target detection in cluttered environments, allowing this method to be deeply developed and implemented. |
---|---|
AbstractList | Radar detection is a technology frequently used to detect objects and measure the range, angle, or velocity of those objects. Several studies have been performed to improve the accuracy and performance of detection methods, but they encountered a strong challenge, which was the minimization of false alarms and the distinguishing of real targets from false alarms, especially in nonhomogeneous environments. We propose a new detection method that uses time-frequency analysis tools to improve detection performance and maintain a low constant false alarm rate. Different from existing works, this paper combines the clutter map constant false alarm rate technique with the Gabor transform for accurate target detection in cluttered environments. We suggest the combination of a CFAR detector with a time-frequency method that enables us to tackle challenging scenarios involving near targets. The proposed method allows for locating the exact position of the target by reducing the impact of clutter and maintaining a low rate of false alarms, while the Gabor transform facilitates the extraction of pertinent target characteristics and improves differentiation from clutter. Through experiments and simulations in different scenarios and clutter models, we demonstrate that the method is efficient in measurements and performs well in cluttered environments. This research has a major impact on signal processing and significantly improves target detection in cluttered environments, allowing this method to be deeply developed and implemented. |
Audience | Academic |
Author | Zhi, Yongfeng Fonzeu Monguen, Cedric Karel Mbouombouo Mboungam, Abdel Hamid |
Author_xml | – sequence: 1 givenname: Abdel Hamid orcidid: 0009-0009-6555-2563 surname: Mbouombouo Mboungam fullname: Mbouombouo Mboungam, Abdel Hamid – sequence: 2 givenname: Yongfeng surname: Zhi fullname: Zhi, Yongfeng – sequence: 3 givenname: Cedric Karel orcidid: 0000-0001-8138-4103 surname: Fonzeu Monguen fullname: Fonzeu Monguen, Cedric Karel |
BookMark | eNptUVtvFCEUJqYm1ton_wCJj2YrDMwwPG5GW5t0Y6L1mZyFw5bNLIwM6-Xfy3SNaYzwwOHw3cJ5Sc5iikjIa86uhNDsHUwTl0w1ulPPyHnDVLcSkquzJ_ULcjnPe1aX5qLn7JyUYTyWgpluYKJDinOBWOg1jDPS9Qj5QD9DQboJP9HRH6E80PKA9Aa2KdP7DHH2qWL8coO8w0LfY0FbQor0ewC6SbGyB8hjol_C4TjC8vSKPPeLw-Wf84J8vf5wP3xc3X26uR3WdysrmSgrCa7DHrcatxKdcqzj3nF0VvRoedO0vHNe98rLbc8b1TnpeWtbKbmTAEyKC3J70nUJ9mbK4QD5l0kQzGMj5Z2BXIId0TRSauWF7YVFqdsGnPcN9sJh17bVpGq9OWlNOX074lzMPh1zrPGNYEIJXYMsjlcn1A6qaIg-lQy2boeHYOu8fKj9tdKMcSWYqoS3J4LNaZ4z-r8xOTPLWM2TsVY0_wdtQ3n80moTxv9yfgPsBqbs |
CitedBy_id | crossref_primary_10_3390_rs16213951 |
Cites_doi | 10.3390/rs15102488 10.1007/s10476-021-0112-8 10.3390/rs14081779 10.1016/j.aeue.2013.01.001 10.13164/re.2022.0114 10.3390/rs15133223 10.1016/j.phycom.2023.102085 10.1109/TAES.2023.3264448 10.1007/s11554-023-01316-5 10.1016/j.dsp.2009.10.001 10.1049/sil2.12145 10.1109/TAES.1983.309350 10.1016/j.aeue.2016.06.016 10.1109/TAES.1986.310777 10.1109/78.600004 10.1049/iet-spr.2019.0180 10.1114/B:ABME.0000039445.86423.ed 10.1109/TC.2004.1261838 10.1109/ACCESS.2020.3030710 10.3390/s23020954 10.3390/jmse11030513 10.1109/7.81424 10.1587/transfun.2022EAP1064 10.1109/TAES.1986.310750 10.1016/S0165-1684(99)00115-2 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
DOI | 10.3390/app14072967 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journal Collection |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_24497f3c83ce4952adff2e83de655f98 A790017307 10_3390_app14072967 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c403t-4ad6e8eb9eb4ed7d061fd1edc38ec122516df987f4b81276d4f15c5441d4aa043 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:30:45 EDT 2025 Mon Jun 30 13:36:47 EDT 2025 Tue Jun 10 21:11:20 EDT 2025 Thu Apr 24 22:56:33 EDT 2025 Tue Jul 01 04:34:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-4ad6e8eb9eb4ed7d061fd1edc38ec122516df987f4b81276d4f15c5441d4aa043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0009-6555-2563 0000-0001-8138-4103 |
OpenAccessLink | https://doaj.org/article/24497f3c83ce4952adff2e83de655f98 |
PQID | 3037399874 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_24497f3c83ce4952adff2e83de655f98 proquest_journals_3037399874 gale_infotracacademiconefile_A790017307 crossref_primary_10_3390_app14072967 crossref_citationtrail_10_3390_app14072967 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Khan (ref_22) 2020; 8 ref_13 Lee (ref_21) 1997; 45 ref_16 ref_15 Finn (ref_5) 1968; 29 Liang (ref_1) 2023; 20 Meng (ref_12) 2013; 67 Barkat (ref_10) 1991; 27 Clouqueur (ref_17) 2004; 53 Detouche (ref_23) 2023; 59 Hamadouche (ref_9) 2000; 80 Cao (ref_14) 2023; 17 Smaoui (ref_20) 2021; 48 Klinger (ref_19) 2004; 32 ref_25 Rohling (ref_24) 1983; AES-19 Nitzberg (ref_7) 1986; AES-22 Feintuch (ref_27) 2023; 59 Bouchelaghem (ref_8) 2016; 70 Meng (ref_11) 2010; 20 ref_2 Xu (ref_3) 2022; 31 Finn (ref_6) 1986; AES-22 ref_26 Li (ref_18) 2020; 14 Liu (ref_4) 2023; E106A |
References_xml | – ident: ref_26 doi: 10.3390/rs15102488 – volume: 29 start-page: 414 year: 1968 ident: ref_5 article-title: Adaptive detection mode with threshold control as a function of spatially sampled clutter level estimates publication-title: RCA Rev. – volume: 48 start-page: 147 year: 2021 ident: ref_20 article-title: Heisenberg uncertainty inequality for Gabor transform on nilpotent Lie groups publication-title: Anal. Math. doi: 10.1007/s10476-021-0112-8 – ident: ref_25 doi: 10.3390/rs14081779 – volume: 67 start-page: 611 year: 2013 ident: ref_12 article-title: Performance of clutter map with binary integration against Weibull background publication-title: AEU Int. J. Electron. Commun. doi: 10.1016/j.aeue.2013.01.001 – volume: 31 start-page: 114 year: 2022 ident: ref_3 article-title: Research on a Novel Clutter Map Constant False Alarm Rate Detector Based on Power Transform publication-title: Radioengineering doi: 10.13164/re.2022.0114 – ident: ref_2 doi: 10.3390/rs15133223 – volume: 59 start-page: 102085 year: 2023 ident: ref_23 article-title: New log-t-based CFAR detectors for a non-homogeneous Weibull Background publication-title: Phys. Commun. doi: 10.1016/j.phycom.2023.102085 – ident: ref_16 – volume: 59 start-page: 1 year: 2023 ident: ref_27 article-title: Neural Network-Based Multi-Target Detection within Correlated Heavy-Tailed Clutter publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2023.3264448 – volume: 20 start-page: 1 year: 2023 ident: ref_1 article-title: Deep learning-based lightweight radar target detection method publication-title: J. Real-Time Image Process. doi: 10.1007/s11554-023-01316-5 – volume: 20 start-page: 916 year: 2010 ident: ref_11 article-title: Performance analysis of Nitzberg’s clutter map for Weibull distribution publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2009.10.001 – volume: 17 start-page: e12145 year: 2023 ident: ref_14 article-title: The improved constant false alarm rate detector based on multi-frame integration for fluctuating target detection in heavy-tailed clutter publication-title: IET Signal Process. doi: 10.1049/sil2.12145 – volume: AES-19 start-page: 608 year: 1983 ident: ref_24 article-title: Radar CFAR Thresholding in Clutter and Multiple Target Situations publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.1983.309350 – volume: 70 start-page: 1288 year: 2016 ident: ref_8 article-title: Adaptive Clutter-Map CFAR detection in distributed sensor networks publication-title: AEU Int. J. Electron. Commun. doi: 10.1016/j.aeue.2016.06.016 – volume: AES-22 start-page: 419 year: 1986 ident: ref_7 article-title: Clutter Map CFAR Analysis publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.1986.310777 – volume: 45 start-page: 1638 year: 1997 ident: ref_21 article-title: Robustness of oversampled Gabor transient detectors: A comparison of energy and known location detectors publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.600004 – volume: 14 start-page: 420 year: 2020 ident: ref_18 article-title: Multiwindow discrete Gabor transform using parallel lattice structures publication-title: IET Signal Process. doi: 10.1049/iet-spr.2019.0180 – volume: 32 start-page: 1317 year: 2004 ident: ref_19 article-title: Book Review: Signal Analysis—Time, Frequency, Scale and Structure By Ronald L. Allen and Duncan W. Mills, IEEE Press (Wiley-Interscience), New York, 2003, ISBN 0-471-23441-9 publication-title: Ann. Biomed. Eng. doi: 10.1114/B:ABME.0000039445.86423.ed – volume: 53 start-page: 320 year: 2004 ident: ref_17 article-title: Fault tolerance in collaborative sensor networks for target detection publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2004.1261838 – volume: 8 start-page: 188390 year: 2020 ident: ref_22 article-title: On Scale Parameter Monitoring of the Rayleigh Distributed Data Using a New Design publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3030710 – ident: ref_13 doi: 10.3390/s23020954 – ident: ref_15 doi: 10.3390/jmse11030513 – volume: 27 start-page: 424 year: 1991 ident: ref_10 article-title: Adaptive cell-averaging CFAR detection in distributed sensor networks publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/7.81424 – volume: E106A start-page: 590 year: 2023 ident: ref_4 article-title: A CFAR Detection Algorithm Based on Clutter Knowledge for Cognitive Radar publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci. doi: 10.1587/transfun.2022EAP1064 – volume: AES-22 start-page: 155 year: 1986 ident: ref_6 article-title: A CFAR Design for a Window Spanning Two Clutter Fields publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.1986.310750 – volume: 80 start-page: 117 year: 2000 ident: ref_9 article-title: Analysis of the clutter map CFAR in Weibull clutter publication-title: Signal Process. doi: 10.1016/S0165-1684(99)00115-2 |
SSID | ssj0000913810 |
Score | 2.2936006 |
Snippet | Radar detection is a technology frequently used to detect objects and measure the range, angle, or velocity of those objects. Several studies have been... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2967 |
SubjectTerms | Algorithms cluttered environments detection probability Detectors false alarm rate False alarms Hypotheses Methods Monte Carlo method Monte Carlo simulation Optimization techniques Probability Radar systems Sensors Signal processing Simulation methods Systems stability Technology application time-frequency analysis tools |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfY9sIeEBsgCgPdwyQ-pGhN49jOE-rKyoTUCY1N2lvk2GdUqWtLGxB_PneO2-1h8JjEkRLf1-_O9u-EOKYwEPLK-awsncukNi4zBPMzrZTtGy2tiqfSJhfq_Fp-vSlvUsFtnbZVbnxidNR-4bhGfkKuVlMwpdc_LX9m3DWKV1dTC40dsUcu2FDytXd6dvHtcltlYdZLk_e7g3kF5fe8LpwzKVgVO8vfhaLI2P8vvxyDzfipeJJQIgw7sR6IRzg_FPv3uAMPxUGyyjW8T9TRH56JdjSLjadhYpcw6qBfC2NSMYQh5bC3cEnYEibTP-iBS7BA-A--sCLA1QbCQuCruEMcPmMb92rN4ffUwoSprGBkV7MFfJ_eps5fz8X1-OxqdJ6lvgqZk_2izaT1Cg02FTYSvfYU0oPP0bvCoMvJwHPlA810kA2Ff628DHnpuFmZl9b2ZfFC7M4Xc3wpQOsKJVPs4AClx2Bto0ofWcEk0wD1xMfNFNcukY5z74tZTckHy6O-J4-eON4OXnZcGw8PO2VZbYcwQXa8sVj9qJO91YRaKh0KZwqHlAMOrA9hgKbwqMqSfq4n3rGkazZj-iBn02kE-i0mxKqHuuIATh6wJ442ylAn-17Xd9r46v-PX4vHA4JB3V6fI7Hbrn7hG4IxbfM26epfZiHxwg priority: 102 providerName: ProQuest |
Title | Clutter Map Constant False Alarm Rate Mixed with the Gabor Transform for Target Detection via Monte Carlo Simulation |
URI | https://www.proquest.com/docview/3037399874 https://doaj.org/article/24497f3c83ce4952adff2e83de655f98 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9swDCW27rIdhrbbsGxdwEOBfQDG4liW7GOaNS0GpBi6FuhNkCUKCJCmResW-_klZafLYcMuO8bQQRZJvUeHfATYZxiIee1DVpbeZ8pUPquY5mdGazeqjHI6daXNT_Txufp-UV5sjPqSmrBOHrg7uK8MP7WJha8KT0zmxy7EOKaqCKTLMtapzZcxbyOZSndwnYt0VdeQV3BeL_8H5yIGVqeJ8r8hKCn1_-0-TiAz24aXPTvESberHXhCq114saEZuAs7fTTe4qdeMvrzK2inyzRwGufuGqcd5Wtxxq5FOOHc9RJPmVPifPGLAsqnV2Teh0fiAHi2pq4Y5VeqDMdv1KYarRXeLxzORcIKp-5meYU_F5f9xK_XcD47PJseZ_08hcyrUdFmygVNFTU1NYqCCQzlMeQUfFGRzzmwcx34RE1UDcO-0UHFvPQypCwo50aqeANbq6sVvQU0piYl0jo0JhUoOtfoMiQ1MCXyPwP4sj5i63uxcZl5sbScdIg97IY9BrD_uPi609j487IDsdXjEhHGTg_YXWzvLvZf7jKAj2JpK-HLG_Ku70Lg1xIhLDsxtQA333wD2Fs7g-3j-tYy4BumdOzE7_7Hbt7D8zGTpK4SaA-22ps7-sAkp22G8LSaHQ3h2cHhyY_TYfLuB_tz-5s |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHRAuIpQXmUMRDisjDiZMDQsuW7ZY2PcBW6s04fqCVtrvb3fD6U_xGZpxk2wNw6zGx8_KMZz479vcxtodpwEWFNkGaah1wkesgR5gfiCxTYS64yvyutPIkG53yj2fp2Qb73e2FoWWVXUz0gdrMNc2Rv8FQKzCZ4uXvFhcBqUbR39VOQqNxiyP76wcO2VZvD_fRvs_jePhhPBgFrapAoHmY1AFXJrO5rQpbcWuEwYTmTGSNTnKrI3TvKDMOn-N4hclPZIa7KNUk1WW4UiFP8L432E2eJAX1qHx4sJ7TIY7NPAqbbYBYHtJf6IgoyAqvY3-Z-Lw-wL-ygE9tw3vsbotJod840RbbsLNtducKU-E222pjwApetkTVr-6zejD1MtdQqgUMGqBZwxAd2kIfR8zn8AmRLJSTn9YATfgCok04ILeDcQeYwdGRX48O-7b2K8Nm8H2ioCTiLBio5XQOnyfnrc7YA3Z6Le39kG3O5jP7iIEQheVE6GNjy411SlVZajwHGSfSoR573TWx1C3FOSltTCUOdcge8oo9emxvXXnRMHv8vdp7stW6CtFx-xPz5VfZ9m6JGKkQLtF5oi2OOGNlnIttnhibpSl-XI-9IEtLChr4Qlq1ex_ws4h-S_ZFQXAB422P7XbOINtospKXvv_4_8XP2K3RuDyWx4cnRzvsdowArFlltMs26-U3-wQBVF099V4L7Mt1d5M_PA8uLw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLSASCmwhyIeklU_1l77gFCaNLSURFVppd62m31UkdIkJOb11_h1zNjrtAfg1mOSjV8zO_PNevb7AHYwDbio0CZIU60DLnId5AjzA5FlKswFV1m1K20wzA7O-Kfz9HwNfjd7YaitsomJVaA2M01r5LsYagUmU_z7rvNtEce9_of514AUpOhNayOnUbvIkf31A8u35fvDHtr6VRz390-7B4FXGAg0D5My4MpkNrejwo64NcJgcnMmskYnudURunqUGYfndHyEiVBkhrso1STbZbhSIU_wuHdgXWBVFLZgfW9_eHyyWuEhxs08CutNgUlShPROOiJCsqJStb9Og5VawL9yQpXo-g_hgUeorFO71Aas2ekm3L_BW7gJGz4iLNkbT1v99hGU3Ukles0Gas66NewsWR_d27IO1s9X7ARxLRuMf1rDaPmXIfZkH8kJ2WkDn5mjT1V3OuvZsuoTm7LvY8UGRKPFumoxmbEv4yuvOvYYzm7liT-B1nQ2tU-BCVFYTvQ-NrbcWKfUKEtNxUjGiYKoDe-aRyy1Jzwn3Y2JxMKH7CFv2KMNO6vB85rn4-_D9shWqyFEzl19MVtcSj_XJSKmQrhE54m2WH_GyjgX2zwxNktTvLk2vCZLSwoheEFa-Z0QeFtExiU7oiDwgNG3DduNM0gfW5byeiZs_f_nl3AXp4j8fDg8egb3YkRjdcvRNrTKxTf7HNFUOXrh3ZbBxW3PlD8xyDPB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clutter+Map+Constant+False+Alarm+Rate+Mixed+with+the+Gabor+Transform+for+Target+Detection+via+Monte+Carlo+Simulation&rft.jtitle=Applied+sciences&rft.au=Abdel+Hamid+Mbouombouo+Mboungam&rft.au=Yongfeng+Zhi&rft.au=Cedric+Karel+Fonzeu+Monguen&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=14&rft.issue=7&rft.spage=2967&rft_id=info:doi/10.3390%2Fapp14072967&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_24497f3c83ce4952adff2e83de655f98 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |