Weapon Detection Using YOLO V3 for Smart Surveillance System

Every year, a large amount of population reconciles gun-related violence all over the world. In this work, we develop a computer-based fully automated system to identify basic armaments, particularly handguns and rifles. Recent work in the field of deep learning and transfer learning has demonstrate...

Full description

Saved in:
Bibliographic Details
Published inMathematical problems in engineering Vol. 2021; pp. 1 - 9
Main Authors Narejo, Sanam, Pandey, Bishwajeet, Esenarro vargas, Doris, Rodriguez, Ciro, Anjum, M. Rizwan
Format Journal Article
LanguageEnglish
Published New York Hindawi 2021
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1024-123X
1563-5147
DOI10.1155/2021/9975700

Cover

Abstract Every year, a large amount of population reconciles gun-related violence all over the world. In this work, we develop a computer-based fully automated system to identify basic armaments, particularly handguns and rifles. Recent work in the field of deep learning and transfer learning has demonstrated significant progress in the areas of object detection and recognition. We have implemented YOLO V3 “You Only Look Once” object detection model by training it on our customized dataset. The training results confirm that YOLO V3 outperforms YOLO V2 and traditional convolutional neural network (CNN). Additionally, intensive GPUs or high computation resources were not required in our approach as we used transfer learning for training our model. Applying this model in our surveillance system, we can attempt to save human life and accomplish reduction in the rate of manslaughter or mass killing. Additionally, our proposed system can also be implemented in high-end surveillance and security robots to detect a weapon or unsafe assets to avoid any kind of assault or risk to human life.
AbstractList Every year, a large amount of population reconciles gun-related violence all over the world. In this work, we develop a computer-based fully automated system to identify basic armaments, particularly handguns and rifles. Recent work in the field of deep learning and transfer learning has demonstrated significant progress in the areas of object detection and recognition. We have implemented YOLO V3 “You Only Look Once” object detection model by training it on our customized dataset. The training results confirm that YOLO V3 outperforms YOLO V2 and traditional convolutional neural network (CNN). Additionally, intensive GPUs or high computation resources were not required in our approach as we used transfer learning for training our model. Applying this model in our surveillance system, we can attempt to save human life and accomplish reduction in the rate of manslaughter or mass killing. Additionally, our proposed system can also be implemented in high-end surveillance and security robots to detect a weapon or unsafe assets to avoid any kind of assault or risk to human life.
Author Pandey, Bishwajeet
Esenarro vargas, Doris
Narejo, Sanam
Rodriguez, Ciro
Anjum, M. Rizwan
Author_xml – sequence: 1
  givenname: Sanam
  orcidid: 0000-0002-3537-8949
  surname: Narejo
  fullname: Narejo, Sanam
  organization: Department of Computer Systems EngineeringMehran University of Engineering and Technology (MUET)JamshoroPakistan
– sequence: 2
  givenname: Bishwajeet
  orcidid: 0000-0001-5593-8985
  surname: Pandey
  fullname: Pandey, Bishwajeet
  organization: Gran Sasso Science InstituteL’AquilaItaly
– sequence: 3
  givenname: Doris
  orcidid: 0000-0002-7186-9614
  surname: Esenarro vargas
  fullname: Esenarro vargas, Doris
  organization: Universidad Nacional Federico VillarrealLimaPeruunfv.edu.pe
– sequence: 4
  givenname: Ciro
  orcidid: 0000-0003-2112-1349
  surname: Rodriguez
  fullname: Rodriguez, Ciro
  organization: Universidad Nacional Mayor de San MarcosLimaPeruunmsm.edu.pe
– sequence: 5
  givenname: M. Rizwan
  orcidid: 0000-0002-7139-7143
  surname: Anjum
  fullname: Anjum, M. Rizwan
  organization: Department of Electronic EngineeringThe Islamia University of BahawalpurBahawalpur 63100Pakistaniub.edu.pk
BookMark eNp9kEtLAzEUhYNUsK3u_AEBlzo2j7kzE3AjrS8odFHrYzXENNGUaaYmqdJ_b0q7EnRz71l8517O6aGOa51G6JSSS0oBBowwOhCihJKQA9SlUPAMaF52kiYszyjjL0eoF8KCJBJo1UVXz1quWodHOmoVbVKzYN07fp2MJ_iJY9N6PF1KH_F07b-0bRrplMbTTYh6eYwOjWyCPtnvPprd3jwO77Px5O5heD3OVE54zHJgQI0QkIuiFMCK-RsFybmRklesZKUyRRqgEmUqUlBF54VShoIgUlfA--hsd3fl28-1DrFetGvv0suaASclI7wQiWI7Svk2BK9NrWyU20zRS9vUlNTbluptS_W-pWS6-GVaeZvybv7Cz3f4h3Vz-W3_p38Ax1dz1w
CitedBy_id crossref_primary_10_28956_gbd_1454962
crossref_primary_10_32604_iasc_2022_021061
crossref_primary_10_3390_s22145075
crossref_primary_10_1007_s41870_024_01889_9
crossref_primary_10_61186_jsdp_20_2_69
crossref_primary_10_1016_j_eswa_2024_124800
crossref_primary_10_1007_s11760_024_03458_w
crossref_primary_10_3390_buildings14071915
crossref_primary_10_1016_j_jnca_2024_104026
crossref_primary_10_3390_app14125341
crossref_primary_10_1007_s11042_023_16107_0
crossref_primary_10_1109_JIOT_2023_3263725
crossref_primary_10_3390_app12125772
crossref_primary_10_3390_ai5030058
crossref_primary_10_1155_2022_5371350
crossref_primary_10_1109_TPAMI_2024_3409416
crossref_primary_10_4018_IJDCF_367034
crossref_primary_10_3390_s24227148
crossref_primary_10_1007_s41870_022_01062_0
crossref_primary_10_1117_1_OE_63_3_033102
crossref_primary_10_3390_s22134704
crossref_primary_10_31590_ejosat_1163675
crossref_primary_10_1155_2022_3690403
crossref_primary_10_1016_j_cexr_2023_100041
crossref_primary_10_3390_computers12120255
crossref_primary_10_54525_tbbmd_1184322
crossref_primary_10_1016_j_cosrev_2023_100612
crossref_primary_10_1016_j_eswa_2022_118698
crossref_primary_10_1145_3648357
crossref_primary_10_1155_2021_6544325
crossref_primary_10_3390_jimaging10100248
crossref_primary_10_3934_mbe_2023956
crossref_primary_10_1007_s13735_025_00355_x
crossref_primary_10_1109_ACCESS_2024_3504483
Cites_doi 10.1016/j.neucom.2018.10.076
10.1016/j.trc.2006.05.006
10.1007/s10586-017-1323-4
10.1007/978-3-030-30465-2_2
10.1109/CIC.2018.00042
10.3390/s20061678
10.1007/s11042-017-5255-z
10.3390/s16010047
10.1016/j.engappai.2017.10.001
10.1109/TSMC.2019.2895588
10.1002/asjc.2354
10.1109/TPAMI.2012.59
10.1007/s40998-020-00364-y
10.1109/ICC.2018.8422970
10.1109/TITS.2015.2496795
ContentType Journal Article
Copyright Copyright © 2021 Sanam Narejo et al.
Copyright © 2021 Sanam Narejo et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2021 Sanam Narejo et al.
– notice: Copyright © 2021 Sanam Narejo et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CWDGH
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1155/2021/9975700
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Middle East & Africa Database
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1563-5147
Editor Ali, Zain Anwar
Editor_xml – sequence: 1
  givenname: Zain Anwar
  surname: Ali
  fullname: Ali, Zain Anwar
EndPage 9
ExternalDocumentID 10_1155_2021_9975700
GroupedDBID 29M
2WC
3V.
4.4
5GY
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJEY
ABDBF
ABJCF
ABUWG
ACIPV
ACIWK
ADBBV
AENEX
AFKRA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CS3
CWDGH
E3Z
EBS
ESX
GROUPED_DOAJ
HCIFZ
I-F
IAO
IEA
IOF
ISR
ITC
K6V
K7-
KQ8
L6V
M7S
MK~
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
REM
RHU
RHW
RHX
RNS
TR2
TUS
XSB
YQT
~8M
0R~
24P
AAYXX
ACCMX
CITATION
H13
OVT
PHGZM
PHGZT
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
FR3
GNUQQ
JQ2
KR7
PKEHL
PQEST
PQGLB
PQUKI
PRINS
ID FETCH-LOGICAL-c403t-45251f99549679526db15a33faa382727cf627c5c51ff8061c1d6ccf1590ae853
IEDL.DBID 8FG
ISSN 1024-123X
IngestDate Fri Jul 25 10:05:52 EDT 2025
Tue Jul 01 02:14:07 EDT 2025
Thu Apr 24 22:55:49 EDT 2025
Sun Jun 02 18:54:54 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-45251f99549679526db15a33faa382727cf627c5c51ff8061c1d6ccf1590ae853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7139-7143
0000-0002-7186-9614
0000-0002-3537-8949
0000-0001-5593-8985
0000-0003-2112-1349
OpenAccessLink https://www.proquest.com/docview/2530720369?pq-origsite=%requestingapplication%
PQID 2530720369
PQPubID 237775
PageCount 9
ParticipantIDs proquest_journals_2530720369
crossref_citationtrail_10_1155_2021_9975700
crossref_primary_10_1155_2021_9975700
hindawi_primary_10_1155_2021_9975700
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Mathematical problems in engineering
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References 11
23
14
16
18
A. Warsi (20)
19
H. Mousavi (17)
S. B. Kibria (22)
V. Babanne (4)
V. Gun (24)
Q. Hu (15) 2015; 17
1
United Nations (2)
3
5
6
7
8
J. Redmon (12)
9
G. K. Verma (21)
10
A. Farhadi (13) 2018
References_xml – ident: 23
  doi: 10.1016/j.neucom.2018.10.076
– ident: 1
  doi: 10.1016/j.trc.2006.05.006
– start-page: 1
  ident: 20
  article-title: Gun detection system using YOLOv3
– ident: 3
  doi: 10.1007/s10586-017-1323-4
– ident: 5
  doi: 10.1007/978-3-030-30465-2_2
– ident: 7
  doi: 10.1109/CIC.2018.00042
– start-page: 1
  ident: 22
  article-title: An analysis of feature extraction and classification algorithms for dangerous object detection
– ident: 19
  doi: 10.3390/s20061678
– start-page: 84
  ident: 21
  article-title: A handheld gun detection using faster r-cnn deep learning
– ident: 14
  doi: 10.1007/s11042-017-5255-z
– volume-title: Office on Drugs and Crime, Report on “Global Study of Homicide”
  ident: 2
– year: 2018
  ident: 13
  article-title: Yolov3: an incremental improvement
  publication-title: Computer Vision and Pattern Recognition
– start-page: 84
  ident: 4
  article-title: Machine learning based smart surveillance system
– ident: 16
  doi: 10.3390/s16010047
– ident: 6
  doi: 10.1016/j.engappai.2017.10.001
– ident: 11
  doi: 10.1109/TSMC.2019.2895588
– start-page: 779
  ident: 12
  article-title: You only look once: unified, real-time object detection
– ident: 10
  doi: 10.1002/asjc.2354
– ident: 18
  doi: 10.1109/TPAMI.2012.59
– ident: 9
  doi: 10.1007/s40998-020-00364-y
– ident: 8
  doi: 10.1109/ICC.2018.8422970
– volume: 17
  start-page: 1002
  issue: 4
  year: 2015
  ident: 15
  article-title: Fast detection of multiple objects in traffic scenes with a common detection framework
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2015.2496795
– ident: 24
  article-title: Database
– start-page: 148
  ident: 17
  article-title: Analyzing tracklets for the detection of abnormal crowd behavior
SSID ssj0021518
Score 2.4471583
Snippet Every year, a large amount of population reconciles gun-related violence all over the world. In this work, we develop a computer-based fully automated system...
SourceID proquest
crossref
hindawi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial neural networks
Automation
Datasets
Deep learning
Dictionaries
Firearms
Machine learning
Manslaughter
Mass murders
Mathematical problems
Neural networks
Object recognition
Rifles
Robots
Security systems
Surveillance
Training
Violence
Weapons
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uIHjxtzidksM8SbFpmqwFL6KOIerAOa2nkqQJE7QbW6f_vi9tNtAhemkpvPTw8l6-7_WlXxBqSRUpraQPzC2KvZAL3wMQJl6mOOGCtQ3RtlC8u-fdQXiTsMSJJE2XW_iAdrY8J2dx3LZK7DVUi7gN3odusqirALSqP94CK8FHk_n-9h9jvyHP6tCWvJ-vS0twiSudTbTuCCG-qGZwC63ofBttOHKIXepNd9D5sxbjUY6vdFHunspx2e3HL73bHn6iGMgn7r9DIOD-bPKh7WFCMBBXiuS7aNC5frzseu7oA0-FPi08220kxmq1xbwds4BnkjBBqRGCRgFwDmU4XJgCKxMBJiuScaUMkBNfaIDgPVTPR7neRzgTkZYRg5vV6BVaZr7kWRBSbiBDNGmg07lbUuV0we3xFG9pWR8wllonps6JDXSysB5Xehi_2LWch_8wa87dn7rkmaYBg4XHNkjjg_-95RCt2cfqy0gT1YvJTB8BVyjkcRkpXxrpsrg
  priority: 102
  providerName: Hindawi Publishing
Title Weapon Detection Using YOLO V3 for Smart Surveillance System
URI https://dx.doi.org/10.1155/2021/9975700
https://www.proquest.com/docview/2530720369
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF60RfDiW6zWsgc9SWg26W4TEMRHa_HRamu1nsJms0FB09qH_n1nkm1FRL0khExymMzu983u5BtC9kLlKa1CG5ib51sVIW0LQJhZkRJMSF6NmcZE8bopGt3KRY_3zILbyJRVTufEdKKO-grXyMsOh2jEXTP_aPBmYdco3F01LTTmSZ4B0mCce_XzWcIFaJb9CuegNp_bmxa-c445Pyv7fhXl3b9B0sIT5sIfzz_m5hRw6itkyTBFepx92lUyp5M1smxYIzVjcrRODh-0HPQTeqbHaVlVQtMyAPrYumrRe5cCK6WdV4gQ2pkM3zV2GYIHaSZVvkG69drdacMyPREsVbHdsYXbkCxGETdfVH3uiChkXLpuLKXrOUBGVCzgwBVYxR6AtWKRUCoG1mJLDdi8SXJJP9FbhEbS06HH4YTivVKHkR2KyKm4Ioaho1mBHEzdEigjGI59K16CNHHgPEAnBsaJBbI_sx5kQhm_2O0ZD_9jVpy6PzCjahR8xcD237d3yCK-LFsqKZLceDjRu0AexmEpjZASyZ_UmjdtuLq89eDYbvQ-AXOSwH4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLbQEIILb8SbHOCEKvpK1kogxFMDxkA8x6mkaSqQoBtsgPhT_EbsNgUhBJy4tIe6PbiOPzt2PgMsxipQWsU2Rm5BaPlC2haCsGMlSjhC8mrqaEoUDxuidu7vN3mzB97KszDUVln6xNxRJy1Fe-QrLkdrpKpZuN5-sGhqFFVXyxEahVkc6NcXTNk6a3vb-H-XXHd352yrZpmpApbyba9rUSHPSYkGLRTVkLsiiR0uPS-V0gtchHOVCrxwhVJpgHCnnEQolSLu21IHNCUCXX6vTydaK9C7udM4PvlI8RA_i8N3LrEBes2y1Z5z2mVwVsKwSoTyX0Cw74ay75fbb2iQQ9zuMAya2JRtFMY0Aj06G4UhE6cy4wU6Y7B6qWW7lbFt3c0buTKWNx6wq6P6EbvwGMbB7PQebZKdPj0-a5prhC-yghx9HM7_RV8TUMlamZ4ElshAxwHHG9EFSx0ndiwS1_dEiotVO1OwXKolUoainCZl3EV5qsJ5REqMjBKnYOlDul1Qc_wgt2g0_IfYbKn-yKzjTvRpddO_P16A_trZYT2q7zUOZmCAPlxs1MxCpfv4pOcwdOnG88ZeGFz_t4m-A4PQ-Y0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDI7QEIgLb8RgQA5wQtX6WNJWAiHEGOM1kMZgnEqapgIJurEHiL_Gr8NuUxBCwGmX9lC3B_eLPzt2bEI2Q-lJJUMTPDfPNypcmAaQsGVEkltcMDe2FAaK5w1eb1VO2qw9Rt7zszBYVpnbxNRQRx2Je-RlmwEaMWvml2NdFnFZre11nw2cIIWZ1nycRgaRU_X2CuFbf_e4Cv96y7Zrh1cHdUNPGDBkxXQGBib1rBhbovnc9ZnNo9BiwnFiIRzPBmqXMYcLkyAVe0B90oq4lDH4AKZQHk6MAPM_7jquj4GfVzv6DPaASbNjeDb2BXTaedE9Y7jfYJV938XW8t_ocOIe4_DXhx-8kJJdbZZMay-V7mewmiNjKpknM9pjpdoe9BfIzo0S3U5Cq2qQlnQlNC1BoLcXZxf02qHgEdPmE6CTNoe9F4UTjuBFmrVJXyStkWhriRSSTqKWCY2Ep0KPwQ0bBwsVRmbII7vi8BiWrbKKZDtXSyB1s3KcmfEYpEELYwEqMdBKLJKtT-lu1qTjF7lNreF_xEq5-gO9ovvBF_5W_n68QSYBmMHZceN0lUzhd7MdmxIpDHpDtQY-zCBcT8FCyd2o0fkB2_v8XQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weapon+Detection+Using+YOLO+V3+for+Smart+Surveillance+System&rft.jtitle=Mathematical+problems+in+engineering&rft.au=Narejo%2C+Sanam&rft.au=Pandey%2C+Bishwajeet&rft.au=vargas%2C+Doris+Esenarro&rft.au=Rodriguez%2C+Ciro&rft.date=2021&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1024-123X&rft.eissn=1563-5147&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F9975700&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1024-123X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1024-123X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1024-123X&client=summon