Immaturity of human stem-cell-derived cardiomyocytes in culture: fatal flaw or soluble problem?
Cardiomyocytes from human pluripotent stem cells (hPSC-CMs) are increasingly used to model cardiac disease, test drug efficacy and for safety pharmacology. Nevertheless, a major hurdle to more extensive use is their immaturity and similarity to fetal rather than adult cardiomyocytes. Here, we provid...
Saved in:
Published in | Stem cells and development Vol. 24; no. 9; p. 1035 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.05.2015
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Cardiomyocytes from human pluripotent stem cells (hPSC-CMs) are increasingly used to model cardiac disease, test drug efficacy and for safety pharmacology. Nevertheless, a major hurdle to more extensive use is their immaturity and similarity to fetal rather than adult cardiomyocytes. Here, we provide an overview of the strategies currently being used to increase maturation in culture, which include prolongation of time in culture, exposure to electrical stimulation, application of mechanical strain, growth in three-dimensional tissue configuration, addition of non-cardiomyocytes, use of hormones and small molecules, and alteration of the extracellular environment. By comparing the outcomes of these studies, we identify the approaches most likely to improve functional maturation of hPSC-CMs in terms of their electrophysiology and excitation-contraction coupling. |
---|---|
AbstractList | Cardiomyocytes from human pluripotent stem cells (hPSC-CMs) are increasingly used to model cardiac disease, test drug efficacy and for safety pharmacology. Nevertheless, a major hurdle to more extensive use is their immaturity and similarity to fetal rather than adult cardiomyocytes. Here, we provide an overview of the strategies currently being used to increase maturation in culture, which include prolongation of time in culture, exposure to electrical stimulation, application of mechanical strain, growth in three-dimensional tissue configuration, addition of non-cardiomyocytes, use of hormones and small molecules, and alteration of the extracellular environment. By comparing the outcomes of these studies, we identify the approaches most likely to improve functional maturation of hPSC-CMs in terms of their electrophysiology and excitation-contraction coupling. |
Author | Verkerk, Arie O Casini, Simona Bellin, Milena Kosmidis, Georgios Mummery, Christine L Veerman, Christiaan C |
Author_xml | – sequence: 1 givenname: Christiaan C surname: Veerman fullname: Veerman, Christiaan C organization: 1 Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam , Amsterdam, the Netherlands – sequence: 2 givenname: Georgios surname: Kosmidis fullname: Kosmidis, Georgios – sequence: 3 givenname: Christine L surname: Mummery fullname: Mummery, Christine L – sequence: 4 givenname: Simona surname: Casini fullname: Casini, Simona – sequence: 5 givenname: Arie O surname: Verkerk fullname: Verkerk, Arie O – sequence: 6 givenname: Milena surname: Bellin fullname: Bellin, Milena |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25583389$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j0tLxDAYAIMo7kOPXiV_oDXvTb2ILKsuLHjRc0mTL1hJmiVplf57F9TTnGZgVuh8SAMgdENJTYlu7op1NSNU1ERyfoaWVMpNpSUXC7Qq5ZMQppgWl2jBpNSc62aJ2n2MZpxyP844efwxRTPgMkKsLIRQOcj9FzhsTXZ9inOy8wgF9wO2UzhpcI-9GU3APphvnDIuKUxdAHzM6YT4cIUuvAkFrv-4Ru9Pu7ftS3V4fd5vHw-VFYSPFXfWaOpVp0hnFVDPlVHcg_JCUMWajdAd1U451VDnTaOBOOtBEykc73jD1uj2t3ucugiuPeY-mjy3_6fsB9ddVyM |
CitedBy_id | crossref_primary_10_1016_j_stemcr_2018_11_011 crossref_primary_10_1016_j_ijcard_2017_03_085 crossref_primary_10_1016_j_ejphar_2020_173813 crossref_primary_10_1161_CIRCRESAHA_118_313973 crossref_primary_10_3389_fphar_2021_649414 crossref_primary_10_1016_j_tibtech_2019_12_010 crossref_primary_10_3389_fphys_2017_00766 crossref_primary_10_1242_dmm_047522 crossref_primary_10_3390_cells9010009 crossref_primary_10_1016_j_biopha_2021_112089 crossref_primary_10_1016_j_yjmcc_2022_02_001 crossref_primary_10_1093_cvr_cvac059 crossref_primary_10_3390_jcdd5020028 crossref_primary_10_3390_bioengineering10020237 crossref_primary_10_3389_fphys_2017_00890 crossref_primary_10_1016_j_vascn_2024_107529 crossref_primary_10_1016_j_stem_2019_10_001 crossref_primary_10_1016_j_bbamcr_2015_10_014 crossref_primary_10_1016_j_bbadis_2017_12_025 crossref_primary_10_1093_ehjcvp_pvz038 crossref_primary_10_1016_j_scr_2019_101698 crossref_primary_10_1016_j_pbiomolbio_2017_07_003 crossref_primary_10_1016_j_bbamcr_2019_118538 crossref_primary_10_1371_journal_pone_0144572 crossref_primary_10_1038_s41598_020_64657_2 crossref_primary_10_1007_s11936_025_01079_1 crossref_primary_10_1093_cvr_cvy208 crossref_primary_10_3389_fphys_2017_01073 crossref_primary_10_1016_j_yjmcc_2023_12_009 crossref_primary_10_3233_JCB_15025 crossref_primary_10_4070_kcj_2018_0312 crossref_primary_10_1007_s00424_021_02589_0 crossref_primary_10_15252_emmm_201606260 crossref_primary_10_1111_jcmm_16429 crossref_primary_10_3390_ijms21124354 crossref_primary_10_1002_jbm_b_34759 crossref_primary_10_1016_j_apsusc_2024_159680 crossref_primary_10_3389_fcvm_2019_00087 crossref_primary_10_1016_j_biomaterials_2021_121336 crossref_primary_10_1016_j_biomaterials_2018_11_033 crossref_primary_10_1089_scd_2022_0041 crossref_primary_10_1038_s41588_021_01007_6 crossref_primary_10_3390_bioengineering8060080 crossref_primary_10_1016_j_addr_2017_10_007 crossref_primary_10_3390_ijms21196997 crossref_primary_10_1063_5_0137458 crossref_primary_10_1139_cjpp_2016_0726 crossref_primary_10_1098_rstb_2019_0081 crossref_primary_10_3390_biomedicines11092355 crossref_primary_10_1016_j_isci_2023_106423 crossref_primary_10_3389_fphar_2019_00934 crossref_primary_10_1016_j_vascn_2020_106892 crossref_primary_10_1002_adhm_202402228 crossref_primary_10_1038_s41598_021_94732_1 crossref_primary_10_3389_fcell_2017_00050 crossref_primary_10_1089_bioe_2020_0035 crossref_primary_10_1063_5_0108914 crossref_primary_10_1161_CIRCRESAHA_118_311209 crossref_primary_10_1242_dev_143966 crossref_primary_10_1113_JP276754 crossref_primary_10_3390_ijms20092123 crossref_primary_10_3390_ijms18091873 crossref_primary_10_3390_ijms23073482 crossref_primary_10_1016_j_vascn_2020_106886 crossref_primary_10_1016_j_addr_2017_09_005 crossref_primary_10_1016_j_biomaterials_2023_122255 crossref_primary_10_1080_17425255_2019_1558207 crossref_primary_10_1371_journal_pone_0172671 crossref_primary_10_1039_C8BM01050A crossref_primary_10_1186_s13287_022_03209_z crossref_primary_10_1002_anbr_202000022 crossref_primary_10_1016_j_addr_2015_07_009 crossref_primary_10_1124_pr_116_013003 crossref_primary_10_1016_j_biomaterials_2021_121175 crossref_primary_10_1021_acsabm_0c01490 crossref_primary_10_1038_s41420_022_00945_2 crossref_primary_10_1002_jmr_2602 crossref_primary_10_3389_fcell_2021_653127 crossref_primary_10_1016_j_imu_2019_01_006 crossref_primary_10_1152_ajpheart_00658_2019 crossref_primary_10_1016_j_coph_2018_07_003 crossref_primary_10_3389_fcell_2021_591754 crossref_primary_10_3390_ijms20184381 crossref_primary_10_1007_s10557_017_6735_0 crossref_primary_10_1016_j_vascn_2017_12_003 crossref_primary_10_1038_s41467_021_24921_z crossref_primary_10_1016_j_jacc_2016_01_083 crossref_primary_10_1038_s41596_018_0076_8 crossref_primary_10_1016_j_bioactmat_2022_05_024 crossref_primary_10_1016_j_bbrc_2015_10_026 crossref_primary_10_1051_medsci_2019155 crossref_primary_10_2174_1389201021666191210142023 crossref_primary_10_1002_jcb_28926 crossref_primary_10_1016_j_bioactmat_2020_12_015 crossref_primary_10_1002_advs_202304303 crossref_primary_10_3389_fcell_2022_875278 crossref_primary_10_1038_s41598_017_05652_y crossref_primary_10_1017_erm_2022_43 crossref_primary_10_1042_BSR20200833 crossref_primary_10_4103_0366_6999_228231 crossref_primary_10_1007_s12015_018_9858_1 crossref_primary_10_1002_stem_2403 crossref_primary_10_1039_C8BM01348A crossref_primary_10_1007_s00018_017_2546_5 crossref_primary_10_1016_j_scr_2016_04_014 crossref_primary_10_1002_jcp_26625 crossref_primary_10_1016_j_reprotox_2022_06_003 crossref_primary_10_1080_17435889_2024_2443378 crossref_primary_10_1007_s12265_018_9801_5 crossref_primary_10_1093_cvr_cvx077 crossref_primary_10_1161_CIRCRESAHA_120_318643 crossref_primary_10_1113_JP282562 crossref_primary_10_1007_s11626_019_00321_y crossref_primary_10_3389_fcvm_2017_00073 crossref_primary_10_1097_FJC_0000000000000955 crossref_primary_10_1113_JP272883 crossref_primary_10_1016_j_jmccpl_2022_100020 crossref_primary_10_1242_dev_120576 crossref_primary_10_1002_stem_3110 crossref_primary_10_1093_eurheartj_ehab007 crossref_primary_10_3389_fbioe_2023_1227184 crossref_primary_10_1021_acs_chemrev_8b00323 crossref_primary_10_1097_HP_0000000000000817 crossref_primary_10_1016_j_stemcr_2018_01_013 crossref_primary_10_3390_ijms25179186 crossref_primary_10_1007_s00441_019_03030_w crossref_primary_10_3389_fphys_2021_755642 crossref_primary_10_3390_bioengineering9040168 crossref_primary_10_1016_j_stemcr_2020_11_010 crossref_primary_10_1002_1873_3468_12285 crossref_primary_10_1016_j_scr_2017_11_003 crossref_primary_10_1038_s41598_021_87550_y crossref_primary_10_1016_j_addr_2019_12_002 crossref_primary_10_1161_CIRCEP_116_004227 crossref_primary_10_1002_adfm_202414559 crossref_primary_10_3389_fcell_2022_986107 crossref_primary_10_1002_adfm_201803151 crossref_primary_10_3390_ijms22063005 crossref_primary_10_1161_CIRCGEN_119_002534 crossref_primary_10_3389_fphar_2020_616834 crossref_primary_10_1016_j_biopha_2018_10_065 crossref_primary_10_3389_fcvm_2020_00050 crossref_primary_10_1002_iub_2685 crossref_primary_10_1016_j_addr_2018_06_007 crossref_primary_10_3390_ijms22062825 crossref_primary_10_1093_europace_euz243 crossref_primary_10_3389_fgene_2022_913372 crossref_primary_10_1021_acsbiomaterials_2c01290 crossref_primary_10_1038_s41598_019_40247_9 crossref_primary_10_1016_j_yrtph_2020_104756 crossref_primary_10_1016_j_clinthera_2020_08_008 crossref_primary_10_1016_j_stemcr_2020_03_015 crossref_primary_10_1016_j_bbrc_2021_07_068 crossref_primary_10_1016_j_semcdb_2021_04_019 crossref_primary_10_1080_09553002_2018_1516908 crossref_primary_10_1515_medgen_2021_2094 crossref_primary_10_1371_journal_pone_0223842 crossref_primary_10_1146_annurev_pharmtox_010617_053110 crossref_primary_10_1097_TP_0000000000003956 crossref_primary_10_1016_j_cophys_2017_08_003 crossref_primary_10_1007_s00246_019_02165_5 crossref_primary_10_1016_j_biomaterials_2020_120195 crossref_primary_10_1242_dmm_030320 crossref_primary_10_1093_cvr_cvab207 crossref_primary_10_1242_dmm_037994 crossref_primary_10_1161_JAHA_116_005135 crossref_primary_10_3389_fcvm_2022_889519 crossref_primary_10_1007_s12551_024_01267_6 crossref_primary_10_1093_cvr_cvy134 crossref_primary_10_1038_srep30967 crossref_primary_10_1093_toxsci_kfz168 crossref_primary_10_3389_fcvm_2018_00119 crossref_primary_10_15420_ecr_2019_03 crossref_primary_10_1016_j_yjmcc_2023_07_009 crossref_primary_10_3389_fphys_2020_568535 crossref_primary_10_7554_eLife_68335 crossref_primary_10_1016_j_cels_2021_05_001 crossref_primary_10_1186_s13287_019_1205_1 crossref_primary_10_1038_nrcardio_2016_88 crossref_primary_10_1016_j_isci_2023_107142 crossref_primary_10_1002_jbm_a_37298 crossref_primary_10_3389_fcell_2021_639699 crossref_primary_10_1063_1_5000746 crossref_primary_10_3390_ijms252212034 crossref_primary_10_1038_s41556_019_0344_z crossref_primary_10_1155_2020_9363809 crossref_primary_10_3390_biomedicines10112987 crossref_primary_10_1007_s13596_024_00793_8 crossref_primary_10_1038_s41420_019_0182_6 crossref_primary_10_3389_fmolb_2020_00014 crossref_primary_10_1038_s41598_018_33478_9 crossref_primary_10_1186_s13287_020_01648_0 crossref_primary_10_1038_s41596_021_00497_2 crossref_primary_10_1093_cvr_cvz247 crossref_primary_10_1007_s00018_023_04894_6 crossref_primary_10_1016_j_yjmcc_2018_03_012 crossref_primary_10_1038_s41467_018_08003_1 crossref_primary_10_1111_bph_13577 crossref_primary_10_1016_j_bbamcr_2015_11_036 crossref_primary_10_1016_j_celrep_2015_09_025 crossref_primary_10_1039_D3RA01811C crossref_primary_10_1016_j_jacep_2024_09_031 crossref_primary_10_3390_ijms222313104 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1089/scd.2014.0533 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1557-8534 |
ExternalDocumentID | 25583389 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- 0R~ 123 29Q 34G 39C 4.4 ABBKN ABJNI ACGFS ADBBV ADNWM AENEX ALMA_UNASSIGNED_HOLDINGS BNQNF CGR CS3 CUY CVF DU5 ECM EIF EJD F5P IHR IM4 MV1 NPM NQHIM O9- RML UE5 |
ID | FETCH-LOGICAL-c403t-3dca81f6b60bc6e1f36a63fe6f441629748b18d6d691dfa98e0dcfe8054d3b392 |
IngestDate | Thu Jan 02 22:15:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c403t-3dca81f6b60bc6e1f36a63fe6f441629748b18d6d691dfa98e0dcfe8054d3b392 |
PMID | 25583389 |
ParticipantIDs | pubmed_primary_25583389 |
PublicationCentury | 2000 |
PublicationDate | 2015-05-01 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Stem cells and development |
PublicationTitleAlternate | Stem Cells Dev |
PublicationYear | 2015 |
SSID | ssj0026284 |
Score | 2.531383 |
SecondaryResourceType | review_article |
Snippet | Cardiomyocytes from human pluripotent stem cells (hPSC-CMs) are increasingly used to model cardiac disease, test drug efficacy and for safety pharmacology.... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 1035 |
SubjectTerms | Cell Differentiation Humans Myocytes, Cardiac - cytology Myocytes, Cardiac - physiology Pluripotent Stem Cells - cytology Pluripotent Stem Cells - transplantation Primary Cell Culture - methods |
Title | Immaturity of human stem-cell-derived cardiomyocytes in culture: fatal flaw or soluble problem? |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25583389 |
Volume | 24 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF4FEFIvCEpbHgXtobfIqY3tzZoLQqgIitQLUHGL9ilZqm3UpKDwT_i3zOxu4hBAFC5W5LVXo50v45nRzDeEfAPMyH6mNNb5QYCiszziVqrI9GWs93JwUoWrtvjFTi6zn1f5VadzP1O19G8ke-ru2b6S92gV7oFesUv2DZqdbgo34DfoF66gYbj-l45Pqwp5OUNVhR-3h8TMEabjIw0i3IA_qVzJaTVu1Hjkyq-6nm7DdaVbNz3E_hG3WJmO4mIrVRgzM1f1dw5bd3Frz-us23qjidp-GzT0dctaUAoQaZqIPWuGVanLNhlfNsNW45hCH8-8Cu7vNDN9JIalGz7VPQdw-Ynfk2RFkrelgT0TDGwOX8U8JDCDBfZd1AFpxYw5TWLPZfLEzse8cJMpkes1yXrYUDz7HJzfdeWUDhEThyi8eH11jnZ7srRAFiAAwYmqmAYKkTyDj3ogbAVJvj-SA-mlw7tzoYpzWS5WyUqINeihB84a6Zj6I1n200fH62TQwoc2ljr40CfwoY_hQ8uaBvjsUwceiuChzV8awEMDeA4-kcvjHxdHJ1GYtxGpLE5HUaqV4IllksVSMZPYlAmWWsMs-MxsDyJPLhOumWZFoq0ouIm1soaD169TCY72Z7JYN7XZIDTN0kzq3HLw6DMJIXcKcYONjeyLuOCJ2CRf_MkMrj2pymByZlsvrmyTDy2kvpIlC_9iswMu4UjuOvU8AImpZK0 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immaturity+of+human+stem-cell-derived+cardiomyocytes+in+culture%3A+fatal+flaw+or+soluble+problem%3F&rft.jtitle=Stem+cells+and+development&rft.au=Veerman%2C+Christiaan+C&rft.au=Kosmidis%2C+Georgios&rft.au=Mummery%2C+Christine+L&rft.au=Casini%2C+Simona&rft.date=2015-05-01&rft.eissn=1557-8534&rft.volume=24&rft.issue=9&rft.spage=1035&rft_id=info:doi/10.1089%2Fscd.2014.0533&rft_id=info%3Apmid%2F25583389&rft_id=info%3Apmid%2F25583389&rft.externalDocID=25583389 |