Maximum likelihood estimation and inference for high dimensional generalized factor models with application to factor-augmented regressions
This paper reestablishes the main results in Bai (2003) and Bai and Ng (2006) for generalized factor models, with slightly stronger conditions on the relative magnitude of N (number of subjects) and T (number of time periods). Convergence rates of the estimated factor space and loading space and asy...
Saved in:
Published in | Journal of econometrics Vol. 229; no. 1; pp. 180 - 200 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.07.2022
Elsevier Sequoia S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper reestablishes the main results in Bai (2003) and Bai and Ng (2006) for generalized factor models, with slightly stronger conditions on the relative magnitude of N (number of subjects) and T (number of time periods). Convergence rates of the estimated factor space and loading space and asymptotic normality of the estimated factors and loadings are established under mild conditions that allow for linear, Logit, Probit, Tobit, Poisson and some other single-index nonlinear models. The probability density/mass function is allowed to vary across subjects and time, thus mixed models are also allowed for. For factor-augmented regressions, this paper establishes the limit distributions of the parameter estimates, the conditional mean, and the forecast when factors estimated from nonlinear/mixed data are used as proxies for the true factors. |
---|---|
AbstractList | This paper reestablishes the main results in Bai (2003) and Bai and Ng (2006) for generalized factor models, with slightly stronger conditions on the relative magnitude of N (number of subjects) and T (number of time periods). Convergence rates of the estimated factor space and loading space and asymptotic normality of the estimated factors and loadings are established under mild conditions that allow for linear, Logit, Probit, Tobit, Poisson and some other single-index nonlinear models. The probability density/mass function is allowed to vary across subjects and time, thus mixed models are also allowed for. For factor-augmented regressions, this paper establishes the limit distributions of the parameter estimates, the conditional mean, and the forecast when factors estimated from nonlinear/mixed data are used as proxies for the true factors. |
Author | Wang, Fa |
Author_xml | – sequence: 1 givenname: Fa surname: Wang fullname: Wang, Fa email: fa.wang@pku.edu.cn organization: School of Economics, Peking University, 5 Yiheyuan Road, Haidian District, Beijing, 100871, China |
BookMark | eNqFkc2KFDEUhYOMYM_oIwgBN26qzW_94EJkUEcYcaPrEJOb7pSppE1SjvoKvrRpu1ezmVUgfN-Bc88luogpAkLPKdlSQvtX83YGk2Jatoyw9ke3hLBHaEPHgXX9OMkLtCGciE6QoX-CLkuZCSFSjHyD_n7Sv_yyLjj47xD8PiWLoVS_6OpTxDpa7KODDNEAdinjvd_tsfULxNIAHfAOImQd_B-w2GlTG7MkC6HgO1_3WB8OwZtTWk1notPrriXUpmTYZSjHrPIUPXY6FHh2fq_Q1_fvvlzfdLefP3y8fnvbGUF47XhP6Tc7CceJo2D5SAhILiQdRmYHJ0bDJoCxt0QwqRnRuneDlIxOxgATll-hl6fcQ04_1tZWLb4YCEFHSGtRTEwj43zqp4a-uIfOac2tdqMGKgZJJJONen2iTE6lZHDK-Pq_cs3aB0WJOg6lZnUeSh2HUpSqNlSz5T37kNv98-8HvTcnr90afnrIqhh_3Mn6DKYqm_wDCf8AuVW1aQ |
CitedBy_id | crossref_primary_10_1007_s11425_022_2253_2 crossref_primary_10_1016_j_jeconom_2025_105972 crossref_primary_10_2139_ssrn_4802579 crossref_primary_10_2139_ssrn_4791496 crossref_primary_10_1093_biomtc_ujae031 crossref_primary_10_1016_j_jeconom_2023_01_009 crossref_primary_10_1093_ectj_utae022 |
Cites_doi | 10.1111/j.1468-0262.2004.00533.x 10.1007/BF02296153 10.1111/j.2517-6161.1987.tb01422.x 10.1007/BF00049423 10.1162/REST_a_00393 10.1214/aoms/1177697731 10.1016/j.jeconom.2015.12.014 10.1080/07474938.2014.956625 10.1198/0003130042836 10.1016/j.jeconom.2017.08.009 10.1017/S0266466611000028 10.1016/j.jeconom.2019.04.026 10.1111/1467-937X.t01-1-00025 10.1111/j.1468-0262.2006.00696.x 10.1016/S1573-4412(05)80005-4 10.1111/1468-0262.00392 10.1111/j.2044-8317.1996.tb01091.x 10.1080/10618600.2000.10474858 10.1198/073500108000000051 10.1016/j.jeconom.2007.07.001 10.1016/S0304-4076(99)00044-5 10.1162/REST_a_00519 10.1016/j.jeconom.2011.02.003 10.1198/016214502388618960 10.1111/1468-0262.00273 10.1177/01466210022031679 10.1207/S15327906347-387 10.1016/j.jempfin.2006.05.002 10.1016/j.csda.2004.07.010 10.1080/00031305.2013.844203 10.1016/bs.hesmac.2016.04.002 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier Sequoia S.A. Jul 2022 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier Sequoia S.A. Jul 2022 |
DBID | AAYXX CITATION 8BJ FQK JBE 7S9 L.6 |
DOI | 10.1016/j.jeconom.2020.11.002 |
DatabaseName | CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Statistics Mathematics |
EISSN | 1872-6895 |
EndPage | 200 |
ExternalDocumentID | 10_1016_j_jeconom_2020_11_002 S0304407620303894 |
GroupedDBID | --K --M --Z -DZ -~X .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29K 3R3 4.4 41~ 457 4G. 5GY 5VS 63O 6P2 7-5 71M 8P~ 9JN 9JO AABCJ AABNK AACTN AAEDT AAEDW AAFFL AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAQFI AAQXK AAXUO AAYOK ABAOU ABEFU ABEHJ ABFNM ABFRF ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACHQT ACNCT ACRLP ACROA ADBBV ADEZE ADFHU ADGUI ADIYS ADMUD AEBSH AEFWE AEKER AENEX AETEA AEYQN AFFNX AFKWA AFODL AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIIAU AIKHN AITUG AJBFU AJOXV AJWLA ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AXLSJ AZFZN BEHZQ BEZPJ BGSCR BKOJK BKOMP BLXMC BNTGB BPUDD BULVW BZJEE CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMB HMJ HVGLF HZ~ H~9 IHE IXIXF J1W K-O KOM LPU LY5 M26 M41 MHUIS MO0 MS~ MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SCU SDF SDG SDP SEB SEE SES SEW SME SPC SPCBC SSB SSF SSW SSZ T5K TAE TN5 U5U UHB UQL VH1 WUQ YK3 YQT YYP ZCG ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADMHG ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 8BJ EFKBS FQK JBE 7S9 L.6 |
ID | FETCH-LOGICAL-c403t-3611bd94f30f1ed3800e53451782d7f48c29ee86d0425a20aa6f755219cce24d3 |
IEDL.DBID | .~1 |
ISSN | 0304-4076 |
IngestDate | Tue Aug 05 10:05:57 EDT 2025 Wed Aug 13 09:31:16 EDT 2025 Tue Jul 01 02:35:55 EDT 2025 Thu Apr 24 22:57:19 EDT 2025 Fri Feb 23 02:41:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | High dimension Factor model C13 C35 Factor-augmented regression Mixed measurement Maximum likelihood Forecasting |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c403t-3611bd94f30f1ed3800e53451782d7f48c29ee86d0425a20aa6f755219cce24d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2714750525 |
PQPubID | 45228 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_2498233969 proquest_journals_2714750525 crossref_citationtrail_10_1016_j_jeconom_2020_11_002 crossref_primary_10_1016_j_jeconom_2020_11_002 elsevier_sciencedirect_doi_10_1016_j_jeconom_2020_11_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of econometrics |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier Sequoia S.A |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Sequoia S.A |
References | Bai, Li (b2) 2012; 43 Moustaki (b36) 2000; 24 Collins, Dasgupta, Schapire (b14) 2001 Hunter, Lange (b25) 2004; 58 Ross (b40) 1976; 13 Lancaster (b32) 2002; 69 Hahn, Kuersteiner (b23) 2011; 27 Moustaki (b35) 1996; 49 Bai, Ng (b4) 2002; 70 Bohning, Lindsay (b9) 1988; 40 Bernanke, Boivin, Eliasz (b8) 2005; 120 Bartholomew (b6) 1980; 29 Chen (b11) 2016 Jennrich (b26) 1969; 40 Koopman, Lucas, Monteiro (b29) 2008; 142 McNeil, Wendin (b34) 2007; 14 Moustaki, Knott (b37) 2000; 65 Campbell, Lo, Mackinlay (b10) 1997 Fernandez-Val, Weidner (b21) 2016; 192 Koopman, Lucas (b28) 2008; 26 Bai, Li (b3) 2016; 98 Fan, Xue, Yao (b19) 2017; 201 Creal, Schwaab, Koopman, Lucas (b16) 2014; 96 Feng, Wang, Han, Xia, Tu (b20) 2013; 67 Newey, McFadden (b38) 1994 Filmer, Pritchett (b22) 2001; 38 Chen, Fernandez-Val, Weidner (b13) 2020 Bartholomew, Knott (b7) 1999 Cox, Reid (b15) 1987 Bai, Ng (b5) 2006; 74 Schein, ., Saul, ., Ungar, ., 2003. A generalized linear model for principal component analysis of binary data, In: Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics. Chen, Fernandez-Val, Weidner (b12) 2014 Bai (b1) 2003; 71 Koopman, Lucas, Schwaab (b30) 2011; 162 Stock, Watson (b43) 2002; 97 Lange, Hunter, Young (b33) 2000; 9 Stock, Watson (b44) 2016 Wu (b45) 1981; 50 Joreskog, Moustaki (b27) 2001; 36 Fan, Gong, Zhu (b18) 2019; 212 Hahn, Newey (b24) 2004; 72 Schonbucher (b42) 2000 Lancaster (b31) 2000; 95 de Leeuw (b17) 2006; 50 Ng (b39) 2015; 34 Chen (10.1016/j.jeconom.2020.11.002_b13) 2020 de Leeuw (10.1016/j.jeconom.2020.11.002_b17) 2006; 50 10.1016/j.jeconom.2020.11.002_b41 Feng (10.1016/j.jeconom.2020.11.002_b20) 2013; 67 Campbell (10.1016/j.jeconom.2020.11.002_b10) 1997 Jennrich (10.1016/j.jeconom.2020.11.002_b26) 1969; 40 Filmer (10.1016/j.jeconom.2020.11.002_b22) 2001; 38 Collins (10.1016/j.jeconom.2020.11.002_b14) 2001 Koopman (10.1016/j.jeconom.2020.11.002_b28) 2008; 26 Lancaster (10.1016/j.jeconom.2020.11.002_b31) 2000; 95 Bai (10.1016/j.jeconom.2020.11.002_b2) 2012; 43 Moustaki (10.1016/j.jeconom.2020.11.002_b35) 1996; 49 Bohning (10.1016/j.jeconom.2020.11.002_b9) 1988; 40 Joreskog (10.1016/j.jeconom.2020.11.002_b27) 2001; 36 Koopman (10.1016/j.jeconom.2020.11.002_b30) 2011; 162 Fan (10.1016/j.jeconom.2020.11.002_b19) 2017; 201 Creal (10.1016/j.jeconom.2020.11.002_b16) 2014; 96 McNeil (10.1016/j.jeconom.2020.11.002_b34) 2007; 14 Schonbucher (10.1016/j.jeconom.2020.11.002_b42) 2000 Chen (10.1016/j.jeconom.2020.11.002_b12) 2014 Moustaki (10.1016/j.jeconom.2020.11.002_b37) 2000; 65 Hahn (10.1016/j.jeconom.2020.11.002_b23) 2011; 27 Lancaster (10.1016/j.jeconom.2020.11.002_b32) 2002; 69 Newey (10.1016/j.jeconom.2020.11.002_b38) 1994 Fernandez-Val (10.1016/j.jeconom.2020.11.002_b21) 2016; 192 Bai (10.1016/j.jeconom.2020.11.002_b4) 2002; 70 Cox (10.1016/j.jeconom.2020.11.002_b15) 1987 Bai (10.1016/j.jeconom.2020.11.002_b5) 2006; 74 Bernanke (10.1016/j.jeconom.2020.11.002_b8) 2005; 120 Ross (10.1016/j.jeconom.2020.11.002_b40) 1976; 13 Koopman (10.1016/j.jeconom.2020.11.002_b29) 2008; 142 Fan (10.1016/j.jeconom.2020.11.002_b18) 2019; 212 Bartholomew (10.1016/j.jeconom.2020.11.002_b7) 1999 Bai (10.1016/j.jeconom.2020.11.002_b3) 2016; 98 Hahn (10.1016/j.jeconom.2020.11.002_b24) 2004; 72 Stock (10.1016/j.jeconom.2020.11.002_b44) 2016 Wu (10.1016/j.jeconom.2020.11.002_b45) 1981; 50 Hunter (10.1016/j.jeconom.2020.11.002_b25) 2004; 58 Chen (10.1016/j.jeconom.2020.11.002_b11) 2016 Stock (10.1016/j.jeconom.2020.11.002_b43) 2002; 97 Moustaki (10.1016/j.jeconom.2020.11.002_b36) 2000; 24 Lange (10.1016/j.jeconom.2020.11.002_b33) 2000; 9 Ng (10.1016/j.jeconom.2020.11.002_b39) 2015; 34 Bai (10.1016/j.jeconom.2020.11.002_b1) 2003; 71 Bartholomew (10.1016/j.jeconom.2020.11.002_b6) 1980; 29 |
References_xml | – volume: 13 start-page: 341 year: 1976 end-page: 360 ident: b40 article-title: The arbitrage theory of capital asset pricing publication-title: J. Finance – volume: 201 start-page: 292 year: 2017 end-page: 306 ident: b19 article-title: Sufficient forecasting using factor models publication-title: J. Econometrics – year: 1997 ident: b10 article-title: The Econometrics of Financial Markets – volume: 72 start-page: 1295 year: 2004 end-page: 1319 ident: b24 article-title: Jackknife and analytical bias reduction for nonlinear panel models publication-title: Econometrica – volume: 26 start-page: 510 year: 2008 end-page: 525 ident: b28 article-title: A non-Gaussian panel time series model for estimating and decomposing default risk publication-title: J. Bus. Econom. Statist. – volume: 58 start-page: 30 year: 2004 end-page: 37 ident: b25 article-title: A tutorial on MM algorithms publication-title: Amer. Statist. – reference: Schein, ., Saul, ., Ungar, ., 2003. A generalized linear model for principal component analysis of binary data, In: Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics. – volume: 98 start-page: 298 year: 2016 end-page: 309 ident: b3 article-title: Maximum likelihood estimation and inference for approximate factor models of high dimension publication-title: Rev. Econ. Stat. – year: 2016 ident: b11 publication-title: Estimation of Nonlinear Panel Models with Multiple Unobserved Effects – volume: 27 start-page: 1152 year: 2011 end-page: 1191 ident: b23 article-title: Bias reduction for dynamic nonlinear panel models with fixed effects publication-title: Econometric Theory – volume: 97 start-page: 1167 year: 2002 end-page: 1179 ident: b43 article-title: Forecasting using principal components from a large number of predictors publication-title: J. Amer. Statist. Assoc. – volume: 192 start-page: 291 year: 2016 end-page: 312 ident: b21 article-title: Individual and time effects in nonlinear panel models with large N, T publication-title: J. Econometrics – start-page: 1 year: 1987 end-page: 39 ident: b15 article-title: Parameter orthogonality and approximate conditional inference publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – volume: 96 start-page: 898 year: 2014 end-page: 915 ident: b16 article-title: Observation-driven mixed-measurement dynamic factor models with an application to credit risk publication-title: Rev. Econ. Stat. – volume: 74 start-page: 1133 year: 2006 end-page: 1150 ident: b5 article-title: Confidence intervals for diffusion index forecasts and inference for factor-augmented regressions publication-title: Econometrica – year: 1999 ident: b7 article-title: Latent Variable Models and Factor Analysis – volume: 212 start-page: 177 year: 2019 end-page: 202 ident: b18 article-title: Generalized high-dimensional trace regression via nuclear norm regularization publication-title: J. Econometrics – volume: 70 start-page: 191 year: 2002 end-page: 221 ident: b4 article-title: Determining the number of factors in approximate factor models publication-title: Econometrica – volume: 95 start-page: 391 year: 2000 end-page: 413 ident: b31 article-title: The incidental parameter problem since 1948 publication-title: J. Econometrics – volume: 36 start-page: 347 year: 2001 end-page: 387 ident: b27 article-title: Factor analysis of ordinal variables: A comparison of three approaches publication-title: Multivariate Behav. Res. – volume: 14 start-page: 131 year: 2007 end-page: 149 ident: b34 article-title: Bayesian inference for generalized linear mixed models of portfolio credit risk publication-title: J. Empir. Financ. – start-page: 2111 year: 1994 end-page: 2245 ident: b38 article-title: Large sample estimation and hypothesis testing publication-title: Handbook of Econometrics, IV – volume: 71 start-page: 135 year: 2003 end-page: 171 ident: b1 article-title: Inferential theory for factor models of large dimensions publication-title: Econometrica – year: 2014 ident: b12 article-title: Nonlinear panel models with interactive effects – volume: 43 start-page: 6 year: 2012 end-page: 465 ident: b2 article-title: Statistical analysis of factor models of high dimension publication-title: Ann. Statist. – volume: 38 start-page: 115 year: 2001 end-page: 132 ident: b22 article-title: Estimating wealth effects without expenditure data—or tears: An application to educational enrollments in states of India publication-title: Demography – volume: 162 start-page: 312 year: 2011 end-page: 325 ident: b30 article-title: Modeling frailty-correlated defaults using many macroeconomic covariates publication-title: J. Econometrics – volume: 49 start-page: 313 year: 1996 end-page: 334 ident: b35 article-title: A latent trait and a latent class model for mixed observed variables publication-title: Br. J. Math. Stat. Psychol. – year: 2000 ident: b42 article-title: Factor models for portfolio credit risk publication-title: Bonn Econ Discussion Papers 16 – start-page: 415 year: 2016 end-page: 525 ident: b44 article-title: Dynamic factor models, factor-augmented vector autoregressions, and structural vector autoregressions in macroeconomics publication-title: Handbook of Macroeconomics, Vol. 2 – volume: 142 start-page: 399 year: 2008 end-page: 424 ident: b29 article-title: The multi-state latent factor intensity model for credit rating transitions publication-title: J. Econometrics – volume: 69 start-page: 647 year: 2002 end-page: 666 ident: b32 article-title: Orthogonal parameters and panel data publication-title: Rev. Econom. Stud. – volume: 24 start-page: 211 year: 2000 end-page: 223 ident: b36 article-title: A latent variable model for ordinal variables publication-title: Appl. Psychol. Meas. – volume: 65 start-page: 391 year: 2000 end-page: 411 ident: b37 article-title: Generalized latent trait models publication-title: Psychometrika – year: 2001 ident: b14 article-title: A generalization of principal component analysis to the exponential family publication-title: Adv. Neural Inform. Proces. Syst. – volume: 50 start-page: 21 year: 2006 end-page: 39 ident: b17 article-title: Principal component analysis of binary data by iterated singular value decomposition publication-title: Comput. Statist. Data Anal. – volume: 34 start-page: 1141 year: 2015 end-page: 1171 ident: b39 article-title: Constructing common factors from continuous and categorical data publication-title: Econometric Rev. – volume: 29 start-page: 3 year: 1980 end-page: 321 ident: b6 article-title: Factor analysis for categorical data publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – volume: 40 start-page: 641 year: 1988 end-page: 663 ident: b9 article-title: Monotonicity of quadratic-approximation algorithms publication-title: Ann. Inst. Statist. Math. – volume: 67 start-page: 245 year: 2013 end-page: 248 ident: b20 article-title: The mean value theorem and taylor’s expansion in statistics publication-title: Amer. Statist. – volume: 9 start-page: 1 year: 2000 end-page: 20 ident: b33 article-title: Optimization transfer using surrogate objective functions publication-title: J. Comput. Graph. Statist. – volume: 120 start-page: 387 year: 2005 end-page: 422 ident: b8 article-title: Measuring the effects of monetary policy: A factor-augmented vector autoregressive (FAVAR) approach publication-title: Q. J. Econ. – year: 2020 ident: b13 article-title: Nonlinear factor models for network and panel data publication-title: J. Econometrics – volume: 50 start-page: 1 year: 1981 end-page: 513 ident: b45 article-title: Asymptotic theory of nonlinear least squares estimation publication-title: Ann. Statist. – volume: 40 start-page: 633 year: 1969 end-page: 643 ident: b26 article-title: Asymptotic properties of non-linear least squares estimators publication-title: Ann. Math. Stat. – volume: 72 start-page: 1295 year: 2004 ident: 10.1016/j.jeconom.2020.11.002_b24 article-title: Jackknife and analytical bias reduction for nonlinear panel models publication-title: Econometrica doi: 10.1111/j.1468-0262.2004.00533.x – volume: 65 start-page: 391 year: 2000 ident: 10.1016/j.jeconom.2020.11.002_b37 article-title: Generalized latent trait models publication-title: Psychometrika doi: 10.1007/BF02296153 – start-page: 1 year: 1987 ident: 10.1016/j.jeconom.2020.11.002_b15 article-title: Parameter orthogonality and approximate conditional inference publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.2517-6161.1987.tb01422.x – year: 2016 ident: 10.1016/j.jeconom.2020.11.002_b11 – volume: 40 start-page: 641 year: 1988 ident: 10.1016/j.jeconom.2020.11.002_b9 article-title: Monotonicity of quadratic-approximation algorithms publication-title: Ann. Inst. Statist. Math. doi: 10.1007/BF00049423 – year: 2020 ident: 10.1016/j.jeconom.2020.11.002_b13 article-title: Nonlinear factor models for network and panel data publication-title: J. Econometrics – volume: 38 start-page: 115 year: 2001 ident: 10.1016/j.jeconom.2020.11.002_b22 article-title: Estimating wealth effects without expenditure data—or tears: An application to educational enrollments in states of India publication-title: Demography – volume: 96 start-page: 898 year: 2014 ident: 10.1016/j.jeconom.2020.11.002_b16 article-title: Observation-driven mixed-measurement dynamic factor models with an application to credit risk publication-title: Rev. Econ. Stat. doi: 10.1162/REST_a_00393 – volume: 40 start-page: 633 year: 1969 ident: 10.1016/j.jeconom.2020.11.002_b26 article-title: Asymptotic properties of non-linear least squares estimators publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177697731 – volume: 43 start-page: 6 year: 2012 ident: 10.1016/j.jeconom.2020.11.002_b2 article-title: Statistical analysis of factor models of high dimension publication-title: Ann. Statist. – year: 1999 ident: 10.1016/j.jeconom.2020.11.002_b7 – issue: 13 year: 2001 ident: 10.1016/j.jeconom.2020.11.002_b14 article-title: A generalization of principal component analysis to the exponential family publication-title: Adv. Neural Inform. Proces. Syst. – volume: 192 start-page: 291 year: 2016 ident: 10.1016/j.jeconom.2020.11.002_b21 article-title: Individual and time effects in nonlinear panel models with large N, T publication-title: J. Econometrics doi: 10.1016/j.jeconom.2015.12.014 – volume: 34 start-page: 1141 year: 2015 ident: 10.1016/j.jeconom.2020.11.002_b39 article-title: Constructing common factors from continuous and categorical data publication-title: Econometric Rev. doi: 10.1080/07474938.2014.956625 – year: 2014 ident: 10.1016/j.jeconom.2020.11.002_b12 – volume: 58 start-page: 30 year: 2004 ident: 10.1016/j.jeconom.2020.11.002_b25 article-title: A tutorial on MM algorithms publication-title: Amer. Statist. doi: 10.1198/0003130042836 – volume: 201 start-page: 292 year: 2017 ident: 10.1016/j.jeconom.2020.11.002_b19 article-title: Sufficient forecasting using factor models publication-title: J. Econometrics doi: 10.1016/j.jeconom.2017.08.009 – volume: 27 start-page: 1152 year: 2011 ident: 10.1016/j.jeconom.2020.11.002_b23 article-title: Bias reduction for dynamic nonlinear panel models with fixed effects publication-title: Econometric Theory doi: 10.1017/S0266466611000028 – volume: 212 start-page: 177 year: 2019 ident: 10.1016/j.jeconom.2020.11.002_b18 article-title: Generalized high-dimensional trace regression via nuclear norm regularization publication-title: J. Econometrics doi: 10.1016/j.jeconom.2019.04.026 – volume: 69 start-page: 647 year: 2002 ident: 10.1016/j.jeconom.2020.11.002_b32 article-title: Orthogonal parameters and panel data publication-title: Rev. Econom. Stud. doi: 10.1111/1467-937X.t01-1-00025 – volume: 74 start-page: 1133 year: 2006 ident: 10.1016/j.jeconom.2020.11.002_b5 article-title: Confidence intervals for diffusion index forecasts and inference for factor-augmented regressions publication-title: Econometrica doi: 10.1111/j.1468-0262.2006.00696.x – start-page: 2111 year: 1994 ident: 10.1016/j.jeconom.2020.11.002_b38 article-title: Large sample estimation and hypothesis testing doi: 10.1016/S1573-4412(05)80005-4 – year: 2000 ident: 10.1016/j.jeconom.2020.11.002_b42 article-title: Factor models for portfolio credit risk – volume: 13 start-page: 341 year: 1976 ident: 10.1016/j.jeconom.2020.11.002_b40 article-title: The arbitrage theory of capital asset pricing publication-title: J. Finance – volume: 71 start-page: 135 year: 2003 ident: 10.1016/j.jeconom.2020.11.002_b1 article-title: Inferential theory for factor models of large dimensions publication-title: Econometrica doi: 10.1111/1468-0262.00392 – volume: 49 start-page: 313 year: 1996 ident: 10.1016/j.jeconom.2020.11.002_b35 article-title: A latent trait and a latent class model for mixed observed variables publication-title: Br. J. Math. Stat. Psychol. doi: 10.1111/j.2044-8317.1996.tb01091.x – volume: 50 start-page: 1 year: 1981 ident: 10.1016/j.jeconom.2020.11.002_b45 article-title: Asymptotic theory of nonlinear least squares estimation publication-title: Ann. Statist. – volume: 120 start-page: 387 year: 2005 ident: 10.1016/j.jeconom.2020.11.002_b8 article-title: Measuring the effects of monetary policy: A factor-augmented vector autoregressive (FAVAR) approach publication-title: Q. J. Econ. – year: 1997 ident: 10.1016/j.jeconom.2020.11.002_b10 – volume: 9 start-page: 1 year: 2000 ident: 10.1016/j.jeconom.2020.11.002_b33 article-title: Optimization transfer using surrogate objective functions publication-title: J. Comput. Graph. Statist. doi: 10.1080/10618600.2000.10474858 – volume: 26 start-page: 510 year: 2008 ident: 10.1016/j.jeconom.2020.11.002_b28 article-title: A non-Gaussian panel time series model for estimating and decomposing default risk publication-title: J. Bus. Econom. Statist. doi: 10.1198/073500108000000051 – volume: 142 start-page: 399 year: 2008 ident: 10.1016/j.jeconom.2020.11.002_b29 article-title: The multi-state latent factor intensity model for credit rating transitions publication-title: J. Econometrics doi: 10.1016/j.jeconom.2007.07.001 – volume: 95 start-page: 391 year: 2000 ident: 10.1016/j.jeconom.2020.11.002_b31 article-title: The incidental parameter problem since 1948 publication-title: J. Econometrics doi: 10.1016/S0304-4076(99)00044-5 – volume: 98 start-page: 298 year: 2016 ident: 10.1016/j.jeconom.2020.11.002_b3 article-title: Maximum likelihood estimation and inference for approximate factor models of high dimension publication-title: Rev. Econ. Stat. doi: 10.1162/REST_a_00519 – volume: 162 start-page: 312 year: 2011 ident: 10.1016/j.jeconom.2020.11.002_b30 article-title: Modeling frailty-correlated defaults using many macroeconomic covariates publication-title: J. Econometrics doi: 10.1016/j.jeconom.2011.02.003 – volume: 97 start-page: 1167 year: 2002 ident: 10.1016/j.jeconom.2020.11.002_b43 article-title: Forecasting using principal components from a large number of predictors publication-title: J. Amer. Statist. Assoc. doi: 10.1198/016214502388618960 – volume: 70 start-page: 191 year: 2002 ident: 10.1016/j.jeconom.2020.11.002_b4 article-title: Determining the number of factors in approximate factor models publication-title: Econometrica doi: 10.1111/1468-0262.00273 – volume: 24 start-page: 211 year: 2000 ident: 10.1016/j.jeconom.2020.11.002_b36 article-title: A latent variable model for ordinal variables publication-title: Appl. Psychol. Meas. doi: 10.1177/01466210022031679 – volume: 36 start-page: 347 year: 2001 ident: 10.1016/j.jeconom.2020.11.002_b27 article-title: Factor analysis of ordinal variables: A comparison of three approaches publication-title: Multivariate Behav. Res. doi: 10.1207/S15327906347-387 – volume: 14 start-page: 131 year: 2007 ident: 10.1016/j.jeconom.2020.11.002_b34 article-title: Bayesian inference for generalized linear mixed models of portfolio credit risk publication-title: J. Empir. Financ. doi: 10.1016/j.jempfin.2006.05.002 – ident: 10.1016/j.jeconom.2020.11.002_b41 – volume: 50 start-page: 21 year: 2006 ident: 10.1016/j.jeconom.2020.11.002_b17 article-title: Principal component analysis of binary data by iterated singular value decomposition publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2004.07.010 – volume: 29 start-page: 3 year: 1980 ident: 10.1016/j.jeconom.2020.11.002_b6 article-title: Factor analysis for categorical data publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – volume: 67 start-page: 245 year: 2013 ident: 10.1016/j.jeconom.2020.11.002_b20 article-title: The mean value theorem and taylor’s expansion in statistics publication-title: Amer. Statist. doi: 10.1080/00031305.2013.844203 – start-page: 415 year: 2016 ident: 10.1016/j.jeconom.2020.11.002_b44 article-title: Dynamic factor models, factor-augmented vector autoregressions, and structural vector autoregressions in macroeconomics doi: 10.1016/bs.hesmac.2016.04.002 |
SSID | ssj0005483 |
Score | 2.4163032 |
Snippet | This paper reestablishes the main results in Bai (2003) and Bai and Ng (2006) for generalized factor models, with slightly stronger conditions on the relative... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 180 |
SubjectTerms | Asymptotic methods Augmentation Convergence Density econometrics Estimating techniques estimation Factor model Factor-augmented regression Forecasting High dimension mass Maximum likelihood Maximum likelihood method Mixed measurement Nonlinear analysis nonlinear models Nonlinear systems Normality Probability probability distribution statistical models |
Title | Maximum likelihood estimation and inference for high dimensional generalized factor models with application to factor-augmented regressions |
URI | https://dx.doi.org/10.1016/j.jeconom.2020.11.002 https://www.proquest.com/docview/2714750525 https://www.proquest.com/docview/2498233969 |
Volume | 229 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYQPUAPVUtBTXnIlXp1smt7d-MjQqC0FVwoEjfLWY-jDWGDSCJVPfQP9E8zfmygCAmpt32MtSvPePzZnvmGkK-yzBTn1jKwIJi0yrJxkTmmVG1tDsI5E9g-L8rRlfx-XVxvkJMuF8aHVSbfH3168NbpySD15uCuaQaX_lAPlyMlxwucdj0nqJSVt_L-nydhHjJScaIw89KPWTyDaX8KIfsXl4ncO4_17soL89MzTx2mn7P35F3CjfQ4_toHsgHtDtnq0ooXO-Tt-ZqAFe-2PYiMHMwfyd9z86u5Xd3SWXMDs8YTGVNPrhGzFqlpLW26vD-KIJZ6DmNqPe9_5Oygk0hO3fwGS2OFHhpK6Cyo38elT07B6XKeJJhZTQLjp6X3MInhtu1il1ydnf48GbFUhIHVMhNLJso8H1slnchcDlYgwIRCyCJHaGErJ4c1VwDD0vrRb3hmTOmqAkGBqmvg0oo9stnOW_hEaJGB4IZzyBziIFmNgaN68sIom7vauR6RXdfrOjGU-0IZM92Fok110pj2GsPVi0aN9Uh_3ewuUnS81mDY6VX_Y2sap5HXmh50dqDTYF9oXuWyCgUBe-TL-jUOU3_2YlqYr1BGqiEXQpXq8_9_fZ9sc599EaKFD8jm8n4Fh4iJluOjYPRH5M3xtx-jiwfhrQ-l |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED6x8gB7QBvbtG6MedJeQxPbSetHhEBl0L4MJN4sNz5XKSVFtJWm_Qv7p3eOnbJNSEh7yw-fEvnsu8_23XcAX2WRKs6tTdCiSKRVNpnkqUuUKq3NUDhnGrbPcTG8lt9u8pstOGlzYXxYZbT9waY31jo-6cXe7N1XVe-7P9Sj5UjB6YLcrnwB256dKu_A9vH5xXD8GOkhAxsntU-8wGMiT292NMMmAZhWitzbj80GyxMu6h9j3Xigs1ewF6EjOw5_9xq2sN6HnTazeLkPL0cbDla62_U4MtAwv4FfI_OjulvfsXl1i_PKcxkzz68REheZqS2r2tQ_RjiWeRpjZj31f6DtYNPAT139RMtCkR7WVNFZMr-Vy_44CGerRWyRmPW0If207AGnIeK2Xr6F67PTq5NhEuswJKVMxSoRRZZNrJJOpC5DKwhjYi5knhG6sH0nByVXiIPCegNgeGpM4fo54QJVlsilFe-gUy9qfA8sT1FwwzmmjqCQ7E-Qk3qy3CibudK5Lsi263UZScp9rYy5bqPRZjpqTHuN0QJGk8a6cLQRuw8sHc8JDFq96r-GmyZP8pzoQTsOdJzvS837GY08XxOwC182r2mm-uMXU-NiTW2kGnAhVKE-_P_XP8PO8Gp0qS_PxxcfYZf7ZIwmePgAOquHNX4iiLSaHMYp8BscuxJW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+likelihood+estimation+and+inference+for+high+dimensional+generalized+factor+models+with+application+to+factor-augmented+regressions&rft.jtitle=Journal+of+econometrics&rft.au=Wang%2C+Fa&rft.date=2022-07-01&rft.issn=0304-4076&rft.volume=229&rft.issue=1+p.180-200&rft.spage=180&rft.epage=200&rft_id=info:doi/10.1016%2Fj.jeconom.2020.11.002&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4076&client=summon |