NETWORK CLASSIFICATION WITH APPLICATIONS TO BRAIN CONNECTOMICS

While statistical analysis of a single network has received a lot of attention in recent years, with a focus on social networks, analysis of a sample of networks presents its own challenges which require a different set of analytic tools. Here we study the problem of classification of networks with...

Full description

Saved in:
Bibliographic Details
Published inThe annals of applied statistics Vol. 13; no. 3; p. 1648
Main Authors Arroyo Relión, Jesús D, Kessler, Daniel, Levina, Elizaveta, Taylor, Stephan F
Format Journal Article
LanguageEnglish
Published United States 01.09.2019
Subjects
Online AccessGet more information
ISSN1932-6157
DOI10.1214/19-AOAS1252

Cover

Loading…
Abstract While statistical analysis of a single network has received a lot of attention in recent years, with a focus on social networks, analysis of a sample of networks presents its own challenges which require a different set of analytic tools. Here we study the problem of classification of networks with labeled nodes, motivated by applications in neuroimaging. Brain networks are constructed from imaging data to represent functional connectivity between regions of the brain, and previous work has shown the potential of such networks to distinguish between various brain disorders, giving rise to a network classification problem. Existing approaches tend to either treat all edge weights as a long vector, ignoring the network structure, or focus on graph topology as represented by summary measures while ignoring the edge weights. Our goal is to design a classification method that uses both the individual edge information and the network structure of the data in a computationally efficient way, and that can produce a parsimonious and interpretable representation of differences in brain connectivity patterns between classes. We propose a graph classification method that uses edge weights as predictors but incorporates the network nature of the data via penalties that promote sparsity in the number of nodes, in addition to the usual sparsity penalties that encourage selection of edges. We implement the method via efficient convex optimization and provide a detailed analysis of data from two fMRI studies of schizophrenia.
AbstractList While statistical analysis of a single network has received a lot of attention in recent years, with a focus on social networks, analysis of a sample of networks presents its own challenges which require a different set of analytic tools. Here we study the problem of classification of networks with labeled nodes, motivated by applications in neuroimaging. Brain networks are constructed from imaging data to represent functional connectivity between regions of the brain, and previous work has shown the potential of such networks to distinguish between various brain disorders, giving rise to a network classification problem. Existing approaches tend to either treat all edge weights as a long vector, ignoring the network structure, or focus on graph topology as represented by summary measures while ignoring the edge weights. Our goal is to design a classification method that uses both the individual edge information and the network structure of the data in a computationally efficient way, and that can produce a parsimonious and interpretable representation of differences in brain connectivity patterns between classes. We propose a graph classification method that uses edge weights as predictors but incorporates the network nature of the data via penalties that promote sparsity in the number of nodes, in addition to the usual sparsity penalties that encourage selection of edges. We implement the method via efficient convex optimization and provide a detailed analysis of data from two fMRI studies of schizophrenia.
Author Arroyo Relión, Jesús D
Levina, Elizaveta
Taylor, Stephan F
Kessler, Daniel
Author_xml – sequence: 1
  givenname: Jesús D
  surname: Arroyo Relión
  fullname: Arroyo Relión, Jesús D
  organization: Johns Hopkins University
– sequence: 2
  givenname: Daniel
  surname: Kessler
  fullname: Kessler, Daniel
  organization: University of Michigan
– sequence: 3
  givenname: Elizaveta
  surname: Levina
  fullname: Levina, Elizaveta
  organization: University of Michigan
– sequence: 4
  givenname: Stephan F
  surname: Taylor
  fullname: Taylor, Stephan F
  organization: University of Michigan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33408802$$D View this record in MEDLINE/PubMed
BookMark eNo1j01LwzAch3OYuBc9eZd8gWr-ee9FiKFzYV0z1siOo01TUNwcqx727RWcpx888Dzwm6LR4fOQELoD8gAU-CPkmfGmBiroCE0gZzSTINQYTYfhnRDBNYdrNGaME60JnaCnqghbv1liW5q6dnNnTXC-wlsXFtis1-UF1Dh4_LwxrsLWV1Vhg185W9-gq775GNLtZWfodV4Eu8hK__JrllnkhH1lTMYouGolI13LOLSxB0655H2nNVNJ6tSoXACkKNo-yU52ea5BKwZKRqroDN3_dY_f7T51u-Ppbd-czrv_I_QHfmZCww
CitedBy_id crossref_primary_10_1080_02664763_2021_1884847
crossref_primary_10_1080_10618600_2025_2475137
crossref_primary_10_1109_ACCESS_2020_3032391
crossref_primary_10_1017_nws_2020_39
crossref_primary_10_1214_22_AOAS1612
crossref_primary_10_1214_22_AOAS1623
crossref_primary_10_1002_sta4_402
crossref_primary_10_1146_annurev_statistics_042720_023234
crossref_primary_10_1214_20_EJS1744
crossref_primary_10_1080_01621459_2020_1772079
crossref_primary_10_1214_22_AOAS1709
crossref_primary_10_1214_23_BA1378
crossref_primary_10_1016_j_mri_2024_110251
crossref_primary_10_1214_23_AOAS1789
crossref_primary_10_1016_j_schres_2021_11_036
crossref_primary_10_1080_00401706_2024_2321930
crossref_primary_10_1016_j_neuroimage_2020_117493
crossref_primary_10_1007_s10618_021_00784_2
crossref_primary_10_1016_j_neunet_2024_106771
crossref_primary_10_1214_19_AOS1820
crossref_primary_10_1016_j_conb_2019_04_005
ContentType Journal Article
DBID NPM
DOI 10.1214/19-AOAS1252
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 33408802
Genre Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH064148
– fundername: NCRR NIH HHS
  grantid: UL1 RR024986
– fundername: NIMH NIH HHS
  grantid: R21 MH086701
– fundername: NIMH NIH HHS
  grantid: R21 MH101676
GroupedDBID 123
23M
2AX
6J9
AAKYL
ABBHK
ABFAN
ABQDR
ABXSQ
ABYWD
ABZEH
ACDIW
ACGFO
ACMTB
ACTMH
ADODI
ADULT
AELLO
AELPN
AENEX
AETVE
AEUPB
AFFOW
AFVYC
AIHAF
AKBRZ
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AS~
BHOJU
CS3
DQDLB
DSRWC
EBS
ECEWR
EJD
F5P
FEDTE
GIFXF
GR0
HDK
HQ6
HVGLF
IPSME
J9A
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
NPM
OK1
P2P
PUASD
RBU
RNS
RPE
SA0
SJN
TN5
WHG
WS9
ID FETCH-LOGICAL-c403t-36cc547b630db341bcf142464fd8837e68ea79511ec5bfe6d6d9981873176c272
ISSN 1932-6157
IngestDate Wed Feb 19 02:29:53 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords variable selection
fMRI data
graph classification
high-dimensional data
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c403t-36cc547b630db341bcf142464fd8837e68ea79511ec5bfe6d6d9981873176c272
OpenAccessLink https://projecteuclid.org/journals/annals-of-applied-statistics/volume-13/issue-3/Network-classification-with-applications-to-brain-connectomics/10.1214/19-AOAS1252.pdf
PMID 33408802
ParticipantIDs pubmed_primary_33408802
PublicationCentury 2000
PublicationDate 2019-Sep
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-Sep
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The annals of applied statistics
PublicationTitleAlternate Ann Appl Stat
PublicationYear 2019
SSID ssj0054841
Score 2.446828
Snippet While statistical analysis of a single network has received a lot of attention in recent years, with a focus on social networks, analysis of a sample of...
SourceID pubmed
SourceType Index Database
StartPage 1648
Title NETWORK CLASSIFICATION WITH APPLICATIONS TO BRAIN CONNECTOMICS
URI https://www.ncbi.nlm.nih.gov/pubmed/33408802
Volume 13
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFA1TQfRB_P6WPvg2qu2Spc2L0I2N-dWKVvRN0jYFBbehU9AX_7o3SddUmaC-lK0Zpd053Jyb3nOD0D5hgsHUw23X9YQN821qcy8TtkwtCOOAuPJxn4e0d01Obpu3tdpHpWrpZZQcpO8TfSX_QRXOAa7SJfsHZMuLwgn4DPjCERCG468wDjvxTXR5Wm-fBRAUu4UpGJLyuFcPLi6MSziO6q3L4Dist6Mw7LRjs3Xhg2ELL3sp80KaSreRbuRsePE0eBuoQmb5ir2FtbUDYo38FjybAuJTKWE1H7SN3ZT-vN5rI5oqKXsVo3JmMMsHqvgMQk-3uirhmrKrcSAFXQhpqW4-XUZaXGEUroRNyNn8ifG84RK5tMDsIAquQIs1qr8CMIaPClqMCURL5xej35prj4em0BSkGXLfVLnYoydyyOXUxqfloxT2Trinw8odzaHZ8VW-pSZKosSLaKHILaxAE2UJ1UR_Gc2fl415n1fQUUEZ6ytlLEkZq0oZK44sRRmrSplVdN3txO2eXWyhYafEwSMb0zRtEi-h2MkSECxJmktrIyV55vvYE9QX3AOR7Yq0meSCZjSD_Nv1PZCVNG14jTU03R_0xQayXMxdh_mOYIwTjDNGKGM5zbh8Fdz08020rh_-bqj7pNyN_5atH0e20Zwhzw6ayYHmYhdU3ijZU1h8Al8fQSI
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NETWORK+CLASSIFICATION+WITH+APPLICATIONS+TO+BRAIN+CONNECTOMICS&rft.jtitle=The+annals+of+applied+statistics&rft.au=Arroyo+Reli%C3%B3n%2C+Jes%C3%BAs+D&rft.au=Kessler%2C+Daniel&rft.au=Levina%2C+Elizaveta&rft.au=Taylor%2C+Stephan+F&rft.date=2019-09-01&rft.issn=1932-6157&rft.volume=13&rft.issue=3&rft.spage=1648&rft_id=info:doi/10.1214%2F19-AOAS1252&rft_id=info%3Apmid%2F33408802&rft_id=info%3Apmid%2F33408802&rft.externalDocID=33408802
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6157&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6157&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6157&client=summon