NETWORK CLASSIFICATION WITH APPLICATIONS TO BRAIN CONNECTOMICS
While statistical analysis of a single network has received a lot of attention in recent years, with a focus on social networks, analysis of a sample of networks presents its own challenges which require a different set of analytic tools. Here we study the problem of classification of networks with...
Saved in:
Published in | The annals of applied statistics Vol. 13; no. 3; p. 1648 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.09.2019
|
Subjects | |
Online Access | Get more information |
ISSN | 1932-6157 |
DOI | 10.1214/19-AOAS1252 |
Cover
Loading…
Abstract | While statistical analysis of a single network has received a lot of attention in recent years, with a focus on social networks, analysis of a sample of networks presents its own challenges which require a different set of analytic tools. Here we study the problem of classification of networks with labeled nodes, motivated by applications in neuroimaging. Brain networks are constructed from imaging data to represent functional connectivity between regions of the brain, and previous work has shown the potential of such networks to distinguish between various brain disorders, giving rise to a network classification problem. Existing approaches tend to either treat all edge weights as a long vector, ignoring the network structure, or focus on graph topology as represented by summary measures while ignoring the edge weights. Our goal is to design a classification method that uses both the individual edge information and the network structure of the data in a computationally efficient way, and that can produce a parsimonious and interpretable representation of differences in brain connectivity patterns between classes. We propose a graph classification method that uses edge weights as predictors but incorporates the network nature of the data via penalties that promote sparsity in the number of nodes, in addition to the usual sparsity penalties that encourage selection of edges. We implement the method via efficient convex optimization and provide a detailed analysis of data from two fMRI studies of schizophrenia. |
---|---|
AbstractList | While statistical analysis of a single network has received a lot of attention in recent years, with a focus on social networks, analysis of a sample of networks presents its own challenges which require a different set of analytic tools. Here we study the problem of classification of networks with labeled nodes, motivated by applications in neuroimaging. Brain networks are constructed from imaging data to represent functional connectivity between regions of the brain, and previous work has shown the potential of such networks to distinguish between various brain disorders, giving rise to a network classification problem. Existing approaches tend to either treat all edge weights as a long vector, ignoring the network structure, or focus on graph topology as represented by summary measures while ignoring the edge weights. Our goal is to design a classification method that uses both the individual edge information and the network structure of the data in a computationally efficient way, and that can produce a parsimonious and interpretable representation of differences in brain connectivity patterns between classes. We propose a graph classification method that uses edge weights as predictors but incorporates the network nature of the data via penalties that promote sparsity in the number of nodes, in addition to the usual sparsity penalties that encourage selection of edges. We implement the method via efficient convex optimization and provide a detailed analysis of data from two fMRI studies of schizophrenia. |
Author | Arroyo Relión, Jesús D Levina, Elizaveta Taylor, Stephan F Kessler, Daniel |
Author_xml | – sequence: 1 givenname: Jesús D surname: Arroyo Relión fullname: Arroyo Relión, Jesús D organization: Johns Hopkins University – sequence: 2 givenname: Daniel surname: Kessler fullname: Kessler, Daniel organization: University of Michigan – sequence: 3 givenname: Elizaveta surname: Levina fullname: Levina, Elizaveta organization: University of Michigan – sequence: 4 givenname: Stephan F surname: Taylor fullname: Taylor, Stephan F organization: University of Michigan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33408802$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j01LwzAch3OYuBc9eZd8gWr-ee9FiKFzYV0z1siOo01TUNwcqx727RWcpx888Dzwm6LR4fOQELoD8gAU-CPkmfGmBiroCE0gZzSTINQYTYfhnRDBNYdrNGaME60JnaCnqghbv1liW5q6dnNnTXC-wlsXFtis1-UF1Dh4_LwxrsLWV1Vhg185W9-gq775GNLtZWfodV4Eu8hK__JrllnkhH1lTMYouGolI13LOLSxB0655H2nNVNJ6tSoXACkKNo-yU52ea5BKwZKRqroDN3_dY_f7T51u-Ppbd-czrv_I_QHfmZCww |
CitedBy_id | crossref_primary_10_1080_02664763_2021_1884847 crossref_primary_10_1080_10618600_2025_2475137 crossref_primary_10_1109_ACCESS_2020_3032391 crossref_primary_10_1017_nws_2020_39 crossref_primary_10_1214_22_AOAS1612 crossref_primary_10_1214_22_AOAS1623 crossref_primary_10_1002_sta4_402 crossref_primary_10_1146_annurev_statistics_042720_023234 crossref_primary_10_1214_20_EJS1744 crossref_primary_10_1080_01621459_2020_1772079 crossref_primary_10_1214_22_AOAS1709 crossref_primary_10_1214_23_BA1378 crossref_primary_10_1016_j_mri_2024_110251 crossref_primary_10_1214_23_AOAS1789 crossref_primary_10_1016_j_schres_2021_11_036 crossref_primary_10_1080_00401706_2024_2321930 crossref_primary_10_1016_j_neuroimage_2020_117493 crossref_primary_10_1007_s10618_021_00784_2 crossref_primary_10_1016_j_neunet_2024_106771 crossref_primary_10_1214_19_AOS1820 crossref_primary_10_1016_j_conb_2019_04_005 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1214/19-AOAS1252 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Mathematics |
ExternalDocumentID | 33408802 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH064148 – fundername: NCRR NIH HHS grantid: UL1 RR024986 – fundername: NIMH NIH HHS grantid: R21 MH086701 – fundername: NIMH NIH HHS grantid: R21 MH101676 |
GroupedDBID | 123 23M 2AX 6J9 AAKYL ABBHK ABFAN ABQDR ABXSQ ABYWD ABZEH ACDIW ACGFO ACMTB ACTMH ADODI ADULT AELLO AELPN AENEX AETVE AEUPB AFFOW AFVYC AIHAF AKBRZ ALMA_UNASSIGNED_HOLDINGS ALRMG AS~ BHOJU CS3 DQDLB DSRWC EBS ECEWR EJD F5P FEDTE GIFXF GR0 HDK HQ6 HVGLF IPSME J9A JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST NPM OK1 P2P PUASD RBU RNS RPE SA0 SJN TN5 WHG WS9 |
ID | FETCH-LOGICAL-c403t-36cc547b630db341bcf142464fd8837e68ea79511ec5bfe6d6d9981873176c272 |
ISSN | 1932-6157 |
IngestDate | Wed Feb 19 02:29:53 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | variable selection fMRI data graph classification high-dimensional data |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c403t-36cc547b630db341bcf142464fd8837e68ea79511ec5bfe6d6d9981873176c272 |
OpenAccessLink | https://projecteuclid.org/journals/annals-of-applied-statistics/volume-13/issue-3/Network-classification-with-applications-to-brain-connectomics/10.1214/19-AOAS1252.pdf |
PMID | 33408802 |
ParticipantIDs | pubmed_primary_33408802 |
PublicationCentury | 2000 |
PublicationDate | 2019-Sep |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-Sep |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The annals of applied statistics |
PublicationTitleAlternate | Ann Appl Stat |
PublicationYear | 2019 |
SSID | ssj0054841 |
Score | 2.446828 |
Snippet | While statistical analysis of a single network has received a lot of attention in recent years, with a focus on social networks, analysis of a sample of... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 1648 |
Title | NETWORK CLASSIFICATION WITH APPLICATIONS TO BRAIN CONNECTOMICS |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33408802 |
Volume | 13 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFA1TQfRB_P6WPvg2qu2Spc2L0I2N-dWKVvRN0jYFBbehU9AX_7o3SddUmaC-lK0Zpd053Jyb3nOD0D5hgsHUw23X9YQN821qcy8TtkwtCOOAuPJxn4e0d01Obpu3tdpHpWrpZZQcpO8TfSX_QRXOAa7SJfsHZMuLwgn4DPjCERCG468wDjvxTXR5Wm-fBRAUu4UpGJLyuFcPLi6MSziO6q3L4Dist6Mw7LRjs3Xhg2ELL3sp80KaSreRbuRsePE0eBuoQmb5ir2FtbUDYo38FjybAuJTKWE1H7SN3ZT-vN5rI5oqKXsVo3JmMMsHqvgMQk-3uirhmrKrcSAFXQhpqW4-XUZaXGEUroRNyNn8ifG84RK5tMDsIAquQIs1qr8CMIaPClqMCURL5xej35prj4em0BSkGXLfVLnYoydyyOXUxqfloxT2Trinw8odzaHZ8VW-pSZKosSLaKHILaxAE2UJ1UR_Gc2fl415n1fQUUEZ6ytlLEkZq0oZK44sRRmrSplVdN3txO2eXWyhYafEwSMb0zRtEi-h2MkSECxJmktrIyV55vvYE9QX3AOR7Yq0meSCZjSD_Nv1PZCVNG14jTU03R_0xQayXMxdh_mOYIwTjDNGKGM5zbh8Fdz08020rh_-bqj7pNyN_5atH0e20Zwhzw6ayYHmYhdU3ijZU1h8Al8fQSI |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NETWORK+CLASSIFICATION+WITH+APPLICATIONS+TO+BRAIN+CONNECTOMICS&rft.jtitle=The+annals+of+applied+statistics&rft.au=Arroyo+Reli%C3%B3n%2C+Jes%C3%BAs+D&rft.au=Kessler%2C+Daniel&rft.au=Levina%2C+Elizaveta&rft.au=Taylor%2C+Stephan+F&rft.date=2019-09-01&rft.issn=1932-6157&rft.volume=13&rft.issue=3&rft.spage=1648&rft_id=info:doi/10.1214%2F19-AOAS1252&rft_id=info%3Apmid%2F33408802&rft_id=info%3Apmid%2F33408802&rft.externalDocID=33408802 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6157&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6157&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6157&client=summon |