Regional Remote Sensing of Lake Water Transparency Based on Google Earth Engine: Performance of Empirical Algorithm and Machine Learning
Secchi depth (SD) is a valuable and feasible water quality indicator of lake eutrophication. The establishment of an automated system with efficient image processing and an algorithm suitable for the inversion of transparency in lake-rich regions could provide sufficient temporal and spatial informa...
Saved in:
Published in | Applied sciences Vol. 13; no. 6; p. 4007 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Secchi depth (SD) is a valuable and feasible water quality indicator of lake eutrophication. The establishment of an automated system with efficient image processing and an algorithm suitable for the inversion of transparency in lake-rich regions could provide sufficient temporal and spatial information for lake management. These are especially critical for lake-rich regions where in situ monitoring data are scarce. This study demonstrated the implementation of an atmospheric correction algorithm (ACOLITE algorithm) in conjunction with the Google Earth Engine platform to generate remote-sensing reflectance products of specific points efficiently. The study also evaluated the performance of an algorithm for inverting lake SDs in Yunnan Plateau lakes, which is one of the five lake districts in China, since there is a lack of in situ data for most of the lakes in the region. The in situ data from four lakes with large SD ranges and imagery from Landsat Operational Land Imager were used to train and evaluate the performance of two algorithms: an empirical algorithm (stepwise regression) and machine learning (support vector machines and multi-layer perception). The results revealed that the retrieval accuracy of models with bands and band ratio combinations could be substantially improved compared with models with a single band or band combinations. A negative correlation was also observed between the temporal match between observations and the model accuracy. This study found that the MLP model with sufficient training data was more suitable for transparency estimation of lakes belonging to the dataset; the SVM model was more suitable for transparency prediction outside the training set, regardless of the adequacy of the training data. This study provides a reference for monitoring lakes within the Yunnan region using remote sensing. |
---|---|
AbstractList | Secchi depth (SD) is a valuable and feasible water quality indicator of lake eutrophication. The establishment of an automated system with efficient image processing and an algorithm suitable for the inversion of transparency in lake-rich regions could provide sufficient temporal and spatial information for lake management. These are especially critical for lake-rich regions where in situ monitoring data are scarce. This study demonstrated the implementation of an atmospheric correction algorithm (ACOLITE algorithm) in conjunction with the Google Earth Engine platform to generate remote-sensing reflectance products of specific points efficiently. The study also evaluated the performance of an algorithm for inverting lake SDs in Yunnan Plateau lakes, which is one of the five lake districts in China, since there is a lack of in situ data for most of the lakes in the region. The in situ data from four lakes with large SD ranges and imagery from Landsat Operational Land Imager were used to train and evaluate the performance of two algorithms: an empirical algorithm (stepwise regression) and machine learning (support vector machines and multi-layer perception). The results revealed that the retrieval accuracy of models with bands and band ratio combinations could be substantially improved compared with models with a single band or band combinations. A negative correlation was also observed between the temporal match between observations and the model accuracy. This study found that the MLP model with sufficient training data was more suitable for transparency estimation of lakes belonging to the dataset; the SVM model was more suitable for transparency prediction outside the training set, regardless of the adequacy of the training data. This study provides a reference for monitoring lakes within the Yunnan region using remote sensing. |
Audience | Academic |
Author | Cheng, Sihang Zhao, Lei Xu, Ke Zeng, Weizhong Yang, Kun |
Author_xml | – sequence: 1 givenname: Weizhong surname: Zeng fullname: Zeng, Weizhong – sequence: 2 givenname: Ke surname: Xu fullname: Xu, Ke – sequence: 3 givenname: Sihang surname: Cheng fullname: Cheng, Sihang – sequence: 4 givenname: Lei surname: Zhao fullname: Zhao, Lei – sequence: 5 givenname: Kun surname: Yang fullname: Yang, Kun |
BookMark | eNptUcFu1DAQjVCRKKUnfsASR7StHTuxzW2pllJpEagUcbQm9iTrJbGDnR76B3w23i5IFcJjyaPRe288815WJyEGrKrXjF5wruklzDPjtBWUymfVaU1lu-KCyZMn-YvqPOc9LUczrhg9rX7d4uBjgJHc4hQXJF8xZB8GEnuyhR9IvsOCidwlCHmGhME-kPeQ0ZEYyHWMw4hkA2nZkU0YfMB35AumPqYJgsWDyGaaffK2NFiPQ0x-2U0EgiOfwO4KnmwRUigNX1XPexgznv95z6pvHzZ3Vx9X28_XN1fr7coKypcVl6IDbFitlNICgFONrTpc2zS9K4mVXUM7poBSp8Bq23VAZUeFRucsP6tujrouwt7MyU-QHkwEbx4LMQ2mjOPtiIZDLUDVDnTjhGyp7kUtqNUKXNeAkEXrzVFrTvHnPebF7ON9KsvMppaaNeWHrSioiyNqgCLqQx-XBLaEw8nb4mHvS30tG6aVbltaCOxIsCnmnLA31i-wFJsK0Y-GUXMw3DwxvHDe_sP5O9r_0L8B1Lit-A |
CitedBy_id | crossref_primary_10_1109_TGRS_2025_3543564 crossref_primary_10_12677_aep_2024_143058 crossref_primary_10_3390_hydrology11110183 crossref_primary_10_3390_rs16010068 crossref_primary_10_1016_j_ecolind_2024_111789 |
Cites_doi | 10.1016/j.jhydrol.2021.126817 10.1016/j.watres.2021.116844 10.1016/j.jglr.2018.09.002 10.1016/j.rse.2007.12.013 10.1029/2011WR011005 10.1007/s00128-022-03638-9 10.3390/w10081020 10.1038/nbt1206-1565 10.1109/JSTARS.2020.3021052 10.3390/rs12081285 10.1016/j.scitotenv.2022.153971 10.1007/s11430-010-4052-6 10.1016/j.scitotenv.2022.158869 10.1016/j.earscirev.2020.103187 10.2172/1623354 10.1007/s10661-022-10690-9 10.3390/ijgi6110360 10.1002/eap.1471 10.3390/rs13163133 10.1016/j.rse.2020.111800 10.1016/j.isprsjprs.2021.10.009 10.1016/S0034-4257(02)00022-6 10.1088/1742-6596/1948/1/012023 10.1139/f96-187 10.3390/rs13081434 10.1007/s10994-021-05946-3 10.1007/s11356-023-25159-6 10.1016/j.rse.2015.08.002 10.1016/j.rse.2017.02.007 10.4319/lo.1996.41.5.0912 10.1016/j.csr.2016.06.016 10.1016/j.jhydrol.2020.125476 10.1117/12.2207858 10.3390/rs13071257 10.1109/FCC.2009.30 10.1016/j.rse.2014.08.001 10.1016/j.ecolind.2017.02.007 10.1080/01431161.2022.2102953 10.1016/j.scitotenv.2021.146271 10.1016/j.watres.2022.118241 10.3390/rs14133094 10.1016/j.jglr.2020.07.022 10.1016/j.rse.2019.111284 10.1002/lno.10146 10.1007/s10661-013-3098-2 10.1080/01431160701422254 10.3390/rs15010018 10.1016/j.rse.2016.01.007 10.1109/TAC.1974.1100705 10.1007/s10661-018-6506-9 10.1007/s11356-021-16004-9 10.1080/01431161.2010.512947 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app13064007 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_3a24a82da95d47609f4240c98adb5a47 A751989660 10_3390_app13064007 |
GeographicLocations | China Yunnan China |
GeographicLocations_xml | – name: China – name: Yunnan China |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c403t-374bae51288894aa309e68e68ec55fde68c7b50b18a00d8ac9cbba07b049eddc3 |
IEDL.DBID | BENPR |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:23:28 EDT 2025 Mon Jun 30 07:31:18 EDT 2025 Tue Jun 10 20:25:51 EDT 2025 Thu Apr 24 23:09:05 EDT 2025 Tue Jul 01 04:33:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-374bae51288894aa309e68e68ec55fde68c7b50b18a00d8ac9cbba07b049eddc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2791589464?pq-origsite=%requestingapplication% |
PQID | 2791589464 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3a24a82da95d47609f4240c98adb5a47 proquest_journals_2791589464 gale_infotracacademiconefile_A751989660 crossref_citationtrail_10_3390_app13064007 crossref_primary_10_3390_app13064007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Binding (ref_15) 2015; 60 Lee (ref_11) 2015; 169 Noble (ref_46) 2006; 24 ref_13 ref_12 Matthews (ref_30) 2011; 32 Xu (ref_28) 2019; 45 Cao (ref_4) 2023; 195 ref_52 Li (ref_26) 2021; 778 ref_51 ref_19 Akaike (ref_45) 1974; 19 Amani (ref_7) 2020; 13 ref_16 Hicks (ref_39) 2013; 185 Maciel (ref_21) 2021; 182 Lee (ref_20) 2020; 46 Cao (ref_23) 2017; 192 Fee (ref_2) 1996; 41 Kim (ref_25) 2021; 602 Alikas (ref_24) 2017; 77 Pahlevan (ref_9) 2014; 154 Li (ref_18) 2020; 590 Cui (ref_48) 2021; 29 Li (ref_35) 2022; 56 Zhao (ref_47) 2021; 1948 Waegeman (ref_50) 2021; 110 Olmanson (ref_40) 2011; 47 Lathrop (ref_42) 1996; 53 Deutsch (ref_17) 2022; 826 Wu (ref_43) 2008; 29 Paul (ref_8) 2023; 110 ref_34 ref_33 Kabiri (ref_53) 2016; 125 Sagan (ref_27) 2020; 205 Olmanson (ref_32) 2016; 185 Kloiber (ref_36) 2002; 82 Olmanson (ref_44) 2008; 112 He (ref_22) 2022; 215 Zhang (ref_37) 2021; 192 Deutsch (ref_38) 2018; 190 Song (ref_31) 2020; 243 ref_41 Rose (ref_1) 2017; 27 ref_3 Page (ref_10) 2019; 231 Cai (ref_6) 2023; 856 ref_49 Roy (ref_14) 2022; 43 ref_5 Ma (ref_29) 2010; 54 |
References_xml | – volume: 602 start-page: 126817 year: 2021 ident: ref_25 article-title: Augmentation of limited input data using an artificial neural network method to improve the accuracy of water quality modeling in a large lake publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126817 – volume: 192 start-page: 116844 year: 2021 ident: ref_37 article-title: Remote sensing estimation of water clarity for various lakes in China publication-title: Water Res. doi: 10.1016/j.watres.2021.116844 – volume: 45 start-page: 454 year: 2019 ident: ref_28 article-title: A spectral space partition guided ensemble method for retrieving chlorophyll-a concentration in inland waters from Sentinel-2A satellite imagery publication-title: J. Great Lakes Res. doi: 10.1016/j.jglr.2018.09.002 – volume: 112 start-page: 4086 year: 2008 ident: ref_44 article-title: A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.12.013 – volume: 47 start-page: 1 year: 2011 ident: ref_40 article-title: Evaluation of medium to low resolution satellite imagery for regional lake water quality assessments publication-title: Water Resour. Res. doi: 10.1029/2011WR011005 – volume: 110 start-page: 7 year: 2023 ident: ref_8 article-title: Suspended Particulate Matter Analysis of Pre and during Covid Lockdown Using Google Earth Engine Cloud Computing: A Case Study of Ukai Reservoir publication-title: Bull. Environ. Contam. Toxicol. doi: 10.1007/s00128-022-03638-9 – ident: ref_51 doi: 10.3390/w10081020 – volume: 24 start-page: 1565 year: 2006 ident: ref_46 article-title: What is a support vector machine? publication-title: Nat. Biotechnol. doi: 10.1038/nbt1206-1565 – volume: 13 start-page: 5326 year: 2020 ident: ref_7 article-title: Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2020.3021052 – ident: ref_34 doi: 10.3390/rs12081285 – volume: 826 start-page: 153971 year: 2022 ident: ref_17 article-title: Assessing the current water clarity status of similar to 100,000 lakes across southern Canada: A remote sensing approach publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.153971 – volume: 54 start-page: 283 year: 2010 ident: ref_29 article-title: China’s lakes at present: Number, area and spatial distribution publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-010-4052-6 – volume: 856 start-page: 158869 year: 2023 ident: ref_6 article-title: A hybrid remote sensing approach for estimating chemical oxygen demand concentration in optically complex waters: A case study in inland lake waters in eastern China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.158869 – volume: 205 start-page: 103187 year: 2020 ident: ref_27 article-title: Monitoring inland water quality using remote sensing: Potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2020.103187 – ident: ref_49 doi: 10.2172/1623354 – volume: 195 start-page: 125 year: 2023 ident: ref_4 article-title: Application and recent progress of inland water monitoring using remote sensing techniques publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-022-10690-9 – ident: ref_52 doi: 10.3390/ijgi6110360 – volume: 27 start-page: 632 year: 2017 ident: ref_1 article-title: Annual precipitation regulates spatial and temporal drivers of lake water clarity publication-title: Ecol. Appl. doi: 10.1002/eap.1471 – ident: ref_33 doi: 10.3390/rs13163133 – volume: 243 start-page: 111800 year: 2020 ident: ref_31 article-title: Quantification of lake clarity in China using Landsat OLI imagery data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111800 – volume: 182 start-page: 134 year: 2021 ident: ref_21 article-title: Water clarity in Brazilian water assessed using Sentinel-2 and machine learning methods publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.10.009 – volume: 82 start-page: 38 year: 2002 ident: ref_36 article-title: A procedure for regional lake water clarity assessment using Landsat multispectral data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00022-6 – volume: 1948 start-page: 012023 year: 2021 ident: ref_47 article-title: Deep learning and Its Development publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1948/1/012023 – volume: 53 start-page: 2250 year: 1996 ident: ref_42 article-title: Water clarity in Lake Mendota since 1900: Responses to differing levels of nutrients and herbivory publication-title: Can. J. Fish. Aquat. Sci. doi: 10.1139/f96-187 – ident: ref_19 doi: 10.3390/rs13081434 – volume: 110 start-page: 457 year: 2021 ident: ref_50 article-title: Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods publication-title: Mach. Learn. doi: 10.1007/s10994-021-05946-3 – ident: ref_12 doi: 10.1007/s11356-023-25159-6 – volume: 169 start-page: 139 year: 2015 ident: ref_11 article-title: Secchi disk depth: A new theory and mechanistic model for underwater visibility publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.08.002 – volume: 192 start-page: 98 year: 2017 ident: ref_23 article-title: Climate- and human-induced changes in suspended particulate matter over Lake Hongze on short and long timescales publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.02.007 – volume: 41 start-page: 912 year: 1996 ident: ref_2 article-title: Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1996.41.5.0912 – volume: 125 start-page: 44 year: 2016 ident: ref_53 article-title: Landsat-8 imagery to estimate clarity in near-shore coastal waters: Feasibility study—Chabahar Bay, Iran publication-title: Cont. Shelf Res. doi: 10.1016/j.csr.2016.06.016 – volume: 590 start-page: 125476 year: 2020 ident: ref_18 article-title: Analysis of water clarity decrease in Xin’anjiang Reservoir, China, from 30-Year Landsat TM, ETM+, and OLI observations publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125476 – volume: 56 start-page: 102711 year: 2022 ident: ref_35 article-title: Evaluation of seven atmospheric correction algorithms for OLCI images over the coastal waters of Qinhuangdao in Bohai Sea publication-title: Reg. Stud. Mar. Sci. – ident: ref_41 doi: 10.1117/12.2207858 – ident: ref_16 doi: 10.3390/rs13071257 – ident: ref_3 doi: 10.1109/FCC.2009.30 – volume: 154 start-page: 272 year: 2014 ident: ref_9 article-title: On-orbit radiometric characterization of OLI (Landsat-8) for applications in aquatic remote sensing publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.08.001 – volume: 77 start-page: 218 year: 2017 ident: ref_24 article-title: Improved retrieval of Secchi depth for optically-complex waters using remote sensing data publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2017.02.007 – volume: 43 start-page: 3628 year: 2022 ident: ref_14 article-title: Suspended particulate matter and secchi disk depth in the Chilika Lagoon from in situ and remote sensing data: A modified semi-analytical approach publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2022.2102953 – volume: 778 start-page: 146271 year: 2021 ident: ref_26 article-title: Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.146271 – volume: 215 start-page: 118241 year: 2022 ident: ref_22 article-title: Water clarity mapping of global lakes using a novel hybrid deep-learning-based recurrent model with Landsat OLI images publication-title: Water Res. doi: 10.1016/j.watres.2022.118241 – ident: ref_13 doi: 10.3390/rs14133094 – volume: 46 start-page: 1501 year: 2020 ident: ref_20 article-title: Using machine learning to model and predict water clarity in the Great Lakes publication-title: J. Great Lakes Res. doi: 10.1016/j.jglr.2020.07.022 – volume: 231 start-page: 111284 year: 2019 ident: ref_10 article-title: A harmonized image processing workflow using Sentinel-2/MSI and Landsat-8/OLI for mapping water clarity in optically variable lake systems publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111284 – volume: 60 start-page: 1976 year: 2015 ident: ref_15 article-title: Long term water clarity changes in North America’s Great Lakes from multi-sensor satellite observations publication-title: Limnol. Oceanogr. doi: 10.1002/lno.10146 – volume: 185 start-page: 7245 year: 2013 ident: ref_39 article-title: Hindcasting water clarity from Landsat satellite images of unmonitored shallow lakes in the Waikato region, New Zealand publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-013-3098-2 – volume: 29 start-page: 2183 year: 2008 ident: ref_43 article-title: Comparison of MODIS and Landsat TM5 images for mapping tempo–spatial dynamics of Secchi disk depths in Poyang Lake National Nature Reserve, China publication-title: Int. J. Remote Sens. doi: 10.1080/01431160701422254 – ident: ref_5 doi: 10.3390/rs15010018 – volume: 185 start-page: 119 year: 2016 ident: ref_32 article-title: Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.01.007 – volume: 19 start-page: 716 year: 1974 ident: ref_45 article-title: A new look at the statistical model identification publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.1974.1100705 – volume: 190 start-page: 141 year: 2018 ident: ref_38 article-title: Monitoring water quality in a hypereutrophic reservoir using Landsat ETM+ and OLI sensors: How transferable are the water quality algorithms? publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-018-6506-9 – volume: 29 start-page: 4401 year: 2021 ident: ref_48 article-title: Deep learning-based remote sensing estimation of water transparency in shallow lakes by combining Landsat 8 and Sentinel 2 images publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-16004-9 – volume: 32 start-page: 6855 year: 2011 ident: ref_30 article-title: A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2010.512947 |
SSID | ssj0000913810 |
Score | 2.2751014 |
Snippet | Secchi depth (SD) is a valuable and feasible water quality indicator of lake eutrophication. The establishment of an automated system with efficient image... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 4007 |
SubjectTerms | ACOLITE algorithm Algorithms Datasets Earth resources technology satellites empirical regression Image processing Lakes Landsat image Landsat satellites Machine learning Methods Quality control Remote sensing Secchi depth Time series water clarity Water quality |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT3BAtIBYKGgOlfiQIpyN7djctmhLhShChYreLMd20optUm2XA_-An82M45YcQFyQ9hCtJokzHnvmJTNvGNsTsjIaA3WEqaItBMoUTgZX1G0pSqfaUCay56OP6vBEvD-Vp5NWX5QTNtIDj4p7Xbm5cHoenJFB1IqbVqAT8ka70EgnUh05-rwJmEp7sCmJumosyKsQ19P34JKibU6NYycuKDH1_20_Tk7m4B67m6NDWIyj2ma3Yr_D7kw4A3fYdl6NV_AiU0a_vM9-HscuvdOD44i6j_CZ8tL7DoYWPrhvEb5iSLmGkcmcyr_8D9hH_xVg6OHdMHSrCEvUxRmM93oDn34XFNBFlheX54lMBBarblifb84uwPUBjlIuZoRM09o9YCcHyy9vD4vcY6Hwglcb3F9E4yJ6fUTCRjhXcROVpp-Xsg144OtG8qbUjvOgnTe-aRyvG0QWMQRfPWRb_dDHRwzw3Eq3wSuvMCyIEWE3D2XQCJI0n8dyxl5dq936TEBOfTBWFoEIzZGdzNGM7d0IX468G38W26f5uxEhsuz0B5qQzSZk_2VCM_acZt_SksYBeZcrE_CxiBzLLmpJmWVK8RnbvTYQm9f6lZ3XBg3aCCUe_4_RPGG3qaX9mOe2y7Y26-_xKQY-m-ZZsvFfaosAAw priority: 102 providerName: Directory of Open Access Journals |
Title | Regional Remote Sensing of Lake Water Transparency Based on Google Earth Engine: Performance of Empirical Algorithm and Machine Learning |
URI | https://www.proquest.com/docview/2791589464 https://doaj.org/article/3a24a82da95d47609f4240c98adb5a47 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdY9wIPiA0QhVHdwyQ-pAinsROHF9SidhNi01SY2Fvk2E420SWlLQ_8B_zZ3Dlu1wdAykOU2Pm4O5_vzuffMXYsZJIrNNTRTRVVJLBNpKXVUVbFItZpZWMP9nx2np5eik9X8ioE3FYhrXKjE72itq2hGPm7YZZjt1yk4sPiR0RVo2h1NZTQ2GP7qIKV6rH98eT8YraNshDqpYp5tzEvQf-e1oVjsro5FZDdmYo8Yv-_9LKfbKaP2MNgJcKoY-sBu-eaQ_ZgBzvwkB2EUbmC1wE6-s1j9nvmah_bg5lDHjj4QvnpTQ1tBZ_1dwff0LRcQodoTtvAzC8Y4zxmoW3gpG3ruYMJCtM1dO96Dxd3GwvoIZPbxY0HFYHRvEbyrK9vQTcWznxOpoMA11o_YZfTydePp1GotRAZwZM16hlRaieJiEhkrROeu1TRYaSsLJ6YrJS8jJXm3CptclOWmmclehjOWpM8Zb2mbdwzBtg3UZU1qUnRPHAO3W9uY6vQWVJ86OI-e7she2ECEDnVw5gX6JAQj4odHvXZ8bbxosPf-HuzMfFv24RAs_2FdlkXYQwWiR4KrYZW59KKLOV5JdCeMbnStpRa4ENeEfcLGtr4QUaHHQr4WwSSVYwySRlmacr77GgjIEUY86viTkKf___2C3afitZ3mWxHrLde_nQv0bRZlwO2p6YngyDFAx8g-AOY8vsX |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VcgAOiBYQgQJzKOJHsljba3uNhFAKSVOaVKi0am_LenftIlI7JEGob8DT8IzM2E6aA3CrlIMVr9eJZ3bmm_XMN4xtiyhMJQJ1DFNF7gkc4-nIai_JfeHrOLd-TfY8OogHx-LjaXS6xn4vamEorXJhE2tDbStDe-SvgyTFy1IRi3eT7x51jaK3q4sWGo1a7LuLnxiyzd7ufUD5PguCfu_o_cBruwp4RvBwjitKZNqhn8PYLxVahzx1saSPiaLc4oFJsohnvtScW6lNarJM8yRDLO2sNSHOe41dFyF6cqpM7-8u93SIY1P6vCkDxPOc3kL7hPE5tatdcXx1f4B_eYHatfXvsNstJoVuo0QbbM2Vm-zWClPhJttobcAMXrRE1S_vsl-Hrqh3EuHQocQdfKZs-LKAKoeh_ubgBIHsFBr-dCo6Mxewg17TQlXCblUVYwc9VN0zaO71Bj5dljHQJL3zydeawgS64wKFMT87B11aGNUZoA5actjiHju-EhncZ-tlVboHDPDaUObWxCZGMOIcBvvc-lZiaCZ54PwOe7V47Mq0tOfUfWOsMPwhGakVGXXY9nLwpGH7-PuwHZLfcghRdNdfVNNCtStehToQWgZWp5EVSczTXCB6MqnUNou0wEmek_QVGRL8QUa39RD4t4iSS3WTiPLZ4ph32NZCQVRrYWbqcj08_P_pp-zG4Gg0VMO9g_1H7GaAIK3Jodti6_PpD_cYQdU8e1JrMrAvV710_gDpeDYR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyH2gNgA0THAD0NcpGhO4iQOEkIta9nYVlWFaXszju1kiC4pbRHaP-A38es4J3G7PgBvk_pQtY57ObfvOOd8h5BdHoWpAKAOaSrPPQ5rPBUZ5SW5z30V58avyZ5PBvHBKf94Hp2vkd-LXhgsq1z4xNpRm0rjGflekKRwWcpjvpe7sojhfv_d5LuHE6TwTutinEajIkf26iekb7O3h_sg6-dB0O99fn_guQkDnuYsnIN18UxZiHmQB6ZcqZClNhb40FGUG3iikyximS8UY0YoneosUyzJAFdbY3QI-94i6wlmRS2y3u0NhqPlCQ8ybgqfNU2BYZgyvCftI-JnOLx2JQzW0wL-FRPqQNe_R-46hEo7jUptkjVbbpGNFd7CLbLpPMKMvnS01a_uk18jW9TninRkQf6WfsLa-LKgVU6P1TdLzwDWTmnDpo4taPqKdiGGGlqV9ENVFWNLe6DIF7T5rDd0eN3UgJv0Lidfa0IT2hkXII75xSVVpaEndT2opY4qtnhATm9ECg9Jq6xK-4hQuDYUudGxjgGaWAupPzO-EZCoCRZYv01eL_52qR0JOs7iGEtIhlBGckVGbbK7XDxpuD_-vqyL8lsuQcLu-oVqWkhn_zJUAVciMCqNDE9iluYcsJROhTJZpDhs8gKlL9GtwBfSynVHwM9Cgi7ZSSKsbotj1iY7CwWRzt_M5LV1bP__7WfkNpiNPD4cHD0mdwJAbE1B3Q5pzac_7BNAWPPsqVNlSr7ctPX8AVZEO6M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regional+Remote+Sensing+of+Lake+Water+Transparency+Based+on+Google+Earth+Engine%3A+Performance+of+Empirical+Algorithm+and+Machine+Learning&rft.jtitle=Applied+sciences&rft.au=Zeng%2C+Weizhong&rft.au=Xu%2C+Ke&rft.au=Cheng%2C+Sihang&rft.au=Zhao%2C+Lei&rft.date=2023-03-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=6&rft.spage=4007&rft_id=info:doi/10.3390%2Fapp13064007&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |