Weapon Detection Using YOLO V3 for Smart Surveillance System
Every year, a large amount of population reconciles gun-related violence all over the world. In this work, we develop a computer-based fully automated system to identify basic armaments, particularly handguns and rifles. Recent work in the field of deep learning and transfer learning has demonstrate...
Saved in:
Published in | Mathematical problems in engineering Vol. 2021; pp. 1 - 9 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Hindawi
2021
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1024-123X 1563-5147 |
DOI | 10.1155/2021/9975700 |
Cover
Abstract | Every year, a large amount of population reconciles gun-related violence all over the world. In this work, we develop a computer-based fully automated system to identify basic armaments, particularly handguns and rifles. Recent work in the field of deep learning and transfer learning has demonstrated significant progress in the areas of object detection and recognition. We have implemented YOLO V3 “You Only Look Once” object detection model by training it on our customized dataset. The training results confirm that YOLO V3 outperforms YOLO V2 and traditional convolutional neural network (CNN). Additionally, intensive GPUs or high computation resources were not required in our approach as we used transfer learning for training our model. Applying this model in our surveillance system, we can attempt to save human life and accomplish reduction in the rate of manslaughter or mass killing. Additionally, our proposed system can also be implemented in high-end surveillance and security robots to detect a weapon or unsafe assets to avoid any kind of assault or risk to human life. |
---|---|
AbstractList | Every year, a large amount of population reconciles gun-related violence all over the world. In this work, we develop a computer-based fully automated system to identify basic armaments, particularly handguns and rifles. Recent work in the field of deep learning and transfer learning has demonstrated significant progress in the areas of object detection and recognition. We have implemented YOLO V3 “You Only Look Once” object detection model by training it on our customized dataset. The training results confirm that YOLO V3 outperforms YOLO V2 and traditional convolutional neural network (CNN). Additionally, intensive GPUs or high computation resources were not required in our approach as we used transfer learning for training our model. Applying this model in our surveillance system, we can attempt to save human life and accomplish reduction in the rate of manslaughter or mass killing. Additionally, our proposed system can also be implemented in high-end surveillance and security robots to detect a weapon or unsafe assets to avoid any kind of assault or risk to human life. |
Author | Pandey, Bishwajeet Esenarro vargas, Doris Narejo, Sanam Rodriguez, Ciro Anjum, M. Rizwan |
Author_xml | – sequence: 1 givenname: Sanam orcidid: 0000-0002-3537-8949 surname: Narejo fullname: Narejo, Sanam organization: Department of Computer Systems EngineeringMehran University of Engineering and Technology (MUET)JamshoroPakistan – sequence: 2 givenname: Bishwajeet orcidid: 0000-0001-5593-8985 surname: Pandey fullname: Pandey, Bishwajeet organization: Gran Sasso Science InstituteL’AquilaItaly – sequence: 3 givenname: Doris orcidid: 0000-0002-7186-9614 surname: Esenarro vargas fullname: Esenarro vargas, Doris organization: Universidad Nacional Federico VillarrealLimaPeruunfv.edu.pe – sequence: 4 givenname: Ciro orcidid: 0000-0003-2112-1349 surname: Rodriguez fullname: Rodriguez, Ciro organization: Universidad Nacional Mayor de San MarcosLimaPeruunmsm.edu.pe – sequence: 5 givenname: M. Rizwan orcidid: 0000-0002-7139-7143 surname: Anjum fullname: Anjum, M. Rizwan organization: Department of Electronic EngineeringThe Islamia University of BahawalpurBahawalpur 63100Pakistaniub.edu.pk |
BookMark | eNp9kEtLAzEUhYNUsK3u_AEBlzo2j7kzE3AjrS8odFHrYzXENNGUaaYmqdJ_b0q7EnRz71l8517O6aGOa51G6JSSS0oBBowwOhCihJKQA9SlUPAMaF52kiYszyjjL0eoF8KCJBJo1UVXz1quWodHOmoVbVKzYN07fp2MJ_iJY9N6PF1KH_F07b-0bRrplMbTTYh6eYwOjWyCPtnvPprd3jwO77Px5O5heD3OVE54zHJgQI0QkIuiFMCK-RsFybmRklesZKUyRRqgEmUqUlBF54VShoIgUlfA--hsd3fl28-1DrFetGvv0suaASclI7wQiWI7Svk2BK9NrWyU20zRS9vUlNTbluptS_W-pWS6-GVaeZvybv7Cz3f4h3Vz-W3_p38Ax1dz1w |
CitedBy_id | crossref_primary_10_28956_gbd_1454962 crossref_primary_10_32604_iasc_2022_021061 crossref_primary_10_3390_s22145075 crossref_primary_10_1007_s41870_024_01889_9 crossref_primary_10_61186_jsdp_20_2_69 crossref_primary_10_1016_j_eswa_2024_124800 crossref_primary_10_1007_s11760_024_03458_w crossref_primary_10_3390_buildings14071915 crossref_primary_10_1016_j_jnca_2024_104026 crossref_primary_10_3390_app14125341 crossref_primary_10_1007_s11042_023_16107_0 crossref_primary_10_1109_JIOT_2023_3263725 crossref_primary_10_3390_app12125772 crossref_primary_10_3390_ai5030058 crossref_primary_10_1155_2022_5371350 crossref_primary_10_1109_TPAMI_2024_3409416 crossref_primary_10_4018_IJDCF_367034 crossref_primary_10_3390_s24227148 crossref_primary_10_1007_s41870_022_01062_0 crossref_primary_10_1117_1_OE_63_3_033102 crossref_primary_10_3390_s22134704 crossref_primary_10_31590_ejosat_1163675 crossref_primary_10_1155_2022_3690403 crossref_primary_10_1016_j_cexr_2023_100041 crossref_primary_10_3390_computers12120255 crossref_primary_10_54525_tbbmd_1184322 crossref_primary_10_1016_j_cosrev_2023_100612 crossref_primary_10_1016_j_eswa_2022_118698 crossref_primary_10_1145_3648357 crossref_primary_10_1155_2021_6544325 crossref_primary_10_3390_jimaging10100248 crossref_primary_10_3934_mbe_2023956 crossref_primary_10_1007_s13735_025_00355_x crossref_primary_10_1109_ACCESS_2024_3504483 |
Cites_doi | 10.1016/j.neucom.2018.10.076 10.1016/j.trc.2006.05.006 10.1007/s10586-017-1323-4 10.1007/978-3-030-30465-2_2 10.1109/CIC.2018.00042 10.3390/s20061678 10.1007/s11042-017-5255-z 10.3390/s16010047 10.1016/j.engappai.2017.10.001 10.1109/TSMC.2019.2895588 10.1002/asjc.2354 10.1109/TPAMI.2012.59 10.1007/s40998-020-00364-y 10.1109/ICC.2018.8422970 10.1109/TITS.2015.2496795 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Sanam Narejo et al. Copyright © 2021 Sanam Narejo et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2021 Sanam Narejo et al. – notice: Copyright © 2021 Sanam Narejo et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | RHU RHW RHX AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU CWDGH DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1155/2021/9975700 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Middle East & Africa Database ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Middle East & Africa Database ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1563-5147 |
Editor | Ali, Zain Anwar |
Editor_xml | – sequence: 1 givenname: Zain Anwar surname: Ali fullname: Ali, Zain Anwar |
EndPage | 9 |
ExternalDocumentID | 10_1155_2021_9975700 |
GroupedDBID | 29M 2WC 3V. 4.4 5GY 5VS 8FE 8FG 8R4 8R5 AAFWJ AAJEY ABDBF ABJCF ABUWG ACIPV ACIWK ADBBV AENEX AFKRA AINHJ ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BPHCQ CCPQU CS3 CWDGH E3Z EBS ESX GROUPED_DOAJ HCIFZ I-F IAO IEA IOF ISR ITC K6V K7- KQ8 L6V M7S MK~ M~E OK1 P2P P62 PIMPY PQQKQ PROAC PTHSS Q2X REM RHU RHW RHX RNS TR2 TUS XSB YQT ~8M 0R~ 24P AAYXX ACCMX CITATION H13 OVT PHGZM PHGZT 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO FR3 GNUQQ JQ2 KR7 PKEHL PQEST PQGLB PQUKI PRINS |
ID | FETCH-LOGICAL-c403t-45251f99549679526db15a33faa382727cf627c5c51ff8061c1d6ccf1590ae853 |
IEDL.DBID | 8FG |
ISSN | 1024-123X |
IngestDate | Fri Jul 25 10:05:52 EDT 2025 Tue Jul 01 02:14:07 EDT 2025 Thu Apr 24 22:55:49 EDT 2025 Sun Jun 02 18:54:54 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-45251f99549679526db15a33faa382727cf627c5c51ff8061c1d6ccf1590ae853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7139-7143 0000-0002-7186-9614 0000-0002-3537-8949 0000-0001-5593-8985 0000-0003-2112-1349 |
OpenAccessLink | https://www.proquest.com/docview/2530720369?pq-origsite=%requestingapplication% |
PQID | 2530720369 |
PQPubID | 237775 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2530720369 crossref_citationtrail_10_1155_2021_9975700 crossref_primary_10_1155_2021_9975700 hindawi_primary_10_1155_2021_9975700 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021-00-00 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Mathematical problems in engineering |
PublicationYear | 2021 |
Publisher | Hindawi John Wiley & Sons, Inc |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
References | 11 23 14 16 18 A. Warsi (20) 19 H. Mousavi (17) S. B. Kibria (22) V. Babanne (4) V. Gun (24) Q. Hu (15) 2015; 17 1 United Nations (2) 3 5 6 7 8 J. Redmon (12) 9 G. K. Verma (21) 10 A. Farhadi (13) 2018 |
References_xml | – ident: 23 doi: 10.1016/j.neucom.2018.10.076 – ident: 1 doi: 10.1016/j.trc.2006.05.006 – start-page: 1 ident: 20 article-title: Gun detection system using YOLOv3 – ident: 3 doi: 10.1007/s10586-017-1323-4 – ident: 5 doi: 10.1007/978-3-030-30465-2_2 – ident: 7 doi: 10.1109/CIC.2018.00042 – start-page: 1 ident: 22 article-title: An analysis of feature extraction and classification algorithms for dangerous object detection – ident: 19 doi: 10.3390/s20061678 – start-page: 84 ident: 21 article-title: A handheld gun detection using faster r-cnn deep learning – ident: 14 doi: 10.1007/s11042-017-5255-z – volume-title: Office on Drugs and Crime, Report on “Global Study of Homicide” ident: 2 – year: 2018 ident: 13 article-title: Yolov3: an incremental improvement publication-title: Computer Vision and Pattern Recognition – start-page: 84 ident: 4 article-title: Machine learning based smart surveillance system – ident: 16 doi: 10.3390/s16010047 – ident: 6 doi: 10.1016/j.engappai.2017.10.001 – ident: 11 doi: 10.1109/TSMC.2019.2895588 – start-page: 779 ident: 12 article-title: You only look once: unified, real-time object detection – ident: 10 doi: 10.1002/asjc.2354 – ident: 18 doi: 10.1109/TPAMI.2012.59 – ident: 9 doi: 10.1007/s40998-020-00364-y – ident: 8 doi: 10.1109/ICC.2018.8422970 – volume: 17 start-page: 1002 issue: 4 year: 2015 ident: 15 article-title: Fast detection of multiple objects in traffic scenes with a common detection framework publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2015.2496795 – ident: 24 article-title: Database – start-page: 148 ident: 17 article-title: Analyzing tracklets for the detection of abnormal crowd behavior |
SSID | ssj0021518 |
Score | 2.4471583 |
Snippet | Every year, a large amount of population reconciles gun-related violence all over the world. In this work, we develop a computer-based fully automated system... |
SourceID | proquest crossref hindawi |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Artificial neural networks Automation Datasets Deep learning Dictionaries Firearms Machine learning Manslaughter Mass murders Mathematical problems Neural networks Object recognition Rifles Robots Security systems Surveillance Training Violence Weapons |
SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uIHjxtzidksM8SbFpmqwFL6KOIerAOa2nkqQJE7QbW6f_vi9tNtAhemkpvPTw8l6-7_WlXxBqSRUpraQPzC2KvZAL3wMQJl6mOOGCtQ3RtlC8u-fdQXiTsMSJJE2XW_iAdrY8J2dx3LZK7DVUi7gN3odusqirALSqP94CK8FHk_n-9h9jvyHP6tCWvJ-vS0twiSudTbTuCCG-qGZwC63ofBttOHKIXepNd9D5sxbjUY6vdFHunspx2e3HL73bHn6iGMgn7r9DIOD-bPKh7WFCMBBXiuS7aNC5frzseu7oA0-FPi08220kxmq1xbwds4BnkjBBqRGCRgFwDmU4XJgCKxMBJiuScaUMkBNfaIDgPVTPR7neRzgTkZYRg5vV6BVaZr7kWRBSbiBDNGmg07lbUuV0we3xFG9pWR8wllonps6JDXSysB5Xehi_2LWch_8wa87dn7rkmaYBg4XHNkjjg_-95RCt2cfqy0gT1YvJTB8BVyjkcRkpXxrpsrg priority: 102 providerName: Hindawi Publishing |
Title | Weapon Detection Using YOLO V3 for Smart Surveillance System |
URI | https://dx.doi.org/10.1155/2021/9975700 https://www.proquest.com/docview/2530720369 |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF60RfDiW6zWsgc9SWg26W4TEMRHa_HRamu1nsJms0FB09qH_n1nkm1FRL0khExymMzu983u5BtC9kLlKa1CG5ib51sVIW0LQJhZkRJMSF6NmcZE8bopGt3KRY_3zILbyJRVTufEdKKO-grXyMsOh2jEXTP_aPBmYdco3F01LTTmSZ4B0mCce_XzWcIFaJb9CuegNp_bmxa-c445Pyv7fhXl3b9B0sIT5sIfzz_m5hRw6itkyTBFepx92lUyp5M1smxYIzVjcrRODh-0HPQTeqbHaVlVQtMyAPrYumrRe5cCK6WdV4gQ2pkM3zV2GYIHaSZVvkG69drdacMyPREsVbHdsYXbkCxGETdfVH3uiChkXLpuLKXrOUBGVCzgwBVYxR6AtWKRUCoG1mJLDdi8SXJJP9FbhEbS06HH4YTivVKHkR2KyKm4Ioaho1mBHEzdEigjGI59K16CNHHgPEAnBsaJBbI_sx5kQhm_2O0ZD_9jVpy6PzCjahR8xcD237d3yCK-LFsqKZLceDjRu0AexmEpjZASyZ_UmjdtuLq89eDYbvQ-AXOSwH4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLbQEIILb8SbHOCEKvpK1kogxFMDxkA8x6mkaSqQoBtsgPhT_EbsNgUhBJy4tIe6PbiOPzt2PgMsxipQWsU2Rm5BaPlC2haCsGMlSjhC8mrqaEoUDxuidu7vN3mzB97KszDUVln6xNxRJy1Fe-QrLkdrpKpZuN5-sGhqFFVXyxEahVkc6NcXTNk6a3vb-H-XXHd352yrZpmpApbyba9rUSHPSYkGLRTVkLsiiR0uPS-V0gtchHOVCrxwhVJpgHCnnEQolSLu21IHNCUCXX6vTydaK9C7udM4PvlI8RA_i8N3LrEBes2y1Z5z2mVwVsKwSoTyX0Cw74ay75fbb2iQQ9zuMAya2JRtFMY0Aj06G4UhE6cy4wU6Y7B6qWW7lbFt3c0buTKWNx6wq6P6EbvwGMbB7PQebZKdPj0-a5prhC-yghx9HM7_RV8TUMlamZ4ElshAxwHHG9EFSx0ndiwS1_dEiotVO1OwXKolUoainCZl3EV5qsJ5REqMjBKnYOlDul1Qc_wgt2g0_IfYbKn-yKzjTvRpddO_P16A_trZYT2q7zUOZmCAPlxs1MxCpfv4pOcwdOnG88ZeGFz_t4m-A4PQ-Y0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDI7QEIgLb8RgQA5wQtX6WNJWAiHEGOM1kMZgnEqapgIJurEHiL_Gr8NuUxBCwGmX9lC3B_eLPzt2bEI2Q-lJJUMTPDfPNypcmAaQsGVEkltcMDe2FAaK5w1eb1VO2qw9Rt7zszBYVpnbxNRQRx2Je-RlmwEaMWvml2NdFnFZre11nw2cIIWZ1nycRgaRU_X2CuFbf_e4Cv96y7Zrh1cHdUNPGDBkxXQGBib1rBhbovnc9ZnNo9BiwnFiIRzPBmqXMYcLkyAVe0B90oq4lDH4AKZQHk6MAPM_7jquj4GfVzv6DPaASbNjeDb2BXTaedE9Y7jfYJV938XW8t_ocOIe4_DXhx-8kJJdbZZMay-V7mewmiNjKpknM9pjpdoe9BfIzo0S3U5Cq2qQlnQlNC1BoLcXZxf02qHgEdPmE6CTNoe9F4UTjuBFmrVJXyStkWhriRSSTqKWCY2Ep0KPwQ0bBwsVRmbII7vi8BiWrbKKZDtXSyB1s3KcmfEYpEELYwEqMdBKLJKtT-lu1qTjF7lNreF_xEq5-gO9ovvBF_5W_n68QSYBmMHZceN0lUzhd7MdmxIpDHpDtQY-zCBcT8FCyd2o0fkB2_v8XQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weapon+Detection+Using+YOLO+V3+for+Smart+Surveillance+System&rft.jtitle=Mathematical+problems+in+engineering&rft.au=Narejo%2C+Sanam&rft.au=Pandey%2C+Bishwajeet&rft.au=vargas%2C+Doris+Esenarro&rft.au=Rodriguez%2C+Ciro&rft.date=2021&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1024-123X&rft.eissn=1563-5147&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F9975700&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1024-123X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1024-123X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1024-123X&client=summon |