Jet impingement heat transfer – Part I: Mean and root-mean-square heat transfer and velocity distributions
Impinging jets provide a means of achieving high heat transfer coefficients both locally and on an area averaged basis. The current work forms the first stage of a two part investigation of heat transfer distributions from a heated flat surface subject to an impinging air jet for Reynolds numbers fr...
Saved in:
Published in | International journal of heat and mass transfer Vol. 50; no. 17; pp. 3291 - 3301 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.08.2007
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0017-9310 1879-2189 |
DOI | 10.1016/j.ijheatmasstransfer.2007.01.044 |
Cover
Abstract | Impinging jets provide a means of achieving high heat transfer coefficients both locally and on an area averaged basis. The current work forms the first stage of a two part investigation of heat transfer distributions from a heated flat surface subject to an impinging air jet for Reynolds numbers from 10,000 to 30,000 and non-dimensional surface to jet exit spacing,
H/
D, from 0.5 to 8. In the present paper, the relative magnitudes of the local heat transfer coefficients are compared to the fluctuating components and to the mean and root-mean-square local velocity components. It has been shown that at low nozzle to surface spacings (<2 diameters) secondary peaks in the radial heat transfer distributions are due to an abrupt increase in turbulence in the wall jet. In particular the velocity fluctuations normal to the impingement surface have a controlling influence on the enhancement in the wall jet. |
---|---|
AbstractList | Impinging jets provide a means of achieving high heat transfer coefficients both locally and on an area averaged basis. The current work forms the first stage of a two part investigation of heat transfer distributions from a heated flat surface subject to an impinging air jet for Reynolds numbers from 10,000 to 30,000 and non-dimensional surface to jet exit spacing,
H/
D, from 0.5 to 8. In the present paper, the relative magnitudes of the local heat transfer coefficients are compared to the fluctuating components and to the mean and root-mean-square local velocity components. It has been shown that at low nozzle to surface spacings (<2 diameters) secondary peaks in the radial heat transfer distributions are due to an abrupt increase in turbulence in the wall jet. In particular the velocity fluctuations normal to the impingement surface have a controlling influence on the enhancement in the wall jet. Impinging jets provide a means of achieving high heat transfer coefficients both locally and on an area averaged basis. The current work forms the first stage of a two part investigation of heat transfer distributions from a heated flat surface subject to an impinging air jet for Reynolds numbers from 10,000 to 30,000 and non-dimensional surface to jet exit spacing, H/D, from 0.5 to 8. In the present paper, the relative magnitudes of the local heat transfer coefficients are compared to the fluctuating components and to the mean and root-mean-square local velocity components. It has been shown that at low nozzle to surface spacings ( < 2 diameters) secondary peaks in the radial heat transfer distributions are due to an abrupt increase in turbulence in the wall jet. In particular the velocity fluctuations normal to the impingement surface have a controlling influence on the enhancement in the wall jet. |
Author | O’Donovan, Tadhg S. Murray, Darina B. |
Author_xml | – sequence: 1 givenname: Tadhg S. surname: O’Donovan fullname: O’Donovan, Tadhg S. email: tadhg.odonovan@tcd.ie – sequence: 2 givenname: Darina B. surname: Murray fullname: Murray, Darina B. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18781743$$DView record in Pascal Francis |
BookMark | eNqVkcFuFSEUhompibfVd2CjcTNTYLgwuNI0rbap0YWuCRcOys0M3AK3SXe-g2_ok8jktjGpG12REz6-cP7_GB3FFAGh15T0lFBxuu3D9juYOptSajaxeMg9I0T2hPaE8ydoRUepOkZHdYRWhFDZqYGSZ-i4lO0yEi5WaLqCisO8C_EbzBArXpz4QYh__fiJP5tc8eUb_BFMxCY6nFOq3dymrtzsTYZHbxbkFqZkQ73DLrTfhc2-hhTLc_TUm6nAi_vzBH29OP9y9qG7_vT-8uzddWc5GWrHx0Faq5gUygrjhdisqXBioFxw6y1jTo1r7jaSuhEYeOm8ZEINa_CWso0aTtCrg3eX080eStVzKBamyURI-6KZGvnAR9nAl_egKdZMvq1gQ9G7HGaT73QLcKSSD417e-BsTqVk8H8Qopc69Fb_XYde6tCE6lZHU1w8UrR8zBJLw8P0P6Krgwhagreh3RYbIFpwIYOt2qXw77LfYQq81A |
CODEN | IJHMAK |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2008_11_003 crossref_primary_10_1080_10407782_2013_784113 crossref_primary_10_1088_1742_6596_395_1_012039 crossref_primary_10_1016_j_applthermaleng_2016_02_069 crossref_primary_10_1088_0957_0233_22_10_105402 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123284 crossref_primary_10_1016_j_ijheatmasstransfer_2016_09_075 crossref_primary_10_1016_j_jfluidstructs_2012_06_002 crossref_primary_10_1016_j_ijheatmasstransfer_2017_04_098 crossref_primary_10_1051_epjconf_20146701001 crossref_primary_10_1016_j_ijheatmasstransfer_2018_04_016 crossref_primary_10_1080_01457632_2017_1320172 crossref_primary_10_1016_j_ijheatfluidflow_2023_109132 crossref_primary_10_1016_j_jfoodeng_2010_11_006 crossref_primary_10_1007_s00231_018_2470_8 crossref_primary_10_1007_s00348_019_2728_z crossref_primary_10_1088_1742_6596_395_1_012046 crossref_primary_10_1016_j_ijheatmasstransfer_2015_06_028 crossref_primary_10_2355_tetsutohagane_100_958 crossref_primary_10_1016_j_cirp_2017_05_002 crossref_primary_10_1016_j_ijheatfluidflow_2018_06_001 crossref_primary_10_1016_j_expthermflusci_2015_08_006 crossref_primary_10_1016_j_ijheatfluidflow_2012_06_003 crossref_primary_10_1134_S1063785011100270 crossref_primary_10_1016_j_ijthermalsci_2016_06_010 crossref_primary_10_2514_1_C037797 crossref_primary_10_17533_udea_redin_n83a08 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126669 crossref_primary_10_1080_15567265_2012_761304 crossref_primary_10_3390_en14010105 crossref_primary_10_1080_07373937_2021_1954941 crossref_primary_10_1016_j_euromechflu_2010_03_001 crossref_primary_10_1016_j_matdes_2021_109471 crossref_primary_10_1016_j_biosystemseng_2017_12_011 crossref_primary_10_1109_TCPMT_2019_2926406 crossref_primary_10_1016_S1003_6326_11_61533_1 crossref_primary_10_1016_j_applthermaleng_2011_04_048 crossref_primary_10_1016_j_applthermaleng_2024_122999 crossref_primary_10_1016_j_expthermflusci_2016_06_006 crossref_primary_10_2355_isijinternational_ISIJINT_2015_454 crossref_primary_10_1016_j_ijthermalsci_2016_12_013 crossref_primary_10_1016_j_applthermaleng_2016_01_048 crossref_primary_10_1016_j_applthermaleng_2024_124258 crossref_primary_10_1016_j_ijheatmasstransfer_2016_10_105 crossref_primary_10_1016_j_ijthermalsci_2020_106402 crossref_primary_10_1088_1742_6596_395_1_012173 crossref_primary_10_1016_j_expthermflusci_2015_09_018 crossref_primary_10_3390_app11031149 crossref_primary_10_1007_s00231_019_02696_w crossref_primary_10_1016_j_expthermflusci_2017_01_013 crossref_primary_10_1016_j_ijthermalsci_2020_106749 crossref_primary_10_1016_j_applthermaleng_2018_02_058 crossref_primary_10_1016_j_ijheatmasstransfer_2011_07_007 crossref_primary_10_1016_j_ijthermalsci_2020_106349 crossref_primary_10_1016_j_rcim_2017_01_001 crossref_primary_10_1080_07373937_2023_2260867 crossref_primary_10_1016_j_ijthermalsci_2015_10_018 crossref_primary_10_1016_j_ijthermalsci_2015_08_009 crossref_primary_10_1088_1742_6596_525_1_012011 crossref_primary_10_1016_j_expthermflusci_2014_11_012 crossref_primary_10_1115_1_4028323 crossref_primary_10_1016_j_expthermflusci_2016_08_009 crossref_primary_10_1142_S2047684117500105 crossref_primary_10_1080_17415977_2010_519028 crossref_primary_10_3390_e24050661 crossref_primary_10_4028_www_scientific_net_KEM_813_241 crossref_primary_10_1007_s00348_016_2232_7 crossref_primary_10_1243_09544062JMES927 crossref_primary_10_1615_JEnhHeatTransf_2022041662 crossref_primary_10_1016_j_expthermflusci_2013_02_003 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122273 crossref_primary_10_1051_matecconf_201816603001 crossref_primary_10_1115_1_4027840 crossref_primary_10_1007_s11998_015_9712_1 crossref_primary_10_1051_epjconf_20146702010 crossref_primary_10_1080_19942060_2020_1845805 crossref_primary_10_1016_j_ijheatmasstransfer_2012_12_039 crossref_primary_10_1063_5_0181233 crossref_primary_10_3390_en14196191 crossref_primary_10_1016_j_ijheatmasstransfer_2019_01_008 crossref_primary_10_1080_08916152_2022_2099036 crossref_primary_10_1016_j_ijheatmasstransfer_2008_04_036 crossref_primary_10_1007_s00231_016_1904_4 crossref_primary_10_1016_j_ijheatmasstransfer_2011_09_015 crossref_primary_10_1115_1_4037540 crossref_primary_10_3389_fenrg_2024_1360536 crossref_primary_10_3390_en14071846 crossref_primary_10_1016_j_expthermflusci_2008_12_006 crossref_primary_10_1016_j_ijheatmasstransfer_2011_04_037 crossref_primary_10_1016_j_applthermaleng_2018_09_085 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124168 crossref_primary_10_1016_j_jmapro_2020_01_051 crossref_primary_10_1016_j_ijthermalsci_2011_02_017 crossref_primary_10_1016_j_expthermflusci_2020_110264 crossref_primary_10_1016_j_expthermflusci_2016_08_028 crossref_primary_10_1016_j_optlaseng_2022_107165 crossref_primary_10_1063_1_4963687 crossref_primary_10_1016_j_addma_2014_10_003 crossref_primary_10_1016_j_ijheatfluidflow_2014_05_010 crossref_primary_10_1016_j_powtec_2014_10_039 crossref_primary_10_1080_10407782_2015_1069665 crossref_primary_10_1016_j_ijthermalsci_2015_07_022 crossref_primary_10_3390_ijtpp3040023 crossref_primary_10_1002_htj_21295 crossref_primary_10_1007_s00231_022_03297_w crossref_primary_10_1080_08916152_2022_2096153 crossref_primary_10_1016_j_icheatmasstransfer_2022_106310 crossref_primary_10_1016_j_ijheatfluidflow_2016_05_013 crossref_primary_10_1177_0957650916673256 crossref_primary_10_1016_j_ijheatmasstransfer_2015_04_041 crossref_primary_10_1063_5_0084329 crossref_primary_10_1088_1742_6596_2116_1_012043 crossref_primary_10_1016_j_icheatmasstransfer_2025_108818 crossref_primary_10_1016_j_ijthermalsci_2010_06_020 crossref_primary_10_1016_j_ijheatmasstransfer_2016_06_037 crossref_primary_10_1016_j_ijthermalsci_2008_05_002 crossref_primary_10_1007_s41403_021_00264_5 crossref_primary_10_1016_j_matpr_2020_09_635 crossref_primary_10_1016_j_ijthermalsci_2017_04_021 crossref_primary_10_3390_su8070586 crossref_primary_10_1007_s00348_013_1512_8 crossref_primary_10_1016_j_ijheatmasstransfer_2011_03_059 crossref_primary_10_1007_s00231_019_02710_1 crossref_primary_10_1063_5_0235975 crossref_primary_10_1115_1_4034913 crossref_primary_10_3390_en14164843 crossref_primary_10_1016_j_ijheatmasstransfer_2013_02_066 crossref_primary_10_1063_1_5001161 crossref_primary_10_1016_j_jfluidstructs_2010_10_002 crossref_primary_10_1007_s00231_014_1327_z crossref_primary_10_1016_j_ijheatmasstransfer_2013_10_069 crossref_primary_10_1115_1_4051375 crossref_primary_10_1016_j_ijheatmasstransfer_2015_01_125 crossref_primary_10_1016_j_applthermaleng_2012_08_010 crossref_primary_10_1016_j_expthermflusci_2014_06_010 crossref_primary_10_1115_1_4050837 crossref_primary_10_2514_1_T5905 crossref_primary_10_1016_j_ast_2021_106598 crossref_primary_10_1115_1_4048757 crossref_primary_10_1016_j_ijft_2023_100312 crossref_primary_10_1016_j_applthermaleng_2015_06_003 crossref_primary_10_1080_08916152_2010_502043 crossref_primary_10_1016_j_expthermflusci_2014_08_014 crossref_primary_10_3390_en11061550 crossref_primary_10_1007_s00348_020_2923_y crossref_primary_10_1016_j_ijheatmasstransfer_2014_03_049 crossref_primary_10_1142_S1793962317500246 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122900 crossref_primary_10_3390_jmse10020260 crossref_primary_10_1016_j_expthermflusci_2015_05_007 crossref_primary_10_1016_j_ijthermalsci_2011_07_002 crossref_primary_10_1109_TCPMT_2024_3485478 crossref_primary_10_1007_s10973_024_13972_1 |
Cites_doi | 10.1016/0017-9310(65)90054-2 10.1016/0142-727X(92)90017-4 10.1016/S0017-9310(01)00276-9 10.1016/0017-9310(94)90059-0 10.1115/1.2911324 10.1017/S0022112071000156 10.1016/0017-9310(82)90131-4 10.1016/0017-9310(82)90108-9 10.1016/0735-1933(96)00001-2 10.1115/1.3250776 10.1016/S0065-2717(08)70221-1 10.1016/0017-9310(77)90029-1 10.1016/0017-9310(94)90331-X 10.1016/j.ijmachtools.2004.12.004 10.1016/S0017-9310(05)80073-0 10.1017/S0022112071000053 10.1115/1.2822647 10.1016/0017-9310(86)90155-9 10.1080/00221687609499685 10.2514/3.8231 10.1615/AnnualRevHeatTransfer.v2.60 |
ContentType | Journal Article |
Copyright | 2007 Elsevier Ltd 2007 INIST-CNRS |
Copyright_xml | – notice: 2007 Elsevier Ltd – notice: 2007 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.ijheatmasstransfer.2007.01.044 |
DatabaseName | CrossRef Pascal-Francis Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1879-2189 |
EndPage | 3301 |
ExternalDocumentID | 18781743 10_1016_j_ijheatmasstransfer_2007_01_044 S001793100700138X |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7TB 8FD FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c403t-4837cc92769c6af66b516d631464cfc22d9854db71d8e2ef7df726935efc12b93 |
IEDL.DBID | .~1 |
ISSN | 0017-9310 |
IngestDate | Fri Sep 05 07:23:55 EDT 2025 Mon Jul 21 09:13:49 EDT 2025 Thu Apr 24 23:02:51 EDT 2025 Tue Jul 01 02:39:41 EDT 2025 Fri Feb 23 02:31:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | Jet impingement Turbulence Heat transfer Test facilities Flow pattern Interactions Air jet Heat transfer coefficient Experimental study Velocity measurement Flat plate |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-4837cc92769c6af66b516d631464cfc22d9854db71d8e2ef7df726935efc12b93 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 29843487 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_29843487 pascalfrancis_primary_18781743 crossref_primary_10_1016_j_ijheatmasstransfer_2007_01_044 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2007_01_044 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2007_01_044 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-08-01 |
PublicationDateYYYYMMDD | 2007-08-01 |
PublicationDate_xml | – month: 08 year: 2007 text: 2007-08-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of heat and mass transfer |
PublicationYear | 2007 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Gardon, Akfirat (bib7) 1965; 8 T.S. O’Donovan, Fluid flow and heat transfer of an impinging air jet, Ph.D. thesis, Department of Mechanical & Manufacturing Engineering, Trinity College Dublin, 2005. Beltaos (bib5) 1976; 14 Goldstein, Behbahani (bib15) 1982; 25 Babic, Murray, Torrance (bib3) 2005; 45 Polat, Huang, Mujumdar, Douglas (bib10) 1989; 2 Lytle, Webb (bib19) 1994; 37 Hoogendoorn (bib13) 1977; 20 Jambunathan, Lai, Moss, Button (bib9) 1992; 13 Goldstein, Behbahani, Heppelmann (bib11) 1986; 29 Mohanty, Tawfek (bib16) 1993; 36 Donaldson, Snedeker, Margolis (bib14) 1971; 45 Hollworth, Durbin (bib1) 1992; 114 Shadlesky (bib22) 1983; 21 Ashforth-Frost, Jambunathan (bib8) 1996; 23 Goldstein, Timmers (bib20) 1982; 25 Lee, Grief, Lee, Lee (bib12) 1995; 117 Donaldson, Snedeker (bib4) 1971; 45 Huang, El-Genk (bib18) 1994; 37 Martin (bib6) 1977; 13 Baughn, Shimizu (bib17) 1989; 111 Roy, Nasr, Patel, AbdulNour (bib2) 2002; 45 Mohanty (10.1016/j.ijheatmasstransfer.2007.01.044_bib16) 1993; 36 Goldstein (10.1016/j.ijheatmasstransfer.2007.01.044_bib15) 1982; 25 Beltaos (10.1016/j.ijheatmasstransfer.2007.01.044_bib5) 1976; 14 Babic (10.1016/j.ijheatmasstransfer.2007.01.044_bib3) 2005; 45 Lee (10.1016/j.ijheatmasstransfer.2007.01.044_bib12) 1995; 117 Jambunathan (10.1016/j.ijheatmasstransfer.2007.01.044_bib9) 1992; 13 Lytle (10.1016/j.ijheatmasstransfer.2007.01.044_bib19) 1994; 37 Goldstein (10.1016/j.ijheatmasstransfer.2007.01.044_bib20) 1982; 25 Goldstein (10.1016/j.ijheatmasstransfer.2007.01.044_bib11) 1986; 29 Baughn (10.1016/j.ijheatmasstransfer.2007.01.044_bib17) 1989; 111 Roy (10.1016/j.ijheatmasstransfer.2007.01.044_bib2) 2002; 45 Gardon (10.1016/j.ijheatmasstransfer.2007.01.044_bib7) 1965; 8 Hollworth (10.1016/j.ijheatmasstransfer.2007.01.044_bib1) 1992; 114 10.1016/j.ijheatmasstransfer.2007.01.044_bib21 Shadlesky (10.1016/j.ijheatmasstransfer.2007.01.044_bib22) 1983; 21 Ashforth-Frost (10.1016/j.ijheatmasstransfer.2007.01.044_bib8) 1996; 23 Donaldson (10.1016/j.ijheatmasstransfer.2007.01.044_bib14) 1971; 45 Donaldson (10.1016/j.ijheatmasstransfer.2007.01.044_bib4) 1971; 45 Polat (10.1016/j.ijheatmasstransfer.2007.01.044_bib10) 1989; 2 Hoogendoorn (10.1016/j.ijheatmasstransfer.2007.01.044_bib13) 1977; 20 Martin (10.1016/j.ijheatmasstransfer.2007.01.044_bib6) 1977; 13 Huang (10.1016/j.ijheatmasstransfer.2007.01.044_bib18) 1994; 37 |
References_xml | – volume: 37 start-page: 1687 year: 1994 end-page: 1697 ident: bib19 article-title: Air jet impingement heat transfer at low nozzle-plate spacings publication-title: Int. J. Heat Mass Transfer – volume: 114 start-page: 607 year: 1992 end-page: 613 ident: bib1 article-title: Impingement cooling of electronics publication-title: ASME J. Heat Transfer – volume: 13 start-page: 106 year: 1992 end-page: 115 ident: bib9 article-title: A review of heat transfer data for a single circular jet impingement publication-title: Int. J. Heat Fluid Flow – volume: 2 start-page: 157 year: 1989 end-page: 197 ident: bib10 article-title: Numerical flow and heat transfer under impinging jets: a review publication-title: Annu. Rev. Numer. Fluid Mech. Heat Transfer – volume: 45 start-page: 1615 year: 2002 end-page: 1629 ident: bib2 article-title: An experimental and numerical study of heat transfer off an inclined surface subject to an impinging airflow publication-title: Int. J. Heat Mass Transfer – volume: 8 start-page: 1261 year: 1965 end-page: 1272 ident: bib7 article-title: The role of turbulence in determining the heat transfer characteristics of impinging jets publication-title: Int. J. Heat Mass Transfer – volume: 45 start-page: 477 year: 1971 end-page: 512 ident: bib14 article-title: A study of free jet impingement part. ii. free jet turbulent structure and impingement heat transfer publication-title: J. Fluid Mech. – volume: 45 start-page: 1171 year: 2005 end-page: 1177 ident: bib3 article-title: Mist jet cooling of grinding processes publication-title: Int. J. Mach. Tools Manuf. – volume: 37 start-page: 1915 year: 1994 end-page: 1923 ident: bib18 article-title: Heat transfer of an impinging jet on a flat surface publication-title: Int. J. Heat Mass Transfer – volume: 23 start-page: 155 year: 1996 end-page: 162 ident: bib8 article-title: Effect of nozzle geometry and semi-confinement on the potential core of a turbulent axisymmetric free jet publication-title: Int. Commun. Heat Mass Transfer – volume: 13 start-page: 1 year: 1977 end-page: 60 ident: bib6 article-title: Heat and mass transfer between impinging gas jets and solid surfaces publication-title: Adv. Heat Transfer – volume: 25 start-page: 1377 year: 1982 end-page: 1382 ident: bib15 article-title: Impingement of a circular jet with and without cross flow publication-title: Int. J. Heat Mass Transfer – volume: 36 start-page: 1639 year: 1993 end-page: 1647 ident: bib16 article-title: Heat transfer due to a round jet impinging normal to a flat surface publication-title: Int. J. Heat Mass Transfer – volume: 45 start-page: 281 year: 1971 end-page: 319 ident: bib4 article-title: A study of free jet impingement part i mean properties of free impinging jets publication-title: J. Fluid Mech. – volume: 20 start-page: 1333 year: 1977 end-page: 1338 ident: bib13 article-title: The effect of turbulence on heat transfer at a stagnation point publication-title: Int. J. Heat Mass Transfer – volume: 25 start-page: 1857 year: 1982 end-page: 1868 ident: bib20 article-title: Visualisation of heat transfer from arrays of impinging jets publication-title: Int. J. Heat Mass Transfer – reference: T.S. O’Donovan, Fluid flow and heat transfer of an impinging air jet, Ph.D. thesis, Department of Mechanical & Manufacturing Engineering, Trinity College Dublin, 2005. – volume: 29 start-page: 1227 year: 1986 end-page: 1235 ident: bib11 article-title: Streamwise distribution of the recovery factor and the local heat transfer coefficient to an impinging circular air jet publication-title: Int. J. Heat Mass Transfer – volume: 111 start-page: 1096 year: 1989 end-page: 1098 ident: bib17 article-title: Heat transfer measurements from a surface with uniform heat flux and an impinging jet publication-title: ASME J. Heat Transfer – volume: 14 start-page: 17 year: 1976 end-page: 36 ident: bib5 article-title: Oblique impingement of circular turbulent jets publication-title: J. Hydraul. Res. – volume: 117 start-page: 772 year: 1995 end-page: 776 ident: bib12 article-title: Heat transfer from a plate to a fully developed axisymmetric impinging jet publication-title: ASME J. Heat Transfer – volume: 21 start-page: 1214 year: 1983 end-page: 1215 ident: bib22 article-title: Stagnation point heat transfer for jet impingement to a plane surface publication-title: AIAA J. – volume: 8 start-page: 1261 year: 1965 ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib7 article-title: The role of turbulence in determining the heat transfer characteristics of impinging jets publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(65)90054-2 – volume: 13 start-page: 106 year: 1992 ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib9 article-title: A review of heat transfer data for a single circular jet impingement publication-title: Int. J. Heat Fluid Flow doi: 10.1016/0142-727X(92)90017-4 – volume: 45 start-page: 1615 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib2 article-title: An experimental and numerical study of heat transfer off an inclined surface subject to an impinging airflow publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(01)00276-9 – volume: 37 start-page: 1687 year: 1994 ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib19 article-title: Air jet impingement heat transfer at low nozzle-plate spacings publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(94)90059-0 – volume: 114 start-page: 607 year: 1992 ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib1 article-title: Impingement cooling of electronics publication-title: ASME J. Heat Transfer doi: 10.1115/1.2911324 – volume: 45 start-page: 477 year: 1971 ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib14 article-title: A study of free jet impingement part. ii. free jet turbulent structure and impingement heat transfer publication-title: J. Fluid Mech. doi: 10.1017/S0022112071000156 – volume: 25 start-page: 1377 year: 1982 ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib15 article-title: Impingement of a circular jet with and without cross flow publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(82)90131-4 – ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib21 – volume: 25 start-page: 1857 year: 1982 ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib20 article-title: Visualisation of heat transfer from arrays of impinging jets publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(82)90108-9 – volume: 23 start-page: 155 year: 1996 ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib8 article-title: Effect of nozzle geometry and semi-confinement on the potential core of a turbulent axisymmetric free jet publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/0735-1933(96)00001-2 – volume: 111 start-page: 1096 year: 1989 ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib17 article-title: Heat transfer measurements from a surface with uniform heat flux and an impinging jet publication-title: ASME J. Heat Transfer doi: 10.1115/1.3250776 – volume: 13 start-page: 1 year: 1977 ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib6 article-title: Heat and mass transfer between impinging gas jets and solid surfaces publication-title: Adv. Heat Transfer doi: 10.1016/S0065-2717(08)70221-1 – volume: 20 start-page: 1333 year: 1977 ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib13 article-title: The effect of turbulence on heat transfer at a stagnation point publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(77)90029-1 – volume: 37 start-page: 1915 year: 1994 ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib18 article-title: Heat transfer of an impinging jet on a flat surface publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(94)90331-X – volume: 45 start-page: 1171 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib3 article-title: Mist jet cooling of grinding processes publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2004.12.004 – volume: 36 start-page: 1639 year: 1993 ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib16 article-title: Heat transfer due to a round jet impinging normal to a flat surface publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(05)80073-0 – volume: 45 start-page: 281 year: 1971 ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib4 article-title: A study of free jet impingement part i mean properties of free impinging jets publication-title: J. Fluid Mech. doi: 10.1017/S0022112071000053 – volume: 117 start-page: 772 year: 1995 ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib12 article-title: Heat transfer from a plate to a fully developed axisymmetric impinging jet publication-title: ASME J. Heat Transfer doi: 10.1115/1.2822647 – volume: 29 start-page: 1227 year: 1986 ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib11 article-title: Streamwise distribution of the recovery factor and the local heat transfer coefficient to an impinging circular air jet publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(86)90155-9 – volume: 14 start-page: 17 year: 1976 ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib5 article-title: Oblique impingement of circular turbulent jets publication-title: J. Hydraul. Res. doi: 10.1080/00221687609499685 – volume: 21 start-page: 1214 year: 1983 ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib22 article-title: Stagnation point heat transfer for jet impingement to a plane surface publication-title: AIAA J. doi: 10.2514/3.8231 – volume: 2 start-page: 157 year: 1989 ident: 10.1016/j.ijheatmasstransfer.2007.01.044_bib10 article-title: Numerical flow and heat transfer under impinging jets: a review publication-title: Annu. Rev. Numer. Fluid Mech. Heat Transfer doi: 10.1615/AnnualRevHeatTransfer.v2.60 |
SSID | ssj0017046 |
Score | 2.333425 |
Snippet | Impinging jets provide a means of achieving high heat transfer coefficients both locally and on an area averaged basis. The current work forms the first stage... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3291 |
SubjectTerms | Convection and heat transfer Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Heat transfer Jet impingement Jets Physics Turbulence Turbulent flows, convection, and heat transfer |
Title | Jet impingement heat transfer – Part I: Mean and root-mean-square heat transfer and velocity distributions |
URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.01.044 https://www.proquest.com/docview/29843487 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hqiIkVLWliC3t1oceegnk4dhxLxVaFS2sQAgVdW9W4oe0CMJ2k70i_gP_sL-kM3mAKOoBqacokW1N7PHnsf3NDMDnRFHY8tQHNpQq4IkrApXhvCq89KgfkVEN5f_4RIzP-dE0na7AqPeFIVplh_0tpjdo3X3Z63pzbz6bkY8vKRfd8jfXbVPyYOeSdH335p7mEcmwddYhNKbSa_DlgeM1uyDEu0IztW7MRLfoghpGuyHn_1qqNuZ5hR3o28wXT0C8WZkOXsOrzqRk-63Ub2DFlW_hZUPtNNUmXB65ms2uyC-qOQpkJAzrJWG_b-_YKf4xO_zKjl1esry0DM1p3A_jW1D9Qh1yf9WhIsQ1MmjCM0uhd7usWdU7OD_4_mM0DrocC4HhYVLTWaI0RsVSKCNyL0SRRsKKBAGUG2_i2Kos5baQkc1c7Ly0XsZCJanzJooLlWzBanldum1gzuYKkV-lsZAUpz0vBNbmosg4xejPB_Ct705tugDklAfjUvdMswv9dEAoT6bUYaRxQAag7luYt8E4nlF31I-gfqRgGteOZ7QyfDT4D2JkMqPN3QA-9dqgcaLS7UteuutlpWOV8QS3h-__iyA7sN6eMhMV8QOs1oul-4jmUV0MG_0fwov9w8n4hJ6Ts5-TPwgkF8s |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5tqVqQUNWnuqVdfOihl0Aejh1zQdWqaKEs6gGkvVmJH9IiNruQcK34D_2H_SWdyQNEUQ9IPSaKrYln_HlsfzMD8DlRlLY89YENpQp44opAZTivCi892kdkVEP5n56IyRk_mqWzAYz7WBiiVXbY32J6g9bdm91uNHdX8znF-JJx0S1_c902ewJPeZpI4vXt_LzleUQybKN1CI7p8-fw5Y7kNT8nyFugn1o3fqK76rIaRjsh5_9aqzZXeYUj6NvSFw9QvFmaDl7Ci86nZF9bsV_BwJWv4VnD7TTVG7g4cjWbLygwqjkLZCQM6yVhv29-sR_4y-xwj01dXrK8tAz9adwQ41NQXaIRub_a0CdENjLowzNLuXe7slnVWzg7-HY6ngRdkYXA8DCp6TBRGqNiKZQRuReiSCNhRYIIyo03cWxVlnJbyMhmLnZeWi9joZLUeRPFhUrewVq5LN17YM7mCqFfpbGQlKg9LwS25qLIOCXpz4ew3w-nNl0GciqEcaF7qtm5fqgQKpQpdRhpVMgQ1G0PqzYbxyPajnsN6nsWpnHxeEQvo3vKvxMjkxnt7oaw3VuDxplK1y956ZbXlY5VxhPcH374L4Jsw_rkdHqsjw9Pvm_BRnvkTLzEj7BWX127T-gr1cWomQt_AIv0F7s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Jet+impingement+heat+transfer+%E2%80%93+Part+I%3A+Mean+and+root-mean-square+heat+transfer+and+velocity+distributions&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=O%E2%80%99Donovan%2C+Tadhg+S.&rft.au=Murray%2C+Darina+B.&rft.date=2007-08-01&rft.issn=0017-9310&rft.volume=50&rft.issue=17-18&rft.spage=3291&rft.epage=3301&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2007.01.044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2007_01_044 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |