Calculation of grain boundary normals directly from 3D microstructure images
The determination of grain boundary normals is an integral part of the characterization of grain boundaries in polycrystalline materials. These normal vectors are difficult to quantify due to the discretized nature of available microstructure characterization techniques. The most common method to de...
Saved in:
Published in | Modelling and simulation in materials science and engineering Vol. 23; no. 3; pp. 35005 - 35022 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IOP Publishing
01.04.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0965-0393 1361-651X |
DOI | 10.1088/0965-0393/23/3/035005 |
Cover
Loading…
Abstract | The determination of grain boundary normals is an integral part of the characterization of grain boundaries in polycrystalline materials. These normal vectors are difficult to quantify due to the discretized nature of available microstructure characterization techniques. The most common method to determine grain boundary normals is by generating a surface mesh from an image of the microstructure, but this process can be slow, and is subject to smoothing issues. A new technique is proposed, utilizing first order Cartesian moments of binary indicator functions, to determine grain boundary normals directly from a voxelized microstructure image. To validate the accuracy of this technique, the surface normals obtained by the proposed method are compared to those generated by a surface meshing algorithm. Specifically, the local divergence between the surface normals obtained by different variants of the proposed technique and those generated from a surface mesh of a synthetic microstructure constructed using a marching cubes algorithm followed by Laplacian smoothing is quantified. Next, surface normals obtained with the proposed method from a measured 3D microstructure image of a Ni polycrystal are used to generate grain boundary character distributions (GBCD) for Σ3 and Σ9 boundaries, and compared to the GBCD generated using a surface mesh obtained from the same image. The results show that the proposed technique is an efficient and accurate method to determine voxelized fields of grain boundary normals. |
---|---|
AbstractList | The determination of grain boundary normals is an integral part of the characterization of grain boundaries in polycrystalline materials. These normal vectors are difficult to quantify due to the discretized nature of available microstructure characterization techniques. The most common method to determine grain boundary normals is by generating a surface mesh from an image of the microstructure, but this process can be slow, and is subject to smoothing issues. A new technique is proposed, utilizing first order Cartesian moments of binary indicator functions, to determine grain boundary normals directly from a voxelized microstructure image. To validate the accuracy of this technique, the surface normals obtained by the proposed method are compared to those generated by a surface meshing algorithm. Specifically, the local divergence between the surface normals obtained by different variants of the proposed technique and those generated from a surface mesh of a synthetic microstructure constructed using a marching cubes algorithm followed by Laplacian smoothing is quantified. Next, surface normals obtained with the proposed method from a measured 3D microstructure image of a Ni polycrystal are used to generate grain boundary character distributions (GBCD) for Σ3 and Σ9 boundaries, and compared to the GBCD generated using a surface mesh obtained from the same image. The results show that the proposed technique is an efficient and accurate method to determine voxelized fields of grain boundary normals. The determination of grain boundary normals is an integral part of the characterization of grain boundaries in polycrystalline materials. These normal vectors are difficult to quantify due to the discretized nature of available microstructure characterization techniques. The most common method to determine grain boundary normals is by generating a surface mesh from an image of the microstructure, but this process can be slow, and is subject to smoothing issues. A new technique is proposed, utilizing first order Cartesian moments of binary indicator functions, to determine grain boundary normals directly from a voxelized microstructure image. In order to validate the accuracy of this technique, the surface normals obtained by the proposed method are compared to those generated by a surface meshing algorithm. Specifically, the local divergence between the surface normals obtained by different variants of the proposed technique and those generated from a surface mesh of a synthetic microstructure constructed using a marching cubes algorithm followed by Laplacian smoothing is quantified. Next, surface normals obtained with the proposed method from a measured 3D microstructure image of a Ni polycrystal are used to generate grain boundary character distributions (GBCD) for Σ3 and Σ9 boundaries, and compared to the GBCD generated using a surface mesh obtained from the same image. Finally, the results show that the proposed technique is an efficient and accurate method to determine voxelized fields of grain boundary normals. |
Author | Lieberman, E J Rollett, A D Lebensohn, R A Kober, E M |
Author_xml | – sequence: 1 givenname: E J surname: Lieberman fullname: Lieberman, E J organization: Los Alamos National Laboratory Materials Science and Technology Division, MS G755, Los Alamos, NM 87455, USA – sequence: 2 givenname: A D surname: Rollett fullname: Rollett, A D organization: Carnegie Mellon University Department of Materials Science and Engineering, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA – sequence: 3 givenname: R A surname: Lebensohn fullname: Lebensohn, R A organization: Los Alamos National Laboratory Materials Science and Technology Division, MS G755, Los Alamos, NM 87455, USA – sequence: 4 givenname: E M surname: Kober fullname: Kober, E M email: emk@lanl.gov organization: Los Alamos National Laboratory Theoretical Division, MS B214, Los Alamos, NM 87455, USA |
BackLink | https://www.osti.gov/servlets/purl/1235674$$D View this record in Osti.gov |
BookMark | eNqFkF1LwzAYhYMouE1_ghC886I22du0KV7J_ISBNwrehSwfs6NNRtJe7N-bWRERYVch8Dwv55wpOnbeGYQuKLmmhPOc1CXLCNSQzyGHnAAjhB2hCYWSZiWj78do8sOcommMG5IIPq8maLmQrRpa2TfeYW_xOsjG4ZUfnJZhh50PnWwj1k0wqm932AbfYbjDXaOCj30YVD8Eg5tOrk08Qyc20eb8-52ht4f718VTtnx5fF7cLjNVEOizgkNNGbdMWV6CAW5YLasVhUrXwBmxVJUFM3X6aa205KYuqkrTldVSEWZhhi7HuylBI6JqeqM-lHcuZRR0DqysigTdjNA-aAzGisR99exTx1ZQIvbrif0yYr-MmIMAMa6XbPbH3oZUMuwOenT0Gr8VGz8El4Y46Fz943Sxi-Y3J7bawiczapH4 |
CODEN | MSMEEU |
CitedBy_id | crossref_primary_10_1007_s11661_017_4302_8 crossref_primary_10_1016_j_actamat_2017_08_063 crossref_primary_10_1016_j_scriptamat_2022_114796 crossref_primary_10_1016_j_ijplas_2020_102903 crossref_primary_10_1016_j_mtla_2019_100499 crossref_primary_10_1016_j_jmps_2018_03_007 crossref_primary_10_1016_j_jmrt_2020_07_089 crossref_primary_10_1016_j_commatsci_2022_111879 crossref_primary_10_1016_j_commatsci_2016_08_021 crossref_primary_10_1038_npjcompumats_2016_16 crossref_primary_10_1007_s11661_021_06454_8 crossref_primary_10_1016_j_actamat_2020_05_027 crossref_primary_10_1016_j_msea_2024_146642 crossref_primary_10_1016_j_actamat_2016_06_054 crossref_primary_10_1016_j_commatsci_2020_109926 crossref_primary_10_1007_s10853_015_9551_6 crossref_primary_10_1016_j_ijplas_2025_104318 crossref_primary_10_1016_j_ijfatigue_2020_106094 crossref_primary_10_1016_j_ijplas_2016_10_004 crossref_primary_10_1016_j_jmps_2022_105190 crossref_primary_10_1016_j_commatsci_2016_08_017 crossref_primary_10_1016_j_engfracmech_2020_107516 |
Cites_doi | 10.1002/cnm.2532 10.2514/1.J052095 10.1145/37402.37422 10.1016/j.actamat.2008.01.039 10.3970/cmc.2009.014.207 10.1007/s11661-004-0146-0 10.1007/s10851-010-0242-2 10.1179/026708309X12468927349370 10.1007/s11661-004-0147-z 10.1016/j.actamat.2004.04.018 10.1088/0965-0393/16/4/045008 10.1145/142920.134011 10.1109/HICSS.1991.183942 10.1016/S1359-6454(03)00182-4 10.1016/0956-716X(95)00420-Z 10.1007/s11837-011-0116-0 10.1007/BF01664794 10.1007/s11661-010-0355-7 10.1016/j.actamat.2013.11.026 10.1006/cviu.1995.1014 10.1109/34.42836 10.1016/j.actamat.2008.04.016 10.1016/j.actamat.2013.08.004 10.1016/S1359-6454(03)00181-2 10.1029/2012GC004547 10.1023/A:1008097225773 10.1016/j.actamat.2004.05.031 10.1007/s10915-013-9772-2 10.1016/j.ijplas.2008.09.002 10.1186/2193-9772-3-5 10.1016/j.scriptamat.2006.02.017 10.1142/S0218195904001470 10.1016/j.actamat.2009.02.034 10.1117/12.780539 10.1063/1.2400017 10.1016/j.ijplas.2011.12.005 10.1007/978-3-642-04271-3_35 10.1016/j.actamat.2009.06.004 10.1145/944020.944024 |
ContentType | Journal Article |
Copyright | 2015 IOP Publishing Ltd |
Copyright_xml | – notice: 2015 IOP Publishing Ltd |
CorporateAuthor | Los Alamos National Lab. (LANL), Los Alamos, NM (United States) |
CorporateAuthor_xml | – name: Los Alamos National Lab. (LANL), Los Alamos, NM (United States) |
DBID | AAYXX CITATION OIOZB OTOTI |
DOI | 10.1088/0965-0393/23/3/035005 |
DatabaseName | CrossRef OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
DocumentTitleAlternate | Calculation of grain boundary normals directly from 3D microstructure images |
EISSN | 1361-651X |
ExternalDocumentID | 1235674 10_1088_0965_0393_23_3_035005 msmse509823 |
GrantInformation_xml | – fundername: Laboratory Directed Research and Development grantid: 20140114DR funderid: http://dx.doi.org/10.13039/100007000 – fundername: LANL Institute for Materials Science grantid: WJ9G |
GroupedDBID | -~X 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP ADUKH AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 W28 XPP ZMT AAYXX ADEQX CITATION 6XO AAPBV ABPTK KNG OIOZB OTOTI RW3 |
ID | FETCH-LOGICAL-c403t-4839158f5cf863e38e59a7b137d93850f1c645e9d93ddcda8e9477d1bfdac05f3 |
IEDL.DBID | IOP |
ISSN | 0965-0393 |
IngestDate | Fri May 19 01:41:00 EDT 2023 Tue Jul 01 02:27:14 EDT 2025 Thu Apr 24 23:12:42 EDT 2025 Wed Aug 21 03:33:23 EDT 2024 Thu Jan 07 13:52:06 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-4839158f5cf863e38e59a7b137d93850f1c645e9d93ddcda8e9477d1bfdac05f3 |
Notes | MSMSE-100805.R1 LA-UR-14-27895 USDOE 20140114DR; WJ9G; AC52-06NA25396 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1235674 |
PageCount | 18 |
ParticipantIDs | crossref_citationtrail_10_1088_0965_0393_23_3_035005 iop_journals_10_1088_0965_0393_23_3_035005 osti_scitechconnect_1235674 crossref_primary_10_1088_0965_0393_23_3_035005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-04-01 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Modelling and simulation in materials science and engineering |
PublicationTitleAbbrev | MSMSE |
PublicationTitleAlternate | Modelling Simul. Mater. Sci. Eng |
PublicationYear | 2015 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 44 45 46 49 Ryan T P (40) 1997 50 10 11 12 14 15 16 Hefferan C (23) 2012 18 19 Moore D (17) 1991; i 1 2 3 4 6 Guest P G (39) 1961 7 8 20 21 22 Garapić G (26) 2013; 14 27 28 Schwartz A J (9) 2010 Dey T K (13) 2004; 20 29 Suter R M (24) Alliez P (48) 2011 Li S F (47) 2011 30 32 33 34 35 36 37 MacSleyne J P (31) 2008; 16 Apostol T M (38) 1969; 2 Smith C S (5) 1948; 175 41 42 Kalogerakis E (25) 2007 43 |
References_xml | – ident: 24 – year: 2010 ident: 9 publication-title: Electron Backscatter Diffraction in Materials Science – ident: 27 doi: 10.1002/cnm.2532 – ident: 42 doi: 10.2514/1.J052095 – volume: 20 start-page: 330 year: 2004 ident: 13 publication-title: Proc. 20th Annual Symp. on Computational Geometry – start-page: 13 year: 2007 ident: 25 publication-title: Symp. on Geometry Processing – ident: 18 doi: 10.1145/37402.37422 – ident: 4 doi: 10.1016/j.actamat.2008.01.039 – year: 1997 ident: 40 publication-title: Modern Regression Methods – ident: 22 doi: 10.3970/cmc.2009.014.207 – ident: 44 doi: 10.1007/s11661-004-0146-0 – ident: 43 doi: 10.1007/s10851-010-0242-2 – ident: 8 doi: 10.1179/026708309X12468927349370 – ident: 12 doi: 10.1007/s11661-004-0147-z – ident: 11 doi: 10.1016/j.actamat.2004.04.018 – volume: 16 issn: 0965-0393 year: 2008 ident: 31 publication-title: Modelling Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/16/4/045008 – ident: 14 doi: 10.1145/142920.134011 – volume: i start-page: 681 year: 1991 ident: 17 publication-title: Proc. 24th Annual Hawaii Int. Conf. on System Sciences doi: 10.1109/HICSS.1991.183942 – volume: 175 start-page: 15 year: 1948 ident: 5 publication-title: Trans. AIME – volume: 2 year: 1969 ident: 38 publication-title: Calculus – ident: 6 doi: 10.1016/S1359-6454(03)00182-4 – ident: 2 doi: 10.1016/0956-716X(95)00420-Z – ident: 46 doi: 10.1007/s11837-011-0116-0 – ident: 34 doi: 10.1007/BF01664794 – year: 2011 ident: 47 – ident: 21 doi: 10.1007/s11661-010-0355-7 – ident: 1 doi: 10.1016/j.actamat.2013.11.026 – ident: 33 doi: 10.1006/cviu.1995.1014 – ident: 32 doi: 10.1109/34.42836 – ident: 28 doi: 10.1016/j.actamat.2008.04.016 – ident: 30 doi: 10.1016/j.actamat.2013.08.004 – year: 1961 ident: 39 publication-title: Numerical Methods of Curve Fitting – year: 2012 ident: 23 – ident: 20 doi: 10.1016/S1359-6454(03)00181-2 – volume: 14 start-page: 556 issn: 1525-2027 year: 2013 ident: 26 publication-title: Geochem. Geophys. Geosyst. doi: 10.1029/2012GC004547 – ident: 35 doi: 10.1023/A:1008097225773 – ident: 3 doi: 10.1016/j.actamat.2004.05.031 – ident: 41 doi: 10.1007/s10915-013-9772-2 – ident: 50 doi: 10.1016/j.ijplas.2008.09.002 – ident: 19 doi: 10.1186/2193-9772-3-5 – ident: 45 doi: 10.1016/j.scriptamat.2006.02.017 – ident: 15 doi: 10.1142/S0218195904001470 – ident: 16 doi: 10.1016/j.actamat.2009.02.034 – ident: 37 doi: 10.1117/12.780539 – ident: 10 doi: 10.1063/1.2400017 – ident: 29 doi: 10.1016/j.ijplas.2011.12.005 – year: 2011 ident: 48 publication-title: CGAL User and Reference Manual – ident: 49 doi: 10.1007/978-3-642-04271-3_35 – ident: 7 doi: 10.1016/j.actamat.2009.06.004 – ident: 36 doi: 10.1145/944020.944024 |
SSID | ssj0005827 |
Score | 2.1857743 |
Snippet | The determination of grain boundary normals is an integral part of the characterization of grain boundaries in polycrystalline materials. These normal vectors... |
SourceID | osti crossref iop |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 35005 |
SubjectTerms | grain boundaries image analysis MATERIALS SCIENCE microstructure moment analysis |
Title | Calculation of grain boundary normals directly from 3D microstructure images |
URI | https://iopscience.iop.org/article/10.1088/0965-0393/23/3/035005 https://www.osti.gov/servlets/purl/1235674 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEBapQ6E5pInbENdtEKGnwtpej6TVHoMbk4S2yaGG3ISeJdQvss4h-fXVWOvWLgRTetuF0a52Ro9h9c33EfKxn3vhTFlmAZjOWNEPmZbeZ9JqEZizmgPWDn_9Ji5G7OqW365V8d_N5vXS34mXiSg4ubAGxMku8pVkWFLa7UMXung0hiSmuyCFQA2Dy-ubPyAPmURbV01WNTzPPWZjd3oRexBX6lmca2t7zvA10aveJqjJz87DwnTs019Ejv_zOQdkv05I6VmyPyQ7ftoke2s0hU3ycgkTtdUb8mWgx7YW_KKzQH-gwAQ1S2mm-0c6xQR4XNG0T44fKRavUPhMJwj7S1S1D_ee3k3iKla9JaPh-ffBRVbrMWSW9WCB_x3LnMvAbZACPEjPS12YHApXguS9kFvBuC_jnXPWxZiXrChcboLTtscDHJHGdDb1x4R6KKUEwz1y1RjJjTZeBi18D4rgpG0RtoqDsjVZOWpmjNXy0FxKhW5T6DbVBwUqua1FOr-bzRNbx7YGn2JcVD1vq23GpxvGk2pS-XUDNXehRdo4YFQMO7LwWoQr2YXCkmRRsHf_8r42eRXTM55wQu9JI0bJf4gp0MKcLEf5L4lH9vs |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61RSA4FCgglhawECekbJIdO3GOqNtVC6X0QKXeLD8RYl9qtofy6_Gss-0WCVWIWyLNJM6MPR7F33wD8H5Q-sqZpskCcp3xehAyLb3PpNVV4M5qgVQ7_OWkOjzjn87F-QYMr2thZvMu9PfjZSIKTibsAHEyJ76SjEpK8wHmmNPRWCHyuQubcE9ghcSgf_T19AboIVPj1pXaqo7nb4-6tUNtxlHEaD2L621t3xk9Br8acYKb_OxfLkzf_vqDzPF_P-kJbHeJKfuYdJ7Chp_uwKM1usIduL-Ei9r2GRzv67HtGn-xWWDfqdEEM8sWTRdXbEqJ8Lhlab8cXzEqYmE4ZBOC_yXK2ssLz35MYjRrn8PZ6ODb_mHW9WXILC9wQf8fm1LIIGyQFXqUXjS6NiXWrkEpilDaigvfxDvnrIu-b3hdu9IEp20hAr6Arels6l8C89hIiUZ44qwxUhhtvAy68gXWwUnbA77yhbIdaTn1zhir5eG5lIpMp8h0aoAKVTJdD_rXavPE2nGXwofoG9Wt3_Yu4Xe3hCftpPXrAip6rge7NGlUdD2x8VqCLdmFotLkquav_uV9b-HB6XCkjo9OPu_Cw5ixiQQd2oOt6DD_OmZFC_NmOel_A3YX_F8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calculation+of+grain+boundary+normals+directly+from+3D+microstructure+images&rft.jtitle=Modelling+and+simulation+in+materials+science+and+engineering&rft.au=Lieberman%2C+E.+J.&rft.au=Rollett%2C+A.+D.&rft.au=Lebensohn%2C+R.+A.&rft.au=Kober%2C+E.+M.&rft.date=2015-04-01&rft.pub=IOP+Publishing&rft.issn=0965-0393&rft.eissn=1361-651X&rft.volume=23&rft.issue=3&rft_id=info:doi/10.1088%2F0965-0393%2F23%2F3%2F035005&rft.externalDocID=1235674 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-0393&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-0393&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-0393&client=summon |