Jet impingement heat transfer – Part I: Mean and root-mean-square heat transfer and velocity distributions

Impinging jets provide a means of achieving high heat transfer coefficients both locally and on an area averaged basis. The current work forms the first stage of a two part investigation of heat transfer distributions from a heated flat surface subject to an impinging air jet for Reynolds numbers fr...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 50; no. 17; pp. 3291 - 3301
Main Authors O’Donovan, Tadhg S., Murray, Darina B.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.08.2007
Elsevier
Subjects
Online AccessGet full text
ISSN0017-9310
1879-2189
DOI10.1016/j.ijheatmasstransfer.2007.01.044

Cover

Abstract Impinging jets provide a means of achieving high heat transfer coefficients both locally and on an area averaged basis. The current work forms the first stage of a two part investigation of heat transfer distributions from a heated flat surface subject to an impinging air jet for Reynolds numbers from 10,000 to 30,000 and non-dimensional surface to jet exit spacing, H/ D, from 0.5 to 8. In the present paper, the relative magnitudes of the local heat transfer coefficients are compared to the fluctuating components and to the mean and root-mean-square local velocity components. It has been shown that at low nozzle to surface spacings (<2 diameters) secondary peaks in the radial heat transfer distributions are due to an abrupt increase in turbulence in the wall jet. In particular the velocity fluctuations normal to the impingement surface have a controlling influence on the enhancement in the wall jet.
AbstractList Impinging jets provide a means of achieving high heat transfer coefficients both locally and on an area averaged basis. The current work forms the first stage of a two part investigation of heat transfer distributions from a heated flat surface subject to an impinging air jet for Reynolds numbers from 10,000 to 30,000 and non-dimensional surface to jet exit spacing, H/ D, from 0.5 to 8. In the present paper, the relative magnitudes of the local heat transfer coefficients are compared to the fluctuating components and to the mean and root-mean-square local velocity components. It has been shown that at low nozzle to surface spacings (<2 diameters) secondary peaks in the radial heat transfer distributions are due to an abrupt increase in turbulence in the wall jet. In particular the velocity fluctuations normal to the impingement surface have a controlling influence on the enhancement in the wall jet.
Impinging jets provide a means of achieving high heat transfer coefficients both locally and on an area averaged basis. The current work forms the first stage of a two part investigation of heat transfer distributions from a heated flat surface subject to an impinging air jet for Reynolds numbers from 10,000 to 30,000 and non-dimensional surface to jet exit spacing, H/D, from 0.5 to 8. In the present paper, the relative magnitudes of the local heat transfer coefficients are compared to the fluctuating components and to the mean and root-mean-square local velocity components. It has been shown that at low nozzle to surface spacings ( < 2 diameters) secondary peaks in the radial heat transfer distributions are due to an abrupt increase in turbulence in the wall jet. In particular the velocity fluctuations normal to the impingement surface have a controlling influence on the enhancement in the wall jet.
Author O’Donovan, Tadhg S.
Murray, Darina B.
Author_xml – sequence: 1
  givenname: Tadhg S.
  surname: O’Donovan
  fullname: O’Donovan, Tadhg S.
  email: tadhg.odonovan@tcd.ie
– sequence: 2
  givenname: Darina B.
  surname: Murray
  fullname: Murray, Darina B.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18781743$$DView record in Pascal Francis
BookMark eNqVkcFuFSEUhompibfVd2CjcTNTYLgwuNI0rbap0YWuCRcOys0M3AK3SXe-g2_ok8jktjGpG12REz6-cP7_GB3FFAGh15T0lFBxuu3D9juYOptSajaxeMg9I0T2hPaE8ydoRUepOkZHdYRWhFDZqYGSZ-i4lO0yEi5WaLqCisO8C_EbzBArXpz4QYh__fiJP5tc8eUb_BFMxCY6nFOq3dymrtzsTYZHbxbkFqZkQ73DLrTfhc2-hhTLc_TUm6nAi_vzBH29OP9y9qG7_vT-8uzddWc5GWrHx0Faq5gUygrjhdisqXBioFxw6y1jTo1r7jaSuhEYeOm8ZEINa_CWso0aTtCrg3eX080eStVzKBamyURI-6KZGvnAR9nAl_egKdZMvq1gQ9G7HGaT73QLcKSSD417e-BsTqVk8H8Qopc69Fb_XYde6tCE6lZHU1w8UrR8zBJLw8P0P6Krgwhagreh3RYbIFpwIYOt2qXw77LfYQq81A
CODEN IJHMAK
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2008_11_003
crossref_primary_10_1080_10407782_2013_784113
crossref_primary_10_1088_1742_6596_395_1_012039
crossref_primary_10_1016_j_applthermaleng_2016_02_069
crossref_primary_10_1088_0957_0233_22_10_105402
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123284
crossref_primary_10_1016_j_ijheatmasstransfer_2016_09_075
crossref_primary_10_1016_j_jfluidstructs_2012_06_002
crossref_primary_10_1016_j_ijheatmasstransfer_2017_04_098
crossref_primary_10_1051_epjconf_20146701001
crossref_primary_10_1016_j_ijheatmasstransfer_2018_04_016
crossref_primary_10_1080_01457632_2017_1320172
crossref_primary_10_1016_j_ijheatfluidflow_2023_109132
crossref_primary_10_1016_j_jfoodeng_2010_11_006
crossref_primary_10_1007_s00231_018_2470_8
crossref_primary_10_1007_s00348_019_2728_z
crossref_primary_10_1088_1742_6596_395_1_012046
crossref_primary_10_1016_j_ijheatmasstransfer_2015_06_028
crossref_primary_10_2355_tetsutohagane_100_958
crossref_primary_10_1016_j_cirp_2017_05_002
crossref_primary_10_1016_j_ijheatfluidflow_2018_06_001
crossref_primary_10_1016_j_expthermflusci_2015_08_006
crossref_primary_10_1016_j_ijheatfluidflow_2012_06_003
crossref_primary_10_1134_S1063785011100270
crossref_primary_10_1016_j_ijthermalsci_2016_06_010
crossref_primary_10_2514_1_C037797
crossref_primary_10_17533_udea_redin_n83a08
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126669
crossref_primary_10_1080_15567265_2012_761304
crossref_primary_10_3390_en14010105
crossref_primary_10_1080_07373937_2021_1954941
crossref_primary_10_1016_j_euromechflu_2010_03_001
crossref_primary_10_1016_j_matdes_2021_109471
crossref_primary_10_1016_j_biosystemseng_2017_12_011
crossref_primary_10_1109_TCPMT_2019_2926406
crossref_primary_10_1016_S1003_6326_11_61533_1
crossref_primary_10_1016_j_applthermaleng_2011_04_048
crossref_primary_10_1016_j_applthermaleng_2024_122999
crossref_primary_10_1016_j_expthermflusci_2016_06_006
crossref_primary_10_2355_isijinternational_ISIJINT_2015_454
crossref_primary_10_1016_j_ijthermalsci_2016_12_013
crossref_primary_10_1016_j_applthermaleng_2016_01_048
crossref_primary_10_1016_j_applthermaleng_2024_124258
crossref_primary_10_1016_j_ijheatmasstransfer_2016_10_105
crossref_primary_10_1016_j_ijthermalsci_2020_106402
crossref_primary_10_1088_1742_6596_395_1_012173
crossref_primary_10_1016_j_expthermflusci_2015_09_018
crossref_primary_10_3390_app11031149
crossref_primary_10_1007_s00231_019_02696_w
crossref_primary_10_1016_j_expthermflusci_2017_01_013
crossref_primary_10_1016_j_ijthermalsci_2020_106749
crossref_primary_10_1016_j_applthermaleng_2018_02_058
crossref_primary_10_1016_j_ijheatmasstransfer_2011_07_007
crossref_primary_10_1016_j_ijthermalsci_2020_106349
crossref_primary_10_1016_j_rcim_2017_01_001
crossref_primary_10_1080_07373937_2023_2260867
crossref_primary_10_1016_j_ijthermalsci_2015_10_018
crossref_primary_10_1016_j_ijthermalsci_2015_08_009
crossref_primary_10_1088_1742_6596_525_1_012011
crossref_primary_10_1016_j_expthermflusci_2014_11_012
crossref_primary_10_1115_1_4028323
crossref_primary_10_1016_j_expthermflusci_2016_08_009
crossref_primary_10_1142_S2047684117500105
crossref_primary_10_1080_17415977_2010_519028
crossref_primary_10_3390_e24050661
crossref_primary_10_4028_www_scientific_net_KEM_813_241
crossref_primary_10_1007_s00348_016_2232_7
crossref_primary_10_1243_09544062JMES927
crossref_primary_10_1615_JEnhHeatTransf_2022041662
crossref_primary_10_1016_j_expthermflusci_2013_02_003
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122273
crossref_primary_10_1051_matecconf_201816603001
crossref_primary_10_1115_1_4027840
crossref_primary_10_1007_s11998_015_9712_1
crossref_primary_10_1051_epjconf_20146702010
crossref_primary_10_1080_19942060_2020_1845805
crossref_primary_10_1016_j_ijheatmasstransfer_2012_12_039
crossref_primary_10_1063_5_0181233
crossref_primary_10_3390_en14196191
crossref_primary_10_1016_j_ijheatmasstransfer_2019_01_008
crossref_primary_10_1080_08916152_2022_2099036
crossref_primary_10_1016_j_ijheatmasstransfer_2008_04_036
crossref_primary_10_1007_s00231_016_1904_4
crossref_primary_10_1016_j_ijheatmasstransfer_2011_09_015
crossref_primary_10_1115_1_4037540
crossref_primary_10_3389_fenrg_2024_1360536
crossref_primary_10_3390_en14071846
crossref_primary_10_1016_j_expthermflusci_2008_12_006
crossref_primary_10_1016_j_ijheatmasstransfer_2011_04_037
crossref_primary_10_1016_j_applthermaleng_2018_09_085
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124168
crossref_primary_10_1016_j_jmapro_2020_01_051
crossref_primary_10_1016_j_ijthermalsci_2011_02_017
crossref_primary_10_1016_j_expthermflusci_2020_110264
crossref_primary_10_1016_j_expthermflusci_2016_08_028
crossref_primary_10_1016_j_optlaseng_2022_107165
crossref_primary_10_1063_1_4963687
crossref_primary_10_1016_j_addma_2014_10_003
crossref_primary_10_1016_j_ijheatfluidflow_2014_05_010
crossref_primary_10_1016_j_powtec_2014_10_039
crossref_primary_10_1080_10407782_2015_1069665
crossref_primary_10_1016_j_ijthermalsci_2015_07_022
crossref_primary_10_3390_ijtpp3040023
crossref_primary_10_1002_htj_21295
crossref_primary_10_1007_s00231_022_03297_w
crossref_primary_10_1080_08916152_2022_2096153
crossref_primary_10_1016_j_icheatmasstransfer_2022_106310
crossref_primary_10_1016_j_ijheatfluidflow_2016_05_013
crossref_primary_10_1177_0957650916673256
crossref_primary_10_1016_j_ijheatmasstransfer_2015_04_041
crossref_primary_10_1063_5_0084329
crossref_primary_10_1088_1742_6596_2116_1_012043
crossref_primary_10_1016_j_icheatmasstransfer_2025_108818
crossref_primary_10_1016_j_ijthermalsci_2010_06_020
crossref_primary_10_1016_j_ijheatmasstransfer_2016_06_037
crossref_primary_10_1016_j_ijthermalsci_2008_05_002
crossref_primary_10_1007_s41403_021_00264_5
crossref_primary_10_1016_j_matpr_2020_09_635
crossref_primary_10_1016_j_ijthermalsci_2017_04_021
crossref_primary_10_3390_su8070586
crossref_primary_10_1007_s00348_013_1512_8
crossref_primary_10_1016_j_ijheatmasstransfer_2011_03_059
crossref_primary_10_1007_s00231_019_02710_1
crossref_primary_10_1063_5_0235975
crossref_primary_10_1115_1_4034913
crossref_primary_10_3390_en14164843
crossref_primary_10_1016_j_ijheatmasstransfer_2013_02_066
crossref_primary_10_1063_1_5001161
crossref_primary_10_1016_j_jfluidstructs_2010_10_002
crossref_primary_10_1007_s00231_014_1327_z
crossref_primary_10_1016_j_ijheatmasstransfer_2013_10_069
crossref_primary_10_1115_1_4051375
crossref_primary_10_1016_j_ijheatmasstransfer_2015_01_125
crossref_primary_10_1016_j_applthermaleng_2012_08_010
crossref_primary_10_1016_j_expthermflusci_2014_06_010
crossref_primary_10_1115_1_4050837
crossref_primary_10_2514_1_T5905
crossref_primary_10_1016_j_ast_2021_106598
crossref_primary_10_1115_1_4048757
crossref_primary_10_1016_j_ijft_2023_100312
crossref_primary_10_1016_j_applthermaleng_2015_06_003
crossref_primary_10_1080_08916152_2010_502043
crossref_primary_10_1016_j_expthermflusci_2014_08_014
crossref_primary_10_3390_en11061550
crossref_primary_10_1007_s00348_020_2923_y
crossref_primary_10_1016_j_ijheatmasstransfer_2014_03_049
crossref_primary_10_1142_S1793962317500246
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122900
crossref_primary_10_3390_jmse10020260
crossref_primary_10_1016_j_expthermflusci_2015_05_007
crossref_primary_10_1016_j_ijthermalsci_2011_07_002
crossref_primary_10_1109_TCPMT_2024_3485478
crossref_primary_10_1007_s10973_024_13972_1
Cites_doi 10.1016/0017-9310(65)90054-2
10.1016/0142-727X(92)90017-4
10.1016/S0017-9310(01)00276-9
10.1016/0017-9310(94)90059-0
10.1115/1.2911324
10.1017/S0022112071000156
10.1016/0017-9310(82)90131-4
10.1016/0017-9310(82)90108-9
10.1016/0735-1933(96)00001-2
10.1115/1.3250776
10.1016/S0065-2717(08)70221-1
10.1016/0017-9310(77)90029-1
10.1016/0017-9310(94)90331-X
10.1016/j.ijmachtools.2004.12.004
10.1016/S0017-9310(05)80073-0
10.1017/S0022112071000053
10.1115/1.2822647
10.1016/0017-9310(86)90155-9
10.1080/00221687609499685
10.2514/3.8231
10.1615/AnnualRevHeatTransfer.v2.60
ContentType Journal Article
Copyright 2007 Elsevier Ltd
2007 INIST-CNRS
Copyright_xml – notice: 2007 Elsevier Ltd
– notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2007.01.044
DatabaseName CrossRef
Pascal-Francis
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
EndPage 3301
ExternalDocumentID 18781743
10_1016_j_ijheatmasstransfer_2007_01_044
S001793100700138X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c403t-4837cc92769c6af66b516d631464cfc22d9854db71d8e2ef7df726935efc12b93
IEDL.DBID .~1
ISSN 0017-9310
IngestDate Fri Sep 05 07:23:55 EDT 2025
Mon Jul 21 09:13:49 EDT 2025
Thu Apr 24 23:02:51 EDT 2025
Tue Jul 01 02:39:41 EDT 2025
Fri Feb 23 02:31:06 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords Jet impingement
Turbulence
Heat transfer
Test facilities
Flow pattern
Interactions
Air jet
Heat transfer coefficient
Experimental study
Velocity measurement
Flat plate
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-4837cc92769c6af66b516d631464cfc22d9854db71d8e2ef7df726935efc12b93
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 29843487
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_29843487
pascalfrancis_primary_18781743
crossref_primary_10_1016_j_ijheatmasstransfer_2007_01_044
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2007_01_044
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2007_01_044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-08-01
PublicationDateYYYYMMDD 2007-08-01
PublicationDate_xml – month: 08
  year: 2007
  text: 2007-08-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2007
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Gardon, Akfirat (bib7) 1965; 8
T.S. O’Donovan, Fluid flow and heat transfer of an impinging air jet, Ph.D. thesis, Department of Mechanical & Manufacturing Engineering, Trinity College Dublin, 2005.
Beltaos (bib5) 1976; 14
Goldstein, Behbahani (bib15) 1982; 25
Babic, Murray, Torrance (bib3) 2005; 45
Polat, Huang, Mujumdar, Douglas (bib10) 1989; 2
Lytle, Webb (bib19) 1994; 37
Hoogendoorn (bib13) 1977; 20
Jambunathan, Lai, Moss, Button (bib9) 1992; 13
Goldstein, Behbahani, Heppelmann (bib11) 1986; 29
Mohanty, Tawfek (bib16) 1993; 36
Donaldson, Snedeker, Margolis (bib14) 1971; 45
Hollworth, Durbin (bib1) 1992; 114
Shadlesky (bib22) 1983; 21
Ashforth-Frost, Jambunathan (bib8) 1996; 23
Goldstein, Timmers (bib20) 1982; 25
Lee, Grief, Lee, Lee (bib12) 1995; 117
Donaldson, Snedeker (bib4) 1971; 45
Huang, El-Genk (bib18) 1994; 37
Martin (bib6) 1977; 13
Baughn, Shimizu (bib17) 1989; 111
Roy, Nasr, Patel, AbdulNour (bib2) 2002; 45
Mohanty (10.1016/j.ijheatmasstransfer.2007.01.044_bib16) 1993; 36
Goldstein (10.1016/j.ijheatmasstransfer.2007.01.044_bib15) 1982; 25
Beltaos (10.1016/j.ijheatmasstransfer.2007.01.044_bib5) 1976; 14
Babic (10.1016/j.ijheatmasstransfer.2007.01.044_bib3) 2005; 45
Lee (10.1016/j.ijheatmasstransfer.2007.01.044_bib12) 1995; 117
Jambunathan (10.1016/j.ijheatmasstransfer.2007.01.044_bib9) 1992; 13
Lytle (10.1016/j.ijheatmasstransfer.2007.01.044_bib19) 1994; 37
Goldstein (10.1016/j.ijheatmasstransfer.2007.01.044_bib20) 1982; 25
Goldstein (10.1016/j.ijheatmasstransfer.2007.01.044_bib11) 1986; 29
Baughn (10.1016/j.ijheatmasstransfer.2007.01.044_bib17) 1989; 111
Roy (10.1016/j.ijheatmasstransfer.2007.01.044_bib2) 2002; 45
Gardon (10.1016/j.ijheatmasstransfer.2007.01.044_bib7) 1965; 8
Hollworth (10.1016/j.ijheatmasstransfer.2007.01.044_bib1) 1992; 114
10.1016/j.ijheatmasstransfer.2007.01.044_bib21
Shadlesky (10.1016/j.ijheatmasstransfer.2007.01.044_bib22) 1983; 21
Ashforth-Frost (10.1016/j.ijheatmasstransfer.2007.01.044_bib8) 1996; 23
Donaldson (10.1016/j.ijheatmasstransfer.2007.01.044_bib14) 1971; 45
Donaldson (10.1016/j.ijheatmasstransfer.2007.01.044_bib4) 1971; 45
Polat (10.1016/j.ijheatmasstransfer.2007.01.044_bib10) 1989; 2
Hoogendoorn (10.1016/j.ijheatmasstransfer.2007.01.044_bib13) 1977; 20
Martin (10.1016/j.ijheatmasstransfer.2007.01.044_bib6) 1977; 13
Huang (10.1016/j.ijheatmasstransfer.2007.01.044_bib18) 1994; 37
References_xml – volume: 37
  start-page: 1687
  year: 1994
  end-page: 1697
  ident: bib19
  article-title: Air jet impingement heat transfer at low nozzle-plate spacings
  publication-title: Int. J. Heat Mass Transfer
– volume: 114
  start-page: 607
  year: 1992
  end-page: 613
  ident: bib1
  article-title: Impingement cooling of electronics
  publication-title: ASME J. Heat Transfer
– volume: 13
  start-page: 106
  year: 1992
  end-page: 115
  ident: bib9
  article-title: A review of heat transfer data for a single circular jet impingement
  publication-title: Int. J. Heat Fluid Flow
– volume: 2
  start-page: 157
  year: 1989
  end-page: 197
  ident: bib10
  article-title: Numerical flow and heat transfer under impinging jets: a review
  publication-title: Annu. Rev. Numer. Fluid Mech. Heat Transfer
– volume: 45
  start-page: 1615
  year: 2002
  end-page: 1629
  ident: bib2
  article-title: An experimental and numerical study of heat transfer off an inclined surface subject to an impinging airflow
  publication-title: Int. J. Heat Mass Transfer
– volume: 8
  start-page: 1261
  year: 1965
  end-page: 1272
  ident: bib7
  article-title: The role of turbulence in determining the heat transfer characteristics of impinging jets
  publication-title: Int. J. Heat Mass Transfer
– volume: 45
  start-page: 477
  year: 1971
  end-page: 512
  ident: bib14
  article-title: A study of free jet impingement part. ii. free jet turbulent structure and impingement heat transfer
  publication-title: J. Fluid Mech.
– volume: 45
  start-page: 1171
  year: 2005
  end-page: 1177
  ident: bib3
  article-title: Mist jet cooling of grinding processes
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 37
  start-page: 1915
  year: 1994
  end-page: 1923
  ident: bib18
  article-title: Heat transfer of an impinging jet on a flat surface
  publication-title: Int. J. Heat Mass Transfer
– volume: 23
  start-page: 155
  year: 1996
  end-page: 162
  ident: bib8
  article-title: Effect of nozzle geometry and semi-confinement on the potential core of a turbulent axisymmetric free jet
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 13
  start-page: 1
  year: 1977
  end-page: 60
  ident: bib6
  article-title: Heat and mass transfer between impinging gas jets and solid surfaces
  publication-title: Adv. Heat Transfer
– volume: 25
  start-page: 1377
  year: 1982
  end-page: 1382
  ident: bib15
  article-title: Impingement of a circular jet with and without cross flow
  publication-title: Int. J. Heat Mass Transfer
– volume: 36
  start-page: 1639
  year: 1993
  end-page: 1647
  ident: bib16
  article-title: Heat transfer due to a round jet impinging normal to a flat surface
  publication-title: Int. J. Heat Mass Transfer
– volume: 45
  start-page: 281
  year: 1971
  end-page: 319
  ident: bib4
  article-title: A study of free jet impingement part i mean properties of free impinging jets
  publication-title: J. Fluid Mech.
– volume: 20
  start-page: 1333
  year: 1977
  end-page: 1338
  ident: bib13
  article-title: The effect of turbulence on heat transfer at a stagnation point
  publication-title: Int. J. Heat Mass Transfer
– volume: 25
  start-page: 1857
  year: 1982
  end-page: 1868
  ident: bib20
  article-title: Visualisation of heat transfer from arrays of impinging jets
  publication-title: Int. J. Heat Mass Transfer
– reference: T.S. O’Donovan, Fluid flow and heat transfer of an impinging air jet, Ph.D. thesis, Department of Mechanical & Manufacturing Engineering, Trinity College Dublin, 2005.
– volume: 29
  start-page: 1227
  year: 1986
  end-page: 1235
  ident: bib11
  article-title: Streamwise distribution of the recovery factor and the local heat transfer coefficient to an impinging circular air jet
  publication-title: Int. J. Heat Mass Transfer
– volume: 111
  start-page: 1096
  year: 1989
  end-page: 1098
  ident: bib17
  article-title: Heat transfer measurements from a surface with uniform heat flux and an impinging jet
  publication-title: ASME J. Heat Transfer
– volume: 14
  start-page: 17
  year: 1976
  end-page: 36
  ident: bib5
  article-title: Oblique impingement of circular turbulent jets
  publication-title: J. Hydraul. Res.
– volume: 117
  start-page: 772
  year: 1995
  end-page: 776
  ident: bib12
  article-title: Heat transfer from a plate to a fully developed axisymmetric impinging jet
  publication-title: ASME J. Heat Transfer
– volume: 21
  start-page: 1214
  year: 1983
  end-page: 1215
  ident: bib22
  article-title: Stagnation point heat transfer for jet impingement to a plane surface
  publication-title: AIAA J.
– volume: 8
  start-page: 1261
  year: 1965
  ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib7
  article-title: The role of turbulence in determining the heat transfer characteristics of impinging jets
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(65)90054-2
– volume: 13
  start-page: 106
  year: 1992
  ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib9
  article-title: A review of heat transfer data for a single circular jet impingement
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/0142-727X(92)90017-4
– volume: 45
  start-page: 1615
  year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib2
  article-title: An experimental and numerical study of heat transfer off an inclined surface subject to an impinging airflow
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(01)00276-9
– volume: 37
  start-page: 1687
  year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib19
  article-title: Air jet impingement heat transfer at low nozzle-plate spacings
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(94)90059-0
– volume: 114
  start-page: 607
  year: 1992
  ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib1
  article-title: Impingement cooling of electronics
  publication-title: ASME J. Heat Transfer
  doi: 10.1115/1.2911324
– volume: 45
  start-page: 477
  year: 1971
  ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib14
  article-title: A study of free jet impingement part. ii. free jet turbulent structure and impingement heat transfer
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112071000156
– volume: 25
  start-page: 1377
  year: 1982
  ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib15
  article-title: Impingement of a circular jet with and without cross flow
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(82)90131-4
– ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib21
– volume: 25
  start-page: 1857
  year: 1982
  ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib20
  article-title: Visualisation of heat transfer from arrays of impinging jets
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(82)90108-9
– volume: 23
  start-page: 155
  year: 1996
  ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib8
  article-title: Effect of nozzle geometry and semi-confinement on the potential core of a turbulent axisymmetric free jet
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/0735-1933(96)00001-2
– volume: 111
  start-page: 1096
  year: 1989
  ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib17
  article-title: Heat transfer measurements from a surface with uniform heat flux and an impinging jet
  publication-title: ASME J. Heat Transfer
  doi: 10.1115/1.3250776
– volume: 13
  start-page: 1
  year: 1977
  ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib6
  article-title: Heat and mass transfer between impinging gas jets and solid surfaces
  publication-title: Adv. Heat Transfer
  doi: 10.1016/S0065-2717(08)70221-1
– volume: 20
  start-page: 1333
  year: 1977
  ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib13
  article-title: The effect of turbulence on heat transfer at a stagnation point
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(77)90029-1
– volume: 37
  start-page: 1915
  year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib18
  article-title: Heat transfer of an impinging jet on a flat surface
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(94)90331-X
– volume: 45
  start-page: 1171
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib3
  article-title: Mist jet cooling of grinding processes
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2004.12.004
– volume: 36
  start-page: 1639
  year: 1993
  ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib16
  article-title: Heat transfer due to a round jet impinging normal to a flat surface
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(05)80073-0
– volume: 45
  start-page: 281
  year: 1971
  ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib4
  article-title: A study of free jet impingement part i mean properties of free impinging jets
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112071000053
– volume: 117
  start-page: 772
  year: 1995
  ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib12
  article-title: Heat transfer from a plate to a fully developed axisymmetric impinging jet
  publication-title: ASME J. Heat Transfer
  doi: 10.1115/1.2822647
– volume: 29
  start-page: 1227
  year: 1986
  ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib11
  article-title: Streamwise distribution of the recovery factor and the local heat transfer coefficient to an impinging circular air jet
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(86)90155-9
– volume: 14
  start-page: 17
  year: 1976
  ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib5
  article-title: Oblique impingement of circular turbulent jets
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221687609499685
– volume: 21
  start-page: 1214
  year: 1983
  ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib22
  article-title: Stagnation point heat transfer for jet impingement to a plane surface
  publication-title: AIAA J.
  doi: 10.2514/3.8231
– volume: 2
  start-page: 157
  year: 1989
  ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib10
  article-title: Numerical flow and heat transfer under impinging jets: a review
  publication-title: Annu. Rev. Numer. Fluid Mech. Heat Transfer
  doi: 10.1615/AnnualRevHeatTransfer.v2.60
SSID ssj0017046
Score 2.333425
Snippet Impinging jets provide a means of achieving high heat transfer coefficients both locally and on an area averaged basis. The current work forms the first stage...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3291
SubjectTerms Convection and heat transfer
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Heat transfer
Jet impingement
Jets
Physics
Turbulence
Turbulent flows, convection, and heat transfer
Title Jet impingement heat transfer – Part I: Mean and root-mean-square heat transfer and velocity distributions
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.01.044
https://www.proquest.com/docview/29843487
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hqiIkVLWliC3t1oceegnk4dhxLxVaFS2sQAgVdW9W4oe0CMJ2k70i_gP_sL-kM3mAKOoBqacokW1N7PHnsf3NDMDnRFHY8tQHNpQq4IkrApXhvCq89KgfkVEN5f_4RIzP-dE0na7AqPeFIVplh_0tpjdo3X3Z63pzbz6bkY8vKRfd8jfXbVPyYOeSdH335p7mEcmwddYhNKbSa_DlgeM1uyDEu0IztW7MRLfoghpGuyHn_1qqNuZ5hR3o28wXT0C8WZkOXsOrzqRk-63Ub2DFlW_hZUPtNNUmXB65ms2uyC-qOQpkJAzrJWG_b-_YKf4xO_zKjl1esry0DM1p3A_jW1D9Qh1yf9WhIsQ1MmjCM0uhd7usWdU7OD_4_mM0DrocC4HhYVLTWaI0RsVSKCNyL0SRRsKKBAGUG2_i2Kos5baQkc1c7Ly0XsZCJanzJooLlWzBanldum1gzuYKkV-lsZAUpz0vBNbmosg4xejPB_Ct705tugDklAfjUvdMswv9dEAoT6bUYaRxQAag7luYt8E4nlF31I-gfqRgGteOZ7QyfDT4D2JkMqPN3QA-9dqgcaLS7UteuutlpWOV8QS3h-__iyA7sN6eMhMV8QOs1oul-4jmUV0MG_0fwov9w8n4hJ6Ts5-TPwgkF8s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5tqVqQUNWnuqVdfOihl0Aejh1zQdWqaKEs6gGkvVmJH9IiNruQcK34D_2H_SWdyQNEUQ9IPSaKrYln_HlsfzMD8DlRlLY89YENpQp44opAZTivCi892kdkVEP5n56IyRk_mqWzAYz7WBiiVXbY32J6g9bdm91uNHdX8znF-JJx0S1_c902ewJPeZpI4vXt_LzleUQybKN1CI7p8-fw5Y7kNT8nyFugn1o3fqK76rIaRjsh5_9aqzZXeYUj6NvSFw9QvFmaDl7Ci86nZF9bsV_BwJWv4VnD7TTVG7g4cjWbLygwqjkLZCQM6yVhv29-sR_4y-xwj01dXrK8tAz9adwQ41NQXaIRub_a0CdENjLowzNLuXe7slnVWzg7-HY6ngRdkYXA8DCp6TBRGqNiKZQRuReiSCNhRYIIyo03cWxVlnJbyMhmLnZeWi9joZLUeRPFhUrewVq5LN17YM7mCqFfpbGQlKg9LwS25qLIOCXpz4ew3w-nNl0GciqEcaF7qtm5fqgQKpQpdRhpVMgQ1G0PqzYbxyPajnsN6nsWpnHxeEQvo3vKvxMjkxnt7oaw3VuDxplK1y956ZbXlY5VxhPcH374L4Jsw_rkdHqsjw9Pvm_BRnvkTLzEj7BWX127T-gr1cWomQt_AIv0F7s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Jet+impingement+heat+transfer+%E2%80%93+Part+I%3A+Mean+and+root-mean-square+heat+transfer+and+velocity+distributions&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=O%E2%80%99Donovan%2C+Tadhg+S.&rft.au=Murray%2C+Darina+B.&rft.date=2007-08-01&rft.issn=0017-9310&rft.volume=50&rft.issue=17-18&rft.spage=3291&rft.epage=3301&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2007.01.044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2007_01_044
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon