Scanning strategies for texture and anisotropy tailoring during selective laser melting of TiC/316L stainless steel nanocomposites

Selective laser melting (SLM) is a promising additive manufacturing technique that allows fabrication of complex functional components via the selective layer-by-layer melting of powder bed particles using a high-energy laser beam. This technique can allows the production of a wide range of novel hi...

Full description

Saved in:
Bibliographic Details
Published inJournal of alloys and compounds Vol. 728; pp. 424 - 435
Main Authors AlMangour, Bandar, Grzesiak, Dariusz, Yang, Jenn-Ming
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 25.12.2017
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Selective laser melting (SLM) is a promising additive manufacturing technique that allows fabrication of complex functional components via the selective layer-by-layer melting of powder bed particles using a high-energy laser beam. This technique can allows the production of a wide range of novel high-performance materials including metal matrix nanocomposites with unique microstructures and superior properties. In this study, the SLM process was used with various laser-scanning methods to fabricate cylindrically shaped components from 316L stainless steel reinforced with 15 vol.% TiC nanoparticles. A deep relationship between the SLM process and the microstructure and mechanical properties of the resulting components was established to understand the influence of the selected scanning strategy on the densification, solidification microstructure, texture, and anisotropy. It was found that the building strategy has a significant influence on the build densification, with the highest densification obtained using a cross-hatched scanning strategy. The resulting bimodal grain structure was related to the heat flowing from the solidifying melt pool (i.e., the developed microstructure depends on the local heat transfer conditions); the TiC content in the fabricated nanocomposite was also varied according to the applied scanning method. The relatively strong crystallographic textures along the building and scanning directions can be transformed into weak ones, and the mechanical properties of the produced components can be made nearly isotropic by rotating the scanning vector inside or between the created layers by 90° (known as alternate and cross hatched scanning strategies, respectively) using a single pass of the laser beam. The obtained results indicate that the utilized laser-scanning strategies allowed tailoring of the densification level, solidification microstructure, crystallographic texture, and anisotropy of mechanical properties the fabricated parts. Hence, SLM can be successfully used for manufacturing 316L stainless steel nanocomposite parts with a high degree of densification and controllable texture. [Display omitted] •TiC/316L nanocomposites are fabricated by SLM using various scanning methods.•Laser remelting via double scanning increases the density of SLM-processed parts.•The final TiC volume content is affected by the scanning strategy employed.•The shape and orientation of the grains depend on the local heat transfer conditions.•Both anisotropic and isotropic properties can be induced in SLM-processed parts.
AbstractList Selective laser melting (SLM) is a promising additive manufacturing technique that allows fabrication of complex functional components via the selective layer-by-layer melting of powder bed particles using a high-energy laser beam. This technique can allows the production of a wide range of novel high-performance materials including metal matrix nanocomposites with unique microstructures and superior properties. In this study, the SLM process was used with various laser-scanning methods to fabricate cylindrically shaped components from 316L stainless steel reinforced with 15 vol.% TiC nanoparticles. A deep relationship between the SLM process and the microstructure and mechanical properties of the resulting components was established to understand the influence of the selected scanning strategy on the densification, solidification microstructure, texture, and anisotropy. It was found that the building strategy has a significant influence on the build densification, with the highest densification obtained using a cross-hatched scanning strategy. The resulting bimodal grain structure was related to the heat flowing from the solidifying melt pool (i.e., the developed microstructure depends on the local heat transfer conditions); the TiC content in the fabricated nanocomposite was also varied according to the applied scanning method. The relatively strong crystallographic textures along the building and scanning directions can be transformed into weak ones, and the mechanical properties of the produced components can be made nearly isotropic by rotating the scanning vector inside or between the created layers by 90° (known as alternate and cross hatched scanning strategies, respectively) using a single pass of the laser beam. The obtained results indicate that the utilized laser-scanning strategies allowed tailoring of the densification level, solidification microstructure, crystallographic texture, and anisotropy of mechanical properties the fabricated parts. Hence, SLM can be successfully used for manufacturing 316L stainless steel nanocomposite parts with a high degree of densification and controllable texture.
Selective laser melting (SLM) is a promising additive manufacturing technique that allows fabrication of complex functional components via the selective layer-by-layer melting of powder bed particles using a high-energy laser beam. This technique can allows the production of a wide range of novel high-performance materials including metal matrix nanocomposites with unique microstructures and superior properties. In this study, the SLM process was used with various laser-scanning methods to fabricate cylindrically shaped components from 316L stainless steel reinforced with 15 vol.% TiC nanoparticles. A deep relationship between the SLM process and the microstructure and mechanical properties of the resulting components was established to understand the influence of the selected scanning strategy on the densification, solidification microstructure, texture, and anisotropy. It was found that the building strategy has a significant influence on the build densification, with the highest densification obtained using a cross-hatched scanning strategy. The resulting bimodal grain structure was related to the heat flowing from the solidifying melt pool (i.e., the developed microstructure depends on the local heat transfer conditions); the TiC content in the fabricated nanocomposite was also varied according to the applied scanning method. The relatively strong crystallographic textures along the building and scanning directions can be transformed into weak ones, and the mechanical properties of the produced components can be made nearly isotropic by rotating the scanning vector inside or between the created layers by 90° (known as alternate and cross hatched scanning strategies, respectively) using a single pass of the laser beam. The obtained results indicate that the utilized laser-scanning strategies allowed tailoring of the densification level, solidification microstructure, crystallographic texture, and anisotropy of mechanical properties the fabricated parts. Hence, SLM can be successfully used for manufacturing 316L stainless steel nanocomposite parts with a high degree of densification and controllable texture. [Display omitted] •TiC/316L nanocomposites are fabricated by SLM using various scanning methods.•Laser remelting via double scanning increases the density of SLM-processed parts.•The final TiC volume content is affected by the scanning strategy employed.•The shape and orientation of the grains depend on the local heat transfer conditions.•Both anisotropic and isotropic properties can be induced in SLM-processed parts.
Author AlMangour, Bandar
Grzesiak, Dariusz
Yang, Jenn-Ming
Author_xml – sequence: 1
  givenname: Bandar
  surname: AlMangour
  fullname: AlMangour, Bandar
  email: balmangour@gmail.com
  organization: School of Engineering and Applied Science, Harvard University, Cambridge, MA 02138, USA
– sequence: 2
  givenname: Dariusz
  surname: Grzesiak
  fullname: Grzesiak, Dariusz
  organization: Department of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Szczecin, Aleja Piastów 17, Poland
– sequence: 3
  givenname: Jenn-Ming
  surname: Yang
  fullname: Yang, Jenn-Ming
  organization: Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
BookMark eNqFkE9rJCEQxSUksJM_H2FB2HN3ynbGtk_LMiTZwEAOmbvYWh1sHJ2oEzbXfPI4mdz3IE-sV6-s3yU5DzEgIT8ZtAyYuJ3bWXtv4q7tgPUtyBa67owsmOx5sxRiOCcLGLpVI7mUP8hlzjMAsIGzBfl4NjoEF15oLkkXfHGY6RQTLfivHBJSHWw9LseS4v6dFu18TEe_PXxJRo-muDekXmdMdIe-HN_jRLdufcuZ2NRo7YLHnOsN0dOgQ6zf3cfsCuZrcjFpn_HmW6_I9v5uu_7bbJ4eHtd_No1ZAi8NH5doQI6wkjDywYCwXDCJ_ThZbnvWWw6IkknRs2mJaKFjvVxxGG1XC_yK_DrF7lN8PWAuao6HFOpExQbRc9F1IKtrdXKZFHNOOKl9cjud3hUDdaStZvVNWx1pK5Cq0q59v099WDd4c5hUNg6DQetS5aNsdP9J-AQSLo-I
CitedBy_id crossref_primary_10_1016_j_jallcom_2022_168529
crossref_primary_10_1016_j_msea_2018_07_089
crossref_primary_10_3390_ma11020283
crossref_primary_10_1016_j_msea_2023_145930
crossref_primary_10_1002_adem_202200524
crossref_primary_10_1016_j_actamat_2024_119875
crossref_primary_10_1002_adem_202201173
crossref_primary_10_1016_j_msea_2019_138425
crossref_primary_10_1016_j_mtcomm_2024_108739
crossref_primary_10_1080_14786435_2024_2329999
crossref_primary_10_1108_RPJ_04_2021_0072
crossref_primary_10_3390_ma12010047
crossref_primary_10_1016_j_matchar_2021_111012
crossref_primary_10_37434_tpwj2022_11_02
crossref_primary_10_3390_app14020700
crossref_primary_10_1016_j_jmrt_2022_03_170
crossref_primary_10_1007_s11665_024_09160_9
crossref_primary_10_1016_j_matchar_2020_110607
crossref_primary_10_1016_j_pmatsci_2019_04_006
crossref_primary_10_1016_j_addma_2021_102210
crossref_primary_10_1016_j_matdes_2023_112386
crossref_primary_10_1016_j_addma_2020_101585
crossref_primary_10_1016_j_compositesb_2022_109745
crossref_primary_10_1016_j_matlet_2020_127516
crossref_primary_10_1016_j_powtec_2023_118714
crossref_primary_10_1007_s12540_023_01494_8
crossref_primary_10_1016_j_ceramint_2022_03_324
crossref_primary_10_1016_j_jallcom_2021_160753
crossref_primary_10_1016_j_optlastec_2023_110177
crossref_primary_10_1007_s11665_022_07326_x
crossref_primary_10_1007_s12613_020_2133_x
crossref_primary_10_1016_j_jmrt_2024_01_057
crossref_primary_10_3390_ma11101821
crossref_primary_10_1016_j_matdes_2021_109665
crossref_primary_10_1016_j_jallcom_2018_03_222
crossref_primary_10_1007_s00170_023_11534_7
crossref_primary_10_1016_j_msea_2020_139879
crossref_primary_10_37434_as2022_11_03
crossref_primary_10_1016_j_matchar_2018_08_053
crossref_primary_10_1016_j_matlet_2020_128161
crossref_primary_10_1016_j_msea_2019_01_103
crossref_primary_10_3390_ma11122356
crossref_primary_10_1016_j_jallcom_2019_153082
crossref_primary_10_1016_j_matchar_2022_111929
crossref_primary_10_1016_j_msea_2020_140228
crossref_primary_10_1016_j_matchar_2020_110718
crossref_primary_10_1016_j_mtcomm_2023_105571
crossref_primary_10_3390_ma11122354
crossref_primary_10_1007_s00170_018_2295_0
crossref_primary_10_1016_j_jmapro_2024_05_025
crossref_primary_10_1016_j_jmatprotec_2018_05_033
crossref_primary_10_1007_s11665_022_07622_6
crossref_primary_10_1007_s00170_020_05572_8
crossref_primary_10_1016_j_jmrt_2022_01_028
crossref_primary_10_3390_met10091225
crossref_primary_10_1016_j_msea_2017_11_126
crossref_primary_10_1016_j_optlastec_2022_108883
crossref_primary_10_1016_j_addma_2021_101971
crossref_primary_10_1016_j_matdes_2018_02_018
crossref_primary_10_1016_j_msea_2022_143018
crossref_primary_10_1109_TED_2022_3148702
crossref_primary_10_1016_j_matlet_2020_128656
crossref_primary_10_1016_j_matdes_2018_07_036
crossref_primary_10_1088_2053_1591_ab691e
crossref_primary_10_1016_j_matdes_2021_109999
crossref_primary_10_1016_j_optlastec_2024_110886
crossref_primary_10_1016_j_mtcomm_2024_108916
crossref_primary_10_2320_jinstmet_J2023016
crossref_primary_10_1016_j_mser_2022_100691
crossref_primary_10_7736_JKSPE_019_102
crossref_primary_10_1007_s11661_020_05880_4
crossref_primary_10_1016_j_matchar_2020_110468
crossref_primary_10_3390_ma11010017
crossref_primary_10_1016_j_compositesb_2018_07_050
crossref_primary_10_3390_met12071165
crossref_primary_10_4028_www_scientific_net_DDF_379_157
crossref_primary_10_1016_j_addma_2019_100833
crossref_primary_10_1080_02670836_2018_1523518
crossref_primary_10_1016_j_matchar_2023_113017
crossref_primary_10_1016_j_vacuum_2020_109732
crossref_primary_10_1016_j_matdes_2024_113058
crossref_primary_10_1016_j_matlet_2020_128928
crossref_primary_10_3390_ma10101136
crossref_primary_10_1016_j_addma_2021_102314
crossref_primary_10_1016_j_jmatprotec_2018_01_028
crossref_primary_10_1007_s11665_021_06500_x
crossref_primary_10_1016_j_matchar_2023_112980
crossref_primary_10_1108_RPJ_03_2018_0060
crossref_primary_10_1016_j_addma_2020_101328
crossref_primary_10_2139_ssrn_4124410
crossref_primary_10_1007_s11837_021_04966_7
crossref_primary_10_1016_j_matchemphys_2023_127826
crossref_primary_10_1016_j_jmatprotec_2018_12_034
crossref_primary_10_3390_app11041512
crossref_primary_10_1016_j_jmrt_2022_08_040
crossref_primary_10_1007_s11837_019_03343_9
crossref_primary_10_1016_j_jmapro_2020_03_019
crossref_primary_10_1080_21663831_2024_2305261
crossref_primary_10_1016_j_jmrt_2022_07_121
crossref_primary_10_1016_j_matchar_2021_111289
crossref_primary_10_4028_p_5djvqh
crossref_primary_10_1016_j_actamat_2019_12_003
crossref_primary_10_1016_j_apt_2022_103667
crossref_primary_10_1016_j_jallcom_2023_171777
crossref_primary_10_1016_j_jmrt_2022_07_085
crossref_primary_10_3390_met11050826
crossref_primary_10_1016_j_rinp_2018_12_018
crossref_primary_10_1016_j_ijplas_2021_102941
crossref_primary_10_1016_j_jallcom_2021_158892
crossref_primary_10_1108_RPJ_12_2018_0309
crossref_primary_10_1002_adfm_202103334
crossref_primary_10_1007_s00170_021_06810_3
crossref_primary_10_1007_s11837_022_05212_4
crossref_primary_10_1016_j_powtec_2017_11_018
crossref_primary_10_1016_j_powtec_2022_117533
crossref_primary_10_1016_j_matdes_2017_10_039
crossref_primary_10_1016_j_ijfatigue_2022_106944
crossref_primary_10_23947_2541_9129_2023_7_2_102_112
crossref_primary_10_1016_j_matlet_2019_07_087
crossref_primary_10_1016_j_msea_2020_139456
crossref_primary_10_3390_app11083647
crossref_primary_10_1007_s11665_023_08579_w
crossref_primary_10_1177_02670836231223795
crossref_primary_10_1016_j_jmsy_2022_04_002
crossref_primary_10_1016_j_matdes_2018_08_059
crossref_primary_10_1016_j_jmst_2019_01_003
crossref_primary_10_1016_j_powtec_2017_12_058
crossref_primary_10_1016_j_jallcom_2020_156866
crossref_primary_10_1016_j_mtcomm_2024_109105
crossref_primary_10_1016_j_conbuildmat_2019_06_132
crossref_primary_10_1007_s11665_024_09580_7
crossref_primary_10_1007_s11665_024_09753_4
crossref_primary_10_3390_ma17051129
crossref_primary_10_1016_j_jmrt_2024_03_240
crossref_primary_10_2351_1_5139026
crossref_primary_10_1002_adem_202200055
crossref_primary_10_1016_j_matlet_2019_03_063
crossref_primary_10_2139_ssrn_4118393
crossref_primary_10_1016_j_mtcomm_2023_107832
crossref_primary_10_37434_tpwj2023_11_06
crossref_primary_10_1007_s11665_024_09389_4
crossref_primary_10_3390_coatings9020071
crossref_primary_10_1016_j_matlet_2017_10_001
crossref_primary_10_1007_s11665_023_08615_9
crossref_primary_10_1007_s40195_020_01172_3
crossref_primary_10_1016_j_jmatprotec_2024_118448
crossref_primary_10_1016_j_jmrt_2023_06_128
crossref_primary_10_3390_coatings10010005
crossref_primary_10_1007_s41230_021_9011_7
crossref_primary_10_1016_j_addma_2022_103176
crossref_primary_10_1007_s00170_020_05033_2
crossref_primary_10_1016_j_jmapro_2021_12_018
crossref_primary_10_1016_j_jallcom_2022_167972
crossref_primary_10_1016_j_vacuum_2021_110365
crossref_primary_10_1002_adem_202201156
crossref_primary_10_1016_j_jmbbm_2019_103496
crossref_primary_10_1016_j_mtla_2023_101721
crossref_primary_10_3390_ma16093549
crossref_primary_10_3390_met11091391
crossref_primary_10_1016_j_pmatsci_2021_100795
crossref_primary_10_1007_s11665_023_08764_x
crossref_primary_10_1007_s00170_019_04002_8
crossref_primary_10_1016_j_matchar_2020_110309
crossref_primary_10_1016_j_surfcoat_2018_05_072
crossref_primary_10_1016_j_engfracmech_2022_108948
crossref_primary_10_1016_j_jmrt_2020_09_100
crossref_primary_10_1080_09603409_2023_2205761
crossref_primary_10_1016_j_jmatprotec_2020_116959
crossref_primary_10_1016_j_matdes_2018_04_058
crossref_primary_10_1016_j_matchar_2022_112000
crossref_primary_10_1016_j_matchar_2022_112363
crossref_primary_10_1016_j_jmrt_2023_08_024
crossref_primary_10_1007_s10853_023_09086_y
crossref_primary_10_1016_j_jallcom_2019_04_017
crossref_primary_10_1007_s11665_019_04313_7
crossref_primary_10_1007_s40964_023_00530_8
crossref_primary_10_32604_jrm_2021_012885
crossref_primary_10_1016_j_matchar_2018_04_040
crossref_primary_10_1088_2053_1591_ab1970
crossref_primary_10_1016_j_matchar_2023_113590
crossref_primary_10_1016_j_matchemphys_2024_129309
crossref_primary_10_1007_s00339_024_07400_2
crossref_primary_10_1007_s00170_018_2144_1
crossref_primary_10_1016_j_matlet_2020_128580
crossref_primary_10_37434_as2023_10_06
crossref_primary_10_1007_s12633_021_01340_9
crossref_primary_10_1016_j_addma_2018_04_031
crossref_primary_10_3390_ma16072757
crossref_primary_10_1016_j_matdes_2018_02_050
crossref_primary_10_1007_s00158_021_02856_9
crossref_primary_10_1016_j_matchar_2021_111648
Cites_doi 10.1016/j.jallcom.2016.04.156
10.1002/adem.200310099
10.1016/j.jmatprotec.2011.09.020
10.1146/annurev-matsci-082908-145422
10.1007/s11665-009-9535-2
10.1016/j.apsusc.2010.02.030
10.1016/j.jallcom.2010.11.176
10.1002/jor.23075
10.1016/j.jallcom.2015.01.096
10.1016/j.msea.2016.03.036
10.1016/j.phpro.2010.08.123
10.1016/j.cirp.2011.03.063
10.1016/j.cirp.2007.10.004
10.4028/www.scientific.net/MSF.783-786.898
10.1016/j.proeng.2011.11.130
10.1016/j.matdes.2016.02.022
10.1126/science.1086989
10.1016/j.jmatprotec.2005.05.055
10.1016/j.matdes.2016.03.111
10.1016/S1452-3981(23)18310-6
10.1063/1.4935926
10.1016/j.msea.2014.10.003
10.1016/j.jmatprotec.2012.11.014
10.1016/j.actamat.2012.11.052
10.1016/S0022-5096(98)00103-3
10.1108/13552541111156450
10.1016/j.surfcoat.2004.10.102
10.1016/j.jmatprotec.2009.06.012
10.1016/j.actamat.2013.04.036
10.1016/j.actamat.2010.02.004
10.1016/j.scriptamat.2005.06.043
10.1016/j.matdes.2016.05.018
10.1179/174328006X102529
10.1016/j.addma.2014.08.001
10.1016/j.jmatprotec.2014.07.034
10.1179/1743280411Y.0000000014
10.1016/S1005-0302(12)60016-4
10.1016/j.pmatsci.2006.09.003
10.1115/1.4006767
10.1016/j.jallcom.2014.06.172
10.1016/j.jmatprotec.2003.11.051
10.1021/j100819a046
10.1016/j.triboint.2008.10.016
10.1016/j.jmatprotec.2015.02.010
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright Elsevier BV Dec 25, 2017
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright Elsevier BV Dec 25, 2017
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/j.jallcom.2017.08.022
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4669
EndPage 435
ExternalDocumentID 10_1016_j_jallcom_2017_08_022
S0925838817327494
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~G-
29J
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ADMUD
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
SMS
T9H
WUQ
8BQ
8FD
JG9
ID FETCH-LOGICAL-c403t-3b4ec08b0580b39c06d3618e7bfd3d717d30ee818671f4eed02178530bd20ee3
IEDL.DBID AIKHN
ISSN 0925-8388
IngestDate Thu Oct 10 17:41:33 EDT 2024
Thu Sep 26 21:43:39 EDT 2024
Fri Feb 23 02:27:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Densification
Additive manufacturing
Selective laser melting
Anisotropy
Stainless steel nanocomposite
Texture
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-3b4ec08b0580b39c06d3618e7bfd3d717d30ee818671f4eed02178530bd20ee3
PQID 1967362208
PQPubID 2045454
PageCount 12
ParticipantIDs proquest_journals_1967362208
crossref_primary_10_1016_j_jallcom_2017_08_022
elsevier_sciencedirect_doi_10_1016_j_jallcom_2017_08_022
PublicationCentury 2000
PublicationDate 2017-12-25
PublicationDateYYYYMMDD 2017-12-25
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-25
  day: 25
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Journal of alloys and compounds
PublicationYear 2017
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Li, Liu, Shi, Du, Xie (bib18) 2010; 19
Sing, An, Yeong, Wiria (bib12) 2016; 34
Kruth, Froyen, Van Vaerenbergh, Mercelis, Rombouts, Lauwers (bib40) 2004; 149
Gu (bib15) 2015
Yadroitsev, Krakhmalev, Yadroitsava, Johansson, Smurov (bib21) 2013; 213
Basu, Raju, Suri (bib5) 2006; 51
AlMangour, Grzesiak, Yang (bib53) 2016; 96
AlMangour, Grzesiak, Yang (bib41) 2016; 104
Uchic, Shade, Dimiduk (bib45) 2009; 39
Davis (bib51) 2001
Majumdar, Kumar, Li (bib3) 2009; 42
Mertens, Reginster, Contrepois, Dormal, Lemaire, Lecomte-Beckers (bib20) 2014
Yasa, Kruth (bib33) 2011; 19
Hao, Dadbakhsh, Seaman, Felstead (bib22) 2009; 209
Thijs, Sistiaga, Wauthle, Xie, Kruth, Van Humbeeck (bib28) 2013; 61
AL-Mangour (bib1) 2015
Kruth, Levy, Klocke, Childs (bib8) 2007; 56
Ma, Wang, Gao, Zeng (bib24) 2015; 215
Glicksman (bib55) 2010
Wang, Song, Yang, Bai (bib25) 2016; 100
Liu, Lin, Huang, Song, Yang, Chen (bib27) 2011; 509
Carter, Martin, Withers, Attallah (bib38) 2014; 615
Rollett, Humphreys, Rohrer, Hatherly (bib50) 2004
Xie, Fox, O'Neill, Sutcliffe (bib49) 2005; 170
Murr, Gaytan, Ramirez, Martinez, Hernandez, Amato (bib26) 2012; 28
Gu, Meiners, Wissenbach, Poprawe (bib13) 2012; 57
Kunze, Etter, Grässlin, Shklover (bib29) 2015; 620
Kruth, Yasa, Deckers (bib36) 2009
Fei, Abraham, Chawla, Jiang (bib47) 2012; 79
Yasa, Kruth, Deckers (bib34) 2011; 60
Gao, Huang, Nix, Hutchinson (bib44) 1999; 47
Yasa, Deckers, Kruth (bib54) 2011; 17
Sercombe, Schaffer (bib7) 2003; 301
Sames, List, Pannala, Dehoff, Babu (bib14) 2016
Kruth, Yasa, Deckers (bib35) 2008
Thijs, Verhaeghe, Craeghs, Van Humbeeck, Kruth (bib32) 2010; 58
AlMangour, Grzesiak, Yang (bib16) 2016; 680
Levy (bib11) 2010; 5
Krishna, Sun (bib2) 2005; 198
Zhou, Li, Zhang, Liu, Ma, Liu (bib30) 2015; 631
Yap, Chua, Dong, Liu, Zhang, Loh (bib10) 2015; 2
Fujishiro, Gokcen (bib4) 1961; 65
Ferrar, Mullen, Jones, Stamp, Sutcliffe (bib9) 2012; 212
Das (bib37) 2003; 5
AlMangour, Yang (bib48) 2017
Moya, Lopez-Esteban, Pecharroman (bib17) 2007; 52
Thijs, Kempen, Kruth, Van Humbeeck (bib52) 2013; 61
Li, Shi, Wang, Wang, Liu, Jiang (bib19) 2010; 256
Zhang, Schuster, Wei, Ramesh (bib46) 2006; 54
Tome, Wenk, Kocks (bib43) 1998
Wei, Li, Han, Li, Cheng, Hao (bib23) 2015; 222
Aboulkhair, Everitt, Ashcroft, Tuck (bib39) 2014; 1
Gibson, Rosen, Stucker (bib6) 2014
Geiger, Kunze, Etter (bib31) 2016; 661
Márquez, Rodríguez, Herrera, Rosas, Angel, Pozos (bib42) 2011; 6
AlMangour (10.1016/j.jallcom.2017.08.022_bib48) 2017
Davis (10.1016/j.jallcom.2017.08.022_bib51) 2001
Xie (10.1016/j.jallcom.2017.08.022_bib49) 2005; 170
Moya (10.1016/j.jallcom.2017.08.022_bib17) 2007; 52
Gu (10.1016/j.jallcom.2017.08.022_bib13) 2012; 57
Liu (10.1016/j.jallcom.2017.08.022_bib27) 2011; 509
Yasa (10.1016/j.jallcom.2017.08.022_bib34) 2011; 60
AlMangour (10.1016/j.jallcom.2017.08.022_bib41) 2016; 104
Yadroitsev (10.1016/j.jallcom.2017.08.022_bib21) 2013; 213
Gibson (10.1016/j.jallcom.2017.08.022_bib6) 2014
Yasa (10.1016/j.jallcom.2017.08.022_bib33) 2011; 19
Sames (10.1016/j.jallcom.2017.08.022_bib14) 2016
Hao (10.1016/j.jallcom.2017.08.022_bib22) 2009; 209
Majumdar (10.1016/j.jallcom.2017.08.022_bib3) 2009; 42
Wang (10.1016/j.jallcom.2017.08.022_bib25) 2016; 100
Kruth (10.1016/j.jallcom.2017.08.022_bib40) 2004; 149
Kruth (10.1016/j.jallcom.2017.08.022_bib36) 2009
Thijs (10.1016/j.jallcom.2017.08.022_bib32) 2010; 58
AlMangour (10.1016/j.jallcom.2017.08.022_bib53) 2016; 96
Sercombe (10.1016/j.jallcom.2017.08.022_bib7) 2003; 301
Das (10.1016/j.jallcom.2017.08.022_bib37) 2003; 5
Gao (10.1016/j.jallcom.2017.08.022_bib44) 1999; 47
Carter (10.1016/j.jallcom.2017.08.022_bib38) 2014; 615
Kruth (10.1016/j.jallcom.2017.08.022_bib8) 2007; 56
AlMangour (10.1016/j.jallcom.2017.08.022_bib16) 2016; 680
Aboulkhair (10.1016/j.jallcom.2017.08.022_bib39) 2014; 1
Márquez (10.1016/j.jallcom.2017.08.022_bib42) 2011; 6
Murr (10.1016/j.jallcom.2017.08.022_bib26) 2012; 28
Thijs (10.1016/j.jallcom.2017.08.022_bib28) 2013; 61
Li (10.1016/j.jallcom.2017.08.022_bib19) 2010; 256
Wei (10.1016/j.jallcom.2017.08.022_bib23) 2015; 222
Gu (10.1016/j.jallcom.2017.08.022_bib15) 2015
Yasa (10.1016/j.jallcom.2017.08.022_bib54) 2011; 17
Levy (10.1016/j.jallcom.2017.08.022_bib11) 2010; 5
Ma (10.1016/j.jallcom.2017.08.022_bib24) 2015; 215
Li (10.1016/j.jallcom.2017.08.022_bib18) 2010; 19
Krishna (10.1016/j.jallcom.2017.08.022_bib2) 2005; 198
Uchic (10.1016/j.jallcom.2017.08.022_bib45) 2009; 39
Rollett (10.1016/j.jallcom.2017.08.022_bib50) 2004
Sing (10.1016/j.jallcom.2017.08.022_bib12) 2016; 34
Basu (10.1016/j.jallcom.2017.08.022_bib5) 2006; 51
Fei (10.1016/j.jallcom.2017.08.022_bib47) 2012; 79
Mertens (10.1016/j.jallcom.2017.08.022_bib20) 2014
Tome (10.1016/j.jallcom.2017.08.022_bib43) 1998
AL-Mangour (10.1016/j.jallcom.2017.08.022_bib1) 2015
Fujishiro (10.1016/j.jallcom.2017.08.022_bib4) 1961; 65
Zhou (10.1016/j.jallcom.2017.08.022_bib30) 2015; 631
Thijs (10.1016/j.jallcom.2017.08.022_bib52) 2013; 61
Ferrar (10.1016/j.jallcom.2017.08.022_bib9) 2012; 212
Zhang (10.1016/j.jallcom.2017.08.022_bib46) 2006; 54
Kunze (10.1016/j.jallcom.2017.08.022_bib29) 2015; 620
Yap (10.1016/j.jallcom.2017.08.022_bib10) 2015; 2
Kruth (10.1016/j.jallcom.2017.08.022_bib35) 2008
Glicksman (10.1016/j.jallcom.2017.08.022_bib55) 2010
Geiger (10.1016/j.jallcom.2017.08.022_bib31) 2016; 661
References_xml – volume: 19
  start-page: 666
  year: 2010
  end-page: 671
  ident: bib18
  article-title: 316L stainless steel with gradient porosity fabricated by selective laser melting
  publication-title: J. Mater. Eng. Perform.
  contributor:
    fullname: Xie
– volume: 149
  start-page: 616
  year: 2004
  end-page: 622
  ident: bib40
  article-title: Selective laser melting of iron-based powder
  publication-title: J. Mater. Process. Technol.
  contributor:
    fullname: Lauwers
– volume: 301
  start-page: 1225
  year: 2003
  end-page: 1227
  ident: bib7
  article-title: Rapid manufacturing of aluminum components
  publication-title: Science
  contributor:
    fullname: Schaffer
– volume: 170
  start-page: 516
  year: 2005
  end-page: 523
  ident: bib49
  article-title: Effect of direct laser re-melting processing parameters and scanning strategies on the densification of tool steels
  publication-title: J. Mater. Process. Technol.
  contributor:
    fullname: Sutcliffe
– volume: 52
  start-page: 1017
  year: 2007
  end-page: 1090
  ident: bib17
  article-title: The challenge of ceramic/metal microcomposites and nanocomposites
  publication-title: Progr. Mater. Sci.
  contributor:
    fullname: Pecharroman
– volume: 42
  start-page: 750
  year: 2009
  end-page: 753
  ident: bib3
  article-title: Direct laser cladding of SiC dispersed AISI 316L stainless steel
  publication-title: Tribology
  contributor:
    fullname: Li
– volume: 661
  start-page: 240
  year: 2016
  end-page: 246
  ident: bib31
  article-title: Tailoring the texture of IN738LC processed by selective laser melting (SLM) by specific scanning strategies
  publication-title: Mater. Sci. Eng. A
  contributor:
    fullname: Etter
– year: 1998
  ident: bib43
  article-title: Texture and Anisotropy
  contributor:
    fullname: Kocks
– volume: 5
  start-page: 701
  year: 2003
  end-page: 711
  ident: bib37
  article-title: Physical aspects of process control in selective laser sintering of metals
  publication-title: Adv. Eng. Mater.
  contributor:
    fullname: Das
– volume: 56
  start-page: 730
  year: 2007
  end-page: 759
  ident: bib8
  article-title: Consolidation phenomena in laser and powder-bed based layered manufacturing
  publication-title: CIRP Ann. - Manuf. Technol.
  contributor:
    fullname: Childs
– volume: 104
  start-page: 141
  year: 2016
  end-page: 151
  ident: bib41
  article-title: Selective laser melting of TiC reinforced 316L stainless steel matrix nanocomposites: influence of starting TiC particle size and volume content
  publication-title: Mater. Des.
  contributor:
    fullname: Yang
– volume: 212
  start-page: 355
  year: 2012
  end-page: 364
  ident: bib9
  article-title: Gas flow effects on selective laser melting (SLM) manufacturing performance
  publication-title: J. Mater. Process. Technol.
  contributor:
    fullname: Sutcliffe
– volume: 509
  start-page: 4505
  year: 2011
  end-page: 4509
  ident: bib27
  article-title: The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718
  publication-title: J. Alloys Compd.
  contributor:
    fullname: Chen
– volume: 96
  start-page: 150
  year: 2016
  end-page: 161
  ident: bib53
  article-title: Nanocrystalline TiC-reinforced H13 steel matrix nanocomposites fabricated by selective laser melting
  publication-title: Mater. Des.
  contributor:
    fullname: Yang
– year: 2004
  ident: bib50
  article-title: Recrystallization and Related Annealing Phenomena
  contributor:
    fullname: Hatherly
– start-page: 898
  year: 2014
  end-page: 903
  ident: bib20
  article-title: Microstructures and mechanical properties of stainless steel AISI 316L processed by selective laser melting
  publication-title: Mater. Sci. Forum
  contributor:
    fullname: Lecomte-Beckers
– year: 2014
  ident: bib6
  article-title: Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing
  contributor:
    fullname: Stucker
– volume: 58
  start-page: 3303
  year: 2010
  end-page: 3312
  ident: bib32
  article-title: A study of the microstructural evolution during selective laser melting of Ti–6Al–4V
  publication-title: Acta Mater.
  contributor:
    fullname: Kruth
– volume: 5
  start-page: 65
  year: 2010
  end-page: 80
  ident: bib11
  article-title: The role and future of the laser technology in the additive manufacturing environment
  publication-title: Phys. Proced.
  contributor:
    fullname: Levy
– year: 2009
  ident: bib36
  article-title: Experimental Investigation of Laser Surface Re-melting for the Improvement of Selective Laser Melting Process
  contributor:
    fullname: Deckers
– start-page: 15
  year: 2015
  end-page: 71
  ident: bib15
  article-title: Laser Additive Manufacturing (AM): Classification, Processing Philosophy, and Metallurgical Mechanisms. Laser Additive Manufacturing of High-performance Materials
  contributor:
    fullname: Gu
– volume: 6
  start-page: 4059
  year: 2011
  end-page: 4069
  ident: bib42
  article-title: Effect of surface morphology of ZnO electrodeposited on photocatalytic oxidation of methylene blue dye Part I: analytical study
  publication-title: J. Electrochem. Sci. Eng.
  contributor:
    fullname: Pozos
– volume: 54
  start-page: 181
  year: 2006
  end-page: 186
  ident: bib46
  article-title: The design of accurate micro-compression experiments
  publication-title: Scripta Mater.
  contributor:
    fullname: Ramesh
– volume: 17
  start-page: 312
  year: 2011
  end-page: 327
  ident: bib54
  article-title: The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts
  publication-title: Rapid Prototyp. J.
  contributor:
    fullname: Kruth
– start-page: 1
  year: 2016
  end-page: 46
  ident: bib14
  article-title: The metallurgy and processing science of metal additive manufacturing
  publication-title: Int. Mater. Rev.
  contributor:
    fullname: Babu
– volume: 2
  start-page: 041101
  year: 2015
  ident: bib10
  article-title: Review of selective laser melting: materials and applications
  publication-title: Appl. Phys. Rev.
  contributor:
    fullname: Loh
– start-page: 1
  year: 2017
  end-page: 8
  ident: bib48
  article-title: Understanding the deformation behavior of 17-4 precipitate hardenable stainless steel produced by direct metal laser sintering using micropillar compression and TEM
  publication-title: Int. J. Adv. Manuf. Technol.
  contributor:
    fullname: Yang
– volume: 60
  start-page: 263
  year: 2011
  end-page: 266
  ident: bib34
  article-title: Manufacturing by combining selective laser melting and selective laser erosion/laser re-melting
  publication-title: CIRP Ann. - Manuf. Technol.
  contributor:
    fullname: Deckers
– volume: 209
  start-page: 5793
  year: 2009
  end-page: 5801
  ident: bib22
  article-title: Selective laser melting of a stainless steel and hydroxyapatite composite for load-bearing implant development
  publication-title: J. Mater. Process. Technol.
  contributor:
    fullname: Felstead
– start-page: 37
  year: 2015
  end-page: 80
  ident: bib1
  article-title: Powder Metallurgy of Stainless Steel: State-of-the Art, Challenges, and Development. Stainless Steel: Microstructure, Mechanical Properties and Methods of Application
  contributor:
    fullname: AL-Mangour
– volume: 61
  start-page: 4657
  year: 2013
  end-page: 4668
  ident: bib28
  article-title: Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum
  publication-title: Acta Mater.
  contributor:
    fullname: Van Humbeeck
– volume: 79
  start-page: 061011
  year: 2012
  ident: bib47
  article-title: Evaluation of micro-pillar compression tests for accurate determination of elastic-plastic constitutive relations
  publication-title: J. Appl. Mech.
  contributor:
    fullname: Jiang
– volume: 620
  start-page: 213
  year: 2015
  end-page: 222
  ident: bib29
  article-title: Texture, anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM)
  publication-title: Mater. Sci. Eng. A
  contributor:
    fullname: Shklover
– volume: 19
  start-page: 389
  year: 2011
  end-page: 395
  ident: bib33
  article-title: Microstructural investigation of Selective Laser Melting 316L stainless steel parts exposed to laser re-melting
  publication-title: Proced. Eng.
  contributor:
    fullname: Kruth
– volume: 213
  start-page: 606
  year: 2013
  end-page: 613
  ident: bib21
  article-title: Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder
  publication-title: J. Mater. Process. Technol.
  contributor:
    fullname: Smurov
– start-page: 170
  year: 2008
  end-page: 183
  ident: bib35
  article-title: Roughness improvement in selective laser melting
  publication-title: Proceedings of the 3rd International Conference on Polymers and Moulds Innovation
  contributor:
    fullname: Deckers
– volume: 222
  start-page: 444
  year: 2015
  end-page: 453
  ident: bib23
  article-title: Selective laser melting of stainless-steel/nano-hydroxyapatite composites for medical applications: microstructure, element distribution, crack and mechanical properties
  publication-title: J. Mater. Process. Technol.
  contributor:
    fullname: Hao
– volume: 215
  start-page: 142
  year: 2015
  end-page: 150
  ident: bib24
  article-title: Layer thickness dependence of performance in high-power selective laser melting of 1Cr18Ni9Ti stainless steel
  publication-title: J. Mater. Process. Technol.
  contributor:
    fullname: Zeng
– volume: 631
  start-page: 153
  year: 2015
  end-page: 164
  ident: bib30
  article-title: Textures formed in a CoCrMo alloy by selective laser melting
  publication-title: J. Alloys Compd.
  contributor:
    fullname: Liu
– volume: 256
  start-page: 4350
  year: 2010
  end-page: 4356
  ident: bib19
  article-title: Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting
  publication-title: Appl. Surf. Sci.
  contributor:
    fullname: Jiang
– year: 2010
  ident: bib55
  article-title: Principles of Solidification: an Introduction to Modern Casting and Crystal Growth Concepts
  contributor:
    fullname: Glicksman
– volume: 61
  start-page: 1809
  year: 2013
  end-page: 1819
  ident: bib52
  article-title: Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder
  publication-title: Acta Mater.
  contributor:
    fullname: Van Humbeeck
– year: 2001
  ident: bib51
  article-title: Theory of Solidification
  contributor:
    fullname: Davis
– volume: 198
  start-page: 447
  year: 2005
  end-page: 453
  ident: bib2
  article-title: Effect of thermal oxidation conditions on tribological behaviour of titanium films on 316L stainless steel
  publication-title: Surf. Coating. Technol.
  contributor:
    fullname: Sun
– volume: 34
  start-page: 369
  year: 2016
  end-page: 385
  ident: bib12
  article-title: Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs
  publication-title: J. Orthop. Res.
  contributor:
    fullname: Wiria
– volume: 51
  start-page: 352
  year: 2006
  end-page: 374
  ident: bib5
  article-title: Processing and properties of monolithic TiB2 based materials
  publication-title: Int. Mater. Rev.
  contributor:
    fullname: Suri
– volume: 680
  start-page: 480
  year: 2016
  end-page: 493
  ident: bib16
  article-title: Rapid fabrication of bulk-form TiB2/316L stainless steel nanocomposites with novel reinforcement architecture and improved performance by selective laser melting
  publication-title: J. Alloys Compd.
  contributor:
    fullname: Yang
– volume: 39
  start-page: 361
  year: 2009
  end-page: 386
  ident: bib45
  article-title: Plasticity of micrometer-scale single crystals in compression
  publication-title: Annu. Rev. Mater. Res.
  contributor:
    fullname: Dimiduk
– volume: 65
  start-page: 161
  year: 1961
  end-page: 163
  ident: bib4
  article-title: Thermodynamic properties of TiC at high temperatures
  publication-title: J. Phys. Chem.
  contributor:
    fullname: Gokcen
– volume: 100
  start-page: 291
  year: 2016
  end-page: 299
  ident: bib25
  article-title: Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts
  publication-title: Mater. Des.
  contributor:
    fullname: Bai
– volume: 57
  start-page: 133
  year: 2012
  end-page: 164
  ident: bib13
  article-title: Laser additive manufacturing of metallic components: materials, processes and mechanisms
  publication-title: Int. Mater. Rev.
  contributor:
    fullname: Poprawe
– volume: 615
  start-page: 338
  year: 2014
  end-page: 347
  ident: bib38
  article-title: The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy
  publication-title: J. Alloys Compd.
  contributor:
    fullname: Attallah
– volume: 28
  start-page: 1
  year: 2012
  end-page: 14
  ident: bib26
  article-title: Metal fabrication by additive manufacturing using laser and electron beam melting technologies
  publication-title: J. Mater. Sci. Technol.
  contributor:
    fullname: Amato
– volume: 1
  start-page: 77
  year: 2014
  end-page: 86
  ident: bib39
  article-title: Reducing porosity in AlSi10Mg parts processed by selective laser melting
  publication-title: Addit. Manuf.
  contributor:
    fullname: Tuck
– volume: 47
  start-page: 1239
  year: 1999
  end-page: 1263
  ident: bib44
  article-title: Mechanism-based strain gradient plasticity—I. Theory
  publication-title: J. Mech. Phys. Solid.
  contributor:
    fullname: Hutchinson
– volume: 680
  start-page: 480
  year: 2016
  ident: 10.1016/j.jallcom.2017.08.022_bib16
  article-title: Rapid fabrication of bulk-form TiB2/316L stainless steel nanocomposites with novel reinforcement architecture and improved performance by selective laser melting
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.04.156
  contributor:
    fullname: AlMangour
– year: 1998
  ident: 10.1016/j.jallcom.2017.08.022_bib43
  contributor:
    fullname: Tome
– volume: 5
  start-page: 701
  year: 2003
  ident: 10.1016/j.jallcom.2017.08.022_bib37
  article-title: Physical aspects of process control in selective laser sintering of metals
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200310099
  contributor:
    fullname: Das
– volume: 212
  start-page: 355
  year: 2012
  ident: 10.1016/j.jallcom.2017.08.022_bib9
  article-title: Gas flow effects on selective laser melting (SLM) manufacturing performance
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2011.09.020
  contributor:
    fullname: Ferrar
– year: 2001
  ident: 10.1016/j.jallcom.2017.08.022_bib51
  contributor:
    fullname: Davis
– volume: 39
  start-page: 361
  year: 2009
  ident: 10.1016/j.jallcom.2017.08.022_bib45
  article-title: Plasticity of micrometer-scale single crystals in compression
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-082908-145422
  contributor:
    fullname: Uchic
– volume: 19
  start-page: 666
  year: 2010
  ident: 10.1016/j.jallcom.2017.08.022_bib18
  article-title: 316L stainless steel with gradient porosity fabricated by selective laser melting
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-009-9535-2
  contributor:
    fullname: Li
– volume: 256
  start-page: 4350
  year: 2010
  ident: 10.1016/j.jallcom.2017.08.022_bib19
  article-title: Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2010.02.030
  contributor:
    fullname: Li
– volume: 509
  start-page: 4505
  year: 2011
  ident: 10.1016/j.jallcom.2017.08.022_bib27
  article-title: The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2010.11.176
  contributor:
    fullname: Liu
– volume: 34
  start-page: 369
  issue: 3
  year: 2016
  ident: 10.1016/j.jallcom.2017.08.022_bib12
  article-title: Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.23075
  contributor:
    fullname: Sing
– volume: 631
  start-page: 153
  year: 2015
  ident: 10.1016/j.jallcom.2017.08.022_bib30
  article-title: Textures formed in a CoCrMo alloy by selective laser melting
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.01.096
  contributor:
    fullname: Zhou
– volume: 661
  start-page: 240
  year: 2016
  ident: 10.1016/j.jallcom.2017.08.022_bib31
  article-title: Tailoring the texture of IN738LC processed by selective laser melting (SLM) by specific scanning strategies
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2016.03.036
  contributor:
    fullname: Geiger
– volume: 5
  start-page: 65
  issue: Part A
  year: 2010
  ident: 10.1016/j.jallcom.2017.08.022_bib11
  article-title: The role and future of the laser technology in the additive manufacturing environment
  publication-title: Phys. Proced.
  doi: 10.1016/j.phpro.2010.08.123
  contributor:
    fullname: Levy
– volume: 60
  start-page: 263
  year: 2011
  ident: 10.1016/j.jallcom.2017.08.022_bib34
  article-title: Manufacturing by combining selective laser melting and selective laser erosion/laser re-melting
  publication-title: CIRP Ann. - Manuf. Technol.
  doi: 10.1016/j.cirp.2011.03.063
  contributor:
    fullname: Yasa
– volume: 56
  start-page: 730
  year: 2007
  ident: 10.1016/j.jallcom.2017.08.022_bib8
  article-title: Consolidation phenomena in laser and powder-bed based layered manufacturing
  publication-title: CIRP Ann. - Manuf. Technol.
  doi: 10.1016/j.cirp.2007.10.004
  contributor:
    fullname: Kruth
– start-page: 898
  year: 2014
  ident: 10.1016/j.jallcom.2017.08.022_bib20
  article-title: Microstructures and mechanical properties of stainless steel AISI 316L processed by selective laser melting
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.783-786.898
  contributor:
    fullname: Mertens
– volume: 19
  start-page: 389
  year: 2011
  ident: 10.1016/j.jallcom.2017.08.022_bib33
  article-title: Microstructural investigation of Selective Laser Melting 316L stainless steel parts exposed to laser re-melting
  publication-title: Proced. Eng.
  doi: 10.1016/j.proeng.2011.11.130
  contributor:
    fullname: Yasa
– volume: 96
  start-page: 150
  year: 2016
  ident: 10.1016/j.jallcom.2017.08.022_bib53
  article-title: Nanocrystalline TiC-reinforced H13 steel matrix nanocomposites fabricated by selective laser melting
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.02.022
  contributor:
    fullname: AlMangour
– volume: 301
  start-page: 1225
  year: 2003
  ident: 10.1016/j.jallcom.2017.08.022_bib7
  article-title: Rapid manufacturing of aluminum components
  publication-title: Science
  doi: 10.1126/science.1086989
  contributor:
    fullname: Sercombe
– year: 2009
  ident: 10.1016/j.jallcom.2017.08.022_bib36
  contributor:
    fullname: Kruth
– volume: 170
  start-page: 516
  year: 2005
  ident: 10.1016/j.jallcom.2017.08.022_bib49
  article-title: Effect of direct laser re-melting processing parameters and scanning strategies on the densification of tool steels
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2005.05.055
  contributor:
    fullname: Xie
– volume: 100
  start-page: 291
  year: 2016
  ident: 10.1016/j.jallcom.2017.08.022_bib25
  article-title: Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.03.111
  contributor:
    fullname: Wang
– start-page: 170
  year: 2008
  ident: 10.1016/j.jallcom.2017.08.022_bib35
  article-title: Roughness improvement in selective laser melting
  contributor:
    fullname: Kruth
– year: 2004
  ident: 10.1016/j.jallcom.2017.08.022_bib50
  contributor:
    fullname: Rollett
– volume: 6
  start-page: 4059
  year: 2011
  ident: 10.1016/j.jallcom.2017.08.022_bib42
  article-title: Effect of surface morphology of ZnO electrodeposited on photocatalytic oxidation of methylene blue dye Part I: analytical study
  publication-title: J. Electrochem. Sci. Eng.
  doi: 10.1016/S1452-3981(23)18310-6
  contributor:
    fullname: Márquez
– year: 2010
  ident: 10.1016/j.jallcom.2017.08.022_bib55
  contributor:
    fullname: Glicksman
– volume: 2
  start-page: 041101
  year: 2015
  ident: 10.1016/j.jallcom.2017.08.022_bib10
  article-title: Review of selective laser melting: materials and applications
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4935926
  contributor:
    fullname: Yap
– volume: 620
  start-page: 213
  year: 2015
  ident: 10.1016/j.jallcom.2017.08.022_bib29
  article-title: Texture, anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM)
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2014.10.003
  contributor:
    fullname: Kunze
– volume: 213
  start-page: 606
  year: 2013
  ident: 10.1016/j.jallcom.2017.08.022_bib21
  article-title: Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2012.11.014
  contributor:
    fullname: Yadroitsev
– volume: 61
  start-page: 1809
  year: 2013
  ident: 10.1016/j.jallcom.2017.08.022_bib52
  article-title: Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.11.052
  contributor:
    fullname: Thijs
– volume: 47
  start-page: 1239
  year: 1999
  ident: 10.1016/j.jallcom.2017.08.022_bib44
  article-title: Mechanism-based strain gradient plasticity—I. Theory
  publication-title: J. Mech. Phys. Solid.
  doi: 10.1016/S0022-5096(98)00103-3
  contributor:
    fullname: Gao
– volume: 17
  start-page: 312
  year: 2011
  ident: 10.1016/j.jallcom.2017.08.022_bib54
  article-title: The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/13552541111156450
  contributor:
    fullname: Yasa
– volume: 198
  start-page: 447
  year: 2005
  ident: 10.1016/j.jallcom.2017.08.022_bib2
  article-title: Effect of thermal oxidation conditions on tribological behaviour of titanium films on 316L stainless steel
  publication-title: Surf. Coating. Technol.
  doi: 10.1016/j.surfcoat.2004.10.102
  contributor:
    fullname: Krishna
– start-page: 1
  year: 2016
  ident: 10.1016/j.jallcom.2017.08.022_bib14
  article-title: The metallurgy and processing science of metal additive manufacturing
  publication-title: Int. Mater. Rev.
  contributor:
    fullname: Sames
– volume: 209
  start-page: 5793
  year: 2009
  ident: 10.1016/j.jallcom.2017.08.022_bib22
  article-title: Selective laser melting of a stainless steel and hydroxyapatite composite for load-bearing implant development
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2009.06.012
  contributor:
    fullname: Hao
– year: 2014
  ident: 10.1016/j.jallcom.2017.08.022_bib6
  contributor:
    fullname: Gibson
– volume: 61
  start-page: 4657
  year: 2013
  ident: 10.1016/j.jallcom.2017.08.022_bib28
  article-title: Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.04.036
  contributor:
    fullname: Thijs
– volume: 58
  start-page: 3303
  year: 2010
  ident: 10.1016/j.jallcom.2017.08.022_bib32
  article-title: A study of the microstructural evolution during selective laser melting of Ti–6Al–4V
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.02.004
  contributor:
    fullname: Thijs
– start-page: 1
  year: 2017
  ident: 10.1016/j.jallcom.2017.08.022_bib48
  article-title: Understanding the deformation behavior of 17-4 precipitate hardenable stainless steel produced by direct metal laser sintering using micropillar compression and TEM
  publication-title: Int. J. Adv. Manuf. Technol.
  contributor:
    fullname: AlMangour
– volume: 54
  start-page: 181
  year: 2006
  ident: 10.1016/j.jallcom.2017.08.022_bib46
  article-title: The design of accurate micro-compression experiments
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2005.06.043
  contributor:
    fullname: Zhang
– volume: 104
  start-page: 141
  year: 2016
  ident: 10.1016/j.jallcom.2017.08.022_bib41
  article-title: Selective laser melting of TiC reinforced 316L stainless steel matrix nanocomposites: influence of starting TiC particle size and volume content
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.05.018
  contributor:
    fullname: AlMangour
– volume: 51
  start-page: 352
  year: 2006
  ident: 10.1016/j.jallcom.2017.08.022_bib5
  article-title: Processing and properties of monolithic TiB2 based materials
  publication-title: Int. Mater. Rev.
  doi: 10.1179/174328006X102529
  contributor:
    fullname: Basu
– volume: 1
  start-page: 77
  year: 2014
  ident: 10.1016/j.jallcom.2017.08.022_bib39
  article-title: Reducing porosity in AlSi10Mg parts processed by selective laser melting
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2014.08.001
  contributor:
    fullname: Aboulkhair
– volume: 215
  start-page: 142
  year: 2015
  ident: 10.1016/j.jallcom.2017.08.022_bib24
  article-title: Layer thickness dependence of performance in high-power selective laser melting of 1Cr18Ni9Ti stainless steel
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2014.07.034
  contributor:
    fullname: Ma
– volume: 57
  start-page: 133
  year: 2012
  ident: 10.1016/j.jallcom.2017.08.022_bib13
  article-title: Laser additive manufacturing of metallic components: materials, processes and mechanisms
  publication-title: Int. Mater. Rev.
  doi: 10.1179/1743280411Y.0000000014
  contributor:
    fullname: Gu
– volume: 28
  start-page: 1
  year: 2012
  ident: 10.1016/j.jallcom.2017.08.022_bib26
  article-title: Metal fabrication by additive manufacturing using laser and electron beam melting technologies
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/S1005-0302(12)60016-4
  contributor:
    fullname: Murr
– volume: 52
  start-page: 1017
  year: 2007
  ident: 10.1016/j.jallcom.2017.08.022_bib17
  article-title: The challenge of ceramic/metal microcomposites and nanocomposites
  publication-title: Progr. Mater. Sci.
  doi: 10.1016/j.pmatsci.2006.09.003
  contributor:
    fullname: Moya
– volume: 79
  start-page: 061011
  year: 2012
  ident: 10.1016/j.jallcom.2017.08.022_bib47
  article-title: Evaluation of micro-pillar compression tests for accurate determination of elastic-plastic constitutive relations
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4006767
  contributor:
    fullname: Fei
– volume: 615
  start-page: 338
  year: 2014
  ident: 10.1016/j.jallcom.2017.08.022_bib38
  article-title: The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.06.172
  contributor:
    fullname: Carter
– start-page: 37
  year: 2015
  ident: 10.1016/j.jallcom.2017.08.022_bib1
  contributor:
    fullname: AL-Mangour
– volume: 149
  start-page: 616
  year: 2004
  ident: 10.1016/j.jallcom.2017.08.022_bib40
  article-title: Selective laser melting of iron-based powder
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2003.11.051
  contributor:
    fullname: Kruth
– volume: 65
  start-page: 161
  year: 1961
  ident: 10.1016/j.jallcom.2017.08.022_bib4
  article-title: Thermodynamic properties of TiC at high temperatures
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100819a046
  contributor:
    fullname: Fujishiro
– volume: 42
  start-page: 750
  year: 2009
  ident: 10.1016/j.jallcom.2017.08.022_bib3
  article-title: Direct laser cladding of SiC dispersed AISI 316L stainless steel
  publication-title: Tribology
  doi: 10.1016/j.triboint.2008.10.016
  contributor:
    fullname: Majumdar
– start-page: 15
  year: 2015
  ident: 10.1016/j.jallcom.2017.08.022_bib15
  contributor:
    fullname: Gu
– volume: 222
  start-page: 444
  year: 2015
  ident: 10.1016/j.jallcom.2017.08.022_bib23
  article-title: Selective laser melting of stainless-steel/nano-hydroxyapatite composites for medical applications: microstructure, element distribution, crack and mechanical properties
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2015.02.010
  contributor:
    fullname: Wei
SSID ssj0001931
Score 2.6527236
Snippet Selective laser melting (SLM) is a promising additive manufacturing technique that allows fabrication of complex functional components via the selective...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 424
SubjectTerms Additive manufacturing
Anisotropy
Austenitic stainless steels
Crystallography
Densification
Energy consumption
Grain structure
Laser beam melting
Mechanical properties
Melting
Metal matrix composites
Microstructure
Nanocomposites
Scanning
Selective laser melting
Solidification
Stainless steel
Stainless steel nanocomposite
Strategy
Texture
Title Scanning strategies for texture and anisotropy tailoring during selective laser melting of TiC/316L stainless steel nanocomposites
URI https://dx.doi.org/10.1016/j.jallcom.2017.08.022
https://www.proquest.com/docview/1967362208
Volume 728
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SDaHJobSbhrwadOjVa1mSbe0xLAnbB7lkC7kJ67Gwi2sva-eQSw755RnJdvqAUujB4JeM0cjfN2N9mgH4pLmWNpFFRHNrMUBJeSQNLyJj0NrceC82qC1us_l38eU-vd-B2bAWxssqe-zvMD2gdX8m7nsz3qxW8R2dMj_nJ5OcY2g1Fbuwh3QkxAj2rj5_nd--AjL6KKFwHt4f-QY_F_LE68m6KEuvG0EizEMyT8b-RlF_gHVgoJt38LZ3HclV93bvYcdVY3gzGyq2jeHwl-SCY9gP4k7THMHznekqE5GmHTJDEHRWiVd9PGwdKSqL26qp2229eSReVBp0eaRbxEiaUCwHcZGgr-225IcrvVqa1EuyWM1inmTfSFiHVSJu4p5zJamKqvZ6dS8Kc80HWNxcL2bzqK-9EBlBeRtxLZyhUtNUUs2nhmaWZ4l0uV5abjEGtJw616XHWwokWh_bIPVTbRle4McwqurKnQBJE13430uaGik04wWj3LE8LZifE8zEKUyG3labLsOGGqRna9WbR3nzKF8wk7FTkINN1G9DRSEL_KvpxWBD1X-rjUIMypHGGZVn___kczjwR17owtILGLXbB_cR3ZVWX8Lu5Cm57AflC_CS6xQ
link.rule.ids 315,786,790,4521,24144,27955,27956,45618,45712
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrVDhgGABUSjgA9c0jp2H91itqLZ02UsXqTcrfqy0qzRZbdIDV345M07CS0JIHCJFcRxFHuf7ZuLPMwAfjDTKJaqMeOEcBiiZjJSVZWQtWlta8mKD2mKVL76kn26z2yOYj3thSFY5YH-P6QGthyvxMJrxfruNb_hM0JqfSgqJodUsfQDHaVYkYgLHF1fXi9UPQEYfJRTOw_sj6vBzI0-8O9-VVUW6ESTCIiTzFOJvFPUHWAcGunwKTwbXkV30b_cMjnw9hZP5WLFtCo9_SS44hYdB3Gnb5_DtxvaViVjbjZkhGDqrjFQf9wfPytrhsW2b7tDsvzISlQZdHus3MbI2FMtBXGToa_sDu_MVqaVZs2Hr7TyWSb5kYR9WhbiJZ95XrC7rhvTqJArz7QtYX35czxfRUHshsimXXSRN6i1XhmeKGzmzPHcyT5QvzMZJhzGgk9z7Pj3eJkWipdgGqZ8bJ7BBvoRJ3dT-FbAsMSX9XjLcqtQIWQouvSiyUtCaYJ6ewvk42nrfZ9jQo_RspwfzaDKPpoKZQpyCGm2if5sqGlngX13PRhvq4VttNWJQgTQuuHr9_09-DyeL9eelXl6trt_AI2oh0YvIzmDSHe79W3RdOvNumJrfAZar7QQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scanning+strategies+for+texture+and+anisotropy+tailoring+during+selective+laser+melting+of+TiC%2F316L+stainless+steel+nanocomposites&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=AlMangour%2C+Bandar&rft.au=Grzesiak%2C+Dariusz&rft.au=Yang%2C+Jenn-Ming&rft.date=2017-12-25&rft.pub=Elsevier+B.V&rft.issn=0925-8388&rft.eissn=1873-4669&rft.volume=728&rft.spage=424&rft.epage=435&rft_id=info:doi/10.1016%2Fj.jallcom.2017.08.022&rft.externalDocID=S0925838817327494
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon