Seed Dormancy in Arabidopsis Is Controlled by Alternative Polyadenylation of DOG1
DOG1 (Delay of Germination 1) is a key regulator of seed dormancy in Arabidopsis (Arabidopsis thaliana) and other plants. Interestingly, the C terminus of DOG1 is either absent or not conserved in many plant species. Here, we show that in Arabidopsis, DOG1 transcript is subject to alternative polyad...
Saved in:
Published in | Plant physiology (Bethesda) Vol. 170; no. 2; pp. 947 - 955 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society of Plant Biologists
01.02.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | DOG1 (Delay of Germination 1) is a key regulator of seed dormancy in Arabidopsis (Arabidopsis thaliana) and other plants. Interestingly, the C terminus of DOG1 is either absent or not conserved in many plant species. Here, we show that in Arabidopsis, DOG1 transcript is subject to alternative polyadenylation. In line with this, mutants in RNA 3ʹ processing complex display weakened seed dormancy in parallel with defects in DOG1 proximal polyadenylation site selection, suggesting that the short DOG1 transcript is functional. This is corroborated by the finding that the proximally polyadenylated short DOG1 mRNA is translated in vivo and complements the dog1 mutant. In summary, our findings indicate that the short DOG1 protein isoform produced from the proximally polyadenylated DOG1 mRNA is a key player in the establishment of seed dormancy in Arabidopsis and characterizes a set of mutants in RNA 3ʹ processing complex required for production of proximally polyadenylated functional DOG1 transcript. |
---|---|
AbstractList | A major quantitative trait locus is alternatively polyadenylated and its proximally polyadenylated form is required for seed dormancy.
DOG1 (Delay of Germination 1) is a key regulator of seed dormancy in Arabidopsis (
Arabidopsis thaliana
) and other plants. Interestingly, the C terminus of DOG1 is either absent or not conserved in many plant species. Here, we show that in Arabidopsis,
DOG1
transcript is subject to alternative polyadenylation. In line with this, mutants in RNA 3′ processing complex display weakened seed dormancy in parallel with defects in
DOG1
proximal polyadenylation site selection, suggesting that the short
DOG1
transcript is functional. This is corroborated by the finding that the proximally polyadenylated short
DOG1
mRNA is translated in vivo and complements the
dog1
mutant. In summary, our findings indicate that the short DOG1 protein isoform produced from the proximally polyadenylated
DOG1
mRNA is a key player in the establishment of seed dormancy in Arabidopsis and characterizes a set of mutants in RNA 3′ processing complex required for production of proximally polyadenylated functional
DOG1
transcript. DOG1 (Delay of Germination 1) is a key regulator of seed dormancy in Arabidopsis (Arabidopsis thaliana) and other plants. Interestingly, the C terminus of DOG1 is either absent or not conserved in many plant species. Here, we show that in Arabidopsis, DOG1 transcript is subject to alternative polyadenylation. In line with this, mutants in RNA 3ʹ processing complex display weakened seed dormancy in parallel with defects in DOG1 proximal polyadenylation site selection, suggesting that the short DOG1 transcript is functional. This is corroborated by the finding that the proximally polyadenylated short DOG1 mRNA is translated in vivo and complements the dog1 mutant. In summary, our findings indicate that the short DOG1 protein isoform produced from the proximally polyadenylated DOG1 mRNA is a key player in the establishment of seed dormancy in Arabidopsis and characterizes a set of mutants in RNA 3ʹ processing complex required for production of proximally polyadenylated functional DOG1 transcript. DOG1 (Delay of Germination 1) is a key regulator of seed dormancy in Arabidopsis (Arabidopsis thaliana) and other plants. Interestingly, the C terminus of DOG1 is either absent or not conserved in many plant species. Here, we show that in Arabidopsis, DOG1 transcript is subject to alternative polyadenylation. In line with this, mutants in RNA 3' processing complex display weakened seed dormancy in parallel with defects in DOG1 proximal polyadenylation site selection, suggesting that the short DOG1 transcript is functional. This is corroborated by the finding that the proximally polyadenylated short DOG1 mRNA is translated in vivo and complements the dog1 mutant. In summary, our findings indicate that the short DOG1 protein isoform produced from the proximally polyadenylated DOG1 mRNA is a key player in the establishment of seed dormancy in Arabidopsis and characterizes a set of mutants in RNA 3' processing complex required for production of proximally polyadenylated functional DOG1 transcript.DOG1 (Delay of Germination 1) is a key regulator of seed dormancy in Arabidopsis (Arabidopsis thaliana) and other plants. Interestingly, the C terminus of DOG1 is either absent or not conserved in many plant species. Here, we show that in Arabidopsis, DOG1 transcript is subject to alternative polyadenylation. In line with this, mutants in RNA 3' processing complex display weakened seed dormancy in parallel with defects in DOG1 proximal polyadenylation site selection, suggesting that the short DOG1 transcript is functional. This is corroborated by the finding that the proximally polyadenylated short DOG1 mRNA is translated in vivo and complements the dog1 mutant. In summary, our findings indicate that the short DOG1 protein isoform produced from the proximally polyadenylated DOG1 mRNA is a key player in the establishment of seed dormancy in Arabidopsis and characterizes a set of mutants in RNA 3' processing complex required for production of proximally polyadenylated functional DOG1 transcript. DOG1 (Delay of Germination 1) is a key regulator of seed dormancy in Arabidopsis (Arabidopsis thaliana) and other plants. Interestingly, the C terminus of DOG1 is either absent or not conserved in many plant species. Here, we show that in Arabidopsis, DOG1 transcript is subject to alternative polyadenylation. In line with this, mutants in RNA 3' processing complex display weakened seed dormancy in parallel with defects in DOG1 proximal polyadenylation site selection, suggesting that the short DOG1 transcript is functional. This is corroborated by the finding that the proximally polyadenylated short DOG1 mRNA is translated in vivo and complements the dog1 mutant. In summary, our findings indicate that the short DOG1 protein isoform produced from the proximally polyadenylated DOG1 mRNA is a key player in the establishment of seed dormancy in Arabidopsis and characterizes a set of mutants in RNA 3' processing complex required for production of proximally polyadenylated functional DOG1 transcript. |
Author | Cyrek, Malgorzata Krzyczmonik, Katarzyna Fedak, Halina Liu, Fuquan Guo, Yanwu Sliwa, Aleksandra Pietras, Zbigniew Ciesielski, Arkadiusz Kaczanowski, Szymon Brzezniak, Lien Swiezewski, Szymon |
Author_xml | – sequence: 1 givenname: Malgorzata surname: Cyrek fullname: Cyrek, Malgorzata – sequence: 2 givenname: Halina surname: Fedak fullname: Fedak, Halina – sequence: 3 givenname: Arkadiusz surname: Ciesielski fullname: Ciesielski, Arkadiusz – sequence: 4 givenname: Yanwu surname: Guo fullname: Guo, Yanwu – sequence: 5 givenname: Aleksandra surname: Sliwa fullname: Sliwa, Aleksandra – sequence: 6 givenname: Lien surname: Brzezniak fullname: Brzezniak, Lien – sequence: 7 givenname: Katarzyna surname: Krzyczmonik fullname: Krzyczmonik, Katarzyna – sequence: 8 givenname: Zbigniew surname: Pietras fullname: Pietras, Zbigniew – sequence: 9 givenname: Szymon surname: Kaczanowski fullname: Kaczanowski, Szymon – sequence: 10 givenname: Fuquan surname: Liu fullname: Liu, Fuquan – sequence: 11 givenname: Szymon surname: Swiezewski fullname: Swiezewski, Szymon |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26620523$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1vEzEQhi1URNPCiTPIx0oowd_rXJCiFEqlSgUBZ8trz4Irx17sTaX995im5UucPPY8877jmRN0lHIChJ5TsqKUiNfjuKJyRajQ_BFaUMnZkkmhj9CCkBYTrdfH6KTWG0II5VQ8QcdMKUYk4wv08ROAx-e57GxyMw4Jb4rtg89jDRVfVrzNaSo5xkb1M97ECUqyU7gF_CHH2XpIc2z3nHAe8Pn1BX2KHg82Vnh2f56iL-_eft6-X15dX1xuN1dLJwiflkJJ7iXzjgkinYe1Xg9MeNJT5an3mgFXPW9_kt4qMmgtgHk52PakVAeOn6I3B91x3-_AO2h92mjGEna2zCbbYP7OpPDNfM23RnRcSKWawNm9QMnf91AnswvVQYw2Qd5XQztFO9YRrhv68k-vXyYPc2wAPQCu5FoLDMaF6W4szTpEQ4n5uSszjoZKc7erVvPqn5oH2f_TLw70TZ1y-d2B0KSjXPIfhXOedw |
CitedBy_id | crossref_primary_10_1111_nph_18750 crossref_primary_10_3390_ijms232113412 crossref_primary_10_3390_genes14122214 crossref_primary_10_1007_s00299_020_02520_4 crossref_primary_10_1007_s10725_023_01094_x crossref_primary_10_3389_fgene_2022_863253 crossref_primary_10_3390_plants9091199 crossref_primary_10_1111_nph_19681 crossref_primary_10_1007_s42994_022_00074_5 crossref_primary_10_1071_FP21315 crossref_primary_10_1186_s12870_019_2090_6 crossref_primary_10_1111_tpj_14626 crossref_primary_10_1134_S1022795422070158 crossref_primary_10_1016_j_xplc_2019_100011 crossref_primary_10_1146_annurev_arplant_093020_035446 crossref_primary_10_1111_brv_12722 crossref_primary_10_1111_tpj_13771 crossref_primary_10_1093_plphys_kiae642 crossref_primary_10_1111_jipb_12762 crossref_primary_10_1038_s41477_024_01796_8 crossref_primary_10_1073_pnas_1608827113 crossref_primary_10_1093_jxb_erw477 crossref_primary_10_1371_journal_pone_0319180 crossref_primary_10_1186_s43897_023_00066_z crossref_primary_10_3390_molecules23030608 crossref_primary_10_3389_fpls_2018_01174 crossref_primary_10_3390_genes12010052 crossref_primary_10_3390_ijms22073300 crossref_primary_10_1016_j_plaphy_2022_02_016 crossref_primary_10_1093_jxb_eraa062 crossref_primary_10_3389_fpls_2022_1014176 crossref_primary_10_1016_j_cub_2024_07_010 crossref_primary_10_1073_pnas_2405632121 crossref_primary_10_3389_fpls_2017_00524 crossref_primary_10_1007_s12229_020_09220_4 crossref_primary_10_3390_ijms21186822 crossref_primary_10_1371_journal_pbio_3002608 crossref_primary_10_3390_ijms222111692 crossref_primary_10_1038_s41467_017_00113_6 crossref_primary_10_3390_cimb44120423 crossref_primary_10_1016_j_jplph_2019_153111 crossref_primary_10_1016_j_plantsci_2018_04_009 crossref_primary_10_3389_fpls_2024_1437118 crossref_primary_10_3390_plants9060703 crossref_primary_10_1080_15592324_2021_1917170 crossref_primary_10_1016_j_molp_2017_07_011 crossref_primary_10_1093_aob_mcx132 crossref_primary_10_1111_nph_16559 crossref_primary_10_1080_21541264_2020_1796473 crossref_primary_10_1111_nph_15901 crossref_primary_10_1093_plcell_koac309 crossref_primary_10_1016_j_xplc_2023_100732 crossref_primary_10_1016_j_xplc_2021_100169 crossref_primary_10_1186_s13059_017_1228_9 crossref_primary_10_1093_jxb_erw377 crossref_primary_10_15252_embr_201744862 crossref_primary_10_1111_tpj_16239 crossref_primary_10_15252_embj_2022112443 crossref_primary_10_7554_eLife_22502 crossref_primary_10_1038_s41598_018_29699_7 crossref_primary_10_1016_j_tplants_2019_06_011 crossref_primary_10_1073_pnas_1600558113 crossref_primary_10_1093_plcell_koad328 crossref_primary_10_1017_S0960258522000046 crossref_primary_10_3390_plants9040480 crossref_primary_10_1017_qpb_2022_9 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Society of Plant Biologists 2016 American Society of Plant Biologists. All Rights Reserved. 2016 American Society of Plant Biologists. All Rights Reserved. 2016 |
Copyright_xml | – notice: Copyright © 2016 American Society of Plant Biologists – notice: 2016 American Society of Plant Biologists. All Rights Reserved. – notice: 2016 American Society of Plant Biologists. All Rights Reserved. 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1104/pp.15.01483 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1532-2548 |
EndPage | 955 |
ExternalDocumentID | PMC4734566 26620523 10_1104_pp_15_01483 24807135 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X 0R~ 123 29O 2AX 2WC 2~F 4.4 5VS 5WD 85S 8R4 8R5 AAHBH AAHKG AAPXW AARHZ AAUAY AAVAP AAXTN ABBHK ABDFA ABEJV ABGNP ABJNI ABMNT ABPLY ABPPZ ABPTD ABTLG ABVGC ABXSQ ABXVV ABXZS ACBTR ACGOD ACHIC ACNCT ACPRK ACUFI ADBBV ADGKP ADIPN ADIYS ADQBN ADULT ADVEK ADYHW AEEJZ AENEX AEUPB AFAZZ AFFZL AFGWE AFRAH AGORE AGUYK AHMBA AHXOZ AICQM AJBYB AJEEA AJNCP ALMA_UNASSIGNED_HOLDINGS ALXQX AQVQM ATGXG BAWUL BCRHZ BEYMZ BTFSW CBGCD CS3 DATOO DIK DU5 E3Z EBS ECGQY EJD F5P FLUFQ FOEOM H13 IPSME JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KOP KQ8 KSI KSN MV1 NOMLY NU- OBOKY OJZSN OK1 OWPYF P2P Q2X RHI ROX RPB RWL RXW SA0 TAE TN5 TR2 W8F WH7 WOQ XSW YBU YKV YNT YSK YZZ ZCA ZCN ~02 ~KM 53G 7X2 7X7 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8G5 AAWDT AAYJJ AAYXX ABIME ABPIB ABUWG ABZEO ACFRR ACIPB ACUTJ ACVCV ACZBC ADXHL AEUYN AFFDN AFKRA AFYAG AGMDO AHGBF AIDAL AIDBO AJDVS ALIPV ANFBD APJGH AQDSO AS~ ATCPS AZQEC BBNVY BENPR BHPHI BPHCQ BVXVI C1A CCPQU CITATION D1J DWQXO FYUFA GNUQQ GTFYD GUQSH HCIFZ HMCUK HTVGU LK8 LU7 M0K M1P M2O M2P M2Q M7P MVM P0- PHGZM PHGZT PQQKQ PROAC PSQYO QZG S0X TCN UBC UKHRP UKR WHG XOL Y6R ZCG ADYWZ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c403t-4653d52dc2405cde989f24d0b16d1dd82e36b34835da60f884e2d5fa348667ec3 |
ISSN | 0032-0889 1532-2548 |
IngestDate | Thu Aug 21 18:41:54 EDT 2025 Fri Jul 11 16:40:28 EDT 2025 Thu Apr 03 06:59:20 EDT 2025 Thu Apr 24 23:09:32 EDT 2025 Tue Jul 01 03:08:12 EDT 2025 Sun Aug 24 12:10:42 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://aspb.org/publications/aspb-journals/open-articles 2016 American Society of Plant Biologists. All Rights Reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c403t-4653d52dc2405cde989f24d0b16d1dd82e36b34835da60f884e2d5fa348667ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Szymon Swiezewski (sswiez@ibb.waw.pl). Present address: Friedrich Miescher Institute, 4002 Basel, Switzerland. www.plantphysiol.org/cgi/doi/10.1104/pp.15.01483 S.S. and F.L. designed the project and planned the program of research; H.F., M.C., and A.S. performed the germination tests and expression level measurements; H.F. and M.C. performed the western blots; L.B. did the RACE experiment; S.S. and S.K. performed the bioinformatics analysis; A.C. and H.F. examined localization; G.Y. performed the DOG1-GFP IP; L.B. and A.S. performed the RNA stability assay; K.K and Z.P. prepared the short and long DOG1 lines for complementation; S.S. and M.C. wrote the article. This work was supported by MSHE (grant nos. IdP2011–000461 and 2011/01/D/NZ8/03690 to S.S.). H.F., M.C., A.S., and Z.P. were supported by Foundation for Polish Science Grant Number TEAM2010–5/9. L.B. was supported by IP2011 004671. S.S. was supported by EMBO Installation Grant CEBM/05/17. These authors contributed equally to the article. |
ORCID | 0000-0001-7449-8081 0000-0001-8764-6370 |
OpenAccessLink | http://www.plantphysiol.org/content/plantphysiol/170/2/947.full.pdf |
PMID | 26620523 |
PQID | 1761727038 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4734566 proquest_miscellaneous_1761727038 pubmed_primary_26620523 crossref_citationtrail_10_1104_pp_15_01483 crossref_primary_10_1104_pp_15_01483 jstor_primary_24807135 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-01 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Plant physiology (Bethesda) |
PublicationTitleAlternate | Plant Physiol |
PublicationYear | 2016 |
Publisher | American Society of Plant Biologists |
Publisher_xml | – name: American Society of Plant Biologists |
References | 21803937 - Plant Cell. 2011 Jul;23(7):2568-80 20220758 - Nature. 2010 Apr 1;464(7289):768-72 12809608 - Cell. 2003 Jun 13;113(6):777-87 21925375 - Mol Cell. 2011 Sep 16;43(6):853-66 18298670 - Plant J. 2008 Jun;54(5):899-910 22620982 - Plant Cell Environ. 2012 Oct;35(10):1769-86 17329563 - Plant Cell. 2007 Feb;19(2):433-44 24243805 - Wiley Interdiscip Rev RNA. 2014 Mar-Apr;5(2):183-96 22282534 - J Exp Bot. 2012 Apr;63(7):2693-703 24145798 - Genes Dev. 2013 Nov 1;27(21):2380-96 23097429 - RNA. 2012 Dec;18(12):2105-17 23940361 - Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):E3535-43 16166256 - Plant Physiol. 2005 Sep;139(1):5-17 25583118 - Bioinformatics. 2015 May 15;31(10):1671-3 19098097 - Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):21034-8 22753024 - Nucleic Acids Res. 2012 Sep 1;40(17):8460-71 942051 - Anal Biochem. 1976 May 7;72:248-54 26041499 - Nat Commun. 2015;6:7305 25114251 - Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):E3571-80 22829147 - Plant Cell. 2012 Jul;24(7):2826-38 19965720 - Science. 2010 Jan 1;327(5961):94-7 23099521 - J Mol Cell Biol. 2012 Dec;4(6):352-61 11788305 - Curr Opin Plant Biol. 2002 Feb;5(1):33-6 1719489 - Nucleic Acids Res. 1991 Nov 11;19(21):6055 22122546 - New Phytol. 2012 Feb;193(3):605-16 18256699 - EMBO J. 2008 Feb 6;27(3):482-98 21896654 - Genes Dev. 2011 Sep 1;25(17):1770-82 19439664 - Proc Natl Acad Sci U S A. 2009 May 26;106(21):8772-7 20010688 - Nature. 2009 Dec 10;462(7274):799-802 25852712 - Front Plant Sci. 2015 Mar 17;6:159 22820990 - Nat Struct Mol Biol. 2012 Aug;19(8):845-52 19605392 - Proc Biol Sci. 2009 Oct 22;276(1673):3561-9 19703394 - Cell. 2009 Aug 21;138(4):673-84 25568310 - EMBO J. 2015 Feb 12;34(4):544-58 19930690 - Plant Methods. 2009 Nov 24;5:16 19150360 - J Mol Biol. 2009 Feb 27;386(3):598-611 23774734 - Nat Rev Genet. 2013 Jul;14(7):496-506 10330478 - Plant Cell. 1999 May;11(5):949-56 23620288 - Nucleic Acids Res. 2013 Jul;41(12):6232-49 18436743 - Science. 2008 May 16;320(5878):938-41 16866955 - New Phytol. 2006;171(3):501-23 18158581 - Cell Mol Life Sci. 2008 Apr;65(7-8):1099-122 21740475 - Mol Ecol. 2011 Aug;20(16):3336-49 17065317 - Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):17042-7 26155789 - BMC Genomics. 2015;16:511 24904627 - Front Plant Sci. 2014 May 28;5:233 15647503 - Nucleic Acids Res. 2005;33(1):201-12 21746925 - Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12533-8 |
References_xml | – reference: 26155789 - BMC Genomics. 2015;16:511 – reference: 17065317 - Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):17042-7 – reference: 25114251 - Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):E3571-80 – reference: 11788305 - Curr Opin Plant Biol. 2002 Feb;5(1):33-6 – reference: 19930690 - Plant Methods. 2009 Nov 24;5:16 – reference: 23097429 - RNA. 2012 Dec;18(12):2105-17 – reference: 19150360 - J Mol Biol. 2009 Feb 27;386(3):598-611 – reference: 21746925 - Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12533-8 – reference: 18436743 - Science. 2008 May 16;320(5878):938-41 – reference: 23940361 - Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):E3535-43 – reference: 22122546 - New Phytol. 2012 Feb;193(3):605-16 – reference: 18298670 - Plant J. 2008 Jun;54(5):899-910 – reference: 16866955 - New Phytol. 2006;171(3):501-23 – reference: 25568310 - EMBO J. 2015 Feb 12;34(4):544-58 – reference: 21803937 - Plant Cell. 2011 Jul;23(7):2568-80 – reference: 22753024 - Nucleic Acids Res. 2012 Sep 1;40(17):8460-71 – reference: 24904627 - Front Plant Sci. 2014 May 28;5:233 – reference: 942051 - Anal Biochem. 1976 May 7;72:248-54 – reference: 23620288 - Nucleic Acids Res. 2013 Jul;41(12):6232-49 – reference: 26041499 - Nat Commun. 2015;6:7305 – reference: 1719489 - Nucleic Acids Res. 1991 Nov 11;19(21):6055 – reference: 25852712 - Front Plant Sci. 2015 Mar 17;6:159 – reference: 23099521 - J Mol Cell Biol. 2012 Dec;4(6):352-61 – reference: 21925375 - Mol Cell. 2011 Sep 16;43(6):853-66 – reference: 24243805 - Wiley Interdiscip Rev RNA. 2014 Mar-Apr;5(2):183-96 – reference: 21740475 - Mol Ecol. 2011 Aug;20(16):3336-49 – reference: 22620982 - Plant Cell Environ. 2012 Oct;35(10):1769-86 – reference: 21896654 - Genes Dev. 2011 Sep 1;25(17):1770-82 – reference: 19605392 - Proc Biol Sci. 2009 Oct 22;276(1673):3561-9 – reference: 19965720 - Science. 2010 Jan 1;327(5961):94-7 – reference: 18158581 - Cell Mol Life Sci. 2008 Apr;65(7-8):1099-122 – reference: 10330478 - Plant Cell. 1999 May;11(5):949-56 – reference: 22829147 - Plant Cell. 2012 Jul;24(7):2826-38 – reference: 22282534 - J Exp Bot. 2012 Apr;63(7):2693-703 – reference: 19439664 - Proc Natl Acad Sci U S A. 2009 May 26;106(21):8772-7 – reference: 24145798 - Genes Dev. 2013 Nov 1;27(21):2380-96 – reference: 23774734 - Nat Rev Genet. 2013 Jul;14(7):496-506 – reference: 19703394 - Cell. 2009 Aug 21;138(4):673-84 – reference: 22820990 - Nat Struct Mol Biol. 2012 Aug;19(8):845-52 – reference: 17329563 - Plant Cell. 2007 Feb;19(2):433-44 – reference: 15647503 - Nucleic Acids Res. 2005;33(1):201-12 – reference: 18256699 - EMBO J. 2008 Feb 6;27(3):482-98 – reference: 12809608 - Cell. 2003 Jun 13;113(6):777-87 – reference: 16166256 - Plant Physiol. 2005 Sep;139(1):5-17 – reference: 20220758 - Nature. 2010 Apr 1;464(7289):768-72 – reference: 19098097 - Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):21034-8 – reference: 25583118 - Bioinformatics. 2015 May 15;31(10):1671-3 – reference: 20010688 - Nature. 2009 Dec 10;462(7274):799-802 |
SSID | ssj0001314 |
Score | 2.457974 |
Snippet | DOG1 (Delay of Germination 1) is a key regulator of seed dormancy in Arabidopsis (Arabidopsis thaliana) and other plants. Interestingly, the C terminus of DOG1... A major quantitative trait locus is alternatively polyadenylated and its proximally polyadenylated form is required for seed dormancy. DOG1 (Delay of... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 947 |
SubjectTerms | Amino Acid Sequence Arabidopsis - genetics Arabidopsis - physiology Arabidopsis Proteins - chemistry Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Base Sequence Conserved Sequence Gene Expression Regulation, Plant GENES, DEVELOPMENT AND EVOLUTION Germination Molecular Sequence Data Mutation - genetics Phenotype Plant Dormancy - genetics Polyadenylation - genetics Protein Biosynthesis Protein Isoforms - genetics Protein Isoforms - metabolism RNA Processing, Post-Transcriptional RNA, Messenger - genetics RNA, Messenger - metabolism Seeds - genetics Seeds - physiology |
Title | Seed Dormancy in Arabidopsis Is Controlled by Alternative Polyadenylation of DOG1 |
URI | https://www.jstor.org/stable/24807135 https://www.ncbi.nlm.nih.gov/pubmed/26620523 https://www.proquest.com/docview/1761727038 https://pubmed.ncbi.nlm.nih.gov/PMC4734566 |
Volume | 170 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELbKwgMviGvZcslI-4SUJT5y9LHbBVrQcohdaXmKnNiBakMS9QC1v4qfyPhImi59gH2JKseuU89Xe2YyMx9Ch4ESjAipvMBPqceDLPOEnw88SlXEIpIxqbS_4_RDOD7n7y6Ci17vdydqablIj7L1zryS60gV2kCuOkv2PyTbfik0wGeQL1xBwnD9Jxl_gaMHVGAT92_y94YzkU5lVesqIxPDxqnj0AurZQ4L5_z7qXTY2wrWrlwVrcp48vEt6aqqms5oYT0ftk4T6KLHOj14LkXHfzBazdSlzfopvlWztc11c-qlFObWWBSOpduMAON8CkeyJcwezi6FnC7n6zYSaGm8t19F-WvZ9UmQNoy5QVHzsqmJPNXhfOahLcEmALjrifQZjI4tk9CRavZh6oHtGm9t1JZixCGSdrbdga3a6U7wgS38-_fh4HPNaFwfEV2qlVsCnQ5M6h8GJ6CyUO0s35yQbdzip9MRjxjonOENdJOCYaI5M04m79uznzBbTb75SS4jFGZ-1ZlXV6B2k2ypQzYidpetczVkt6MDnd1Fd5zxgocWifdQT5X30a3jCgyM1QP0WcMRN3DE0xJ34Ignc7yBI05XuANHfAWOuMqxhuNDdP7m9dlo7DnGDi_jPlt4ulifDKjMQE8MMqkG8SCnXPopCSWRMqaKhSmDFQikCP08jrmiMsgFNIVhpDK2j_bKqlQHCHMSa3Y8sM5zxnNFU654pKBfKjKSKtVHL5uFSzJXzl6zqhSJMWt9ntR1QoLELHgfHbada1vFZXe3fSOBtg_VBRcIC_roRSOSBLZf_U5NlKpazhMSGRPAZ3EfPbIi2ox2Mu6jaEt4bQdd2n37Tjn9bkq8O5Q9vvbIJ-j25o_5FO0tZkv1DNTnRfrcIPYP38fHXA |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seed+Dormancy+in+Arabidopsis+Is+Controlled+by+Alternative+Polyadenylation+of+DOG1&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Cyrek%2C+Malgorzata&rft.au=Fedak%2C+Halina&rft.au=Ciesielski%2C+Arkadiusz&rft.au=Guo%2C+Yanwu&rft.date=2016-02-01&rft.pub=American+Society+of+Plant+Biologists&rft.issn=0032-0889&rft.eissn=1532-2548&rft.volume=170&rft.issue=2&rft.spage=947&rft.epage=955&rft_id=info:doi/10.1104%2Fpp.15.01483&rft_id=info%3Apmid%2F26620523&rft.externalDocID=PMC4734566 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon |