An Optimized Energy and Time Constraints-Based Path Planning for the Navigation of Mobile Robots Using an Intelligent Particle Swarm Optimization Technique
Mobile robots (MRs) typically require running for many hours on one charge of the battery. Electric autonomous mobile robots (AMRs) have become increasingly common in the manufacturing process in the last few years. MRs must often complete difficult assignments while gathering information across an...
Saved in:
Published in | Applied sciences Vol. 13; no. 17; p. 9667 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mobile robots (MRs) typically require running for many hours on one charge of the battery. Electric autonomous mobile robots (AMRs) have become increasingly common in the manufacturing process in the last few years. MRs must often complete difficult assignments while gathering information across an unknown area involving energy constraints and time-sensitive preferences. This paper estimates the information collection assignment for surveillance as a multi-objective optimization dilemma with both energy and time constraints. In this study, three main objectives during acquiring data are taken into consideration, including the greatest quantity of data acquired for surveillance, following a path where obstacles are least likely to be experienced, and traveling the smallest feasible path. To obtain the optimal path for an MR by addressing the presented issue, this approach presents an intelligent particle swarm optimization (PSO) technique that determines fitness value by simplifying the optimization task for achieving the shortest path for MR navigation. It allows particles to execute variable operations while maintaining most of the prior search information. The findings of the simulation show that this technique of the PSO algorithm can realize swift convergence and high accuracy when compared with different benchmark functions derived for PSO. A comparative discussion on various energy-efficient navigation techniques for MRs is also provided. Lastly, this study describes the possible future research directions. |
---|---|
AbstractList | Mobile robots (MRs) typically require running for many hours on one charge of the battery. Electric autonomous mobile robots (AMRs) have become increasingly common in the manufacturing process in the last few years. MRs must often complete difficult assignments while gathering information across an unknown area involving energy constraints and time-sensitive preferences. This paper estimates the information collection assignment for surveillance as a multi-objective optimization dilemma with both energy and time constraints. In this study, three main objectives during acquiring data are taken into consideration, including the greatest quantity of data acquired for surveillance, following a path where obstacles are least likely to be experienced, and traveling the smallest feasible path. To obtain the optimal path for an MR by addressing the presented issue, this approach presents an intelligent particle swarm optimization (PSO) technique that determines fitness value by simplifying the optimization task for achieving the shortest path for MR navigation. It allows particles to execute variable operations while maintaining most of the prior search information. The findings of the simulation show that this technique of the PSO algorithm can realize swift convergence and high accuracy when compared with different benchmark functions derived for PSO. A comparative discussion on various energy-efficient navigation techniques for MRs is also provided. Lastly, this study describes the possible future research directions. |
Audience | Academic |
Author | Raj, Ravi Kos, Andrzej |
Author_xml | – sequence: 1 givenname: Ravi orcidid: 0000-0001-8073-1812 surname: Raj fullname: Raj, Ravi – sequence: 2 givenname: Andrzej orcidid: 0000-0003-3089-241X surname: Kos fullname: Kos, Andrzej |
BookMark | eNpNkd1uFSEUhSemJtbaK1-AxEszlZ8Zfi6PJ1VPUm2jp9cEGJjDyQyMQDX1VXxZqVNNgWQTsvaXxV4vm5MQg22a1wheECLgO7UsiCAmKGXPmlMMGW1Jh9jJk_uL5jznI6xLIMIRPG1-bwK4Xoqf_S87gMtg03gPVBjA3s8WbGPIJSkfSm7fq1wVN6ocwM2kQvBhBC4mUA4WfFE__KiKjwFEBz5H7ScLvkYdSwa3-UGpAtiFYqfJjzaUiknFmyr69lOl-Z-DlbC35hD89zv7qnnu1JTt-WM9a24_XO63n9qr64-77eaqNR0kpSWDYLrvheuFIFoQ3EPScwWJ0Z1mvR4MYlhTgjXkWgwMUk0p77XAShPGGTlrdit3iOool-Rnle5lVF7-fYhplI92ZYec5ZogzZzumDacWEuE0cLZwTpnK-vNylpSrF_IRR7jXQrVvsScYkwwxaiqLlbVqCrUBxfrlE3dg529qbG6OkC5YbTD9XBcG96uDSbFnJN1_20iKB_Sl0_SJ38ADPKlUg |
CitedBy_id | crossref_primary_10_3390_app132413334 crossref_primary_10_3390_act13010024 crossref_primary_10_1177_09544062241245553 |
Cites_doi | 10.1108/AA-11-2015-094 10.1016/j.dt.2019.04.011 10.1016/j.robot.2014.07.002 10.1109/MRA.2008.921540 10.1007/978-3-642-13498-2 10.1016/j.eswa.2010.08.041 10.1109/MCI.2006.329691 10.3390/en12010027 10.1109/TASE.2011.2182509 10.1109/TCYB.2021.3079346 10.1016/j.ins.2018.03.035 10.3390/en16031532 10.1109/4235.996017 10.3390/en12102010 10.1007/s10898-007-9149-x 10.1109/ICTAI.2015.78 10.1007/s12559-011-9117-0 10.3390/en14123517 10.1007/s10514-009-9130-2 10.1109/LRA.2017.2729666 10.21203/rs.3.rs-2074771/v1 10.15199/48.2023.02.01 10.3390/s20226423 10.1109/TITS.2015.2505323 10.3390/app12146951 10.1109/TSMCB.2005.862724 10.1109/TCST.2016.2599486 10.1109/TMECH.2013.2241777 10.1007/978-3-319-61994-1 10.3390/en12061136 10.1007/BFb0040753 10.1109/TEVC.2004.826071 10.1109/TEVC.2008.927706 10.1109/4235.771166 10.1109/TRO.2004.837232 10.1080/02564602.2021.1894250 10.1002/rob.20143 10.1109/ROBOT.2009.5152387 10.1109/INTERCON.2019.8853557 10.1109/TCYB.2020.2977661 10.1109/JIOT.2020.2991198 10.3390/en16031210 10.26599/TST.2021.9010012 10.1109/ComplexSys.2015.7385991 10.1109/SMC.2017.8122814 10.1109/ICEPE50861.2021.9404505 10.1155/2018/8269698 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PIMPY PQEST PQQKQ PQUKI DOA |
DOI | 10.3390/app13179667 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Community College ProQuest Central Korea Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_41fe8b31b7fb47bc83ee39cb9fedeffe A764264282 10_3390_app13179667 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARAPS ARCSS ATCPS BBNVY BCNDV BENPR BHPHI BKSAR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ HCIFZ IAO ITC K6- K6V K7- KB. KC. KQ8 L6V LK5 LK8 M0K M7P M7R M7S MODMG M~E N95 OK1 P62 PATMY PCBAR PDBOC PIMPY PROAC PYCSY RIG TUS BGLVJ ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c403t-3d97b559f5993b93250358a03cb4b75bdc172b632b08b9d706b6685b92ab37873 |
IEDL.DBID | BENPR |
ISSN | 2076-3417 |
IngestDate | Tue Oct 22 15:06:59 EDT 2024 Thu Oct 10 19:40:58 EDT 2024 Fri Feb 02 04:38:12 EST 2024 Fri Aug 23 02:00:56 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-3d97b559f5993b93250358a03cb4b75bdc172b632b08b9d706b6685b92ab37873 |
ORCID | 0000-0003-3089-241X 0000-0001-8073-1812 |
OpenAccessLink | https://www.proquest.com/docview/2862232621?pq-origsite=%requestingapplication% |
PQID | 2862232621 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_41fe8b31b7fb47bc83ee39cb9fedeffe proquest_journals_2862232621 gale_infotracacademiconefile_A764264282 crossref_primary_10_3390_app13179667 |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Dorigo (ref_13) 2006; 1 Willms (ref_6) 2006; 36 ref_11 Karaboga (ref_14) 2007; 39 ref_19 ref_18 Tang (ref_39) 2011; 38 ref_16 Sun (ref_29) 2005; 21 Marzec (ref_51) 2021; 69 Vergnano (ref_52) 2012; 9 ref_25 Liu (ref_30) 2014; 19 ref_21 Qin (ref_15) 2009; 13 Brochu (ref_54) 2009; 27 Tian (ref_20) 2016; 17 ref_28 ref_27 ref_26 Xie (ref_36) 2020; 7 Zhu (ref_49) 2021; 26 Koyuncu (ref_45) 2018; 6 Leedy (ref_46) 2006; 23 ref_35 ref_34 ref_33 ref_32 ref_31 Patle (ref_50) 2019; 15 Deb (ref_17) 2002; 6 Raj (ref_3) 2023; 2 ref_38 Bhattacharya (ref_37) 2008; 15 Samar (ref_9) 2011; 4 Zhang (ref_22) 2022; 52 ref_42 ref_41 Ratnaweera (ref_43) 2004; 8 ref_40 ref_1 Han (ref_10) 2018; 450 Ayawli (ref_47) 2018; 2018 Kim (ref_55) 2018; 3 Song (ref_23) 2016; 36 Halal (ref_2) 2015; 48 ref_48 Hossain (ref_7) 2015; 64 ref_8 ref_5 ref_4 Eiben (ref_12) 1999; 3 Li (ref_24) 2021; 51 Sharma (ref_44) 2021; 39 Setter (ref_53) 2017; 25 |
References_xml | – volume: 36 start-page: 138 year: 2016 ident: ref_23 article-title: A new genetic algorithm approach to smooth path planning for mobile robots publication-title: Assem. Autom. doi: 10.1108/AA-11-2015-094 contributor: fullname: Song – volume: 15 start-page: 582 year: 2019 ident: ref_50 article-title: A Review: On Path Planning Strategies for Navigation of Mobile Robot publication-title: Def. Technol. doi: 10.1016/j.dt.2019.04.011 contributor: fullname: Patle – volume: 64 start-page: 137 year: 2015 ident: ref_7 article-title: Autonomous Robot Path Planning in Dynamic Environment Using a New Optimization Technique Inspired by Bacterial Foraging Technique publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2014.07.002 contributor: fullname: Hossain – volume: 15 start-page: 58 year: 2008 ident: ref_37 article-title: Roadmap-Based Path Planning-Using the Voronoi Diagram for a Clearance-Based Shortest Path publication-title: IEEE Robot. Autom. Mag. doi: 10.1109/MRA.2008.921540 contributor: fullname: Bhattacharya – ident: ref_16 doi: 10.1007/978-3-642-13498-2 – volume: 38 start-page: 2523 year: 2011 ident: ref_39 article-title: Parameters Identification of Unknown Delayed Genetic Regulatory Networks by a Switching Particle Swarm Optimization Algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.08.041 contributor: fullname: Tang – volume: 1 start-page: 28 year: 2006 ident: ref_13 article-title: Ant Colony Optimization publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2006.329691 contributor: fullname: Dorigo – ident: ref_28 doi: 10.3390/en12010027 – volume: 9 start-page: 423 year: 2012 ident: ref_52 article-title: Modeling and Optimization of Energy Consumption in Cooperative Multi-Robot Systems publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2011.2182509 contributor: fullname: Vergnano – ident: ref_42 – ident: ref_35 – volume: 52 start-page: 9871 year: 2022 ident: ref_22 article-title: Moving-Distance-Minimized PSO for Mobile Robot Swarm publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3079346 contributor: fullname: Zhang – volume: 450 start-page: 39 year: 2018 ident: ref_10 article-title: Path Regeneration Decisions in a Dynamic Environment publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.03.035 contributor: fullname: Han – ident: ref_26 doi: 10.3390/en16031532 – volume: 6 start-page: 182 year: 2002 ident: ref_17 article-title: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 contributor: fullname: Deb – ident: ref_32 doi: 10.3390/en12102010 – volume: 39 start-page: 459 year: 2007 ident: ref_14 article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm publication-title: J. Glob. Optim. doi: 10.1007/s10898-007-9149-x contributor: fullname: Karaboga – ident: ref_11 doi: 10.1109/ICTAI.2015.78 – volume: 4 start-page: 515 year: 2011 ident: ref_9 article-title: Optimal Path Computation for Autonomous Aerial Vehicles publication-title: Cogn. Comput. doi: 10.1007/s12559-011-9117-0 contributor: fullname: Samar – ident: ref_41 – ident: ref_27 doi: 10.3390/en14123517 – volume: 27 start-page: 93 year: 2009 ident: ref_54 article-title: A Bayesian Exploration-Exploitation Approach for Optimal Online Sensing and Planning with a Visually Guided Mobile Robot publication-title: Auton. Robot. doi: 10.1007/s10514-009-9130-2 contributor: fullname: Brochu – volume: 3 start-page: 68 year: 2018 ident: ref_55 article-title: Anticipatory Robot Assistance for the Prevention of Human Static Joint Overloading in Human–Robot Collaboration publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2017.2729666 contributor: fullname: Kim – ident: ref_38 doi: 10.21203/rs.3.rs-2074771/v1 – volume: 2 start-page: 3 year: 2023 ident: ref_3 article-title: Artificial Intelligence: Evolution, Developments, Applications, and Future Scope publication-title: Prz. Elektrotechniczny doi: 10.15199/48.2023.02.01 contributor: fullname: Raj – ident: ref_48 doi: 10.3390/s20226423 – volume: 17 start-page: 3009 year: 2016 ident: ref_20 article-title: Dual-Objective Scheduling of Rescue Vehicles to Distinguish Forest Fires via Differential Evolution and Particle Swarm Optimization Combined Algorithm publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2015.2505323 contributor: fullname: Tian – ident: ref_1 doi: 10.3390/app12146951 – volume: 36 start-page: 755 year: 2006 ident: ref_6 article-title: An Efficient Dynamic System for Real-Time Robot-Path Planning publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.) doi: 10.1109/TSMCB.2005.862724 contributor: fullname: Willms – volume: 6 start-page: 129 year: 2018 ident: ref_45 article-title: A PSO Based Approach: Scout Particle Swarm Algorithm for Continuous Global Optimization Problems publication-title: J. Comput. Des. Eng. contributor: fullname: Koyuncu – volume: 25 start-page: 1257 year: 2017 ident: ref_53 article-title: Energy-Constrained Coordination of Multi-Robot Teams publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2016.2599486 contributor: fullname: Setter – volume: 19 start-page: 401 year: 2014 ident: ref_30 article-title: Minimizing Energy Consumption of Wheeled Mobile Robots via Optimal Motion Planning publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2013.2241777 contributor: fullname: Liu – ident: ref_5 doi: 10.1007/978-3-319-61994-1 – ident: ref_18 – ident: ref_31 doi: 10.3390/en12061136 – ident: ref_40 doi: 10.1007/BFb0040753 – volume: 8 start-page: 240 year: 2004 ident: ref_43 article-title: Self-Organizing Hierarchical Particle Swarm Optimizer With Time-Varying Acceleration Coefficients publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826071 contributor: fullname: Ratnaweera – ident: ref_21 – volume: 13 start-page: 398 year: 2009 ident: ref_15 article-title: Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.927706 contributor: fullname: Qin – volume: 3 start-page: 124 year: 1999 ident: ref_12 article-title: Parameter Control in Evolutionary Algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.771166 contributor: fullname: Eiben – volume: 21 start-page: 102 year: 2005 ident: ref_29 article-title: On Finding Energy-Minimizing Paths on Terrains publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2004.837232 contributor: fullname: Sun – volume: 39 start-page: 675 year: 2021 ident: ref_44 article-title: Path Planning for Multiple Targets Interception by the Swarm of UAVs Based on Swarm Intelligence Algorithms: A Review publication-title: IETE Tech. Rev. doi: 10.1080/02564602.2021.1894250 contributor: fullname: Sharma – volume: 23 start-page: 709 year: 2006 ident: ref_46 article-title: Virginia Tech’s Twin Contenders: A Comparative Study of Reactive and Deliberative Navigation publication-title: J. Field Robot. doi: 10.1002/rob.20143 contributor: fullname: Leedy – ident: ref_4 doi: 10.1109/ROBOT.2009.5152387 – ident: ref_33 doi: 10.1109/INTERCON.2019.8853557 – volume: 51 start-page: 3103 year: 2021 ident: ref_24 article-title: Deep Reinforcement Learning for Multiobjective Optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2977661 contributor: fullname: Li – volume: 48 start-page: 778 year: 2015 ident: ref_2 article-title: Multi-Strategy Spatial Data Acquisition Missions Using Genetic Algorithms publication-title: IFAC-Pap. contributor: fullname: Halal – volume: 7 start-page: 7734 year: 2020 ident: ref_36 article-title: Energy- and Time-Aware Data Acquisition for Mobile Robots Using Mixed Cognition Particle Swarm Optimization publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2991198 contributor: fullname: Xie – volume: 69 start-page: e136038 year: 2021 ident: ref_51 article-title: Thermal navigation for blind people publication-title: Bull. Pol. Acad. Sci. Tech. Sci. contributor: fullname: Marzec – ident: ref_25 doi: 10.3390/en16031210 – volume: 26 start-page: 674 year: 2021 ident: ref_49 article-title: Deep Reinforcement Learning Based Mobile Robot Navigation: A Review publication-title: Tsinghua Sci. Technol. doi: 10.26599/TST.2021.9010012 contributor: fullname: Zhu – ident: ref_34 doi: 10.1109/ComplexSys.2015.7385991 – ident: ref_8 doi: 10.1109/SMC.2017.8122814 – ident: ref_19 doi: 10.1109/ICEPE50861.2021.9404505 – volume: 2018 start-page: 8269698 year: 2018 ident: ref_47 article-title: An Overview of Nature-Inspired, Conventional, and Hybrid Methods of Autonomous Vehicle Path Planning publication-title: J. Adv. Transp. doi: 10.1155/2018/8269698 contributor: fullname: Ayawli |
SSID | ssj0000913810 |
Score | 2.3563726 |
Snippet | Mobile robots (MRs) typically require running for many hours on one charge of the battery. Electric autonomous mobile robots (AMRs) have become increasingly... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 9667 |
SubjectTerms | Accuracy Algorithms data acquisition energy Energy consumption Energy efficiency Genetic algorithms Information management Literature reviews Mathematical optimization Methods mobile robot (MR) navigation Optimization techniques particle swarm optimization (PSO) path planning Planning Robotics industry Robots Surveillance |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS95AEF7Ekx5K1ZamVZnDC7aH0CS7m80eX0WxglpaBW9LJruBHkyKiQr-Ff-ss5vkJR6Kl15DWCY7X8-QmWcYW5B_SasyEaeVS2JhRR174vxY8rIShRUjA9_5RX56Lc5u5M1s1ZfvCRvogYeL-y7S2hXIU1Q1CoVVwZ3jukJdO-tbHkL0TfSsmAoxWKeeumoYyONU1_v_wSnlSkL36lUKCkz9_4rHIcmcvGfvRnQIy0GqLbbmmm22OeMM3GZbozd28HWkjP62w56XDVyS89_-eXIWjsM8H5SNBT_hAX4pZ1gF0XfxIWUtCz8J98G0rwgItwLhQLgoHwLhRttAW8N5ixQx4FeLbd9BaC2gI-HHisOzp2MGQeH3Y3l3O0kwnHA1kcN-YNcnx1dHp_G4diGuRML7mFutkAqNWhJ2QcJ3MuGyKBNeoUAl0VYEejDnGSYFaquSHPO8kKizEjn5P__I1pu2cZ8YCEWASWVOc-tEoZ0mfIJaWVdISs6Zjdhi0oT5O7BrGKpKvMLMTGERO_RaWr3iKbHDAzIUM36pectQInbgdWy849KdV-U4f0CSegoss1S5R4dUgkZsdzIDM3p0ZzIq_Qh95ln6-X9I84Vt-MX1Q7faLlvv7-7dHsGbHveDJb8ARkL8Cg priority: 102 providerName: Directory of Open Access Journals |
Title | An Optimized Energy and Time Constraints-Based Path Planning for the Navigation of Mobile Robots Using an Intelligent Particle Swarm Optimization Technique |
URI | https://www.proquest.com/docview/2862232621 https://doaj.org/article/41fe8b31b7fb47bc83ee39cb9fedeffe |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BbtRADLXo9gIHRAuIhXblQyXgEJFkJpnJCe1WuxSkLlVppd6iODNBHJqUTaBSf4WfxZNMlnKAaxKNJvHYfnbsZ4Aj1q_EqFgGUWnDQBpZBY44P0hEUUptpGfgO12nJ5fy01Vy5RNurS-rHG1ib6hNU7oc-buYoTd7_zSO3t98D9zUKPd31Y_Q2IHdmCOFeAK7i-X67HybZXGslzoKh8Y8wfG9-y8csc9klK_-ckU9Y_-_7HLvbFZP4LFHiTgfxLoHD2y9D4_ucQfuw57XyhbfeOrot0_h17zGz2wErr_dWYPLvq8Pi9qg6_RAN5yzHwnRtcGCvZfBM8Z_OM4tQsavyHgQ18XPnnijqbGp8LQhthx43lDTtdiXGPCS-HHL5dnxMsNG8cttsbkedzCscDGSxD6Dy9Xy4vgk8OMXglKGoguEyRRxwFEljGGIcV4SikQXoShJkkrIlAx-KBUxhZoyo8KU0lQnlMUFCbYD4jlM6qa2LwClYuCkYpsJY6XObMY4hTJlrE7YScdmCkejJPKbgWUj5-jECSy_J7ApLJyUto84auz-QrP5mvs3zWVUWU0iIlWRVFRqYa3ISsoqa1yNzBReOxnnToH5m5eF70PgnToqrHyuUocSORSdwsF4DHKv2W3-5xy-_P_tV_DQjaYf6tEOYNJtfthDBjAdzWBHrz7M_Fmd9WmA32St89U |
link.rule.ids | 315,783,787,867,2109,12779,21402,27938,27939,33387,33758,43614,43819,74371,74638 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BbtQwELWgHIBDRQuoS0uZQyXgYJHEThyf0LbqsoXugmAr9WZlYgdxaFI2ASR-hZ9lnDhLOcA1jiwn45l5Y8-8YeyI9Cu1KpE8Ll3EpZUV98T5PBVFKXMrAwPfYpnNL-Tby_QyHLi1Ia1ytIm9obZN6c_IXyUEvcn7Z0n8-vor912j_O1qaKFxm92RghyNrxSfvdmcsXjOyzyOhrI8QdG9vxWOyWMSxld_OaKer_9fVrl3NbMHbDtgRJgOQt1ht1y9y-7fYA7cZTtBJ1t4EYijXz5kv6Y1vCcTcPXlp7Nw2lf1QVFb8HUe4Ftz9g0hupYfk--y8IHQH4xdi4DQKxAahGXxvafdaGpoKlg0SHYDPjbYdC30CQY0JZxtmDw7mmZYKHz6UayvxhUMM6xGithH7GJ2ujqZ89B8gZcyEh0XViukcKNKCcEgobw0EmleRKJEiSpFWxL0wUwkGOWorYoyzLI8RZ0UKMgKiMdsq25qt8dAKoJNKnFaWCdz7TShFNTKujwlF53YCTsaJWGuB44NQ7GJF5i5IbAJO_ZS2rziibH7B836swlfamRcuRxFjKpCqbDMhXNCl6grZ32GzIQ99zI2Xn3pn5dFqEKglXoiLDNVmceIFIhO2MG4DUzQ69b82YVP_j_8jN2drxbn5vxs-W6f3fNN6ofMtAO21a2_uacEZTo87Pfrb34N84U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgSAgOiBZQFwrMoRJwsJrEduyc0Ba6tECXClqpNysTO4hDk7IJIPFX-LOME2cpB7gmkeVkvt7EM28Y2yX7Uk5nkqeVT7h0suaBOJ8rUVbSOBkZ-I6X-eGZfHuuzmP9UxfLKiefODhq11bhH_leRtCbon-epXt1LIs4eb14efmVhwlS4aQ1jtO4zm5QVNTBSM3izfp_S-C_NGkytugJyvTDCXFK0ZPwvv4rKA3c_f_y0EPYWdxldyJehPko4E12zTdb7PYVFsEtthnts4PnkUT6xT32a97AB3IHF19-egcHQ4cflI2D0PMBYUznMByi7_g-xTEHJ4QEYZpgBIRkgZAhLMvvAwVH20Bbw3GL5EPgY4tt38FQbEBLwtGa1bOnZcaNwqcf5epi2sG4wulEF3ufnS0OTl8d8jiIgVcyET0XrtBIqUetCM0gIT6VCGXKRFQoUSt0FcEgzEWGicHC6STHPDcKi6xEQR5BPGAbTdv4bQZSE4TSmS-E89IUviDEgoV23igK15mbsd1JEvZy5NuwlKcEgdkrApux_SCl9SOBJHu40K4-2_imVqa1NyhS1DVKjZUR3ouiwqL2LlTLzNizIGMbTJm-eVXGjgTaaSDFsnOdB7xISemM7UxqYKONd_aPRj78_-2n7Capqn1_tHz3iN0K8-rHIrUdttGvvvnHhGp6fDKo62-8nfe6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimized+Energy+and+Time+Constraints-Based+Path+Planning+for+the+Navigation+of+Mobile+Robots+Using+an+Intelligent+Particle+Swarm+Optimization+Technique&rft.jtitle=Applied+sciences&rft.au=Raj%2C+Ravi&rft.au=Kos%2C+Andrzej&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=17&rft.spage=9667&rft_id=info:doi/10.3390%2Fapp13179667&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |