Human Wharton's Jelly-Derived Stem Cells Display Immunomodulatory Properties and Transiently Improve Rat Experimental Autoimmune Encephalomyelitis
Umbilical cord matrix or Wharton's jelly-derived stromal cells (WJ-MSCs) are an easily accessible source of mesenchymal-like stem cells. Recent studies describe a hypoimmunogenic phenotype, multipotent differentiation potential, and trophic support function for WJ-MSCs, with variable clinical b...
Saved in:
Published in | Cell transplantation Vol. 24; no. 10; pp. 2077 - 2098 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Los Angeles, CA
SAGE Publications
01.10.2015
SAGE Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 0963-6897 1555-3892 1555-3892 |
DOI | 10.3727/096368914X685104 |
Cover
Loading…
Abstract | Umbilical cord matrix or Wharton's jelly-derived stromal cells (WJ-MSCs) are an easily accessible source of mesenchymal-like stem cells. Recent studies describe a hypoimmunogenic phenotype, multipotent differentiation potential, and trophic support function for WJ-MSCs, with variable clinical benefit in degenerative disease models such as stroke, myocardial infarction, and Parkinson's disease. It remains unclear whether WJ-MSCs have therapeutic value for multiple sclerosis (MS), where autoimmune-mediated demyelination and neurodegeneration need to be halted. In this study, we investigated whether WJ-MSCs possess the required properties to effectively and durably reverse these pathological hallmarks and whether they survive in an inflammatory environment after transplantation. WJ-MSCs displayed a lowly immunogenic phenotype and showed intrinsic expression of neurotrophic factors and a variety of anti-inflammatory molecules. Furthermore, they dose-dependently suppressed proliferation of activated T cells using contact-dependent and paracrine mechanisms. Indoleamine 2,3-dioxygenase 1 was identified as one of the main effector molecules responsible for the observed T-cell suppression. The immune-modulatory phenotype of WJ-MSCs was further enhanced after proinflammatory cytokine treatment in vitro (licensing). In addition to their effect on adaptive immunity, WJ-MSCs interfered with dendritic cell differentiation and maturation, thus directly affecting antigen presentation and therefore T-cell priming. Systemically infused WJ-MSCs potently but transiently ameliorated experimental autoimmune encephalomyelitis (EAE), an animal model for MS, when injected at onset or during chronic disease. This protective effect was paralleled with a reduction in autoantigen-induced T-cell proliferation, confirming their immunomodulatory activity in vivo. Surprisingly, in vitro licensed WJ-MSCs did not ameliorate EAE, indicative of a fast rejection as a result of enhanced immunogenicity. Collectively, we show that WJ-MSCs have trophic support properties and effectively modulate immune cell functioning both in vitro and in the EAE model, suggesting WJ-MSC may hold promise for MS therapy. Future research is needed to optimize survival of stem cells and enhance clinical durability. |
---|---|
AbstractList | Umbilical cord matrix or Wharton's jelly-derived stromal cells (WJ-MSCs) are an easily accessible source of mesenchymal-like stem cells. Recent studies describe a hypoimmunogenic phenotype, multipotent differentiation potential, and trophic support function for WJ-MSCs, with variable clinical benefit in degenerative disease models such as stroke, myocardial infarction, and Parkinson's disease. It remains unclear whether WJ-MSCs have therapeutic value for multiple sclerosis (MS), where autoimmune-mediated demyelination and neurodegeneration need to be halted. In this study, we investigated whether WJ-MSCs possess the required properties to effectively and durably reverse these pathological hallmarks and whether they survive in an inflammatory environment after transplantation. WJ-MSCs displayed a lowly immunogenic phenotype and showed intrinsic expression of neurotrophic factors and a variety of anti-inflammatory molecules. Furthermore, they dose-dependently suppressed proliferation of activated T cells using contact-dependent and paracrine mechanisms. Indoleamine 2,3-dioxygenase 1 was identified as one of the main effector molecules responsible for the observed T-cell suppression. The immune-modulatory phenotype of WJ-MSCs was further enhanced after proinflammatory cytokine treatment in vitro (licensing). In addition to their effect on adaptive immunity, WJ-MSCs interfered with dendritic cell differentiation and maturation, thus directly affecting antigen presentation and therefore T-cell priming. Systemically infused WJ-MSCs potently but transiently ameliorated experimental autoimmune encephalomyelitis (EAE), an animal model for MS, when injected at onset or during chronic disease. This protective effect was paralleled with a reduction in autoantigen-induced T-cell proliferation, confirming their immunomodulatory activity in vivo. Surprisingly, in vitro licensed WJ-MSCs did not ameliorate EAE, indicative of a fast rejection as a result of enhanced immunogenicity. Collectively, we show that WJ-MSCs have trophic support properties and effectively modulate immune cell functioning both in vitro and in the EAE model, suggesting WJ-MSC may hold promise for MS therapy. Future research is needed to optimize survival of stem cells and enhance clinical durability. Umbilical cord matrix or Wharton's jelly-derived stromal cells (WJ-MSCs) are an easily accessible source of mesenchymal-like stem cells. Recent studies describe a hypoimmunogenic phenotype, multipotent differentiation potential, and trophic support function for WJ-MSCs, with variable clinical benefit in degenerative disease models such as stroke, myocardial infarction, and Parkinson's disease. It remains unclear whether WJ-MSCs have therapeutic value for multiple sclerosis (MS), where autoimmune-mediated demyelination and neurodegeneration need to be halted. In this study, we investigated whether WJ-MSCs possess the required properties to effectively and durably reverse these pathological hallmarks and whether they survive in an inflammatory environment after transplantation. WJ-MSCs displayed a lowly immunogenic phenotype and showed intrinsic expression of neurotrophic factors and a variety of anti-inflammatory molecules. Furthermore, they dose-dependently suppressed proliferation of activated T cells using contact-dependent and paracrine mechanisms. Indoleamine 2,3-dioxygenase 1 was identified as one of the main effector molecules responsible for the observed T-cell suppression. The immune-modulatory phenotype of WJ-MSCs was further enhanced after proinflammatory cytokine treatment in vitro (licensing). In addition to their effect on adaptive immunity, WJ-MSCs interfered with dendritic cell differentiation and maturation, thus directly affecting antigen presentation and therefore T-cell priming. Systemically infused WJ-MSCs potently but transiently ameliorated experimental autoimmune encephalomyelitis (EAE), an animal model for MS, when injected at onset or during chronic disease. This protective effect was paralleled with a reduction in autoantigen-induced T-cell proliferation, confirming their immunomodulatory activity in vivo. Surprisingly, in vitro licensed WJ-MSCs did not ameliorate EAE, indicative of a fast rejection as a result of enhanced immunogenicity. Collectively, we show that WJ-MSCs have trophic support properties and effectively modulate immune cell functioning both in vitro and in the EAE model, suggesting WJ-MSC may hold promise for MS therapy. Future research is needed to optimize survival of stem cells and enhance clinical durability.Umbilical cord matrix or Wharton's jelly-derived stromal cells (WJ-MSCs) are an easily accessible source of mesenchymal-like stem cells. Recent studies describe a hypoimmunogenic phenotype, multipotent differentiation potential, and trophic support function for WJ-MSCs, with variable clinical benefit in degenerative disease models such as stroke, myocardial infarction, and Parkinson's disease. It remains unclear whether WJ-MSCs have therapeutic value for multiple sclerosis (MS), where autoimmune-mediated demyelination and neurodegeneration need to be halted. In this study, we investigated whether WJ-MSCs possess the required properties to effectively and durably reverse these pathological hallmarks and whether they survive in an inflammatory environment after transplantation. WJ-MSCs displayed a lowly immunogenic phenotype and showed intrinsic expression of neurotrophic factors and a variety of anti-inflammatory molecules. Furthermore, they dose-dependently suppressed proliferation of activated T cells using contact-dependent and paracrine mechanisms. Indoleamine 2,3-dioxygenase 1 was identified as one of the main effector molecules responsible for the observed T-cell suppression. The immune-modulatory phenotype of WJ-MSCs was further enhanced after proinflammatory cytokine treatment in vitro (licensing). In addition to their effect on adaptive immunity, WJ-MSCs interfered with dendritic cell differentiation and maturation, thus directly affecting antigen presentation and therefore T-cell priming. Systemically infused WJ-MSCs potently but transiently ameliorated experimental autoimmune encephalomyelitis (EAE), an animal model for MS, when injected at onset or during chronic disease. This protective effect was paralleled with a reduction in autoantigen-induced T-cell proliferation, confirming their immunomodulatory activity in vivo. Surprisingly, in vitro licensed WJ-MSCs did not ameliorate EAE, indicative of a fast rejection as a result of enhanced immunogenicity. Collectively, we show that WJ-MSCs have trophic support properties and effectively modulate immune cell functioning both in vitro and in the EAE model, suggesting WJ-MSC may hold promise for MS therapy. Future research is needed to optimize survival of stem cells and enhance clinical durability. |
Author | Donders, Raf Gyselaers, Wilfried Stinissen, Piet Bogie, Jeroen F. J. Hendriks, Jerome J. A. Ravanidis, Stylianos Hellings, Niels Thewissen, Kristof Vanheusden, Marjan |
Author_xml | – sequence: 1 givenname: Raf surname: Donders fullname: Donders, Raf – sequence: 2 givenname: Marjan surname: Vanheusden fullname: Vanheusden, Marjan – sequence: 3 givenname: Jeroen F. J. surname: Bogie fullname: Bogie, Jeroen F. J. – sequence: 4 givenname: Stylianos surname: Ravanidis fullname: Ravanidis, Stylianos – sequence: 5 givenname: Kristof surname: Thewissen fullname: Thewissen, Kristof – sequence: 6 givenname: Piet surname: Stinissen fullname: Stinissen, Piet – sequence: 7 givenname: Wilfried surname: Gyselaers fullname: Gyselaers, Wilfried – sequence: 8 givenname: Jerome J. A. surname: Hendriks fullname: Hendriks, Jerome J. A. – sequence: 9 givenname: Niels surname: Hellings fullname: Hellings, Niels email: niels.hellings@uhasselt.be |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25310756$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1DAUhS1URKeFPSvkHWwCdhz_ZFlNBzqoEgiKYBd54uvWo8RObadiXoMnxsOULirBytK93zm2zzlBRz54QOglJW-ZrOU70gomVEubH0JxSponaEE55xVTbX2EFvt1VfbyGJ2ktCWESFbzZ-i45owSycUC_bqYR-3x9xsdc_CvE_4Iw7CrziG6OzD4a4YRL8so4XOXpkHv8HocZx_GYOZB5xB3-HMME8TsIGHtDb6K2icHPg97dorhDvAXnfHqZ6HcWBZ6wGdzDm5vBHjle5hu9BDGHQwuu_QcPbV6SPDi_jxF396vrpYX1eWnD-vl2WXVN4TlqhGKmqYXG2aE6jfGQq-ZEtoIW1supbZAuZCU9tRaU1NpDVjBKLTaEto07BStD74m6G03lbfpuOuCdt2fQYjXXQnF9QN0vAFdgyISyKahrFXKKC6sJKo2puWmeL05eJX_3s6Qcje61JfctIcwp45KqlpShLKgr-7ReTOCebj4bycFIAegjyGlCPYBoaTb1949rr1IxCNJ77LOLvgctRv-J6wOwqSvoduGOfoS-b_539sywHk |
CitedBy_id | crossref_primary_10_3390_ijms21228662 crossref_primary_10_1002_advs_202406822 crossref_primary_10_1038_s41598_018_19703_5 crossref_primary_10_1089_ten_tec_2017_0148 crossref_primary_10_1016_j_ejcb_2020_151097 crossref_primary_10_1016_j_ejps_2025_107053 crossref_primary_10_1177_09636897231195145 crossref_primary_10_3389_fbiom_2022_989708 crossref_primary_10_1016_j_retram_2019_09_001 crossref_primary_10_1080_14737175_2018_1491309 crossref_primary_10_1177_0963689717725528 crossref_primary_10_1111_wrr_12911 crossref_primary_10_1177_0963689719836763 crossref_primary_10_1016_j_jneuroim_2016_12_005 crossref_primary_10_1515_revneuro_2018_0057 crossref_primary_10_1007_s10561_018_9727_9 crossref_primary_10_1016_j_heliyon_2023_e21411 crossref_primary_10_3390_ijms23042177 crossref_primary_10_1111_cns_13280 crossref_primary_10_2174_1574888X17666220511153133 crossref_primary_10_1016_j_acthis_2016_09_006 crossref_primary_10_1016_j_lfs_2021_119812 crossref_primary_10_1155_2016_5457132 crossref_primary_10_3389_fimmu_2022_972247 crossref_primary_10_3389_fphar_2021_721156 crossref_primary_10_3389_fphar_2021_770884 crossref_primary_10_1177_0963689719880543 crossref_primary_10_3390_cells12121664 crossref_primary_10_1177_0963689718795424 crossref_primary_10_3389_fimmu_2018_02056 crossref_primary_10_1016_j_biopha_2017_04_034 crossref_primary_10_1038_s41598_020_73188_9 crossref_primary_10_1089_scd_2017_0029 crossref_primary_10_1155_2016_5302120 crossref_primary_10_3390_cells8111401 crossref_primary_10_1016_j_neuroscience_2024_12_043 crossref_primary_10_1186_s13287_015_0169_z crossref_primary_10_1007_s00005_017_0460_z crossref_primary_10_1515_revneuro_2019_0040 crossref_primary_10_2217_rme_2019_0119 crossref_primary_10_3390_ijms22115749 crossref_primary_10_1016_j_cellimm_2016_09_012 crossref_primary_10_1007_s13577_020_00377_z crossref_primary_10_17352_sscrt_000003 crossref_primary_10_23868_gc120474 crossref_primary_10_1186_s13287_021_02158_3 crossref_primary_10_3389_fbioe_2015_00162 crossref_primary_10_1007_s12015_021_10226_7 crossref_primary_10_1016_j_nbd_2018_09_011 crossref_primary_10_1186_s13287_017_0653_8 crossref_primary_10_1016_j_msard_2020_102200 crossref_primary_10_5115_acb_24_082 crossref_primary_10_1080_00207454_2022_2042690 crossref_primary_10_1186_s13287_016_0304_5 crossref_primary_10_1002_stem_2840 crossref_primary_10_1016_j_isci_2024_110307 crossref_primary_10_1016_j_jcyt_2016_06_002 crossref_primary_10_1186_s13287_015_0132_z |
Cites_doi | 10.1002/ana.21076 10.1007/s12035-013-8543-2 10.4049/jimmunol.1002239 10.1038/sj.gt.3302765 10.1182/blood-2004-07-2921 10.1097/TP.0b013e3181a2a4b3 10.1089/scd.2012.0463 10.1186/2051-5960-1-43 10.2174/1875043501104010006 10.3390/ijms140611692 10.1016/S0140-6736(08)61620-7 10.1002/glia.20841 10.1615/CritRevImmunol.2013007453 10.1186/scrt394 10.1634/stemcells.21-1-50 10.1002/eji.200425405 10.1038/nri1457 10.1634/stemcells.2007-1028 10.1371/journal.pone.0001451 10.1002/jcb.23119 10.1002/glia.22622 10.2174/1566524011313050016 10.1159/000321400 10.1038/nri2395 10.1177/1352458509359727 10.1634/stemcells.2007-0439 10.1080/14653240600855905 10.1001/archneur.65.4.452 10.1038/nm.1905 10.1016/j.intimp.2013.02.020 10.1016/j.athoracsur.2006.10.066 10.1016/j.expneurol.2005.03.018 10.1016/j.expneurol.2011.02.021 10.1016/j.imbio.2013.06.008 10.3324/haematol.2012.078055 10.3727/096368912X657620 10.1186/gb-2002-3-7-research0034 10.1089/bio.2013.0027 10.2174/157488811796575332 10.1002/stem.1432 10.1038/ncpneuro0154 10.1371/journal.pone.0009016 10.1007/s12015-010-9173-y 10.4049/jimmunol.0902007 10.1016/S1474-4422(11)70121-1 10.1634/stemcells.21-1-105 10.1016/j.diff.2009.09.002 10.1089/scd.2009.0345 10.1038/mt.2009.157 10.1371/journal.pone.0003336 10.1073/pnas.1103650108 10.1634/stemcells.2005-0330 10.1016/j.stem.2007.11.014 10.1038/nature01552 10.1016/j.cellimm.2010.06.006 10.1007/s12015-006-0022-y 10.1038/leu.2011.108 10.1016/j.mayocp.2013.11.002 10.1371/journal.pone.0003145 10.1016/j.jri.2003.11.003 10.1093/nar/gks596 10.1016/j.cellimm.2009.06.010 10.2174/1574888X11308010007 10.1172/JCI58649 10.1002/eji.200737400 10.1016/j.bbmt.2007.08.048 10.1177/1352458510379243 10.1016/j.placenta.2011.06.010 10.1002/stem.1568 10.1002/glia.22420 10.1126/science.281.5380.1191 10.1186/ar2554 10.1634/stemcells.2005-0008 10.1002/(SICI)1098-1136(19990201)25:3<216::AID-GLIA2>3.0.CO;2-L 10.1007/s12015-010-9196-4 10.1385/IR:25:1:27 10.1111/j.1582-4934.2008.00221.x 10.1016/j.jneuroim.2005.08.020 10.1016/j.cellimm.2010.11.001 10.1146/annurev-immunol-032713-120227 10.1371/journal.pone.0014698 10.1038/nrneurol.2010.35 |
ContentType | Journal Article |
Copyright | 2015 Cognizant Comm. Corp. |
Copyright_xml | – notice: 2015 Cognizant Comm. Corp. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.3727/096368914X685104 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Biology |
EISSN | 1555-3892 |
EndPage | 2098 |
ExternalDocumentID | oai_doaj_org_article_54ea2e807e0b413988d856f7082dd95d 25310756 10_3727_096368914X685104 10.3727_096368914X685104 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K 0R~ 0VX 1B1 29B 4.4 53G 54M 5GY 7X7 8FI 8FJ AAEDT AAGGD AALRI AAPEO AAQGT AAQXH AAQXK AASGM AAXUO ABDWY ABJIS ABQKF ABQXT ABUWG ABVFX ABWVN ABYTW ACARO ACFMA ACGBL ACLHI ACROE ACRPL ACVFH ADBBV ADCNI ADEIA ADMUD ADNMO ADOGD ADTBJ ADUKL AENEX AEUPX AEWDL AFCOW AFDWT AFKRA AFKRG AFPUW AFRWT AFYCX AGQPQ AJEFB AJMMQ AJUZI ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APTNG AUTPY AYAKG BAWUL BCNDV BDDNI BENPR BPHCQ BSEHC BVXVI CBRKF CCPQU CORYS CQQTX CS3 DC. DU5 EBS EJD EMOBN F5P FDB FEDTE FGOYB FYUFA GROUPED_DOAJ H13 HMCUK HVGLF HYE HZ~ IHE J8X K.F M41 NQ- OK1 P2P PHGZM PHGZT PIMPY PQQKQ Q1R R2- R9- ROL RPM RPZ SAUOL SCDPB SCNPE SFC UHS UKHRP AAYXX ACHEB CITATION AAEJI CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c403t-4681d4c6b3d68cbdfeca386ad6f2f577afe156711c1ffd217fdef631e9af01443 |
IEDL.DBID | AFRWT |
ISSN | 0963-6897 1555-3892 |
IngestDate | Wed Aug 27 01:04:53 EDT 2025 Fri Jul 11 13:45:52 EDT 2025 Mon Jul 21 05:51:21 EDT 2025 Tue Jul 01 05:27:43 EDT 2025 Thu Apr 24 23:02:08 EDT 2025 Tue Jun 17 22:52:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Transplantation Mesenchymal stem cells (MSCs) Cell therapy Wharton's jelly Multiple sclerosis (MS) Immunomodulation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-4681d4c6b3d68cbdfeca386ad6f2f577afe156711c1ffd217fdef631e9af01443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/54ea2e807e0b413988d856f7082dd95d |
PMID | 25310756 |
PQID | 1718903987 |
PQPubID | 23479 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_54ea2e807e0b413988d856f7082dd95d proquest_miscellaneous_1718903987 pubmed_primary_25310756 crossref_primary_10_3727_096368914X685104 crossref_citationtrail_10_3727_096368914X685104 sage_journals_10_3727_096368914X685104 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20151000 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: 20151000 |
PublicationDecade | 2010 |
PublicationPlace | Los Angeles, CA |
PublicationPlace_xml | – name: Los Angeles, CA – name: United States |
PublicationTitle | Cell transplantation |
PublicationTitleAlternate | Cell Transplant |
PublicationYear | 2015 |
Publisher | SAGE Publications SAGE Publishing |
Publisher_xml | – name: SAGE Publications – name: SAGE Publishing |
References | Nylander, Hafler 2012; 122 English, Mahon 2011; 112 Melief, Geutskens, Fibbe, Roelofs 2013; 98 Troyer, Weiss 2008; 26 Uccelli, Laroni, Freedman 2011; 10 Vandesompele, De Preter, Pattyn, Poppe, Van Roy, De Paepe, Speleman 2002; 3 Iftimia-Mander, Hourd, Dainty, Thomas 2013; 11 Chiesa, Morbelli, Morando, Massollo, Marini, Bertoni, Frassoni, Bartolome, Sambuceti, Traggiai, Uccelli 2011; 108 Nascimento, Mosqueira, Sousa, Teixeira, Filipe, Resende, Araujo, Valente, Almeida, Martins, Santos, Barcia, Cruz, Cruz, Pinto-do 2014; 5 Romanov, Svintsitskaya, Smirnov 2003; 21 Augello, Tasso, Negrini, Amateis, Indiveri, Cancedda, Pennesi 2005; 35 Zhang, Li, Chen, Cui, Lu, Elias, Mitchell, Hammill, Vanguri, Chopp 2005; 195 Ghannam, Pene, Moquet-Torcy, Jorgensen, Yssel 2010; 185 Vanderlocht, Hellings, Hendriks, Stinissen 2006; 106 Freedman, Bar-Or, Atkins, Karussis, Frassoni, Lazarus, Scolding, Slavin, Le Blanc, Uccelli 2010; 16 Martino, Franklin, Baron Van Evercooren, Kerr 2010; 6 Munn, Zhou, Attwood, Bondarev, Conway, Marshall, Brown, Mellor 1998; 281 Severson, Hafler 2010; 51 Beeton, Garcia, Chandy 2007; 5 Corrao, La Rocca, Lo Iacono, Corsello, Farina, Anzalone 2013; 28 Pluchino, Quattrini, Brambilla, Gritti, Salani, Dina, Galli, Del Carro, Amadio, Bergami, Furlan, Comi, Vescovi, Martino 2003; 422 Kronsteiner, Peterbauer-Scherb, Grillari-Voglauer, Redl, Gabriel, van Griensven, Wolbank 2011; 267 Yoo, Jang, Lee, Kim, Yang, Eom, Lee, Kim, Yang, Jung, Sung, Kim, Koo 2009; 259 Weiss, Troyer 2006; 2 Einstein, Ben-Hur 2008; 65 Krampera 2011; 25 Wingerchuk, Carter 2014; 89 Friedman, Betancur, Boissel, Tuncer, Cetrulo, Klingemann 2007; 13 Kim, Staples, Shinozuka, Pantcheva, Kang, Borlongan 2013; 14 Prasanna, Gopalakrishnan, Shankar, Vasandan 2010; 5 Hellings, Raus, Stinissen 2002; 25 Bai, Lennon, Eaton, Maier, Caplan, Miller, Miller 2009; 57 Grigoriadis, Lourbopoulos, Lagoudaki, Frischer, Polyzoidou, Touloumi, Simeonidou, Deretzi, Kountouras, Spandou, Kotta, Karkavelas, Tascos, Lassmann 2011; 230 Mikita, Dubourdieu-Cassagno, Deloire, Vekris, Biran, Raffard, Brochet, Canron, Franconi, Boiziau, Petry 2011; 17 Ren, Zhang, Zhao, Xu, Zhang, Roberts, Zhao, Shi 2008; 2 Mitchell, Weiss, Mitchell, Martin, Davis, Morales, Helwig, Beerenstrauch, Abou-Easa, Hildreth, Troyer, Medicetty 2003; 21 Zhang, Fan, Cai, Zhao, Xue, Lin, Jiang, Xu 2010; 79 Mikaeili Agah, Parivar, Joghataei 2014; 49 Liu, Zhang, Lu, Borlongan, Pan, Chen, Qian, Liu, Zhu, Zhang, Xu 2013; 22 Struys, Moreels, Martens, Donders, Wolfs, Lambrichts 2011; 193 Najar, Raicevic, Fayyad-Kazan, De Bruyn, Bron, Toungouz, Lagneaux 2013; 15 Baban, Chandler, McCool, Marshall, Munn, Mellor 2004; 61 Fleury, Li, Simeoni, Fiorini, von Segesser, Kappenberger, Vassalli 2006; 13 Gerdoni, Gallo, Casazza, Musio, Bonanni, Pedemonte, Mantegazza, Frassoni, Mancardi, Pedotti, Uccelli 2007; 61 Nemeth, Leelahavanichkul, Yuen, Mayer, Parmelee, Doi, Robey, Leelahavanichkul, Koller, Brown, Hu, Jelinek, Star, Mezey 2009; 15 Cutler, Limbani, Girdlestone, Navarrete 2010; 185 Du, Lu, Fu, Dai, Teng, Fan, Chen, Ye, Shen, Huang, Qian, Bao 2008; 10 Steinman 2007; 37 Hemmer, Nessler, Zhou, Kieseier, Hartung 2006; 2 Beyth, Borovsky, Mevorach, Liebergall, Gazit, Aslan, Galun, Rachmilewitz 2005; 105 Lopez, Lutjemeier, Seshareddy, Trevino, Hageman, Musch, Borgarelli, Weiss 2013; 8 Siatskas, Payne, Short, Bernard 2010; 6 Marcus, Woodbury 2008; 12 Parolini, Soncini, Evangelista, Schmidt 2009; 4 Rafei, Birman, Forner, Galipeau 2009; 17 Steinman 2014; 32 Blakemore, Franklin 2008; 318 Fleming, Bovaird, Mosier, Emerson, LeVine, Marquis 2005; 170 Knaan-Shanzer 2014; 32 Selmani, Naji, Gaiffe, Obert, Tiberghien, Rouas-Freiss, Carosella, Deschaseaux 2009; 87 Bogie, Jorissen, Mailleux, Nijland, Zelcer, Vanmierlo, Van Horssen, Stinissen, Hellings, Hendriks 2013; 1 Croitoru-Lamoury, Lamoury, Caristo, Suzuki, Walker, Takikawa, Taylor, Brew 2011; 6 Krampera, Cosmi, Angeli, Pasini, Liotta, Andreini, Santarlasci, Mazzinghi, Pizzolo, Vinante, Romagnani, Maggi, Romagnani, Annunziato 2006; 24 Payne, Sun, McDonald, Layton, Moussa, Emerson-Webber, Veron, Siatskas, Herszfeld, Price, Bernard 2013; 22 Zhao, Wehner, Bornhauser, Wassmuth, Bachmann, Schmitz 2010; 19 Melief, Schrama, Brugman, Tiemessen, Hoogduijn, Fibbe, Roelofs 2013; 31 Stagg, Galipeau 2013; 13 Chao, Chao, Fu, Liu 2008; 3 Yang, Shih, Ko, Hsu, Cheng, Fu 2008; 3 Fainstein, Einstein, Cohen, Brill, Lavon, Ben-Hur 2013; 61 Weiss, Anderson, Medicetty, Seshareddy, Weiss, VanderWerff, Troyer, McIntosh 2008; 26 Aharonowiz, Einstein, Fainstein, Lassmann, Reubinoff, Ben-Hur 2008; 3 Wu, Zhou, Yu, Cui, Lu, Han, Liu 2007; 83 Taghizadeh, Cetrulo, Cetrulo 2011; 32 Untergasser, Cutcutache, Koressaar, Ye, Faircloth, Remm, Rozen 2012; 40 Conconi, Di Liddo, Tommasini, Calore, Parnigotto 2011; 4 Pappa, Anagnou 2009; 4 Curran, Jalili, Farrokhi, Ghahary 2014; 219 Uccelli, Moretta, Pistoia 2008; 8 Dominici, Le Blanc, Mueller, Slaper-Cortenbach, Marini, Krause, Deans, Keating, Prockop, Horwitz 2006; 8 Franklin, Gallo 2014; 62 Mellor, Munn 2004; 4 Compston, Coles 2008; 372 Broux, Stinissen, Hellings 2013; 33 Weiss, Medicetty, Bledsoe, Rachakatla, Choi, Merchav, Luo, Rao, Velagaleti, Troyer 2006; 24 Najar, Raicevic, Boufker, Fayyad Kazan, De Bruyn, Meuleman, Bron, Toungouz, Lagneaux 2010; 264 Anzalone, Lo Iacono, Loria, Di Stefano, Giannuzzi, Farina, La Rocca 2011; 7 Carvalho, Teixeira, Reis, Sousa, Salgado 2011; 6 Woodruff, Franklin 1999; 25 bibr43-096368914X685104 bibr18-096368914X685104 bibr86-096368914X685104 bibr51-096368914X685104 bibr5-096368914X685104 bibr69-096368914X685104 bibr26-096368914X685104 bibr27-096368914X685104 bibr4-096368914X685104 bibr52-096368914X685104 bibr35-096368914X685104 bibr78-096368914X685104 bibr50-096368914X685104 bibr36-096368914X685104 Blakemore W. F. (bibr8-096368914X685104) 2008; 318 bibr44-096368914X685104 bibr87-096368914X685104 bibr10-096368914X685104 bibr28-096368914X685104 Severson C. (bibr66-096368914X685104) 2010; 51 bibr84-096368914X685104 bibr53-096368914X685104 bibr45-096368914X685104 bibr88-096368914X685104 bibr19-096368914X685104 bibr79-096368914X685104 bibr24-096368914X685104 bibr62-096368914X685104 bibr37-096368914X685104 bibr70-096368914X685104 bibr11-096368914X685104 bibr29-096368914X685104 bibr83-096368914X685104 bibr89-096368914X685104 bibr63-096368914X685104 bibr76-096368914X685104 bibr68-096368914X685104 Corrao S. (bibr16-096368914X685104) 2013; 28 bibr42-096368914X685104 bibr55-096368914X685104 bibr21-096368914X685104 bibr3-096368914X685104 bibr73-096368914X685104 bibr47-096368914X685104 bibr60-096368914X685104 bibr34-096368914X685104 bibr81-096368914X685104 Pappa K. I. (bibr57-096368914X685104) 2009; 4 bibr30-096368914X685104 bibr13-096368914X685104 Beeton C. (bibr6-096368914X685104) 2007; 5 bibr56-096368914X685104 bibr39-096368914X685104 bibr65-096368914X685104 bibr9-096368914X685104 bibr22-096368914X685104 Parolini O. (bibr58-096368914X685104) 2009; 4 bibr72-096368914X685104 bibr48-096368914X685104 bibr1-096368914X685104 bibr31-096368914X685104 bibr74-096368914X685104 bibr23-096368914X685104 bibr80-096368914X685104 bibr14-096368914X685104 bibr15-096368914X685104 bibr71-096368914X685104 bibr32-096368914X685104 bibr75-096368914X685104 bibr49-096368914X685104 bibr67-096368914X685104 bibr2-096368914X685104 bibr54-096368914X685104 bibr41-096368914X685104 bibr7-096368914X685104 bibr40-096368914X685104 bibr46-096368914X685104 bibr59-096368914X685104 Vanderlocht J. (bibr77-096368914X685104) 2006; 106 bibr20-096368914X685104 bibr33-096368914X685104 bibr61-096368914X685104 bibr17-096368914X685104 bibr25-096368914X685104 bibr85-096368914X685104 bibr82-096368914X685104 bibr12-096368914X685104 bibr38-096368914X685104 bibr64-096368914X685104 |
References_xml | – volume: 4 start-page: 6 year: 2011 end-page: 20 article-title: Phenotype and differentiation potential of stromal populations obtained from various zones of human umbilical cord: An overview. publication-title: Open Tissue Eng. Regen. Med. J. – volume: 32 start-page: S311 issue: 4 year: 2011 end-page: S315 article-title: Wharton's Jelly stem cells: Future clinical applications. publication-title: Placenta – volume: 17 start-page: 2 issue: 1 year: 2011 end-page: 15 article-title: Altered M1/ M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. publication-title: Mult. Scler. – volume: 106 start-page: 180 issue: 4 year: 2006 end-page: 190 article-title: Current trends in multiple sclerosis research: An update on pathogenic concepts. publication-title: Acta Neurol. Belg. – volume: 19 start-page: 607 issue: 5 year: 2010 end-page: 614 article-title: Immunomodulatory properties of mesenchymal stromal cells and their therapeutic consequences for immune-mediated disorders. publication-title: Stem Cells Dev. – volume: 170 start-page: 71 issue: 1-2 year: 2005 end-page: 84 article-title: Statistical analysis of data from studies on experimental autoimmune encephalomyelitis. publication-title: J. Neuroimmunol. – volume: 87 start-page: S62 issue: 9 year: 2009 end-page: S66 article-title: HLA-G is a crucial immunosuppressive molecule secreted by adult human mesenchymal stem cells. publication-title: Transplantation – volume: 98 start-page: 888 issue: 6 year: 2013 end-page: 895 article-title: Multipotent stromal cells skew monocytes towards an anti-inflammatory interleukin-10-producing phenotype by production of interleukin-6. publication-title: Haematologica – volume: 105 start-page: 2214 issue: 5 year: 2005 end-page: 2219 article-title: Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. publication-title: Blood – volume: 33 start-page: 283 issue: 4 year: 2013 end-page: 306 article-title: Which immune cells matter? The immunopathogenesis of multiple sclerosis. publication-title: Crit. Rev. Immunol. – volume: 6 start-page: e14698 issue: 2 year: 2011 article-title: Interferon-gamma regulates the proliferation and differentiation of mesenchymal stem cells via activation of indole amine 2,3 dioxygenase (IDO). publication-title: PLoS One – volume: 22 start-page: 1053 issue: 7 year: 2013 end-page: 1062 article-title: Human umbilical cord stem cells ameliorate experimental autoimmune encephalomyelitis by regulating immunoinflammation and remyelination. publication-title: Stem Cells Dev. – volume: 5 start-page: e9016 issue: 2 year: 2010 article-title: Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. publication-title: PLoS One – volume: 4 start-page: 423 issue: 3 year: 2009 end-page: 433 article-title: Novel sources of fetal stem cells: Where do they fit on the developmental continuum? Regen. publication-title: Med. – volume: 13 start-page: 856 issue: 5 year: 2013 end-page: 867 article-title: Mechanisms of immune modulation by mesenchymal stromal cells and clinical translation. publication-title: Curr. Mol. Med. – volume: 11 start-page: 291 issue: 5 year: 2013 end-page: 298 article-title: Mesenchymal stem cell isolation from human umbilical cord tissue: Understanding and minimizing variability in cell yield for process optimization. publication-title: Biopreserv. Biobank – volume: 112 start-page: 1963 issue: 8 year: 2011 end-page: 1968 article-title: Allogeneic mesenchymal stem cells: Agents of immune modulation. publication-title: J. Cell. Biochem. – volume: 15 start-page: 42 issue: 1 year: 2009 end-page: 49 article-title: Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. publication-title: Nat. Med. – volume: 14 start-page: 11692 issue: 6 year: 2013 end-page: 11712 article-title: Wharton's jelly-derived mesenchymal stem cells: Phenotypic characterization and optimizing their therapeutic potential for clinical applications. publication-title: Int. J. Mol. Sci. – volume: 8 start-page: 315 issue: 4 year: 2006 end-page: 317 article-title: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. publication-title: Cytotherapy – volume: 259 start-page: 150 issue: 2 year: 2009 end-page: 156 article-title: Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. publication-title: Cell. Immunol. – volume: 16 start-page: 503 issue: 4 year: 2010 end-page: 510 article-title: The therapeutic potential of mesenchymal stem cell transplantation as a treatment for multiple sclerosis: Consensus report of the International MSCT Study Group. publication-title: Mult. Scler. – volume: 3 start-page: e3336 issue: 10 year: 2008 article-title: Transplantation of human umbilical mesenchymal stem cells from Wharton's jelly after complete transection of the rat spinal cord. publication-title: PLoS One – volume: 3 start-page: RESEARCH0034 issue: 7 year: 2002 article-title: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. publication-title: Genome Biol. – volume: 35 start-page: 1482 issue: 5 year: 2005 end-page: 1490 article-title: Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. publication-title: Eur. J. Immunol. – volume: 83 start-page: 1491 issue: 4 year: 2007 end-page: 1498 article-title: Therapeutic potential of human umbilical cord derived stem cells in a rat myocardial infarction model. publication-title: Ann. Thorac. Surg. – volume: 2 start-page: 201 issue: 4 year: 2006 end-page: 211 article-title: Immunopathogenesis and immunotherapy of multiple sclerosis. publication-title: Nat. Clin. Pract. Neurol. – volume: 3 start-page: e3145 issue: 9 year: 2008 article-title: Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis. publication-title: PLoS One – volume: 7 start-page: 342 issue: 2 year: 2011 end-page: 363 article-title: Wharton's jelly mesenchymal stem cells as candidates for beta cells regeneration: Extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes. publication-title: Stem Cell Rev. – volume: 61 start-page: 67 issue: 2 year: 2004 end-page: 77 article-title: Indoleamine 2,3-dioxygenase expression is restricted to fetal trophoblast giant cells during murine gestation and is maternal genome specific. publication-title: J. Reprod. Immunol. – volume: 10 start-page: 649 issue: 7 year: 2011 end-page: 656 article-title: Mesenchymal stem cells for the treatment of multiple sclerosis and other neurological diseases. publication-title: Lancet Neurol. – volume: 32 start-page: 257 year: 2014 end-page: 281 article-title: Immunology of relapse and remission in multiple sclerosis. publication-title: Annu. Rev. Immunol. – volume: 37 start-page: S53 issue: 1 year: 2007 end-page: S60 article-title: Dendritic cells: Understanding immunogenicity. publication-title: Eur. J. Immunol. – volume: 21 start-page: 50 issue: 1 year: 2003 end-page: 60 article-title: Matrix cells from Wharton's jelly form neurons and glia. publication-title: Stem Cells – volume: 26 start-page: 591 issue: 3 year: 2008 end-page: 599 article-title: Wharton's jelly-derived cells are a primitive stromal cell population. publication-title: Stem Cells – volume: 21 start-page: 105 issue: 1 year: 2003 end-page: 110 article-title: Searching for alternative sources of postnatal human mesenchymal stem cells: Candidate MSC-like cells from umbilical cord. publication-title: Stem Cells – volume: 6 start-page: 500 issue: 4 year: 2010 end-page: 506 article-title: A consensus statement addressing mesenchymal stem cell transplantation for multiple sclerosis: It's time! publication-title: Stem Cell Rev. – volume: 2 start-page: 141 issue: 2 year: 2008 end-page: 150 article-title: Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. publication-title: Cell Stem Cell – volume: 57 start-page: 1192 issue: 11 year: 2009 end-page: 1203 article-title: Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. publication-title: Glia – volume: 108 start-page: 17384 issue: 42 year: 2011 end-page: 17389 article-title: Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells. publication-title: Proc. Natl. Acad. Sci. USA – volume: 185 start-page: 6617 issue: 11 year: 2010 end-page: 6623 article-title: Umbilical cord-derived mesenchymal stromal cells modulate monocyte function to suppress T cell proliferation. publication-title: J. Immunol. – volume: 3 start-page: e1451 issue: 1 year: 2008 article-title: Islet-like clusters derived from mesenchymal stem cells in Wharton's Jelly of the human umbilical cord for transplantation to control type 1 diabetes. publication-title: PLoS One – volume: 26 start-page: 2865 issue: 11 year: 2008 end-page: 2874 article-title: Immune properties of human umbilical cord Wharton's jelly-derived cells. publication-title: Stem Cells – volume: 22 start-page: 1409 issue: 8 year: 2013 end-page: 1425 article-title: Distinct immunomodulatory and migratory mechanisms underpin the therapeutic potential of human mesenchymal stem cells in autoimmune demyelination. publication-title: Cell Transplant. – volume: 24 start-page: 781 issue: 3 year: 2006 end-page: 792 article-title: Human umbilical cord matrix stem cells: Preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease. publication-title: Stem Cells – volume: 318 start-page: 193 year: 2008 end-page: 212 article-title: Remyelination in experimental models of toxin-induced demyelination. publication-title: Curr. Top. Microbiol. Immunol. – volume: 1 start-page: 43 issue: 1 year: 2013 article-title: Myelin alters the inflammatory phenotype of macrophages by activating PPARs. publication-title: Acta Neuropathol. Commun. – volume: 12 start-page: 730 issue: 3 year: 2008 end-page: 742 article-title: Fetal stem cells from extraembryonic tissues: Do not discard. publication-title: J. Cell. Mol. Med. – volume: 195 start-page: 16 issue: 1 year: 2005 end-page: 26 article-title: Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. publication-title: Exp. Neurol. – volume: 49 start-page: 625 issue: 2 year: 2014 end-page: 632 article-title: Therapeutic effect of transplanted human Wharton's jelly stem cell-derived oligodendrocyte progenitor cells (hWJ-MSC-derived OPCs) in an animal model of multiple sclerosis. publication-title: Mol. Neurobiol. – volume: 51 start-page: 75 year: 2010 end-page: 98 article-title: T-cells in multiple sclerosis. Results Probl. publication-title: Cell Differ. – volume: 10 start-page: R136 issue: 6 year: 2008 article-title: T-614, a novel immunomodulator, attenuates joint inflammation and articular damage in collagen-induced arthritis. publication-title: Arthritis Res. Ther. – volume: 13 start-page: 1104 issue: 14 year: 2006 end-page: 1109 article-title: Gene transfer of RANTES and MCP-1 chemokine antagonists prolongs cardiac allograft survival. publication-title: Gene Ther. – volume: 15 start-page: 693 issue: 4 year: 2013 end-page: 702 article-title: Impact of different mesenchymal stromal cell types on T-cell activation, proliferation and migration. publication-title: Int. Immunopharmacol. – volume: 5 start-page: 224 year: 2007 article-title: Induction and clinical scoring of chronic-relapsing experimental autoimmune encephalomyelitis. publication-title: J. Vis. Exp. – volume: 24 start-page: 386 issue: 2 year: 2006 end-page: 398 article-title: Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. publication-title: Stem Cells – volume: 372 start-page: 1502 issue: 9648 year: 2008 end-page: 1517 article-title: Multiple sclerosis. publication-title: Lancet – volume: 4 start-page: 762 issue: 10 year: 2004 end-page: 774 article-title: IDO expression by dendritic cells: Tolerance and tryptophan catabolism. publication-title: Nat. Rev. Immunol. – volume: 65 start-page: 452 issue: 4 year: 2008 end-page: 456 article-title: The changing face of neural stem cell therapy in neurologic diseases. publication-title: Arch. Neurol. – volume: 122 start-page: 1180 issue: 4 year: 2012 end-page: 1188 article-title: Multiple sclerosis. publication-title: J. Clin. Invest. – volume: 2 start-page: 155 issue: 2 year: 2006 end-page: 162 article-title: Stem cells in the umbilical cord. publication-title: Stem Cell Rev. – volume: 28 start-page: 1235 issue: 10 year: 2013 end-page: 1244 article-title: Umbilical cord revisited: From Wharton's jelly myofibroblasts to mesenchymal stem cells. publication-title: Histol. Histopathol. – volume: 62 start-page: 1905 issue: 11 year: 2014 end-page: 1915 article-title: The translational biology of remyelination: Past, present, and future. publication-title: Glia – volume: 8 start-page: 46 issue: 1 year: 2013 end-page: 59 article-title: Wharton's jelly or bone marrow mesenchymal stromal cells improve cardiac function following myocardial infarction for more than 32 weeks in a rat model: A preliminary report. publication-title: Curr. Stem Cell Res. Ther. – volume: 31 start-page: 1980 issue: 9 year: 2013 end-page: 1991 article-title: Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes toward anti-inflammatory macrophages. publication-title: Stem Cells – volume: 25 start-page: 1408 issue: 9 year: 2011 end-page: 1414 article-title: Mesenchymal stromal cell ‘licensing’: A multistep process. publication-title: Leukemia – volume: 4 start-page: 275 issue: 2 year: 2009 end-page: 291 article-title: Amniotic membrane and amniotic fluid-derived cells: Potential tools for regenerative medicine? Regen. publication-title: Med. – volume: 193 start-page: 366 issue: 6 year: 2011 end-page: 378 article-title: Ultrastructural and immunocytochemical analysis of multilineage differentiated human dental pulp-and umbilical cord-derived mesenchymal stem cells. publication-title: Cells Tissues Organs – volume: 32 start-page: 603 issue: 3 year: 2014 end-page: 608 article-title: Concise review: The immune status of mesenchymal stem cells and its relevance for therapeutic application. publication-title: Stem Cells – volume: 219 start-page: 17 issue: 1 year: 2014 end-page: 24 article-title: IDO expressing fibroblasts promote the expansion of antigen specific regulatory T cells. publication-title: Immunobiology – volume: 185 start-page: 302 issue: 1 year: 2010 end-page: 312 article-title: Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. publication-title: J. Immunol. – volume: 25 start-page: 216 issue: 3 year: 1999 end-page: 228 article-title: Demyelination and remyelination of the caudal cerebellar peduncle of adult rats following stereotaxic injections of lysolecithin, ethidium bromide, and complement/anti-galactocerebroside: A comparative study. publication-title: Glia – volume: 89 start-page: 225 issue: 2 year: 2014 end-page: 240 article-title: Multiple sclerosis: Current and emerging disease-modifying therapies and treatment strategies. publication-title: Mayo Clin. Proc. – volume: 25 start-page: 27 issue: 1 year: 2002 end-page: 51 article-title: Insights into the immunopathogenesis of multiple sclerosis. publication-title: Immunol. Res. – volume: 264 start-page: 171 issue: 2 year: 2010 end-page: 179 article-title: Mesenchymal stromal cells use PGE2 to modulate activation and proliferation of lymphocyte subsets: Combined comparison of adipose tissue, Wharton's Jelly and bone marrow sources. publication-title: Cell. Immunol. – volume: 17 start-page: 1799 issue: 10 year: 2009 end-page: 1803 article-title: Allogeneic mesenchymal stem cells for treatment of experimental autoimmune encephalomyelitis. publication-title: Mol. Ther. – volume: 5 start-page: 5 issue: 1 year: 2014 article-title: Human umbilical cord tissue-derived mesenchymal stromal cells attenuate remodeling following myocardial infarction by proangiogenic, anti-apoptotic and endogenous cell activation mechanisms. publication-title: Stem Cell Res. Ther. – volume: 40 start-page: e115 issue: 15 year: 2012 article-title: Primer3— New capabilities and interfaces. publication-title: Nucleic Acids Res. – volume: 230 start-page: 78 issue: 1 year: 2011 end-page: 89 article-title: Variable behavior and complications of autologous bone marrow mesenchymal stem cells transplanted in experimental autoimmune encephalomyelitis. publication-title: Exp. Neurol. – volume: 13 start-page: 1477 issue: 12 year: 2007 end-page: 1486 article-title: Umbilical cord mesenchymal stem cells: Adjuvants for human cell transplantation. publication-title: Biol. Blood Marrow Transplant. – volume: 6 start-page: 247 issue: 5 year: 2010 end-page: 255 article-title: Stem cells in multiple sclerosis consensus, G. Stem cell transplantation in multiple sclerosis: Current status and future prospects. publication-title: Nat. Rev. Neurol. – volume: 61 start-page: 219 issue: 3 year: 2007 end-page: 227 article-title: Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. publication-title: Ann. Neurol. – volume: 79 start-page: 15 issue: 1 year: 2010 end-page: 20 article-title: Human Wharton's jelly cells can be induced to differentiate into growth factor- secreting oligodendrocyte progenitor-like cells. publication-title: Differentiation – volume: 267 start-page: 30 issue: 1 year: 2011 end-page: 38 article-title: Human mesenchymal stem cells and renal tubular epithelial cells differentially influence monocyte-derived dendritic cell differentiation and maturation. publication-title: Cell. Immunol. – volume: 8 start-page: 726 issue: 9 year: 2008 end-page: 736 article-title: Mesenchymal stem cells in health and disease. publication-title: Nat. Rev. Immunol. – volume: 281 start-page: 1191 issue: 5380 year: 1998 end-page: 1193 article-title: Prevention of allogeneic fetal rejection by tryptophan catabolism. publication-title: Science – volume: 422 start-page: 688 issue: 6933 year: 2003 end-page: 694 article-title: Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. publication-title: Nature – volume: 6 start-page: 221 issue: 3 year: 2011 end-page: 228 article-title: Mesenchymal stem cells in the umbilical cord: Phenotypic characterization, secretome and applications in central nervous system regenerative medicine. publication-title: Curr. Stem Cell Res. Ther. – volume: 61 start-page: 140 issue: 2 year: 2013 end-page: 149 article-title: Time limited immunomodulatory functions of transplanted neural precursor cells. publication-title: Glia – ident: bibr30-096368914X685104 doi: 10.1002/ana.21076 – ident: bibr48-096368914X685104 doi: 10.1007/s12035-013-8543-2 – ident: bibr19-096368914X685104 doi: 10.4049/jimmunol.1002239 – ident: bibr26-096368914X685104 doi: 10.1038/sj.gt.3302765 – ident: bibr7-096368914X685104 doi: 10.1182/blood-2004-07-2921 – ident: bibr65-096368914X685104 doi: 10.1097/TP.0b013e3181a2a4b3 – ident: bibr41-096368914X685104 doi: 10.1089/scd.2012.0463 – ident: bibr9-096368914X685104 doi: 10.1186/2051-5960-1-43 – ident: bibr15-096368914X685104 doi: 10.2174/1875043501104010006 – ident: bibr36-096368914X685104 doi: 10.3390/ijms140611692 – ident: bibr14-096368914X685104 doi: 10.1016/S0140-6736(08)61620-7 – ident: bibr5-096368914X685104 doi: 10.1002/glia.20841 – ident: bibr10-096368914X685104 doi: 10.1615/CritRevImmunol.2013007453 – ident: bibr54-096368914X685104 doi: 10.1186/scrt394 – ident: bibr50-096368914X685104 doi: 10.1634/stemcells.21-1-50 – volume: 51 start-page: 75 year: 2010 ident: bibr66-096368914X685104 publication-title: Cell Differ. – ident: bibr3-096368914X685104 doi: 10.1002/eji.200425405 – ident: bibr47-096368914X685104 doi: 10.1038/nri1457 – ident: bibr79-096368914X685104 doi: 10.1634/stemcells.2007-1028 – ident: bibr12-096368914X685104 doi: 10.1371/journal.pone.0001451 – ident: bibr23-096368914X685104 doi: 10.1002/jcb.23119 – ident: bibr27-096368914X685104 doi: 10.1002/glia.22622 – ident: bibr68-096368914X685104 doi: 10.2174/1566524011313050016 – ident: bibr71-096368914X685104 doi: 10.1159/000321400 – ident: bibr75-096368914X685104 doi: 10.1038/nri2395 – ident: bibr28-096368914X685104 doi: 10.1177/1352458509359727 – ident: bibr73-096368914X685104 doi: 10.1634/stemcells.2007-0439 – ident: bibr20-096368914X685104 doi: 10.1080/14653240600855905 – ident: bibr22-096368914X685104 doi: 10.1001/archneur.65.4.452 – ident: bibr55-096368914X685104 doi: 10.1038/nm.1905 – ident: bibr53-096368914X685104 doi: 10.1016/j.intimp.2013.02.020 – ident: bibr84-096368914X685104 doi: 10.1016/j.athoracsur.2006.10.066 – ident: bibr88-096368914X685104 doi: 10.1016/j.expneurol.2005.03.018 – ident: bibr32-096368914X685104 doi: 10.1016/j.expneurol.2011.02.021 – ident: bibr18-096368914X685104 doi: 10.1016/j.imbio.2013.06.008 – ident: bibr45-096368914X685104 doi: 10.3324/haematol.2012.078055 – ident: bibr59-096368914X685104 doi: 10.3727/096368912X657620 – ident: bibr78-096368914X685104 doi: 10.1186/gb-2002-3-7-research0034 – ident: bibr35-096368914X685104 doi: 10.1089/bio.2013.0027 – ident: bibr11-096368914X685104 doi: 10.2174/157488811796575332 – ident: bibr46-096368914X685104 doi: 10.1002/stem.1432 – ident: bibr34-096368914X685104 doi: 10.1038/ncpneuro0154 – ident: bibr61-096368914X685104 doi: 10.1371/journal.pone.0009016 – volume: 106 start-page: 180 issue: 4 year: 2006 ident: bibr77-096368914X685104 publication-title: Acta Neurol. Belg. – ident: bibr67-096368914X685104 doi: 10.1007/s12015-010-9173-y – ident: bibr31-096368914X685104 doi: 10.4049/jimmunol.0902007 – ident: bibr74-096368914X685104 doi: 10.1016/S1474-4422(11)70121-1 – ident: bibr64-096368914X685104 doi: 10.1634/stemcells.21-1-105 – ident: bibr87-096368914X685104 doi: 10.1016/j.diff.2009.09.002 – ident: bibr89-096368914X685104 doi: 10.1089/scd.2009.0345 – volume: 4 start-page: 275 issue: 2 year: 2009 ident: bibr58-096368914X685104 publication-title: Med. – ident: bibr62-096368914X685104 doi: 10.1038/mt.2009.157 – ident: bibr85-096368914X685104 doi: 10.1371/journal.pone.0003336 – ident: bibr13-096368914X685104 doi: 10.1073/pnas.1103650108 – ident: bibr80-096368914X685104 doi: 10.1634/stemcells.2005-0330 – ident: bibr63-096368914X685104 doi: 10.1016/j.stem.2007.11.014 – ident: bibr60-096368914X685104 doi: 10.1038/nature01552 – ident: bibr52-096368914X685104 doi: 10.1016/j.cellimm.2010.06.006 – ident: bibr81-096368914X685104 doi: 10.1007/s12015-006-0022-y – ident: bibr38-096368914X685104 doi: 10.1038/leu.2011.108 – ident: bibr82-096368914X685104 doi: 10.1016/j.mayocp.2013.11.002 – ident: bibr1-096368914X685104 doi: 10.1371/journal.pone.0003145 – ident: bibr4-096368914X685104 doi: 10.1016/j.jri.2003.11.003 – ident: bibr76-096368914X685104 doi: 10.1093/nar/gks596 – ident: bibr86-096368914X685104 doi: 10.1016/j.cellimm.2009.06.010 – ident: bibr42-096368914X685104 doi: 10.2174/1574888X11308010007 – ident: bibr56-096368914X685104 doi: 10.1172/JCI58649 – ident: bibr70-096368914X685104 doi: 10.1002/eji.200737400 – volume: 318 start-page: 193 year: 2008 ident: bibr8-096368914X685104 publication-title: Curr. Top. Microbiol. Immunol. – ident: bibr29-096368914X685104 doi: 10.1016/j.bbmt.2007.08.048 – ident: bibr49-096368914X685104 doi: 10.1177/1352458510379243 – ident: bibr72-096368914X685104 doi: 10.1016/j.placenta.2011.06.010 – volume: 5 start-page: 224 year: 2007 ident: bibr6-096368914X685104 publication-title: J. Vis. Exp. – ident: bibr37-096368914X685104 doi: 10.1002/stem.1568 – ident: bibr24-096368914X685104 doi: 10.1002/glia.22420 – volume: 4 start-page: 423 issue: 3 year: 2009 ident: bibr57-096368914X685104 publication-title: Med. – ident: bibr51-096368914X685104 doi: 10.1126/science.281.5380.1191 – ident: bibr21-096368914X685104 doi: 10.1186/ar2554 – ident: bibr39-096368914X685104 doi: 10.1634/stemcells.2005-0008 – ident: bibr83-096368914X685104 doi: 10.1002/(SICI)1098-1136(19990201)25:3<216::AID-GLIA2>3.0.CO;2-L – ident: bibr2-096368914X685104 doi: 10.1007/s12015-010-9196-4 – ident: bibr33-096368914X685104 doi: 10.1385/IR:25:1:27 – ident: bibr43-096368914X685104 doi: 10.1111/j.1582-4934.2008.00221.x – ident: bibr25-096368914X685104 doi: 10.1016/j.jneuroim.2005.08.020 – volume: 28 start-page: 1235 issue: 10 year: 2013 ident: bibr16-096368914X685104 publication-title: Histol. Histopathol. – ident: bibr40-096368914X685104 doi: 10.1016/j.cellimm.2010.11.001 – ident: bibr69-096368914X685104 doi: 10.1146/annurev-immunol-032713-120227 – ident: bibr17-096368914X685104 doi: 10.1371/journal.pone.0014698 – ident: bibr44-096368914X685104 doi: 10.1038/nrneurol.2010.35 |
SSID | ssj0007325 |
Score | 2.3908155 |
Snippet | Umbilical cord matrix or Wharton's jelly-derived stromal cells (WJ-MSCs) are an easily accessible source of mesenchymal-like stem cells. Recent studies... |
SourceID | doaj proquest pubmed crossref sage |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2077 |
SubjectTerms | Animals Cell Differentiation - immunology Cell Differentiation - physiology Cell Proliferation - physiology Cytokines - metabolism Encephalomyelitis, Autoimmune, Experimental - therapy Humans Lymphocyte Activation - immunology Mesenchymal Stromal Cells - cytology Rats T-Lymphocytes - cytology T-Lymphocytes - immunology Umbilical Cord - cytology Wharton Jelly - cytology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIOiD6J0f9VQiyIkPZdtNm7SPe3d7nAeKqIf7VpJmwh1022PbPdh_w7_YmbRdVvHjxaeWNGmnzXTmN8l8MPYmEqmxqOlCmek0TGwWh1pNXZgjds6dljZVFCj84aM8v0wuFulip9QX-YT16YH7DzdJE9BTyCIFkUGBm2eZzVLpFKoua_PUkvRFnTcaU4MMVsKXW0V8TlTkqt-gFKisJ9SGTXGykIg2hgJto0Lyeft_BzZ_cvTyuufsIXswgEY-64l9xO5Avc8OZjUazMsNP-LejdOvj--zu8fj2f2dXIMH7LtfruffrvCVm_ptyy-gqjbhKV6-Bcu_dLDkJ9jU8tPr9qbSG_6eQkeaZWOpwlez2vBPtHC_ogysXNeWezVH4ZQV9aW1CeCfdcfnO0UD-GzdNdd0I-BzCpC80hXSDOR01z5ml2fzryfn4VCQISyTSHRhIhHdJqU0wsqsNNZBqUUmtZVu6lKltAM0B1Ucl7FzFo0dZ8FJEUOuHVlu4gnbq5sanjFuhDHgSurj0AIqc42GCx4om7wwEAdsMs5KUQ7ZyqloRlWg1ULzWPw6jwF7tx1x02fq-EvfY5robT_Kse0bkPOKgfOKf3FewF6PbFLgP0kbLbqGZt0WMSr8PMIRKmBPe_7ZPmqKQg9hmgzYETFUMYiM9o-0Pv8ftB6ye4j00t4L8QXb61ZreIloqjOv_I_zAwRqF80 priority: 102 providerName: Directory of Open Access Journals |
Title | Human Wharton's Jelly-Derived Stem Cells Display Immunomodulatory Properties and Transiently Improve Rat Experimental Autoimmune Encephalomyelitis |
URI | https://journals.sagepub.com/doi/full/10.3727/096368914X685104 https://www.ncbi.nlm.nih.gov/pubmed/25310756 https://www.proquest.com/docview/1718903987 https://doaj.org/article/54ea2e807e0b413988d856f7082dd95d |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELZKKyR4QNByhKMyEiriITSJYzt5Qtt2V6USCJVW3bfIiW1aKUe1SZDyN_jFzORYtaggnnblTBIrnvF8M56DkHce46kGTeeKSHE31JHvKhlYNwbsHFslNJeYKPzlqzg-D0-WfLlByikXZvyC9UcMq4IZ9Zs1Sjd6o1HEGSjcfcDdTESxHy4FIAYv_NQ2RTJ4u6emGjiCx9NtgSfbGcZDdu6U3XaPbAVScBDkrdni9OJsvXdL1rdpxefD7GM5HGze-c5biqyv938XSL0VINbrrMVj8mgEm3Q2cMcTsmHKbbIzK8HQLjq6R_vwz96vvk3uH0z_Ht6oUbhDfvVufnpxCTxWle9remLyvHOP4PJPo-n3xhT0EIZqenRVX-eqo58x5aQqKo2dwapVR7-hw3-FlVupKjXt1SOmYeZIix_L0FPV0PmNZgN01jbVFT7I0DkmVl6qHOZsMFivfkrOF_Ozw2N3bOTgZqHHGjcUgIrDTKRMiyhLtTWZYpFQWtjAcimVNWBGSt_PfGs1GElWGyuYb2Jl0eJjz8hmWZXmBaEpS1NjM6SxYDllsQKDB36wCj1Lje-Q_WlVkmysco7NNvIErB1cx-TPdXTIh_Ud10OFj3_QHuBCr-mwNnc_UK1-JKOoJzw0KjCRJ42XAkSIo0hHXFgJYEvrmGuHvJ3YJAFZxgMaVZqqrRMfgELswR3SIc8H_lm_KoDNEuCdcMgeMlQyCcpf5_ryfwlfkQeAAvkQofiabDar1rwBpNWku6N47Paeit9Y_CRb |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdQJwQ8INj4CJ9GQkM8hCV1YieP3daqG9uERqf1LXLiM5uUJlOTIvXf4C_mLkmrDg3EU6Lk7Fi5s-935_MdYx89EaYGNZ0rIx26gYl8V6u-dWPEzrHV0oSKDgqfnsnxRXA8Dacbpb66P1h9obAqHFGzWHezW6Cu3UPILWQU-8FUIligTKBbASmtHtsajM4vJ-tlWImm4irR40Bi1e5R3tnHLZ3UpO6_C2_eivVq1M_oCXvc4UY-aBn9lN2DYpvtDAq0mWdLvsubSM7GRb7N7u-v7h5tpBvcYb8ajz2_vEJxKYtPFT-GPF-6h_j6Jxj-vYYZP8BHFT-8rm5yveRHdHqknJWGinyV8yX_Rr77OSVh5bowvNF0dKIyJ1pyTwA_1zUfbtQN4INFXV5TR8CHdEbySuc4ZqC4u-oZuxgNJwdjt6vJ4GaBJ2o3kAhwg0ymwsgoS42FTItIaiNt34ZKaQtoESrfz3xrDdo71oCVwodYWzLexHPWK8oCXjKeijQFmxGNRSMoizXaLnihhPIiBd9heyuuJFmXsJzqZuQJGi7Ex-RPPjrs87rFTZus4x-0-8ToNR2l2W4elPMfSTdrkzAA3YfIU-ClqO3jKDJRKK1C3GRMHBqHfViJSYLTkvZadAHlokp81Pmxhy2Uw1608rP-VB_XPURq0mG7JFDJSub_OtZX_0v4nj0YT05PkpOjs6-v2UMEd2EbePiG9er5At4igKrTd91U-Q1DKxDP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db5swED9NqTZtD9XW7oPuy5OmTnughRhseEybRG23VVXXqnlDBttrJQJRIJPyb-wv3h2QqJ26aU8gOMDi7ny_s-8D4KPHw1SjpXNFpEI30JHvKtm3bozYObZK6FBSovC3U3F0GZxMwkkXm0O5MN0frPYorApH1EzWpN0zbUnDOdrbfYTdXESxH0wEAgaqBroRBGgae7AxGJ9fXaynYsmbrqtEj4OJZbtPee877tilpnz_fZjzTrxXY4LGT2Gzw45s0DL7GTwwxRZsDwr0m6dLtsuaaM5mmXwLHh6szp7cKjm4Db-aVXt2dY0iUxafKnZi8nzpDvH2T6PZ99pM2SFeqtjwpprlasmOKYOknJaaGn2V8yU7o_X7ORViZarQrLF2lFWZEy0tURh2rmo2utU7gA0WdXlDLzJsRHmS1yrHMRuKvauew-V4dHF45HZ9Gdws8HjtBgJBbpCJlGsRZam2JlM8EkoL27ehlMoa9Aql72e-tRp9HquNFdw3sbLkwPEX0CvKwrwClvI0NTYjGouOUBYr9F_wQEXleWp8B_ZXXEmyrmg59c7IE3ReiI_Jn3x04PP6iVlbsOMftAfE6DUdldpuLpTzH0mnuUkYGNU3kSeNl6LFj6NIR6GwErGT1nGoHfiwEpMEVZP2W1RhykWV-Gj3Yw-fkA68bOVn_ak-zn2I1oQDuyRQyUru_zrWnf8lfA-Pzobj5Ovx6ZfX8BjxXdjGHr6BXj1fmLeIoer0XacpvwFNHRHf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Wharton%27s+Jelly-Derived+Stem+Cells+Display+Immunomodulatory+Properties+and+Transiently+Improve+Rat+Experimental+Autoimmune+Encephalomyelitis&rft.jtitle=Cell+transplantation&rft.au=Donders%2C+Raf&rft.au=Vanheusden%2C+Marjan&rft.au=Bogie%2C+Jeroen+F.+J.&rft.au=Ravanidis%2C+Stylianos&rft.date=2015-10-01&rft.issn=0963-6897&rft.eissn=1555-3892&rft.volume=24&rft.issue=10&rft.spage=2077&rft.epage=2098&rft_id=info:doi/10.3727%2F096368914X685104&rft.externalDBID=n%2Fa&rft.externalDocID=10_3727_096368914X685104 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0963-6897&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0963-6897&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0963-6897&client=summon |