Regional Remote Sensing of Lake Water Transparency Based on Google Earth Engine: Performance of Empirical Algorithm and Machine Learning

Secchi depth (SD) is a valuable and feasible water quality indicator of lake eutrophication. The establishment of an automated system with efficient image processing and an algorithm suitable for the inversion of transparency in lake-rich regions could provide sufficient temporal and spatial informa...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 13; no. 6; p. 4007
Main Authors Zeng, Weizhong, Xu, Ke, Cheng, Sihang, Zhao, Lei, Yang, Kun
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Secchi depth (SD) is a valuable and feasible water quality indicator of lake eutrophication. The establishment of an automated system with efficient image processing and an algorithm suitable for the inversion of transparency in lake-rich regions could provide sufficient temporal and spatial information for lake management. These are especially critical for lake-rich regions where in situ monitoring data are scarce. This study demonstrated the implementation of an atmospheric correction algorithm (ACOLITE algorithm) in conjunction with the Google Earth Engine platform to generate remote-sensing reflectance products of specific points efficiently. The study also evaluated the performance of an algorithm for inverting lake SDs in Yunnan Plateau lakes, which is one of the five lake districts in China, since there is a lack of in situ data for most of the lakes in the region. The in situ data from four lakes with large SD ranges and imagery from Landsat Operational Land Imager were used to train and evaluate the performance of two algorithms: an empirical algorithm (stepwise regression) and machine learning (support vector machines and multi-layer perception). The results revealed that the retrieval accuracy of models with bands and band ratio combinations could be substantially improved compared with models with a single band or band combinations. A negative correlation was also observed between the temporal match between observations and the model accuracy. This study found that the MLP model with sufficient training data was more suitable for transparency estimation of lakes belonging to the dataset; the SVM model was more suitable for transparency prediction outside the training set, regardless of the adequacy of the training data. This study provides a reference for monitoring lakes within the Yunnan region using remote sensing.
AbstractList Secchi depth (SD) is a valuable and feasible water quality indicator of lake eutrophication. The establishment of an automated system with efficient image processing and an algorithm suitable for the inversion of transparency in lake-rich regions could provide sufficient temporal and spatial information for lake management. These are especially critical for lake-rich regions where in situ monitoring data are scarce. This study demonstrated the implementation of an atmospheric correction algorithm (ACOLITE algorithm) in conjunction with the Google Earth Engine platform to generate remote-sensing reflectance products of specific points efficiently. The study also evaluated the performance of an algorithm for inverting lake SDs in Yunnan Plateau lakes, which is one of the five lake districts in China, since there is a lack of in situ data for most of the lakes in the region. The in situ data from four lakes with large SD ranges and imagery from Landsat Operational Land Imager were used to train and evaluate the performance of two algorithms: an empirical algorithm (stepwise regression) and machine learning (support vector machines and multi-layer perception). The results revealed that the retrieval accuracy of models with bands and band ratio combinations could be substantially improved compared with models with a single band or band combinations. A negative correlation was also observed between the temporal match between observations and the model accuracy. This study found that the MLP model with sufficient training data was more suitable for transparency estimation of lakes belonging to the dataset; the SVM model was more suitable for transparency prediction outside the training set, regardless of the adequacy of the training data. This study provides a reference for monitoring lakes within the Yunnan region using remote sensing.
Audience Academic
Author Cheng, Sihang
Zhao, Lei
Xu, Ke
Zeng, Weizhong
Yang, Kun
Author_xml – sequence: 1
  givenname: Weizhong
  surname: Zeng
  fullname: Zeng, Weizhong
– sequence: 2
  givenname: Ke
  surname: Xu
  fullname: Xu, Ke
– sequence: 3
  givenname: Sihang
  surname: Cheng
  fullname: Cheng, Sihang
– sequence: 4
  givenname: Lei
  surname: Zhao
  fullname: Zhao, Lei
– sequence: 5
  givenname: Kun
  surname: Yang
  fullname: Yang, Kun
BookMark eNptUcFu1DAQjVCRKKUnfsASR7StHTuxzW2pllJpEagUcbQm9iTrJbGDnR76B3w23i5IFcJjyaPRe288815WJyEGrKrXjF5wruklzDPjtBWUymfVaU1lu-KCyZMn-YvqPOc9LUczrhg9rX7d4uBjgJHc4hQXJF8xZB8GEnuyhR9IvsOCidwlCHmGhME-kPeQ0ZEYyHWMw4hkA2nZkU0YfMB35AumPqYJgsWDyGaaffK2NFiPQ0x-2U0EgiOfwO4KnmwRUigNX1XPexgznv95z6pvHzZ3Vx9X28_XN1fr7coKypcVl6IDbFitlNICgFONrTpc2zS9K4mVXUM7poBSp8Bq23VAZUeFRucsP6tujrouwt7MyU-QHkwEbx4LMQ2mjOPtiIZDLUDVDnTjhGyp7kUtqNUKXNeAkEXrzVFrTvHnPebF7ON9KsvMppaaNeWHrSioiyNqgCLqQx-XBLaEw8nb4mHvS30tG6aVbltaCOxIsCnmnLA31i-wFJsK0Y-GUXMw3DwxvHDe_sP5O9r_0L8B1Lit-A
CitedBy_id crossref_primary_10_1109_TGRS_2025_3543564
crossref_primary_10_12677_aep_2024_143058
crossref_primary_10_3390_hydrology11110183
crossref_primary_10_3390_rs16010068
crossref_primary_10_1016_j_ecolind_2024_111789
Cites_doi 10.1016/j.jhydrol.2021.126817
10.1016/j.watres.2021.116844
10.1016/j.jglr.2018.09.002
10.1016/j.rse.2007.12.013
10.1029/2011WR011005
10.1007/s00128-022-03638-9
10.3390/w10081020
10.1038/nbt1206-1565
10.1109/JSTARS.2020.3021052
10.3390/rs12081285
10.1016/j.scitotenv.2022.153971
10.1007/s11430-010-4052-6
10.1016/j.scitotenv.2022.158869
10.1016/j.earscirev.2020.103187
10.2172/1623354
10.1007/s10661-022-10690-9
10.3390/ijgi6110360
10.1002/eap.1471
10.3390/rs13163133
10.1016/j.rse.2020.111800
10.1016/j.isprsjprs.2021.10.009
10.1016/S0034-4257(02)00022-6
10.1088/1742-6596/1948/1/012023
10.1139/f96-187
10.3390/rs13081434
10.1007/s10994-021-05946-3
10.1007/s11356-023-25159-6
10.1016/j.rse.2015.08.002
10.1016/j.rse.2017.02.007
10.4319/lo.1996.41.5.0912
10.1016/j.csr.2016.06.016
10.1016/j.jhydrol.2020.125476
10.1117/12.2207858
10.3390/rs13071257
10.1109/FCC.2009.30
10.1016/j.rse.2014.08.001
10.1016/j.ecolind.2017.02.007
10.1080/01431161.2022.2102953
10.1016/j.scitotenv.2021.146271
10.1016/j.watres.2022.118241
10.3390/rs14133094
10.1016/j.jglr.2020.07.022
10.1016/j.rse.2019.111284
10.1002/lno.10146
10.1007/s10661-013-3098-2
10.1080/01431160701422254
10.3390/rs15010018
10.1016/j.rse.2016.01.007
10.1109/TAC.1974.1100705
10.1007/s10661-018-6506-9
10.1007/s11356-021-16004-9
10.1080/01431161.2010.512947
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app13064007
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_3a24a82da95d47609f4240c98adb5a47
A751989660
10_3390_app13064007
GeographicLocations China
Yunnan China
GeographicLocations_xml – name: China
– name: Yunnan China
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c403t-374bae51288894aa309e68e68ec55fde68c7b50b18a00d8ac9cbba07b049eddc3
IEDL.DBID BENPR
ISSN 2076-3417
IngestDate Wed Aug 27 01:23:28 EDT 2025
Mon Jun 30 07:31:18 EDT 2025
Tue Jun 10 20:25:51 EDT 2025
Thu Apr 24 23:09:05 EDT 2025
Tue Jul 01 04:33:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c403t-374bae51288894aa309e68e68ec55fde68c7b50b18a00d8ac9cbba07b049eddc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2791589464?pq-origsite=%requestingapplication%
PQID 2791589464
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_3a24a82da95d47609f4240c98adb5a47
proquest_journals_2791589464
gale_infotracacademiconefile_A751989660
crossref_citationtrail_10_3390_app13064007
crossref_primary_10_3390_app13064007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Binding (ref_15) 2015; 60
Lee (ref_11) 2015; 169
Noble (ref_46) 2006; 24
ref_13
ref_12
Matthews (ref_30) 2011; 32
Xu (ref_28) 2019; 45
Cao (ref_4) 2023; 195
ref_52
Li (ref_26) 2021; 778
ref_51
ref_19
Akaike (ref_45) 1974; 19
Amani (ref_7) 2020; 13
ref_16
Hicks (ref_39) 2013; 185
Maciel (ref_21) 2021; 182
Lee (ref_20) 2020; 46
Cao (ref_23) 2017; 192
Fee (ref_2) 1996; 41
Kim (ref_25) 2021; 602
Alikas (ref_24) 2017; 77
Pahlevan (ref_9) 2014; 154
Li (ref_18) 2020; 590
Cui (ref_48) 2021; 29
Li (ref_35) 2022; 56
Zhao (ref_47) 2021; 1948
Waegeman (ref_50) 2021; 110
Olmanson (ref_40) 2011; 47
Lathrop (ref_42) 1996; 53
Deutsch (ref_17) 2022; 826
Wu (ref_43) 2008; 29
Paul (ref_8) 2023; 110
ref_34
ref_33
Kabiri (ref_53) 2016; 125
Sagan (ref_27) 2020; 205
Olmanson (ref_32) 2016; 185
Kloiber (ref_36) 2002; 82
Olmanson (ref_44) 2008; 112
He (ref_22) 2022; 215
Zhang (ref_37) 2021; 192
Deutsch (ref_38) 2018; 190
Song (ref_31) 2020; 243
ref_41
Rose (ref_1) 2017; 27
ref_3
Page (ref_10) 2019; 231
Cai (ref_6) 2023; 856
ref_49
Roy (ref_14) 2022; 43
ref_5
Ma (ref_29) 2010; 54
References_xml – volume: 602
  start-page: 126817
  year: 2021
  ident: ref_25
  article-title: Augmentation of limited input data using an artificial neural network method to improve the accuracy of water quality modeling in a large lake
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126817
– volume: 192
  start-page: 116844
  year: 2021
  ident: ref_37
  article-title: Remote sensing estimation of water clarity for various lakes in China
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.116844
– volume: 45
  start-page: 454
  year: 2019
  ident: ref_28
  article-title: A spectral space partition guided ensemble method for retrieving chlorophyll-a concentration in inland waters from Sentinel-2A satellite imagery
  publication-title: J. Great Lakes Res.
  doi: 10.1016/j.jglr.2018.09.002
– volume: 112
  start-page: 4086
  year: 2008
  ident: ref_44
  article-title: A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.12.013
– volume: 47
  start-page: 1
  year: 2011
  ident: ref_40
  article-title: Evaluation of medium to low resolution satellite imagery for regional lake water quality assessments
  publication-title: Water Resour. Res.
  doi: 10.1029/2011WR011005
– volume: 110
  start-page: 7
  year: 2023
  ident: ref_8
  article-title: Suspended Particulate Matter Analysis of Pre and during Covid Lockdown Using Google Earth Engine Cloud Computing: A Case Study of Ukai Reservoir
  publication-title: Bull. Environ. Contam. Toxicol.
  doi: 10.1007/s00128-022-03638-9
– ident: ref_51
  doi: 10.3390/w10081020
– volume: 24
  start-page: 1565
  year: 2006
  ident: ref_46
  article-title: What is a support vector machine?
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1206-1565
– volume: 13
  start-page: 5326
  year: 2020
  ident: ref_7
  article-title: Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.3021052
– ident: ref_34
  doi: 10.3390/rs12081285
– volume: 826
  start-page: 153971
  year: 2022
  ident: ref_17
  article-title: Assessing the current water clarity status of similar to 100,000 lakes across southern Canada: A remote sensing approach
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.153971
– volume: 54
  start-page: 283
  year: 2010
  ident: ref_29
  article-title: China’s lakes at present: Number, area and spatial distribution
  publication-title: Sci. China Earth Sci.
  doi: 10.1007/s11430-010-4052-6
– volume: 856
  start-page: 158869
  year: 2023
  ident: ref_6
  article-title: A hybrid remote sensing approach for estimating chemical oxygen demand concentration in optically complex waters: A case study in inland lake waters in eastern China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.158869
– volume: 205
  start-page: 103187
  year: 2020
  ident: ref_27
  article-title: Monitoring inland water quality using remote sensing: Potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2020.103187
– ident: ref_49
  doi: 10.2172/1623354
– volume: 195
  start-page: 125
  year: 2023
  ident: ref_4
  article-title: Application and recent progress of inland water monitoring using remote sensing techniques
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-022-10690-9
– ident: ref_52
  doi: 10.3390/ijgi6110360
– volume: 27
  start-page: 632
  year: 2017
  ident: ref_1
  article-title: Annual precipitation regulates spatial and temporal drivers of lake water clarity
  publication-title: Ecol. Appl.
  doi: 10.1002/eap.1471
– ident: ref_33
  doi: 10.3390/rs13163133
– volume: 243
  start-page: 111800
  year: 2020
  ident: ref_31
  article-title: Quantification of lake clarity in China using Landsat OLI imagery data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111800
– volume: 182
  start-page: 134
  year: 2021
  ident: ref_21
  article-title: Water clarity in Brazilian water assessed using Sentinel-2 and machine learning methods
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.10.009
– volume: 82
  start-page: 38
  year: 2002
  ident: ref_36
  article-title: A procedure for regional lake water clarity assessment using Landsat multispectral data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00022-6
– volume: 1948
  start-page: 012023
  year: 2021
  ident: ref_47
  article-title: Deep learning and Its Development
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1948/1/012023
– volume: 53
  start-page: 2250
  year: 1996
  ident: ref_42
  article-title: Water clarity in Lake Mendota since 1900: Responses to differing levels of nutrients and herbivory
  publication-title: Can. J. Fish. Aquat. Sci.
  doi: 10.1139/f96-187
– ident: ref_19
  doi: 10.3390/rs13081434
– volume: 110
  start-page: 457
  year: 2021
  ident: ref_50
  article-title: Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-021-05946-3
– ident: ref_12
  doi: 10.1007/s11356-023-25159-6
– volume: 169
  start-page: 139
  year: 2015
  ident: ref_11
  article-title: Secchi disk depth: A new theory and mechanistic model for underwater visibility
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.08.002
– volume: 192
  start-page: 98
  year: 2017
  ident: ref_23
  article-title: Climate- and human-induced changes in suspended particulate matter over Lake Hongze on short and long timescales
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.02.007
– volume: 41
  start-page: 912
  year: 1996
  ident: ref_2
  article-title: Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1996.41.5.0912
– volume: 125
  start-page: 44
  year: 2016
  ident: ref_53
  article-title: Landsat-8 imagery to estimate clarity in near-shore coastal waters: Feasibility study—Chabahar Bay, Iran
  publication-title: Cont. Shelf Res.
  doi: 10.1016/j.csr.2016.06.016
– volume: 590
  start-page: 125476
  year: 2020
  ident: ref_18
  article-title: Analysis of water clarity decrease in Xin’anjiang Reservoir, China, from 30-Year Landsat TM, ETM+, and OLI observations
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125476
– volume: 56
  start-page: 102711
  year: 2022
  ident: ref_35
  article-title: Evaluation of seven atmospheric correction algorithms for OLCI images over the coastal waters of Qinhuangdao in Bohai Sea
  publication-title: Reg. Stud. Mar. Sci.
– ident: ref_41
  doi: 10.1117/12.2207858
– ident: ref_16
  doi: 10.3390/rs13071257
– ident: ref_3
  doi: 10.1109/FCC.2009.30
– volume: 154
  start-page: 272
  year: 2014
  ident: ref_9
  article-title: On-orbit radiometric characterization of OLI (Landsat-8) for applications in aquatic remote sensing
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.08.001
– volume: 77
  start-page: 218
  year: 2017
  ident: ref_24
  article-title: Improved retrieval of Secchi depth for optically-complex waters using remote sensing data
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2017.02.007
– volume: 43
  start-page: 3628
  year: 2022
  ident: ref_14
  article-title: Suspended particulate matter and secchi disk depth in the Chilika Lagoon from in situ and remote sensing data: A modified semi-analytical approach
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2022.2102953
– volume: 778
  start-page: 146271
  year: 2021
  ident: ref_26
  article-title: Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.146271
– volume: 215
  start-page: 118241
  year: 2022
  ident: ref_22
  article-title: Water clarity mapping of global lakes using a novel hybrid deep-learning-based recurrent model with Landsat OLI images
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118241
– ident: ref_13
  doi: 10.3390/rs14133094
– volume: 46
  start-page: 1501
  year: 2020
  ident: ref_20
  article-title: Using machine learning to model and predict water clarity in the Great Lakes
  publication-title: J. Great Lakes Res.
  doi: 10.1016/j.jglr.2020.07.022
– volume: 231
  start-page: 111284
  year: 2019
  ident: ref_10
  article-title: A harmonized image processing workflow using Sentinel-2/MSI and Landsat-8/OLI for mapping water clarity in optically variable lake systems
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111284
– volume: 60
  start-page: 1976
  year: 2015
  ident: ref_15
  article-title: Long term water clarity changes in North America’s Great Lakes from multi-sensor satellite observations
  publication-title: Limnol. Oceanogr.
  doi: 10.1002/lno.10146
– volume: 185
  start-page: 7245
  year: 2013
  ident: ref_39
  article-title: Hindcasting water clarity from Landsat satellite images of unmonitored shallow lakes in the Waikato region, New Zealand
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-013-3098-2
– volume: 29
  start-page: 2183
  year: 2008
  ident: ref_43
  article-title: Comparison of MODIS and Landsat TM5 images for mapping tempo–spatial dynamics of Secchi disk depths in Poyang Lake National Nature Reserve, China
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160701422254
– ident: ref_5
  doi: 10.3390/rs15010018
– volume: 185
  start-page: 119
  year: 2016
  ident: ref_32
  article-title: Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.01.007
– volume: 19
  start-page: 716
  year: 1974
  ident: ref_45
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1974.1100705
– volume: 190
  start-page: 141
  year: 2018
  ident: ref_38
  article-title: Monitoring water quality in a hypereutrophic reservoir using Landsat ETM+ and OLI sensors: How transferable are the water quality algorithms?
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-018-6506-9
– volume: 29
  start-page: 4401
  year: 2021
  ident: ref_48
  article-title: Deep learning-based remote sensing estimation of water transparency in shallow lakes by combining Landsat 8 and Sentinel 2 images
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-16004-9
– volume: 32
  start-page: 6855
  year: 2011
  ident: ref_30
  article-title: A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2010.512947
SSID ssj0000913810
Score 2.2751014
Snippet Secchi depth (SD) is a valuable and feasible water quality indicator of lake eutrophication. The establishment of an automated system with efficient image...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4007
SubjectTerms ACOLITE algorithm
Algorithms
Datasets
Earth resources technology satellites
empirical regression
Image processing
Lakes
Landsat image
Landsat satellites
Machine learning
Methods
Quality control
Remote sensing
Secchi depth
Time series
water clarity
Water quality
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT3BAtIBYKGgOlfiQIpyN7djctmhLhShChYreLMd20optUm2XA_-An82M45YcQFyQ9hCtJokzHnvmJTNvGNsTsjIaA3WEqaItBMoUTgZX1G0pSqfaUCay56OP6vBEvD-Vp5NWX5QTNtIDj4p7Xbm5cHoenJFB1IqbVqAT8ka70EgnUh05-rwJmEp7sCmJumosyKsQ19P34JKibU6NYycuKDH1_20_Tk7m4B67m6NDWIyj2ma3Yr_D7kw4A3fYdl6NV_AiU0a_vM9-HscuvdOD44i6j_CZ8tL7DoYWPrhvEb5iSLmGkcmcyr_8D9hH_xVg6OHdMHSrCEvUxRmM93oDn34XFNBFlheX54lMBBarblifb84uwPUBjlIuZoRM09o9YCcHyy9vD4vcY6Hwglcb3F9E4yJ6fUTCRjhXcROVpp-Xsg144OtG8qbUjvOgnTe-aRyvG0QWMQRfPWRb_dDHRwzw3Eq3wSuvMCyIEWE3D2XQCJI0n8dyxl5dq936TEBOfTBWFoEIzZGdzNGM7d0IX468G38W26f5uxEhsuz0B5qQzSZk_2VCM_acZt_SksYBeZcrE_CxiBzLLmpJmWVK8RnbvTYQm9f6lZ3XBg3aCCUe_4_RPGG3qaX9mOe2y7Y26-_xKQY-m-ZZsvFfaosAAw
  priority: 102
  providerName: Directory of Open Access Journals
Title Regional Remote Sensing of Lake Water Transparency Based on Google Earth Engine: Performance of Empirical Algorithm and Machine Learning
URI https://www.proquest.com/docview/2791589464
https://doaj.org/article/3a24a82da95d47609f4240c98adb5a47
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdY9wIPiA0QhVHdwyQ-pAinsROHF9SidhNi01SY2Fvk2E420SWlLQ_8B_zZ3Dlu1wdAykOU2Pm4O5_vzuffMXYsZJIrNNTRTRVVJLBNpKXVUVbFItZpZWMP9nx2np5eik9X8ioE3FYhrXKjE72itq2hGPm7YZZjt1yk4sPiR0RVo2h1NZTQ2GP7qIKV6rH98eT8YraNshDqpYp5tzEvQf-e1oVjsro5FZDdmYo8Yv-_9LKfbKaP2MNgJcKoY-sBu-eaQ_ZgBzvwkB2EUbmC1wE6-s1j9nvmah_bg5lDHjj4QvnpTQ1tBZ_1dwff0LRcQodoTtvAzC8Y4zxmoW3gpG3ruYMJCtM1dO96Dxd3GwvoIZPbxY0HFYHRvEbyrK9vQTcWznxOpoMA11o_YZfTydePp1GotRAZwZM16hlRaieJiEhkrROeu1TRYaSsLJ6YrJS8jJXm3CptclOWmmclehjOWpM8Zb2mbdwzBtg3UZU1qUnRPHAO3W9uY6vQWVJ86OI-e7she2ECEDnVw5gX6JAQj4odHvXZ8bbxosPf-HuzMfFv24RAs_2FdlkXYQwWiR4KrYZW59KKLOV5JdCeMbnStpRa4ENeEfcLGtr4QUaHHQr4WwSSVYwySRlmacr77GgjIEUY86viTkKf___2C3afitZ3mWxHrLde_nQv0bRZlwO2p6YngyDFAx8g-AOY8vsX
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VcgAOiBYQgQJzKOJHsljba3uNhFAKSVOaVKi0am_LenftIlI7JEGob8DT8IzM2E6aA3CrlIMVr9eJZ3bmm_XMN4xtiyhMJQJ1DFNF7gkc4-nIai_JfeHrOLd-TfY8OogHx-LjaXS6xn4vamEorXJhE2tDbStDe-SvgyTFy1IRi3eT7x51jaK3q4sWGo1a7LuLnxiyzd7ufUD5PguCfu_o_cBruwp4RvBwjitKZNqhn8PYLxVahzx1saSPiaLc4oFJsohnvtScW6lNarJM8yRDLO2sNSHOe41dFyF6cqpM7-8u93SIY1P6vCkDxPOc3kL7hPE5tatdcXx1f4B_eYHatfXvsNstJoVuo0QbbM2Vm-zWClPhJttobcAMXrRE1S_vsl-Hrqh3EuHQocQdfKZs-LKAKoeh_ubgBIHsFBr-dCo6Mxewg17TQlXCblUVYwc9VN0zaO71Bj5dljHQJL3zydeawgS64wKFMT87B11aGNUZoA5actjiHju-EhncZ-tlVboHDPDaUObWxCZGMOIcBvvc-lZiaCZ54PwOe7V47Mq0tOfUfWOsMPwhGakVGXXY9nLwpGH7-PuwHZLfcghRdNdfVNNCtStehToQWgZWp5EVSczTXCB6MqnUNou0wEmek_QVGRL8QUa39RD4t4iSS3WTiPLZ4ph32NZCQVRrYWbqcj08_P_pp-zG4Gg0VMO9g_1H7GaAIK3Jodti6_PpD_cYQdU8e1JrMrAvV710_gDpeDYR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyH2gNgA0THAD0NcpGhO4iQOEkIta9nYVlWFaXszju1kiC4pbRHaP-A38es4J3G7PgBvk_pQtY57ObfvOOd8h5BdHoWpAKAOaSrPPQ5rPBUZ5SW5z30V58avyZ5PBvHBKf94Hp2vkd-LXhgsq1z4xNpRm0rjGflekKRwWcpjvpe7sojhfv_d5LuHE6TwTutinEajIkf26iekb7O3h_sg6-dB0O99fn_guQkDnuYsnIN18UxZiHmQB6ZcqZClNhb40FGUG3iikyximS8UY0YoneosUyzJAFdbY3QI-94i6wlmRS2y3u0NhqPlCQ8ybgqfNU2BYZgyvCftI-JnOLx2JQzW0wL-FRPqQNe_R-46hEo7jUptkjVbbpGNFd7CLbLpPMKMvnS01a_uk18jW9TninRkQf6WfsLa-LKgVU6P1TdLzwDWTmnDpo4taPqKdiGGGlqV9ENVFWNLe6DIF7T5rDd0eN3UgJv0Lidfa0IT2hkXII75xSVVpaEndT2opY4qtnhATm9ECg9Jq6xK-4hQuDYUudGxjgGaWAupPzO-EZCoCRZYv01eL_52qR0JOs7iGEtIhlBGckVGbbK7XDxpuD_-vqyL8lsuQcLu-oVqWkhn_zJUAVciMCqNDE9iluYcsJROhTJZpDhs8gKlL9GtwBfSynVHwM9Cgi7ZSSKsbotj1iY7CwWRzt_M5LV1bP__7WfkNpiNPD4cHD0mdwJAbE1B3Q5pzac_7BNAWPPsqVNlSr7ctPX8AVZEO6M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regional+Remote+Sensing+of+Lake+Water+Transparency+Based+on+Google+Earth+Engine%3A+Performance+of+Empirical+Algorithm+and+Machine+Learning&rft.jtitle=Applied+sciences&rft.au=Zeng%2C+Weizhong&rft.au=Xu%2C+Ke&rft.au=Cheng%2C+Sihang&rft.au=Zhao%2C+Lei&rft.date=2023-03-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=6&rft.spage=4007&rft_id=info:doi/10.3390%2Fapp13064007&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon