Calculation of grain boundary normals directly from 3D microstructure images

The determination of grain boundary normals is an integral part of the characterization of grain boundaries in polycrystalline materials. These normal vectors are difficult to quantify due to the discretized nature of available microstructure characterization techniques. The most common method to de...

Full description

Saved in:
Bibliographic Details
Published inModelling and simulation in materials science and engineering Vol. 23; no. 3; pp. 35005 - 35022
Main Authors Lieberman, E J, Rollett, A D, Lebensohn, R A, Kober, E M
Format Journal Article
LanguageEnglish
Published United States IOP Publishing 01.04.2015
Subjects
Online AccessGet full text
ISSN0965-0393
1361-651X
DOI10.1088/0965-0393/23/3/035005

Cover

Loading…
Abstract The determination of grain boundary normals is an integral part of the characterization of grain boundaries in polycrystalline materials. These normal vectors are difficult to quantify due to the discretized nature of available microstructure characterization techniques. The most common method to determine grain boundary normals is by generating a surface mesh from an image of the microstructure, but this process can be slow, and is subject to smoothing issues. A new technique is proposed, utilizing first order Cartesian moments of binary indicator functions, to determine grain boundary normals directly from a voxelized microstructure image. To validate the accuracy of this technique, the surface normals obtained by the proposed method are compared to those generated by a surface meshing algorithm. Specifically, the local divergence between the surface normals obtained by different variants of the proposed technique and those generated from a surface mesh of a synthetic microstructure constructed using a marching cubes algorithm followed by Laplacian smoothing is quantified. Next, surface normals obtained with the proposed method from a measured 3D microstructure image of a Ni polycrystal are used to generate grain boundary character distributions (GBCD) for Σ3 and Σ9 boundaries, and compared to the GBCD generated using a surface mesh obtained from the same image. The results show that the proposed technique is an efficient and accurate method to determine voxelized fields of grain boundary normals.
AbstractList The determination of grain boundary normals is an integral part of the characterization of grain boundaries in polycrystalline materials. These normal vectors are difficult to quantify due to the discretized nature of available microstructure characterization techniques. The most common method to determine grain boundary normals is by generating a surface mesh from an image of the microstructure, but this process can be slow, and is subject to smoothing issues. A new technique is proposed, utilizing first order Cartesian moments of binary indicator functions, to determine grain boundary normals directly from a voxelized microstructure image. To validate the accuracy of this technique, the surface normals obtained by the proposed method are compared to those generated by a surface meshing algorithm. Specifically, the local divergence between the surface normals obtained by different variants of the proposed technique and those generated from a surface mesh of a synthetic microstructure constructed using a marching cubes algorithm followed by Laplacian smoothing is quantified. Next, surface normals obtained with the proposed method from a measured 3D microstructure image of a Ni polycrystal are used to generate grain boundary character distributions (GBCD) for Σ3 and Σ9 boundaries, and compared to the GBCD generated using a surface mesh obtained from the same image. The results show that the proposed technique is an efficient and accurate method to determine voxelized fields of grain boundary normals.
The determination of grain boundary normals is an integral part of the characterization of grain boundaries in polycrystalline materials. These normal vectors are difficult to quantify due to the discretized nature of available microstructure characterization techniques. The most common method to determine grain boundary normals is by generating a surface mesh from an image of the microstructure, but this process can be slow, and is subject to smoothing issues. A new technique is proposed, utilizing first order Cartesian moments of binary indicator functions, to determine grain boundary normals directly from a voxelized microstructure image. In order to validate the accuracy of this technique, the surface normals obtained by the proposed method are compared to those generated by a surface meshing algorithm. Specifically, the local divergence between the surface normals obtained by different variants of the proposed technique and those generated from a surface mesh of a synthetic microstructure constructed using a marching cubes algorithm followed by Laplacian smoothing is quantified. Next, surface normals obtained with the proposed method from a measured 3D microstructure image of a Ni polycrystal are used to generate grain boundary character distributions (GBCD) for Σ3 and Σ9 boundaries, and compared to the GBCD generated using a surface mesh obtained from the same image. Finally, the results show that the proposed technique is an efficient and accurate method to determine voxelized fields of grain boundary normals.
Author Lieberman, E J
Rollett, A D
Lebensohn, R A
Kober, E M
Author_xml – sequence: 1
  givenname: E J
  surname: Lieberman
  fullname: Lieberman, E J
  organization: Los Alamos National Laboratory Materials Science and Technology Division, MS G755, Los Alamos, NM 87455, USA
– sequence: 2
  givenname: A D
  surname: Rollett
  fullname: Rollett, A D
  organization: Carnegie Mellon University Department of Materials Science and Engineering, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
– sequence: 3
  givenname: R A
  surname: Lebensohn
  fullname: Lebensohn, R A
  organization: Los Alamos National Laboratory Materials Science and Technology Division, MS G755, Los Alamos, NM 87455, USA
– sequence: 4
  givenname: E M
  surname: Kober
  fullname: Kober, E M
  email: emk@lanl.gov
  organization: Los Alamos National Laboratory Theoretical Division, MS B214, Los Alamos, NM 87455, USA
BackLink https://www.osti.gov/servlets/purl/1235674$$D View this record in Osti.gov
BookMark eNqFkF1LwzAYhYMouE1_ghC886I22du0KV7J_ISBNwrehSwfs6NNRtJe7N-bWRERYVch8Dwv55wpOnbeGYQuKLmmhPOc1CXLCNSQzyGHnAAjhB2hCYWSZiWj78do8sOcommMG5IIPq8maLmQrRpa2TfeYW_xOsjG4ZUfnJZhh50PnWwj1k0wqm932AbfYbjDXaOCj30YVD8Eg5tOrk08Qyc20eb8-52ht4f718VTtnx5fF7cLjNVEOizgkNNGbdMWV6CAW5YLasVhUrXwBmxVJUFM3X6aa205KYuqkrTldVSEWZhhi7HuylBI6JqeqM-lHcuZRR0DqysigTdjNA-aAzGisR99exTx1ZQIvbrif0yYr-MmIMAMa6XbPbH3oZUMuwOenT0Gr8VGz8El4Y46Fz943Sxi-Y3J7bawiczapH4
CODEN MSMEEU
CitedBy_id crossref_primary_10_1007_s11661_017_4302_8
crossref_primary_10_1016_j_actamat_2017_08_063
crossref_primary_10_1016_j_scriptamat_2022_114796
crossref_primary_10_1016_j_ijplas_2020_102903
crossref_primary_10_1016_j_mtla_2019_100499
crossref_primary_10_1016_j_jmps_2018_03_007
crossref_primary_10_1016_j_jmrt_2020_07_089
crossref_primary_10_1016_j_commatsci_2022_111879
crossref_primary_10_1016_j_commatsci_2016_08_021
crossref_primary_10_1038_npjcompumats_2016_16
crossref_primary_10_1007_s11661_021_06454_8
crossref_primary_10_1016_j_actamat_2020_05_027
crossref_primary_10_1016_j_msea_2024_146642
crossref_primary_10_1016_j_actamat_2016_06_054
crossref_primary_10_1016_j_commatsci_2020_109926
crossref_primary_10_1007_s10853_015_9551_6
crossref_primary_10_1016_j_ijplas_2025_104318
crossref_primary_10_1016_j_ijfatigue_2020_106094
crossref_primary_10_1016_j_ijplas_2016_10_004
crossref_primary_10_1016_j_jmps_2022_105190
crossref_primary_10_1016_j_commatsci_2016_08_017
crossref_primary_10_1016_j_engfracmech_2020_107516
Cites_doi 10.1002/cnm.2532
10.2514/1.J052095
10.1145/37402.37422
10.1016/j.actamat.2008.01.039
10.3970/cmc.2009.014.207
10.1007/s11661-004-0146-0
10.1007/s10851-010-0242-2
10.1179/026708309X12468927349370
10.1007/s11661-004-0147-z
10.1016/j.actamat.2004.04.018
10.1088/0965-0393/16/4/045008
10.1145/142920.134011
10.1109/HICSS.1991.183942
10.1016/S1359-6454(03)00182-4
10.1016/0956-716X(95)00420-Z
10.1007/s11837-011-0116-0
10.1007/BF01664794
10.1007/s11661-010-0355-7
10.1016/j.actamat.2013.11.026
10.1006/cviu.1995.1014
10.1109/34.42836
10.1016/j.actamat.2008.04.016
10.1016/j.actamat.2013.08.004
10.1016/S1359-6454(03)00181-2
10.1029/2012GC004547
10.1023/A:1008097225773
10.1016/j.actamat.2004.05.031
10.1007/s10915-013-9772-2
10.1016/j.ijplas.2008.09.002
10.1186/2193-9772-3-5
10.1016/j.scriptamat.2006.02.017
10.1142/S0218195904001470
10.1016/j.actamat.2009.02.034
10.1117/12.780539
10.1063/1.2400017
10.1016/j.ijplas.2011.12.005
10.1007/978-3-642-04271-3_35
10.1016/j.actamat.2009.06.004
10.1145/944020.944024
ContentType Journal Article
Copyright 2015 IOP Publishing Ltd
Copyright_xml – notice: 2015 IOP Publishing Ltd
CorporateAuthor Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
CorporateAuthor_xml – name: Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
DBID AAYXX
CITATION
OIOZB
OTOTI
DOI 10.1088/0965-0393/23/3/035005
DatabaseName CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate Calculation of grain boundary normals directly from 3D microstructure images
EISSN 1361-651X
ExternalDocumentID 1235674
10_1088_0965_0393_23_3_035005
msmse509823
GrantInformation_xml – fundername: Laboratory Directed Research and Development
  grantid: 20140114DR
  funderid: http://dx.doi.org/10.13039/100007000
– fundername: LANL Institute for Materials Science
  grantid: WJ9G
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
ADUKH
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
W28
XPP
ZMT
AAYXX
ADEQX
CITATION
6XO
AAPBV
ABPTK
KNG
OIOZB
OTOTI
RW3
ID FETCH-LOGICAL-c403t-4839158f5cf863e38e59a7b137d93850f1c645e9d93ddcda8e9477d1bfdac05f3
IEDL.DBID IOP
ISSN 0965-0393
IngestDate Fri May 19 01:41:00 EDT 2023
Tue Jul 01 02:27:14 EDT 2025
Thu Apr 24 23:12:42 EDT 2025
Wed Aug 21 03:33:23 EDT 2024
Thu Jan 07 13:52:06 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-4839158f5cf863e38e59a7b137d93850f1c645e9d93ddcda8e9477d1bfdac05f3
Notes MSMSE-100805.R1
LA-UR-14-27895
USDOE
20140114DR; WJ9G; AC52-06NA25396
OpenAccessLink https://www.osti.gov/servlets/purl/1235674
PageCount 18
ParticipantIDs crossref_citationtrail_10_1088_0965_0393_23_3_035005
iop_journals_10_1088_0965_0393_23_3_035005
osti_scitechconnect_1235674
crossref_primary_10_1088_0965_0393_23_3_035005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-04-01
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Modelling and simulation in materials science and engineering
PublicationTitleAbbrev MSMSE
PublicationTitleAlternate Modelling Simul. Mater. Sci. Eng
PublicationYear 2015
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 44
45
46
49
Ryan T P (40) 1997
50
10
11
12
14
15
16
Hefferan C (23) 2012
18
19
Moore D (17) 1991; i
1
2
3
4
6
Guest P G (39) 1961
7
8
20
21
22
Garapić G (26) 2013; 14
27
28
Schwartz A J (9) 2010
Dey T K (13) 2004; 20
29
Suter R M (24)
Alliez P (48) 2011
Li S F (47) 2011
30
32
33
34
35
36
37
MacSleyne J P (31) 2008; 16
Apostol T M (38) 1969; 2
Smith C S (5) 1948; 175
41
42
Kalogerakis E (25) 2007
43
References_xml – ident: 24
– year: 2010
  ident: 9
  publication-title: Electron Backscatter Diffraction in Materials Science
– ident: 27
  doi: 10.1002/cnm.2532
– ident: 42
  doi: 10.2514/1.J052095
– volume: 20
  start-page: 330
  year: 2004
  ident: 13
  publication-title: Proc. 20th Annual Symp. on Computational Geometry
– start-page: 13
  year: 2007
  ident: 25
  publication-title: Symp. on Geometry Processing
– ident: 18
  doi: 10.1145/37402.37422
– ident: 4
  doi: 10.1016/j.actamat.2008.01.039
– year: 1997
  ident: 40
  publication-title: Modern Regression Methods
– ident: 22
  doi: 10.3970/cmc.2009.014.207
– ident: 44
  doi: 10.1007/s11661-004-0146-0
– ident: 43
  doi: 10.1007/s10851-010-0242-2
– ident: 8
  doi: 10.1179/026708309X12468927349370
– ident: 12
  doi: 10.1007/s11661-004-0147-z
– ident: 11
  doi: 10.1016/j.actamat.2004.04.018
– volume: 16
  issn: 0965-0393
  year: 2008
  ident: 31
  publication-title: Modelling Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/16/4/045008
– ident: 14
  doi: 10.1145/142920.134011
– volume: i
  start-page: 681
  year: 1991
  ident: 17
  publication-title: Proc. 24th Annual Hawaii Int. Conf. on System Sciences
  doi: 10.1109/HICSS.1991.183942
– volume: 175
  start-page: 15
  year: 1948
  ident: 5
  publication-title: Trans. AIME
– volume: 2
  year: 1969
  ident: 38
  publication-title: Calculus
– ident: 6
  doi: 10.1016/S1359-6454(03)00182-4
– ident: 2
  doi: 10.1016/0956-716X(95)00420-Z
– ident: 46
  doi: 10.1007/s11837-011-0116-0
– ident: 34
  doi: 10.1007/BF01664794
– year: 2011
  ident: 47
– ident: 21
  doi: 10.1007/s11661-010-0355-7
– ident: 1
  doi: 10.1016/j.actamat.2013.11.026
– ident: 33
  doi: 10.1006/cviu.1995.1014
– ident: 32
  doi: 10.1109/34.42836
– ident: 28
  doi: 10.1016/j.actamat.2008.04.016
– ident: 30
  doi: 10.1016/j.actamat.2013.08.004
– year: 1961
  ident: 39
  publication-title: Numerical Methods of Curve Fitting
– year: 2012
  ident: 23
– ident: 20
  doi: 10.1016/S1359-6454(03)00181-2
– volume: 14
  start-page: 556
  issn: 1525-2027
  year: 2013
  ident: 26
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1029/2012GC004547
– ident: 35
  doi: 10.1023/A:1008097225773
– ident: 3
  doi: 10.1016/j.actamat.2004.05.031
– ident: 41
  doi: 10.1007/s10915-013-9772-2
– ident: 50
  doi: 10.1016/j.ijplas.2008.09.002
– ident: 19
  doi: 10.1186/2193-9772-3-5
– ident: 45
  doi: 10.1016/j.scriptamat.2006.02.017
– ident: 15
  doi: 10.1142/S0218195904001470
– ident: 16
  doi: 10.1016/j.actamat.2009.02.034
– ident: 37
  doi: 10.1117/12.780539
– ident: 10
  doi: 10.1063/1.2400017
– ident: 29
  doi: 10.1016/j.ijplas.2011.12.005
– year: 2011
  ident: 48
  publication-title: CGAL User and Reference Manual
– ident: 49
  doi: 10.1007/978-3-642-04271-3_35
– ident: 7
  doi: 10.1016/j.actamat.2009.06.004
– ident: 36
  doi: 10.1145/944020.944024
SSID ssj0005827
Score 2.1857743
Snippet The determination of grain boundary normals is an integral part of the characterization of grain boundaries in polycrystalline materials. These normal vectors...
SourceID osti
crossref
iop
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 35005
SubjectTerms grain boundaries
image analysis
MATERIALS SCIENCE
microstructure
moment analysis
Title Calculation of grain boundary normals directly from 3D microstructure images
URI https://iopscience.iop.org/article/10.1088/0965-0393/23/3/035005
https://www.osti.gov/servlets/purl/1235674
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEBapQ6E5pInbENdtEKGnwtpej6TVHoMbk4S2yaGG3ISeJdQvss4h-fXVWOvWLgRTetuF0a52Ro9h9c33EfKxn3vhTFlmAZjOWNEPmZbeZ9JqEZizmgPWDn_9Ji5G7OqW365V8d_N5vXS34mXiSg4ubAGxMku8pVkWFLa7UMXung0hiSmuyCFQA2Dy-ubPyAPmURbV01WNTzPPWZjd3oRexBX6lmca2t7zvA10aveJqjJz87DwnTs019Ejv_zOQdkv05I6VmyPyQ7ftoke2s0hU3ycgkTtdUb8mWgx7YW_KKzQH-gwAQ1S2mm-0c6xQR4XNG0T44fKRavUPhMJwj7S1S1D_ee3k3iKla9JaPh-ffBRVbrMWSW9WCB_x3LnMvAbZACPEjPS12YHApXguS9kFvBuC_jnXPWxZiXrChcboLTtscDHJHGdDb1x4R6KKUEwz1y1RjJjTZeBi18D4rgpG0RtoqDsjVZOWpmjNXy0FxKhW5T6DbVBwUqua1FOr-bzRNbx7YGn2JcVD1vq23GpxvGk2pS-XUDNXehRdo4YFQMO7LwWoQr2YXCkmRRsHf_8r42eRXTM55wQu9JI0bJf4gp0MKcLEf5L4lH9vs
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61RSA4FCgglhawECekbJIdO3GOqNtVC6X0QKXeLD8RYl9qtofy6_Gss-0WCVWIWyLNJM6MPR7F33wD8H5Q-sqZpskCcp3xehAyLb3PpNVV4M5qgVQ7_OWkOjzjn87F-QYMr2thZvMu9PfjZSIKTibsAHEyJ76SjEpK8wHmmNPRWCHyuQubcE9ghcSgf_T19AboIVPj1pXaqo7nb4-6tUNtxlHEaD2L621t3xk9Br8acYKb_OxfLkzf_vqDzPF_P-kJbHeJKfuYdJ7Chp_uwKM1usIduL-Ei9r2GRzv67HtGn-xWWDfqdEEM8sWTRdXbEqJ8Lhlab8cXzEqYmE4ZBOC_yXK2ssLz35MYjRrn8PZ6ODb_mHW9WXILC9wQf8fm1LIIGyQFXqUXjS6NiXWrkEpilDaigvfxDvnrIu-b3hdu9IEp20hAr6Arels6l8C89hIiUZ44qwxUhhtvAy68gXWwUnbA77yhbIdaTn1zhir5eG5lIpMp8h0aoAKVTJdD_rXavPE2nGXwofoG9Wt3_Yu4Xe3hCftpPXrAip6rge7NGlUdD2x8VqCLdmFotLkquav_uV9b-HB6XCkjo9OPu_Cw5ixiQQd2oOt6DD_OmZFC_NmOel_A3YX_F8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calculation+of+grain+boundary+normals+directly+from+3D+microstructure+images&rft.jtitle=Modelling+and+simulation+in+materials+science+and+engineering&rft.au=Lieberman%2C+E.+J.&rft.au=Rollett%2C+A.+D.&rft.au=Lebensohn%2C+R.+A.&rft.au=Kober%2C+E.+M.&rft.date=2015-04-01&rft.pub=IOP+Publishing&rft.issn=0965-0393&rft.eissn=1361-651X&rft.volume=23&rft.issue=3&rft_id=info:doi/10.1088%2F0965-0393%2F23%2F3%2F035005&rft.externalDocID=1235674
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-0393&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-0393&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-0393&client=summon